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Generalization of Regular Black Holes in General Relativity to f(R) Gravity
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(b) Faculdade de F́ısica, PPGF, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
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(d) Universidade Federal Rural da Amazônia ICIBE - LASIC
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In this paper, we determine regular black hole solutions using a very general f(R) theory, coupled
to a non-linear electromagnetic field given by a Lagrangian LNED. The functions f(R) and LNED

are left in principle unspecified. Instead, the model is constructed through a choice of the mass
function M(r) presented in the metric coefficients. Solutions which have a regular behaviour of
the geometric invariants are found. These solutions have two horizons, the event horizon and the
Cauchy horizon. All energy conditions are satisfied in the whole space-time, except the strong energy
condition (SEC) which is violated near the Cauchy horizon.

PACS numbers: 04.50.Kd

I. INTRODUCTION

The present stage of accelerate expansion of the universe seems to be well established from the analysis of observa-
tional data. Besides the supernova Ia data [1], the data from the observation of the anisotropy of the cosmic microwave
background radiation (CMB) [2], the baryonic acoustic oscillations (BAO) [3], large scale structures [4],weak lensing
[5], the differential age of old galaxies (H(z0) [6], give strong evidences for the present accelerated expansion phase.
Since gravity is attractive, the cosmic accelerate expansion requires some new form of exotic matter that leads to
violation of the Strong Energy Condition (SEC) [7, 8], as far as the General Relativity (GR) theory is considered.
This exotic component is dubbed dark energy.
The most popular, and most simple, candidate for dark energy is the cosmological constant. Interpreted as a

manifestation of the quantum vacuum energy, the cosmological constant faces however a huge discrepancy between
the observed value and the predicted one. The exact value of this discrepancy depends on many details, but in general
it mounts to many dozen orders of magnitude [9].
The incertitude about the dynamical origin of the observed accelerated expansion led to many speculations about

possible extensions of the General Relativity (GR) theory in such way that the accelerated expansion could be obtained
without the introduction of dark energy. In this sense, one of these possible extensions is to generalise the Einstein-
Hilbert action including non-linear geometric terms. One of this proposal is the f(R) theories [10, 11], where the
non-linear terms are combinations of the Ricci scalar R. Such theories may give very good results at cosmological
scales but must be complemented with a screening mechanism in order not to spoil the achievements of the GR theory
at scales of the solar system [12]. There are a long list of other possible, and generally more complex, modifications
of the GR theory [13–19]
Another problem concerning the applications of the GR theory to concrete problems is the presence of singularities,

as that predicted in the primordial universe and in the end of the life of some massive stars. The presence of such
singularities seems to point to the limit of application of the GR theory, requiring perhaps to consider quantum effects
in the strong gravitational regime. Some other possibility to cure this singularity problem, yet in the context of a
classical theory, is to consider as source of the gravitational equations matter fields that may lead to violation of at
least some of the energy conditions. Examples are given by non-linear gauge fields, like the electromagnetic field.
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Non linear electromagnetism [23] has been conceived originally to cure singularity problems in the Maxwell theory.
In gravity theories, the electromagnetic field appears as one of the sources of of the structure of the space-time. In
such a context, some success to avoid singularities has been obtained in implementing such extension of the classical
Maxwell field [24–28].
In the Ref. [20] both proposals of extension of the usual gravitational and gauge field theories were considered. In

that paper, the emphasis was in the study of black hole configurations. A very general form of the this theory mixing
the f(R) theory and the non-linear electromagnetic Lagrangian LNED has been considered. A static, spherically
symmetric space-time has been used. Particular, solutions with horizon (thus, candidates to represent a black hole)
were found, but without the singularity existing in the usual black hole solutions of the GR theory. This singularity-
free black hole solutions imply the violation of the SEC only in certain regions of the space-time. However, the other
energy conditions are generally satisfied. We remember that the energy conditions are directly connected with the
existence of singularities in GR theory [7, 8].
In the present paper, we revisit the problem treated in the Ref. [20], and we show that new non-singular solutions

are possible. This new solutions emerge from a specific, but very appealing, choice of the mass function M(r), which
will be properly defined later. The mass function we will use was constructed in Ref. [21], with GR theory coupled
to non-linear electromagnetic field, in other to satisfy some requirements, like to avoid violation of the Weak Energy
Condition (WEC) and to have the Reissner-Nordström asymptotic limit: the mass function M(r) given in Ref. [21]
is the most general functional form satisfying the WEC in GR. As it was found for other mass functions in Ref. [20],
the employment of the mass function of Ref. [21] in our general context implies that the violation of SEC occurs only
in a limited region of the space-time, the other energy conditions being satisfied in the entire space-time.
This paper is organised as follows. In the next section, the equations of motion are written down. In section III,

we determine the new non-singular solutions and analyse the fate of the energy conditions for these solutions. The
final conclusions are presented in section IV. In the appendix, it is shown explicitly that the solutions found here are
asymptotically regular.

II. THE EQUATIONS OF MOTION IN f(R) GRAVITY

The f(R) gravity is defined by the action,

Sf(R) =

∫

d4x
√−g

[

f(R) + 2κ2Lm

]

, (1)

where g stands for the determinant of the metric gµν , f(R) is a given function of the Ricci scalar R, Lm represents the
Lagrangian density of the matter and other fields, and κ2 = 8πG/c4, with G and c being the Newton’s gravitational
constant and the speed of light, respectively.
There are two main approaches for this theory, the first one supposing the the dynamical fields are the metric and

the matter field, known as metric formalism, and the second one, called Palatini formalism, for which the dynamical
fields are the metric, the matter field, but with the Levi-Civita connection independent of the metric. In what follows
we will use the first approach.
Applying the variational principle in terms of the metric to the action (1), we find the following field equations:

fRR
µ
ν −

1

2
δµν f +

(

δµν�− gµβ∇β∇ν

)

fR = κ2Θµ
ν , (2)

where fR ≡ df(R)/dR, Rµ
ν is the Ricci tensor, ∇ν stands for the covariant derivative, � ≡ gαβ∇α∇β is the

d’Alembertian, and Θµν is the matter energy-momentum tensor.
In the present work, we will analyse the coupling of the f(R) gravity with a Non-linear electrodynamic theory

(NED), given by, Lm ≡ LNED(F ), where F = (1/4)FµνFµν , and with Fµν being the Maxwell tensor, and LNED(F )
is an arbitrary function of F . A similar structure was exploited in Ref. [20]. We will first review the methodology
employed in that reference, which will be applied in the present paper in order to find new regular black hole solutions.
Considering the NED coupling, the energy-momentum tensor for matter in (2) is given by,

Θµ
ν = δµνLNED − ∂LNED(F )

∂F
FµαFνα . (3)

In the particular case of the Maxwell Lagrangian LNED ≡ F , the energy-momentum tensor of the linear Maxwell
electrodynamics is reobtained.
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Defining the Maxwell tensor in terms of the four-potential Fµν = ∂µAν − ∂νAµ, the variation of the functional (1)
with respect to the potential can be performed, leading to the generalised Maxwell equation,

∇µ [F
µνLF ] ≡ ∂µ

[√−gFµνLF

]

= 0 , (4)

where LF = ∂LNED/∂F .
We then consider a spherically symmetric and static space-time, whose element line, in Schwarzschild coordinates,

reads

ds2 = ea(r)dt2 − eb(r)dr2 − r2
[

dθ2 + sin2 θdφ2
]

, (5)

where a(r) and b(r) are arbitrary functions of the radial coordinate r. We will consider the particular case where
there is only electric field, the components connected with the magnetic field of the Maxwell tensor Fµν being zero.
Imposing spherical symmetry, through the Killing vectors and the equation LζµFαβ(t, r, θ, φ) ≡ 0, we can show that
only non-null component of the Maxwell tensor is F 10(r) [29]. The generalised Maxwell equation (4) for ν = 0 is

F 10(r) =
q

r2
e−[a(r)+b(r)]/2L−1

F (r) , (6)

where q ∈ ℜ is an integration constant representing the electric charge of the source.
The equations of motion for the f(R) Gravity coupled to a NED are then found by using the line element (5), the

energy-momentum (3), with the only non-null component given by (6), and the field equations (2):

e−b

4r

{

4r
d2fR
dr2

+ 2 [4− rb′]
dfR
dr

+
[

ra′b′ − 2ra′′ − r(a′)2 − 4a′
]

fR + 2rebf
}

= −κ2

[

LNED +
q2

r4
L−1
F

]

, (7)

e−b

4r

{

2 [4 + ra′]
dfR
dr

+
[

(4 + ra′)b′ − 2ra′′ − r(a′)2
]

fR + 2rebf
}

= −κ2

[

LNED +
q2

r4
L−1
F

]

, (8)

e−b

2r2

{

2r2
d2fR
dr2

+ [r2(a′ − b′) + 2r]
dfR
dr

+ [r(b′ − a′) + 2(eb − 1)]fR + r2ebf
}

= −κ2LNED, (9)

where the prime (′) stands for the total derivative with respect to the radial coordinate r.
In the next section, we will use an algebraic methodology to solve these equations and to obtain new regular

solutions.

III. NEW GENERALIZATIONS FOR REGULAR BLACK HOLES ON GENERAL RELATIVITY TO

f(R) GRAVITY

Fixed the spherical coordinates, it is possible to impose the quasi-global condition by choosing a radial coordinate:

b(r) = −a(r) . (10)

This is an additional requirement to the metric functions since the coordinate system has already been fixed. However,
the fact that the functions f(R) and LNED are, for the moment, arbitrary assures the possibility to impose such new
condition, as it will be verified later.
Imposing the quasi-global coordinate condition, and combining equations (8) and (7), we obtain,

e−b d
2fR
dr2

= 0 . (11)

Integrating this expression, it results,

fR(r) = c1r + c0 , (12)

where it appears the integration constants c0, c1 ∈ ℜ. Here, we must make the following observations. First, for the
particular case c1 ≡ 0, c0 = 1, GR is recovered, since the integration of (12) with respect to R leads to f(R) = R.
Second, if the line element (5) is considered, the Ricci scalar becomes,

R = e−b

[

a′′ + (a′ − b′)

(

a′

2
+

2

r

)

+
2

r2

]

− 2

r2

= ea
[

a′′ + 2a′
(

a′

2
+

2

r

)

+
2

r2

]

− 2

r2
. (13)
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The regularity of the solution (12) at the spatial infinity is discussed in the appendix.
In order to have a better description of the new regular black hole solutions, it is useful to define,

ea(r) = 1− 2M(r)

r
, (14)

where M(r) is the mass function, which for the regular solutions satisfies the condition limr→0[M(r)/r] ≡ 0. The
mass function M(r) must coincide with the ADM mass m in the spatial infinity limit, where the radial coordinate r
goes to infinity.
Inserting (14) and (10) in (13), the curvature scalar can be rewritten as,

R(r) = − 2

r2
[rM ′′(r) + 2M ′(r)] , (15)

which, for a given M(r) model, may allow to invert equation (15), to obtain r(R). After integration of (12) it leads
to,

f(R) = c0R+ c1

∫

r(R)dR . (16)

It is also possible to obtain f(R) from the expression fR = (df/dr)(dR/dr)−1. After integration and using (15) we
obtain,

f(r) =

∫

fR(r)
dR(r)

dr
dr . (17)

Now, we use the methodology presented in [20] to solve the equations of motion. Taking the relations (10), (14), (12)
and (17), we can solve the equations (7)-(9) to obtain LNED and LF as,

LNED = − 1

2κ2r2
[

r2f(r) + 4c0M
′(r) + 2c1r

]

, (18)

LF = −κ2 q
2

r2
[

(c1r + c0)rM
′′(r)− (2c0 + c1r)M

′(r) − 3c1M(r) + c1r
]−1

. (19)

The solution above satisfies the equations of motion. However, its consistency can be verified through the Lagrangian
density LNED and its derivative with respect to F , LF . By definition, we have

LF =
∂LNED

∂F
=

∂LNED

∂r

∂r

∂F
=

∂LNED

∂r

(

∂F

∂r

)−1

. (20)

To perform such verification we must remember that F = (1/4)FµνFµν = −(1/2)ea+b[F 10(r)]2, and that the only
non-null component of the Maxwell’s tensor, for this symmetry, is obtained from equations (10), (14) and (19), which
considering (6), leads to

F 10(r) =
1

qκ2

{

3c1M(r) + (2c0 + c1r)M
′(r) − r[c1 + (c0 + c1r)M

′′(r)]
}

. (21)

Now, using equations (10), (12), (14), (15), (17)-(19) and (21), it is possible to verify that the constraint (20) is
satisfied. Hence, the solution is consistent.
In order to perform an analysis of the physical properties of this class of solution, we must take into account the

energy condition relations for the f(R) theory. Following the results of Refs. [30, 31], equation (2) is rewritten as,

Rµν − 1

2
gµνR = f−1

R

[

κ2Θµν +
1

2
gµν (f −RfR)− (gµν�−∇µ∇ν) fR

]

= κ2T (eff)
µν , (22)

where T (eff)
µν is the effect if energy-momentum tensor, and the perfect fluid content is identified by the relations

T 0(eff)
0 = ρ(eff), T 1(eff)

1 = −p
(eff)
r , T 2(eff)

2 = T 3(eff)
3 = −p

(eff)
t , where ρ(eff), p

(eff)
r e p

(eff)
t are the energy density,

radial and tangential pressures, respectively. The explicit expressions for the energy-momentum tensor can be found
in Ref.[20]. With these expressions, the energy conditions for the f(R) theory can be written as,

NEC1,2(r) = ρ(eff) + p
(eff)
r,t ≥ 0 , (23)

SEC(r) = ρ(eff) + p(eff)r + 2p
(eff)
t ≥ 0 , (24)

WEC1,2(r) = ρ(eff) + p
(eff)
r,t ≥ 0 , (25)

DEC1(r) = ρ(eff) ≥ 0, (26)

DEC2,3(r) = ρ(eff) − p
(eff)
r,t ≥ 0 , (27)
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where, in view of the identity WEC3(r) ≡ DEC1(r), one of the conditions was not written.
In the next sub-section, we will use a specific model for the general mass function M(r), coming from GR, in order

to obtain a generalisation of this class of solutions.

A. New regular black hole solutions

As it has been shown in reference [20], it is not any model for the mass function M(r) that leads to a generalisation
of a solution of GR to the f(R) gravity theory, with a function f(R) containing non-linear terms. Here, we will use
a model obtained by integration of the general mass function satisfying the WEC given by [21], which reads,

M(r) =
63m4r3

q6
Γ3(4/a1)Γ(b1/a1)

Γ3(a−1
1 )Γ[(b1 − 3)/a1]

2F1

[ 3

a1
;
b1
a1

;
a1 + 3

a1
;−

(

6Γ(4/a1)

Γ(a−1
1 )Γ[(a1 + 3)/a1]

m

q2
r

)a1 ]

, (28)

where 2F1[k1; k2; k3; z] is the Gauss hypergeometric function.
This model is, in general, very complicated. It is possible to express the solutions in terms of integrals, which can

be or not analytical. It is more instructive to work with some particular cases. Let us first take the case where a1 = 2
and b1 = 4, for which the metric functions (10) and (14) are given by,

ea = e−b = 1 +
32m2q2

π2q4 + 64m2r2
− 4m

πr
arctan

[

8mr

πq2

]

. (29)

This solution represents a charged, regular black hole, asymptotically flat, with two horizons: rH (an event horizon)
and r− (inner or Cauchy horizon). It is possible to verify that this solution is regular in all space-time by inspecting
the Ricci and Kretschmann scalar, which read,

R = − 16384m4π2q6

(π2q4 + 64m2r2)3
, (30)

K = RαβµνRαβµν =
64m2

r6

{ 64m2q4r2

(π2q4 + 64m2r2)6
(3π4q8 + 256π2m2q4r2 + 20480m4r4)(π4q8 + 256π2m2q4r2 + 28672m4r4)

+
1

π2
arctan

(

8mr

πq2

)

[

3 arctan

(

8mr

πq2

)

− 16mπq2r

(π2q4 + 64m2r2)3
(3π4q8 + 512m2π2q4r2 + 36864m4r4)

]}

. (31)

These scalars are finite in all space-time. The limits in the origin of the radial coordinate and in the spatial infinity
are given by limr→0{R,K} = {−(16384m4)/(π4q6), (134217728m8)/(3π8q12)} and limr→∞{R,K} = {0, 0}.
The expression (30) implies,

r(R) =
q

8m

√

−π2q2 +
16(2πm2)2/3

(−R)1/3
. (32)

From (30) it can be verified that R ≤ 0, what must be taken into account in order to define correctly (32) in the usual
limit 0 ≤ r ≤ +∞.
Now, the function f(R) can be obtained inserting (32) in (16), leading to,

f(R) = c0R+
c1

8mq3π8/3

√

−π2q2 +
16(2πm2)2/3

(−R)1/3
[

192(2m8)1/3(−R)1/3 + 4(4π4m4)1/3(−R)2/3 − π8/3q4(−R)
]

+
768c1m

3

π3q4
arctan−1

{

πq
[

− π2q2 +
16(2πm2)2/3

(−R)1/3

]−1/2}

(33)

We can now see clearly that the last two terms that multiply the constant c1 generalize the GR solution to the f(R)
gravity, including non-linear terms in the Ricci scalar R. In the particular case where c1 = 0, GR is recovered.
It is not possible to obtain analytically a functional relation between the scalar F and the Lagrangian density

LNED. Hence, using (21), with (28), we obtain

F 10(r) =
1

πqκ2(π2q4 + 64m2r2)3

{

− πr
[

− 524288c0m
6q2r3 + c1

(

π6q12 + 4096m4π2q4r2(2q2 + 3r2) + 65536m6r4 ×

×(−3q2 + 4r2) + 48m2π4q8(q2 + 4r2)
)]

+ 6c1m(π2q4 + 64m2r2)3 arctan

(

8mr

πq2

)

}

(34)
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Now, LNED can be obtained through (18):

LNED(r) = − 1

κ2

{

c1
r

− 8192m4π2q6

(π2q4 + 64m2r2)3
(c0 + c1r) +

2048m4q2

(π2q4 + 64m2r2)2
(2c0 + c1r) +

3072c1m
4r

π2q2(π2q4 + 64m2r2)

+
384c1m

3

π3q4
arctan

(

8mr

πq2

)

}

(35)

It is possible to represent parametrically a graphic LNED(F ) × F , where F = (1/4)FµνFµν . This behaviour is
displayed in figure 1.

-0.0030 -0.0028 -0.0026 -0.0024 -0.0022 -0.0020 -0.0018
-3.1544

-3.1543

-3.1542

-3.1541

-3.1540

-3.1539

-3.1538

F

L
HF
L@

R
e
d
D

2 £ r £ 50

Figure 1: Parametric representation {LNED, F} of the solution (29), with q = 10,m = 80, c0 = 1, c1 = 2, κ2 = 8π.

The energy conditions can now be verified. Taking explicitly the effective density and pressure [20] for our particular
case (29), we find the following expressions for the energy conditions:

NEC1(r) = WEC1(r) = 0, NEC2(r) = WEC2(r) =
524288m6q2r2

κ2(π2q4 + 64m2r2)3
, (36)

DEC1(r) =
1

2
DEC2(r) =

4096m4q2

κ2(π2q4 + 64m2r2)2
, DEC3(r) =

8192m4π2q6

κ2(π2q4 + 64m2r2)3
(37)

SEC(r) =
8192m4q2[(8mr)2 − π2q4]

κ2(π2q4 + 64m2r2)3
(38)

The energy conditions NEC, WEC and DEC are satisfied in all space-time. However, the SEC energy condition (38),
is violated for r < [πq2/(8m)] which, for the values m = 8q, q = 10, represents a region very near the Cauchy horizon
(πq2/(8m) = 0.490874, rCauchy = 0.0419174, rH = 159.373).
Let us show a second analytical example for the general mass (28). For the values a1 = 3 and b1 = 4, using the

same procedure as before, the following functions characterise the solutions:

ea(r) = e−b(r) = 1− 2m

r

[

1− q2

(q6 + 8m3r3)1/3

]

, R(r) = − 64m4q8

(q6 + 8m3r3)7/3
(39)

F 10(r) =
256c0m

7q2r5

κ2q(q6 + 8m3r3)7/3
+

c1
κ2q

[

3m− r +
256m7q2r6

(q6 + 8m3r3)7/3
− 8m4q2r3

(q6 + 8m3r3)4/3
− 3mq2

(q6 + 8m3r3)1/3

]

(40)

K =
16m2

r6(q6 + 8m3r3)14/3

[

3q28 + 112m3q22r3 + 1856m6q16r6 + 14336m9q10r9 + 57344m12q4r12 − (q6 + 8m3r3)1/3 ×

×
(

6q26 + 208m3q20r3 + 2944m6q14r6 + 19456m9q8r9 + 49152m12q2r12
)

+ (q6 + 8m3r3)2/3
(

3q24 + 96m3q18r3

+1152m6q12r6 + 6144m9q6r9 + 12288m12r12
)]

(41)

f(R) = c0R+
c1

2mq12(mq2)16/3
(−R)16/21[4× 24/7(mq2)12/7 − q6(−R)3/7]4/3[3× 24/7(mq2)12/7(−R)4/7 − q6R] . (42)

In the the spatial infinity, we have limr→+∞{ea(r), eb(r)} = {1, 1} and limr→+∞{R(r),K} = {0, 0}, showing the
regularity in the asymptotical region. When the radial coordinate goes to zero it is necessary to perform an expansion
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around r = 0 to analyse the behaviour of the solution in this limit. Taking ea(r) and R(r) , (39), K inserting in(41),
we find the following expansions around r = 0:

ea(r) ∼ 1− 16m4

3q6
r2 +O

(

r3
)

, R(r) ∼ −64m4

q6
+O

(

r3
)

,K ∼ 2048m8

3q12
+O

(

r3
)

(43)

When r goes to zero, we have limr→0{ea(r), eb(r)} = {1, 1} e limr→0{R(r),K} = {−64m4/q6, 2048m8/q12}, showing
the regularity in the origin of the radial coordinate. Hence, we have shown that the solution (39) corresponds to a
regular black hole in all space-time. This black hole has spherical symmetry, and it is charged and asymptotically
flat.
Let us verify now the energy conditions for this case. They read,

NEC1(r) = WEC1(r) = 0, NEC2(r) = WEC2(r) =
256m7q2r3

κ2(q6 + 8m3r3)7/3
, (44)

DEC1(r) =
1

2
DEC2(r) =

16m4q2

κ2(q6 + 8m3r3)4/3
, DEC3(r) =

32m4q8

κ2(q6 + 8m3r3)7/3
(45)

SEC(r) =
32m4q2(8m3r3 − q6)

κ2(q6 + 8m3r3)7/3
(46)

The conditions NEC, WEC and DEC are satisfied in all space-time. However, the SEC condition, given by (46), is
violated for r < q2/(2m). For the values m = 8q, q = 10, this violation occurs in region very near the Cauchy horizon
(q2/(2m) = 0.625, rCauchy = 0.0676869, rH = 159.373).
To complete our analysis, we display in figure 2 the graphics for the density, the radial and tangential effective

pressures for the solutions (29) and (39). We show also the graphics for the relative fractions of these quantities,

ωr = p
(eff)
r /ρ(eff), ωt = p

(eff)
t /ρ(eff), ωeff = (p

(eff)
r + 2p

(eff)
r )/ρ(eff) and p

(eff)
r /p

(eff)
t . It can be seen from figure
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Figure 2: Parametric representation of the density and effective pressures of the solution (29) (left up panel) and of the solution (39) (right up

panel). It is also displayed the factions ωr = p(eff)
r /ρ(eff) , ωt = p

(eff)
t /ρ(eff), ωeff = (p(eff)

r + 2p(eff)
r )/ρ(eff) and p(eff)

r /p
(eff)
t . We used

q = 10,m = 80, c0 = 1, c1 = 2, κ2 = 8π.

2 that the radial pressure reveals always the relation p
(eff)
r = −ρ(eff) for both solutions. The tangential pressure

has this behaviour only very near the origin of the radial co-ordinate. For both solutions, there is a small difference
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between these two pressures that grows as r increases. This fact reveals the anisotropy of the effective matter content
for the theory.

IV. CONCLUSION

In this paper, we have investigated the existence of regular black hole structures for a general f(R) theory, sourced
by non-linear electromagnetic terms expressed by the Lagrangian LNED. Our approach follows very closely that
one employed in Ref. [20]: instead of choosing specific forms for the the f(R) and LNED functions, the approach
consists in expressing the metric in terms of a mass function M(r) and to choose a mass function that satisfies
some requirements. Specifically, we have used the mass function determined in Ref. [21]. Such mass function was
constructed, in the context of GR theory coupled to non-linear electromagnetic field, in order to satisfy the WEC
and to have an asymptotic Reissner-Nordström limit. In fact, the chosen mass function M(r) is the most general
functional form satisfying the WEC in GR.
Applied to the case of a general f(R) and LNED functions, that mass function of Ref. [21] leads to regular black

hole solutions which contain two horizons, the event horizon and the Cauchy horizon. We worked out completely
two specific cases of that mass function, by choosing specific values for the free parameters in the model developed
in Ref. [21]. The regular character of the solutions is attested by the regular behaviour of the geometric invariants,
like the Ricci scalar and the Kretschmann scalar. Asymptotically, as expected, the metric functions reproduces the
Reissner-Nordström solution of the GR theory.
The energy conditions are satisfied for the two specific cases studied here, except for the case of the Strong Energy

Condition (SEC) which is violated in the vicinity of the Cauchy horizon. Of course, a violation of at least some of the
energy conditions must occur if regular solution must be extracted from the original theory. In this case, the violation
is quite mild since it is only the energy condition connected with the convergence of the geodesics that is violated
(SEC), and even though in a quite restricted region of the whole space-time.
Evidently, there are many open issues related to the problem treated here, like the complete determination of the

LNED function corresponding to the configurations found, and the stability problem. We postpone such new analysis
to future works.

Acknowledgement: MER thanks UFPA, Edital 04/2014 PROPESP, and CNPq, Edital MCTI/CNPQ/Universal
14/2014, for partial financial support. JCF thanks CNPq (Brazil) and FAPES (Brazil) for financial support.

Appendix: Asymptotic analysis of the new solutions

Let us analyse the regularity of the solutions in the limit r → ∞. The radial coordinate is redefined as x = 1/r.
Hence, r → ∞ implies x → 0. The metric function ea(r), for the solution (29), behaves in this limit as,

ea(r) ∼ 1− 2mx+ q2x2 +O(x3). (47)

From this behaviour, it is possible to verify that the metric behaves, up to second order, as in the Reissner-Nordström
solution. In this limit we have,

f(R) ∼ 1

π2q2

[

38c1
m3

q4
+O(x5)

]

. (48)

Hence, the function f(R) becomes asymptotically a constant, which depends on c1, that can not be made zero. The
Lagrangian density LNED becomes also a constant. We can verify this by using the expression (18) for the model
(28) which becomes,

LNED ∼ −192c1m
3

π2q4κ2
− c1x

κ2
+O(x3). (49)

From this expression, it is possible to certify that the Lagrangian density becomes also a constant, which is multiplied,
in the action, by 2κ2: it is zero in this limit, what is normal for solutions asymptotically flat. Performing the same
analysis for the Lagrangian density given by (19), we find

LF ∼ −q2κ2

c1
x3 +O(x4). (50)
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The component F 10 of the electric field (21) approximates to,

F 10 ∼ 3m

κ2q
c1 −

c1
κ2qx

+
2c0q

κ2
x2 +O(x3). (51)

Remark that there is a divergence. But this divergence does not affect the physical quantities neither the equations
of motion for this solution. In order to verify this, we will evaluate the electric energy density. Hence, let us turn the
attention to other physical quantities like the electrical energy density (right side to Eq. (7)), which becomes,

ρ ∼ 192m3

π2q2
c1 + 2c1x+O(x2). (52)

The electrical energy density goes to a constant in the limit r → +∞. On the other hand, the effective electric energy
density is given, in this limit, by

ρeff ∼ q2

κ2
x4 +O(x5), (53)

which goes asymptotically to zero.
For the solution (29) the left side for first equation of motion, in the limit r → +∞, leads to,

192c1
m3

π2q4
+ 2c1x− 3c1mx2 +O(x3). (54)

This result shows that the infinite quantity coming from fR(r) = c0 + c1r does not affect the equations of motion.
The same happens for the second equation of motion. For the third equation of motion, we find

192c1
m3

π2q4
+ c1x+O(x3). (55)

Hence, the equations of motion are regular in the limit r → +∞: the equations are consistent since the infinity coming
from fR(r) = c0 + c1r is compensated by other terms.
Now, we perform a similar asymptotical analysis (r → +∞, with x = 1/r) for the second solution given by (39). In
this case,

ea(r) ∼ 1− 2mx+ q2x2 +O(x3), (56)

showing the asymptotically the metric coincides with the Reissner-Nordström.
The function f(R) for this solution reads,

f(R) ∼ 24c1
m3

q4
+O(x5). (57)

Again, the function f(R) becomes asymptotically a constant which depends on c1, which can not be made zero.
Inspecting the action, we have that f(R) ∼ cte or f(R) ∼ −2Λ. On the other hand, the component F 10 becomes,

F 10 ∼ − c1
qκ2x

+
3c1m

qκ2
+

2c0q

κ2
x2 +O(x3), (58)

Hence, the component F 10 diverges in the limit r → +∞. But this does not imply the presence of divergences in
quantities like the energy density, among others, neither in the equations of motion. In fact, the Lagrangian LNED

becomes

LNED ∼ −12c1
m3

q4κ2
− c1

κ2
x+O(x3), (59)

leading to,

LF ∼ −q2κ2

c1
+O(x4). (60)
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For the electrical energy density we find

ρ ∼ 12c1
m3

q4
+ 2c1x− 3c1mx2 +O(x3), (61)

which is a constant in the limit r → +∞. For the effective energy density, we find,

ρeff ∼ 3q6

4m2κ2
x6 +O(x7), (62)

which goes to zero in the limit r → +∞.
Let us now verify how the equations of motion behave. The left hand side of the first one reads in that limit,

12c1
m3

q4
+ 2c1x− 3c1mx2 +O(x3). (63)

This shows that the infinity introduced by fR(r) = c0 + c1r = c0 + c1x
(−1) is cancelled, and does not contribute to

the equations of motion. The same happens for the second equation (by symmetry). For the third equation, we find,

12c1
m3

q4
+ c1x+O(x3). (64)

Hence, we confirm that a regular behaviour is also verified for the second solution, since there is no divergence in the
physical relevant quantities neither in the equations of motion.
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