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Curvature-dependence of the liquid-vapor surface tension

beyond the Tolman approximation
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Surface tension is a macroscopic manifestation of the cohesion of matter, and its value σ∞ is
readily measured for a flat liquid-vapor interface. For interfaces with a small radius of curvature
R, the surface tension might differ from σ∞. The Tolman equation, σ(R) = σ∞/(1 + 2δ/R), with
δ a constant length, is commonly used to describe nanoscale phenomena such as nucleation. Here
we report experiments on nucleation of bubbles in ethanol and n-heptane, and their analysis in
combination with their counterparts for the nucleation of droplets in supersaturated vapors, and
with water data. We show that neither a constant surface tension nor the Tolman equation can
consistently describe the data. We also investigate a model including 1/R and 1/R2 terms in σ(R).
We describe a general procedure to obtain the coefficients of these terms from detailed nucleation
experiments. This work explains the conflicting values obtained for the Tolman length in previous
analyses, and suggests directions for future work.

Accepted to Physical Review Letters.

Nucleation in metastable phases is an ubiquitous phe-
nomenon, relevant to important fields such as atmo-
spheric research [1], mechanics of plants and trees [2–4],
and in the chemical industry to avoid vapor explosions
accidents (or “spill accidents”) [5]. The nucleation rate
is exquisitely sensitive to the value of the surface ten-
sion σ between the metastable and the stable phase. As
the size of the critical nucleus that triggers the phase
change is in the nanometer range, the value of σ relevant
to nucleation may differ from the bulk one. The idea of a
dependence of the surface tension on the curvature of the
interface between phases has been studied by Tolman [6],
who proposed for a spherical droplet with radius R

σ∞

σ(R)
= 1 +

2δ∞
R

, (1)

where δ∞ is the Tolman length. Determining in experi-
ments σ(R) is critical to developing accurate nucleation
theories. It can also serve as an input to validity checks of
density functional theory calculations and numerical sim-
ulations. More generally, the small scale limit at which
macroscopic laws break down is an active field of re-
search, as shown for instance by recent studies on vapor
pressure of nanodroplets [7], or on flows in nanochan-
nels [8], that are of crucial importance for oil recovery
and catalysis.
The curvature dependence of surface tension has been

mainly studied theoretically and numerically, with con-
flicting results about the magnitude and even the sign
of the effect [6, 9–18]. The dearth of experimental data
stems from the difficulties inherent to measurements on
nanoscopic objects. In this work we circumvent this prob-
lem by use of the nucleation theorem (NT) [19, 20], which
allows obtaining information on the nanoscopic critical
nucleus from a macroscopic observable, the nucleation
rate (number of nucleation events per unit volume and
time). In addition, we adopt a comprehensive approach,
treating on the same footing the two symmetric cases of

nanodroplets (related to the nucleation of a liquid from
a supersaturated vapor, condensation) and nanobubbles
(related to the nucleation of a vapor in a metastable liq-
uid, cavitation). To complement existing data on con-
densation, we have performed acoustic cavitation exper-
iments on ethanol and heptane.
In acoustic cavitation, the liquids are stretched using a

few cycles of a focused acoustic wave at 1 MHz to trigger
nucleation (see [21] and Supplemental Material, SM, for
details). The wave frequency sets the experimental time
and volume, and consequently the observable nucleation
rate. The pressure at which this rate is reached is shown
in Fig. 1(a) for ethanol and in Fig. S1(a) of the SM for
heptane. Compared to a previous study where the cavi-
tation pressures were based on an indirect estimate [22],
we have now measured them directly with a fiber-optic
probe hydrophone (FOPH) [23]. These more accurate
measurements lead to lower pressures than the previous
study, as expected because of the nonlinearities in the
acoustic wave (see SM and [24, 25]).
An excellent introduction to the concept of curvature-

dependent surface tension can be found in [10]. We just
introduce here the relevant quantities on the example of
condensation. Consider a small spherical droplet of liquid
in equilibrium with its supersaturated vapor at chemical
potential µ. The pressure of the bulk liquid and vapor
at µ are PL and PV, and their densities ρL and ρV, re-
spectively. The key point is that the surface tension σ
depends on the radius R chosen for the dividing sphere
which separates by convention the liquid and vapor re-
gions. Two radii are of particular interest in describing
the droplet. The first is Re, the radius of the equimo-
lar dividing surface. The second is Rs, the radius of the
sphere at which the Laplace relation is fulfilled:

∆P = PL − PV =
2σs

Rs

, (2)

where σs = σ(Rs). Rs allows to write the energy barrier
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for nucleation ∆Ω in a compact form:

∆Ω =
4π

3
R2

sσs =
16πσ3

s

3∆P 2
. (3)

In classical nucleation theory (CNT), the nucleation
rate J for the phase change is

J = J0 exp

(

−
∆Ω

kBT

)

, (4)

with J0 a prefactor, whose expression is given in the SM.
The knowledge of J at a given µ or ∆P (the quantity
controlled in an experiment) thus gives access to ∆Ω from
Eq. (4), σs from Eq. (3) and R∗

s from Eq. (2). Starred
quantities are relative to the critical nucleus, at which the
energy barrier ∆Ω is reached. In addition, experiments
can give access to R∗

e [19, 20]. Indeed, if the dependence
of J on µ is known, the excess number of molecules in
the critical nucleus is

∆n∗ = kBT

(

∂ ln(J/J0)

∂µ

)

T

. (5)

For ρV ≪ ρL, and assuming a spherical critical droplet
whose density at the center reaches the bulk value, this
leads to an expression for the volume of the sphere with
radius R∗

e (see SM):

V ∗

e =
4π

3
R∗

e
3 =

|∆n∗|

ρL
=

kBT

ρL

∣

∣

∣

∣

(

∂ ln(J/J0)

∂µ

)

T

∣

∣

∣

∣

. (6)

Eqs. (3) to (6) hold for both cavitation and condensa-
tion, provided that adequate expressions for ∆P , µ and
J0 are used.
To test different models for the surface tension, we

have used experimental values of J at known µ (conden-
sation data), or, equivalently, ∆P at fixed J (cavitation
data), and V ∗

e . The models are described below and are
summarized in Table I.
In the standard version of the CNT [26], CNT0, σs is

assumed to always remain equal to the value for a planar
interface σ∞, which is equivalent to setting Re = Rs,
and ∆Ω = 16πσ∞

3/(3∆P 2). CNT0 is notorious to fail
in predicting correct nucleation rates, for cavitation [27]
as well as for condensation [14, 28–35]. This appears
clearly in Figs. 1 and S1, where the FOPH experiments
are plotted along with condensation data [28, 31, 32, 36–
40], and with a cavitation point from a water inclusion in
quartz [27]. For instance, Figs. 1(b) and S1(b,d) highlight
for the three fluids a crossover temperature below which
CNT0 underestimates the condensation rates, and above
which they are overestimated. This crossover had already
been observed in single data sets for ethanol and water
condensation, e.g. [32] and [41], and the combination of
several sets makes this conclusion stronger.
We therefore investigate other models with Re 6= Rs.

We use a functional form suggested by simulations [10]:

δ(Rs) = δ∞ +
α

Rs

. (7)
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FIG. 1. Comparison of nucleation pressures or rates (markers)
with CNT0 (dashed lines) in ethanol. (a) Acoustic cavitation
pressures obtained with the FOPH (blue stars) are compared
to previous pressure estimates (red diamonds) via a static
pressure method [22]. The new, more accurate points are
consistently more negative, as expected (see SM). The blue
line is a guide to the eye. (b) Condensation data. Each graph
represents the logarithm of the ratio between the nucleation
rate and the CNT0 prediction. The data sources are indicated
in the legend. See Fig. S1 in the SM for the corresponding
graphs for heptane and water.
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FIG. 2. δ∞ depending on temperature for cavitation (star
markers) and condensation (filled markers) in ethanol. The
legend is the same as in Fig. 1. The double arrows point to
discrepancies that suggest the failure of the CNT1 model: δ∞,
which is expected to be the Tolman length, would not only
depend on T . The blue line is a guide to the eye of the FOPH
data. See Fig. S2 for heptane and water.

Starting with a first variant of CNT, CNT1, which as-
sumes α = 0 in Eq. (7), it can be shown that [10]

σ∞

σs

= 1 +
2δ∞
Rs

+O

(

1

Rs
2

)

, (8)

which is similar to Eq. (1). One can then calculate δ∞



3

Model Surface tension Free parameters Input data

CNT0 σ(Rs) = σ∞ None None

CNT1

σ∞

σ(Rs)
= 1 +

2δ∞
Rs

δ∞ J

CNT2

σ∞

σ(Rs)
= 1 +

2δ∞
Rs

+
δ2
∞

+ α

R2
s

δ∞ and δ2
∞

+ α J and V ∗

e

TABLE I. Summary of the models tested in this Letter. For each model, we indicate the expression for the surface tension, the
free parameters and the experimental data used to extract these parameters.

from the experimental nucleation rates (see SM). The
analysis usually stops there [11, 27, 31], which does not
provide a full test of CNT1. We take a step further, and
predict V ∗

e from δ∞ with CNT1 (see SM). A comparison
between predicted V ∗

e and V ∗

e deduced from the exper-
iments with the NT Eq. (6) becomes possible. To our
knowledge, this type of reasoning has been employed only
for water [27, 31], with a seemingly satisfactory agree-
ment. By a more comprehensive analysis of all the data
sets gathered for ethanol, heptane and water, covering a
broader range for temperature and degree of metastabil-
ity, we find discrepancies that reveal the actual failure
of CNT1. Figs. 2 and S2 show δ∞ calculated from the
cavitation and condensation experiments. Quantities rel-
ative to cavitation and condensation are labelled by ‘cav’
or ‘cond’, respectively. If CNT1 were valid, we would
expect to find that δcav

∞
and δcond

∞
do not depend on R∗

s

and that δcav
∞

= −δcond
∞

for the same temperatures [10].
For each of the fluids, the points do not collapse on a sin-
gle curve, as indicated by the double arrows, even when
taking into account the experimental uncertainties (see
SM for details). This suggests that δ does in fact depend
on R∗

s
. We emphasize that the disagreement can usually

not be seen when looking at the data of a single con-
densation experiment. This is because various indepen-
dent supersaturation and temperature values are needed
to conclude and the combination of several condensation
and cavitation experiments extends the range of both
parameters. The crossover mentioned earlier translates
here into a change of δcond from positive to negative val-
ues when T increases (Figs. 2 and S2). This behavior is
not in support of CNT1. The situation gets even worse
when comparing in Figs. 3 and S3 V ∗

e extracted from this
model (small, light markers) with V ∗

e obtained using the
NT (big, dark markers). In overall, these agree at low
temperature, but strongly disagree above 250-300 K de-
pending on the fluid. We note that the approximations
needed to deduce V ∗

e from experiments with Eq. (6) lead
to an underestimate of V ∗

e for both cavitation and con-
densation, so that the disagreement with CNT1 can be
only stronger than shown in Figs. 3 and S3. Also, the
critical volumes for cavitation may display a systematic
error bigger than the statistical error bars shown here be-
cause of an extrapolation in the data analysis. All these
details are investigated in the SM and Refs. [42, 43] and
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FIG. 3. Critical volumes in (a) cavitation and (b) conden-
sation experiments for ethanol. The thick and thin markers
represent the volumes from the NT and from CNT1, respec-
tively. The legend is the same as in Fig. 1. See Fig. S3 for
heptane and water.

do not change any of our conclusions.
We now move on to a second variant of CNT, CNT2,

based on Eq. (7) with two parameters δ∞ and α 6= 0. It
can then be shown that [44]:

σ∞

σs

= 1 +
2δ∞
Rs

+
δ∞

2 + α

Rs
2

+O

(

1

Rs
3

)

. (9)

It may seem that adding an extra parameter would auto-
matically allow a better fitting of the data. But we also
use more experimental input (see Table I). For CNT1,
we used only the experimental nucleation rates to cal-
culate δ∞, and compared the CNT1 prediction for V ∗

e

with the values from experiments on which the nucle-
ation theorem can be applied. For CNT2, we use both
the nucleation rates and V ∗

e from those experiments to
directly calculate δ∞ and δ2

∞
+ α (see SM). The success

of the approach must therefore be assessed by checking if
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FIG. 4. CNT2 parameters δ∞ and δ2
∞

+ α derived from con-
densation experiments. See Fig. 1 for the legend, and Fig. S4
for heptane and water.

the various data sets lead to master curves for both δ∞
and δ2

∞
+α as a function of the temperature. The results

are plotted in Figs. 4 and S4. We have omitted here the
FOPH data, since, unfortunately, the corresponding er-
ror bars on δ∞ and δ2

∞
+ α would be of the order of the

size of the y-axes (see SM). For heptane, only one data
set is available and does not allow to test the data col-
lapse. For the other fluids, we observe a more consistent
description of the data (see in particular the improve-
ment of the discrepancy between the Tanimura 2013 and
the Manka 2012 data compared to Fig. 2). The agree-
ment is still not perfect, even when taking into account
the statistical uncertainties on the points. This is possi-
bly indicative of systematic errors specific to the different
experiments, or of some limitation of the theory, such as
that of a spherical critical nucleus. Compared to CNT1,
CNT2 yields a Tolman length δ∞ with a weaker tem-
perature dependence, and for ethanol and water δ∞ now
keeps a positive sign. For heptane, δ∞ is close to zero,
maybe slightly negative. For the three fluids, we noted
that the second order term (δ2

∞
+α)/(R∗

s )
2 is often of the

same order of magnitude as the first order term δ∞/R∗

s

(see SM).

Our results show that, at least for ethanol, heptane and
water, the usual Tolman equation Eq. (1) is not enough
to properly describe experiments. Therefore, attempts
to analyse experiments with CNT1 (such as in [11, 27,
31]) may yield inaccurate determinations of δ∞, and this
study partly explains the confusion in the longstanding
debate on the sign of the Tolman length [45]. The CNT2

approach seems to give more consistent results.

A variety of simulations have been realized and mo-

tivated our work. We have tried to compare the ex-
periments to these. For heptane, the δcond

∞
we found is

close to zero and possibly negative (around −0.02 nm).
An expression of the Tolman length as a function of the
isothermal compressibility κT has been proposed [46, 47]:
δ∞ = −κTσ∞. At 265 K, the formula yields δ∞ ≈
−0.03 nm for heptane, which is close to the experiments
in Fig. S4(a). Heptane may be crudely approximated by
a Lennard-Jones fluid, for which DFT calculations and
MC simulations [9, 10] seem to point to a slightly neg-
ative value for δcond

∞
(−0.07 nm). However, MD simu-

lations [44] find a positive temperature-dependent −δcav
∞

(+0.1 nm at 265 K). Also, Iwamastu [48] estimated the
Tolman length from the correlation lengths of the liq-
uid and vapor phases, which for heptane translates into
δcond
∞

≈ −0.2 nm, which has a larger magnitude than
the experimental value. The parameter δ2

∞
+α has been

estimated by MD simulations [44] and by DFT [9, 49].
Rescaled to heptane, these estimates all lead to a positive
(δ2

∞
+ α)/R2

s of about 0.4 [44], while the Rudek data set
displays mostly negative values: (δ2

∞
+ α)/R2

e = −0.1 in
average in the 250-275 K range. By identifying Eq. (9) to
the Helfrich form of the surface free energy in Ref. [50],
we find the average curvature-elastic moduli 2kc + k̄c =
7× 10−22 J.

For the other fluids, the different experiments partially
collapse on master curves, thus supporting the CNT2

model, but they can hardly be compared to simulations
or DFT estimates based on the Lennard-Jones potential.
For water, we first note that within CNT2, the cavita-
tion [27] and the condensation [40] experiments yield to
positive δcond

∞
or −δcav

∞
. This sign is consistent with sim-

ulations based on a monoatomic model of water (mW)
where a departure from the Kelvin equation is observed
at small droplet radii [7]. However, the CNT2 analysis of
two simulations with TIP4P/2005 [11, 51] would give the
opposite sign: δcond

∞
= −0.066 nm at 300 K for [11] that

measured directly the radius-dependence of the surface
free energy of droplets, and −δcav

∞
= −0.067 nm for the

cavitation simulations in [51] from which we have calcu-
lated δ∞ with the energy barrier and the critical volume
(using the data from their “M-method” to estimate V ∗

e ).

While our conclusions on the inaccuracy of the CNT1

model are unambiguous — we strongly recommend not
to use the Tolman equation when analysing nucleation
data —, they call for further experiments to confirm the
CNT2 model. As the vapor supersaturation can be varied
over a broad range in experiments on condensation, they
should be more appropriate than cavitation. For ethanol,
the success of CNT2 is already very promising, and we
provide in the SM overall fitting parameters for δ∞ and
δ2
∞

+ α that can be used to predict the nucleation rate
from any condition. For other fluids, our study provides a
procedure with which future measurements of nucleation
rates and critical volumes can be analysed.
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This note provides additional information on the experiments and the analysis presented in the
Letter, and presents an analysis of n-heptane and water nucleation data to complement the ethanol
data. It also discusses the uncertainties and approximations to support our conclusions. When not
specified, the notations and legends in this document are the same as in the main text.
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I. MATERIALS AND METHODS

We have performed acoustic cavitation in n-heptane (Sigma Aldrich, puriss. p.a., ≥ 99%) and ethanol (VWR
Prolabo Chemicals, 99.98% v/v), using a hemispherical piezoelectric transducer to focus 1 MHz sound bursts (a few
cycles long) in a small region of the liquid far from any wall1. Ramping the excitation voltage of the transducer, the
cavitation probability increases from 0 to 1. The “cavitation threshold” corresponds to a 50% cavitation probability
during a burst. In a previous study2, the pressure at the focus was estimated indirectly by studying the effect of the
static pressure in the liquid on the cavitation threshold. Here, we have measured the density of the fluid at the focus
directly with a fiber-optic probe hydrophone3, which is sensitive to the modulation of the refractive index by the
sound wave. To convert the density into a pressure, we used an equation of state for the liquid at positive pressure,
and extrapolated it down to about −30 MPa.

II. COMPARISON BETWEEN THE STATIC PRESSURE AND FOPH METHODS

Figs. 1(a) and S1(a) show pressures at the cavitation threshold slightly more negative with the FOPH than the
previously reported values. Here we give an explanation for the discrepancy.
The static pressure method in Ref. 2 was based on the dependence of the transducer voltage at the cavitation

threshold on the positive static pressure applied to the liquid. A linear extrapolation gave an indirect estimate of the
negative cavitation pressure. However, nonlinearities lead to extrapolated pressures less negative than the real ones4.
The new experiments with a FOPH give direct access to the density of the liquid at the cavitation threshold. The
only remaining assumption resides here in the conversion of the density into a pressure, that requires to extrapolate
to negative pressure an equation of state measured at positive pressure. In the case of water, we have previously
measured the equation of state at negative pressure and proven that this assumption is valid5. It is reasonable to
assume that the extrapolation would also be valid for heptane and ethanol, thus yielding to FOPH points that are
more accurate than the points from the static pressure method.

III. STUDY OF n-HEPTANE AND WATER

The analysis carried in the Letter on ethanol can be extended to other liquids. Figures S1, S2, S3, S4 below show
results for n-heptane and water.

IV. FORMULA OF THE MODIFIED CNTS

This sections gives the formula we have used to calculate the CNT1 and CNT2 parameters, and the critical volumes
from the nucleation theorem.

A. CNT1

In the CNT1, Eq. (8) is written at the critical radius, Rs = R∗

s . R
∗

s is trivially deduced from the Laplace equation
as a function of the energy barrier ∆Ω, and ∆P , that are known from the experiments:

R∗

s =

(

3∆Ω

2π∆p

)1/3

(S1)

Since Eq. (3) with Rs = R∗

s links σs(R
∗

s ) to ∆Ω and R∗

s , we obtain the following expression for the Tolman length:

δ∞ =
σ∞

∆P

[

1−
(

3∆Ω

16πσ3
∞

)1/3
]

(S2)

Compared to CNT0, the critical volume now depends on δ∞. The derivation is done in Ref. 6 and gives

V ∗

e =
2σ∞

∆P
− δ∞ (S3)
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B. CNT2

Eqs. (2), (7) and (9) form a system of equations that can be solved for δ∞ and δ2
∞

+ α. The relevant solutions are










δ∞ = −R∗

s

2
(1−

√
∆)

δ2
∞

+ α = (R∗

s )
2

(

2σ∞

R∗

s∆P
−
√
∆

) (S4)

where

∆ = 1− 4R∗

e

R∗

s

+
8σ∞

R∗

s∆P
(S5)

Here, R∗

e is obtained in the experiments from the nucleation theorem and R∗

s is given by Eq. (S1).

C. Choice for the kinetic prefactor

1. Cavitation

The CNT0 and its variants CNT1 and CNT2 rely on the choice of an expression for the kinetic prefactor J0.
For cavitation, we chose J0V τ = 1019, where V is the volume where the acoustic wave is focalized, and τ the

duration of an acoustic burst. The value is taken from our previous study in water1. The actual value of J0V τ in the
present experiments might differ from the 1019 value. However, a change by a factor 10 in this constant only leads to
a shift of the experimental points by about 0.015 nm for the CNT1’s δ∞ and 0.5 nm3 for V ∗

e (for both heptane and
ethanol). This is much smaller than the statistical deviations seen by repeating cavitation pressure measurements at
the same temperature several times.

2. Condensation

For condensation, the nucleation rates are calculated from the supersaturation S = Pv/Psat(T ), where Pv is the
pressure of the metastable vapor, and Psat(T ) is the equilibrium vapor pressure for a flat interface. Treating the vapor
as a perfect gas, and the liquid as an incompressible phase leads to:

∆P =
kT lnS

vl
(S6)

where k is the Boltzmann constant and vl the volume per molecule in the liquid. (Including gas non-idealities has
been shown to have little effect on the nucleation rates for n-nonane7.) For the kinetic prefactor, we used

J0 =

√

2σ∞

πml

vl S
2

(

Psat(T )

kT

)2

(S7)

with ml the mass of a molecule. The actual value of J0 is still being debated. In particular, a “1/S correction” is
sometimes added to Eq. (S7)6. This, again, only leads to insignificant changes in the quantities explored in this study.
For instance, the typical shifts from the data in8 are: 2 orders of magnitude for Jexp/JCNT, 0.1 nm3 for V ∗

e , 0.02 nm
for the CNT1’s δ∞, and 2× 10−4 nm and 0.015 nm2 for the CNT2’s δ∞ and δ2

∞
+ α.

D. Derivation of the critical volumes from the nucleation theorem

Critical volumes are obtained from the nucleation theorem Eq. (5). When writing Eq. (6) and converting ∆n∗ into
a volume, two consecutive approximations are made. First, we assume that the density at the center of the nucleus
is the density of the homogeneous phase, ρL or ρV. This allows us to link the critical volume to the excess number of
molecules by:

V ∗

e =
n∗

e

ρL
=

∆n∗

ρL − ρV
for droplets (S8)

=
n∗

e

ρV
= − ρV

ρL − ρV
∆n∗ for bubbles (S9)
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where n∗

e is the number of molecules in the nucleus. The second approximation we make is that ρL ≫ ρV, which
is easily satisfied: for the data analyzed in the Letter and here, the maximal value of ρV/ρL is 0.68 × 10−3 for
condensation and 1.1× 10−3 for the FOPH experiments. The critical volume then simply becomes

V ∗

e =
|∆n∗|
ρL

(S10)

for droplets and bubbles.
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The two approximations above lead to an underestimate of the critical volumes9,10. Correcting for these would
therefore make the discrepancy between the real critical volumes and the CNT1’s volumes that we highlight in the
main text stronger.

V. EFFECT OF THE EXTRAPOLATION OF THE VOLTAGE TO PRESSURE RELATION
(CAVITATION EXPERIMENTS)

A large part of the uncertainties in our experiments do not come from statistical error bars. To measure the
cavitation pressures and the critical volumes in the fiber-optic probe hydrophone experiments, pressures are measured
for different amplitudes of the sound wave created by a piezo-electric transducer. The amplitude is controlled by the
amplitude of the oscillatory voltage U applied to the transducer (see Ref. 3 for details on the setup). Unfortunately,
the voltage cannot be increased up to the value for which there would be 50 % chance to cavitate as it would damage
the end facet of the fiber. To obtain the pressure Pcav at the voltage Ucav, the pressure is measured for several values
of U below about 0.8Ucav, and we fit the data with some function to extrapolate the pressures to Pcav. We have tried
several functions for the extrapolation, and three of them gave sufficiently small residuals:

P1(U) = a2U
2 + a1U , (S11)

P2(U) = b2U
2 + b1U + b0 (S12)

and

P3(U) = c3U
3 + c2U

2 + c1U + c0 (S13)

where the ai, bi and ci are the fitting coefficients. We show the three extrapolations for a given temperature in heptane
and ethanol in Fig. S5. On this plot, Pcav can simply be read for U = Ucav. To calculate the critical volumes from
the nucleation theorem within the framework of CNT1, Eq. (6) is rewritten in terms of a derivative ∂P/∂U of the
pressure with the voltage, so that the critical volumes are related to the slope of P (U) at Ucav. Since we could not find
any strong argument to determine which extrapolation is the best, we display in Figs. S6, S7 and S8 the quantities
obtained with the three polynomials. The graphs of the main text (and their equivalents for heptane and water in
Figs. S1, S2, S3 and S4) use polynomial P2 as its residuals were slightly better than for the other functions and
because it often lies between the values computed with P1 and P3. The choice of the function for the extrapolation
can lead to significant changes of the various quantities plotted, especially the critical volumes. However, no matter
what function is used, there is no master curve emerging in Fig. S7 (for heptane), and it appears very unlikely from
Fig. S8 that the real critical volumes from the nucleation theorem could match the volumes from the CNT1.
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VI. CNT2 FOR CAVITATION

Cavitation data have been omitted in the CNT2 analysis. The reason is that increasing the order also increases
the error bars, and the errors induced by the P (U) extrapolation (see above) lead to a large uncertainty in δ∞ and
δ2
∞

+ α. Moreover, the values of the cavitation pressures and of the critical volumes are such that the solving of
the second order polynomial to obtain the solutions in Eq. (S4) sometimes gives no real roots. Fig. S9 shows the
cavitation analysis for the points that do have a solution, along with the condensation experiments. The systematic
error induced by the choice of the P (U) relation is typically of the order of the range of the y axis of the graphs for
both δ∞ and δ2

∞
+ α.

VII. ESTIMATE OF THE STATISTICAL ERROR BARS

Whenever it was possible, we have put statistical error bars on the quantities δ∞ and V ∗

e from CNT1, V
∗

e from the
NT, and δ∞ and δ2

∞
+ α from the CNT2. This section describes how they were calculated.

A. Fiber-optic probe hydrophone experiments

In the fiber-optic probe hydrophone (FOPH) experiments, the error bars in δcav
∞

have been estimated on repeated
experiments at a single temperature, T = 293 K. Between two cavitation pressure measurements, the fiber was removed
and repositioned at the acoustic focal point. The results were dispersed with a standard deviation of 0.4 MPa, which
we took as the error bar for all temperatures. To complement this statistical error, we also display, in the Letter
and here, the FOPH measurements in heptane and ethanol for two series of temperatures (for each liquid). When
switching to a new series, the fiber was cleaved to renew its end facet, which leads to an additional uncertainty in the
measurements.
The critical volumes from the nucleation theorem V ∗

e rely on a nonlinear fit of the probability to cavitate Σ(U),
with one of the parameters, ξ, representing the “width” of the Σ(U) curve that has an “S” shape2. The error bar
on ξ has been estimated for each liquid for a single temperature. Assuming that the experiment gave a set of points
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{(Uexp,Σexp)i}, we have generated numerically several sets {(Uexp,Σnum)i} and fitted an S-curve on each of them,
thus providing us with a standard error on ξ. The generation of a given point (Uexp,Σnum) is done by taking for Σnum

a random value corresponding to the average of N values σj ∈ {0, 1} with a probability of obtaining 1 equals to Σexp.

B. Condensation experiments

The condensation data typically correspond to measurements of the nucleation rate J for different values of the
supersaturation S, and of the temperature T . For a given temperature, the S(J) curve is expected to be a portion
of a line, and such a fit is indeed performed to obtain the critical volume V ∗

e . We extract two statistical errors from
that fit:

• The standard error on the slope.

• A standard error on the average nucleation rate for the given temperature. When plotting the S(J) fit function
together with the experimental points, these are dispersed around the fit function. Assuming that there is an
error in the J measurements, but that S is known precisely, this allows to estimate an overall statistical error
in a single J measurement, ∆J0, from the deviation of the experimental J to the fit function.

These made possible the calculation of standard errors on the following quantities:

• The first error above is used to get the statistical error on V ∗

e (from nucleation theorem).

• Since we used, for a given temperature, the average value (over all S) of J as an input in the δ∞ and V ∗

e

formulas, the standard errors on these quantities simply derive from the standard error ∆J = ∆J0/
√
N , with

N the number of points for the fit.

• The δ∞ and δ2
∞

+ α quantities both depend on the two parameters J and V ∗

e . We have noted that in most of
the cases the error due to J in δ∞ and δ2

∞
+ α is at least 10 times smaller than the error due to V ∗

e . We have
therefore only included the standard error due to the critical volumes in δ∞ and δ2

∞
+ α.
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VIII. SECOND ORDER APPROXIMATION FOR THE SURFACE TENSION σs

A. Validity

Eq. (9) is derived by Taylor expanding and integrating the Gibbs-Tolman-Koenig-Buff (GTKB) equation (Eq. (26)
in Ref. 11) to second order in 1/R∗

s , by neglecting terms such as δ3
∞
/(R∗

s )
3 and α2/(R∗

s )
4. For each pair of values

(δ∞, δ2
∞
+α) from the experiments, we have compared the value of σs from Eq. (9) with the full numerical integration

of the GTKB equation. For the 34 points used to plot Figs. 4 and S4, the maximum relative error is 3.7 %, and 29
points give an error of less than 1 %, which makes Eq. (9) an excellent approximation for realistic ranges of parameters
for condensation.

B. Comparison of the two terms in the σs expansion of the CNT2

With the beginning of the use of models including a second order related to the rigidity of the interface, some debate
emerged about the relative amplitudes of the two terms 2δ∞/R∗

s and (δ2
∞

+ α)/(R∗

s )
2. In simulations, models that

include the second term only, or that include the two terms12,13 have been tested. For the experiments, their ratio,
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extracted from the condensation measurements, is shown in Fig. S10. Overall, we found that the two quantities are
often of the same order of magnitude. Sometimes, the ratio takes values much larger than 1, but this only happens
when δ∞ is very close to 0, so that these points may have large error bars, because of the error in the δ∞ values.
Therefore, we expect that a model of a surface tension varying as σ∞/σs = 1 + C/(R∗

s )
2, with C a constant, would

display inconsistencies similar to those found with the CNT1 model.

IX. FITTED CNT2 PARAMETERS FOR ETHANOL

Considering the condensation data only, we obtained an overall agreement of all the data in the sense that the
points are closer to master curves for δ∞(T ) and (δ2

∞
+α)(T ) in the CNT2 than what was found for δ∞ in the CNT1.

The best results are obtained for ethanol. We have fitted in this case these functions by simple expressions that can
be used as empirical functions, namely a constant δ∞ and a linear δ2

∞
+ α:

δ2
∞

+ α = A(T − Tref) +B (S14)

With Tref = 298.15 K, the fit parameters are δ∞ = 0.04095 nm, A = −0.005460 nm2/K and B = −0.3352 nm2.
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