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The self-assembly of proteins into β-sheet-rich amyloid fibrils has been observed to

occur with sigmoidal kinetics, indicating that the system initially is trapped in a

metastable state. Here, we use a minimal lattice-based model to explore the ther-

modynamic forces driving amyloid formation in a finite canonical (NV T ) system.

By means of generalized-ensemble Monte Carlo techniques and a semi-analytical

method, the thermodynamic properties of this model are investigated for different sets

of intersheet interaction parameters. When the interactions support lateral growth

into multi-layered fibrillar structures, an evaporation/condensation transition is ob-

served, between a supersaturated solution state and a thermodynamically distinct

state where small and large fibril-like species exist in equilibrium. Intermediate-size

aggregates are statistically suppressed. These properties do not hold if aggregate

growth is one-dimensional.
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I. INTRODUCTION

The formation of amyloid fibrils is currently an intensely studied phenomenon.1–3 Protein

aggregates of this type are found in pathological deposits in several human diseases, but

also with functional roles. In addition, they possess interesting mechanical properties, stem-

ming from their characteristic ordered cross-β organization. Insight into the mechanisms

of amyloid formation has been gained from kinetic profiles, as measured primarily by using

thioflavin T (ThT) fluorescence.4 In particular, it has been shown that kinetic data for a

broad range of systems can be well described in terms of a few basic mechanisms for the nu-

cleation and growth of fibrils, through a rate-equation approach.5 This approach can reveal

some general properties of intermediate species participating in the aggregation process, and

has proven useful for related self-assembly phenomena as well.6,7

Structure-based modeling of amyloid formation is a challenge to implement, due to the

wide range of spatial and temporal scales involved. Hence, all-atom computer simulations

with explicit solvent have focused on characterizing monomeric forms and early aggregation

events.8 By using coarse-grained models, at various levels of resolution, it has been possible

to study the formation and stability of larger assemblies9–35 and also get insight into the

thermodynamic forces at play in amyloid formation.36–39 However, to map out the thermo-

dynamics of amyloid formation as a function of control parameters such as temperature and

concentration is computationally demanding even in simple models.

In this article, we use cluster40 and generalized-ensemble41–43 Monte Carlo (MC) tech-

niques, supplemented with a semi-analytical approximation, to investigate the thermody-

namics of a minimal model for amyloid formation.44 We study this model for three different

choices of intersheet interaction parameters. The first choice leads to aggregates with at

most two layers, and therefore an essentially 1D growth. The second choice permits ag-

gregates with more than two layers to form, but odd-layered aggregates are energetically

suppressed. This choice, inspired by evidence that the core of amyloid fibrils often has a

pairwise β-sheet organization,45,46 leads to a stepwise, quasi-2D growth. In the third and

final case, odd-layered aggregates are not suppressed, which opens up for 2D growth, al-

though slower laterally than longitudinally. Using NV T ensembles (N is the number of

peptides, V is volume, T is temperature), we investigate the equilibrium properties of these

three systems as a function of T and the concentration c = N/V . In addition, we study the
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relaxation of the systems in MC simulations under fibril-favoring conditions, starting from

random initial states.

II. METHODS

A. Model

We use a minimal model for peptide aggregation where each peptide i is represented

by a unit-length stick centered at a site, ri, on a periodic cubic lattice with volume V =

L3.44 It is thus assumed that the internal dynamics of the peptides are fast, compared to

the timescales of fibril formation, and can be averaged out. The systems studied consist

of N identical peptides or sticks. Two peptides cannot simultaneously occupy the same

site. The orientation of a peptide is specified by two perpendicular lattice unit vectors,

b̂i and p̂i, yielding a total of 24 orientational states. The b̂i vector represents the N-to-C

backbone direction, whereas ±p̂i are the directions in which the peptide can form intrasheet

interactions. The vectors ±ŝi = ±b̂i × p̂i represent sidechain directions, in which the

peptide can form intersheet interactions. Throughout the article, we assume units in which

the lattice spacing, the peptide mass and Boltzmann’s constant have the value one.

The interaction energy is taken to have a pairwise additive form, E =
∑

i<j εij, where

εij ≤ 0. The interaction geometry is illustrated in Fig. 1. Consider an arbitrary pair i and j

of peptides and let rij = rj − ri. The peptides interact (εij 6= 0) only if (i) they are nearest

neighbors on the lattice (|rij| = 1), (ii) their backbone vectors are aligned either parallel or

antiparallel to each other (|b̂i · b̂j| = 1), and (iii) b̂i · rij = b̂j · rij = 0. The interaction that

takes place when these conditions are met can be of one of three types, depending on the

relative orientation of the peptides:

1. The interaction is of intrasheet type if both p̂i and p̂j equal ±rij, and εij is then given

by

εij =


−(1 + ap) if b̂i · b̂j = p̂i · p̂j = 1

−(1 + aap) if b̂i · b̂j = p̂i · p̂j = −1

−1 otherwise

(1)

(|rij| = |b̂i · b̂j| = 1, p̂i, p̂j = ±rij)
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FIG. 1. Example of a rectangular aggregate with length l = 6 and width w = 4. Along the fibril

axis, the peptides are bound together by parallel β interactions (solid blue, β). The four layers are

connected either via hh interactions (blue dashes, hh), or via pp interactions (blue dots, pp). For

potential B, pp interactions are weaker than hh interactions, which favors even-layered aggregates.

The symmetric potential A assigns equal energy to pp, hh and hp bonds. With potential C, hp and

pp interactions are missing, which makes lateral growth beyond two layers impossible.

where the first two cases represent parallel and antiparallel β-sheet structure, respec-

tively.

2. The interaction is of intersheet type if neither p̂i nor p̂j equals ±rij, which implies

that both ŝi and ŝj equal ±rij. The +ŝ and −ŝ sides of a peptide, denoted by h and p,

respectively, are assumed to have different interaction properties. The +ŝ, or h, side

is taken as more sticky or hydrophobic. The pair potential is given by

εij =


−(1 + bhh) if ŝi = −ŝj = rij

−(1 + bhp) if ŝi = ŝj

−(1 + bpp) if − ŝi = ŝj = rij

(2)

(|rij| = |b̂i · b̂j| = 1, ŝi, ŝj = ±rij)

and is assumed lowest when the two h sides face each other (bhh ≥ bhp, bpp).

3. If the interaction is of neither of these two types (|rij| = |b̂i ·b̂j| = 1, p̂i ·p̂j = ŝi ·ŝj = 0),

the pair potential is set to εij = −1.

The intersheet interactions must be weak compared to the intrasheet interactions for

elongated fibril-like aggregates to form, but are nevertheless important. To assess the role
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played by the intersheet interactions, we study the model using three potentials A, B and

C, which differ in the choice of the parameters bhh, bhp and bpp (Table I). The intrasheet

parameters ap and aap are the same in all three cases, namely ap = 5 and aap = 3.

Our previous study of this model was carried out using potential B.44 With this potential,

it was shown that aggregates grow in a stepwise fashion, where the major steps correspond to

changes in width. Aggregate growth may here be regarded as a quasi-2D process. Potential A

leads to less severe barriers to increases in width, and thereby to (asymmetric) 2D growth.

With potential C, there is no interaction at all (εij = 0) at hp and pp interfaces, which

prevents the formation of aggregates with more than two stacked sheets. In this case,

aggregate growth becomes an effectively 1D process.

In our model, aggregates can be assigned a length and a width, whereas growth in a third

dimension does not occur due to the interaction geometry. The length l and width w can

be conveniently defined via the inertia tensor. Specifically, we define l =
√

12λ21/m+ 1 and

w =
√

12λ22/m+ 1, where λ1 ≥ λ2 are eigenvalues of this tensor and m is the number of

peptides in the aggregate. This definition is such that a rectangular aggregate consisting of

w stacked sheets with l peptides each (l ≥ w) is assigned exactly length l and width w.

B. MC simulations

In order to determine the thermodynamics of these systems, one needs simulations in

which large aggregates form and dissolve many times, which is challenging to achieve even

in a simple model. For our thermodynamic simulations, we therefore use a Swendsen-Wang–

type cluster move40 and a flat-histogram procedure.41–43,47

The cluster move is based on a stochastic cluster construction scheme.40 The procedure

TABLE I. Our three choices of the intersheet interactions parameters bhh, bhp and bpp (Eq. 2), and

the corresponding growth behavior of aggregates.

Potential bhh bhp bpp Growth

A 0.5 0.5 0.5 2D

B 1 0 0 quasi-2D

C 1 −1 −1 1D
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is recursive and begins by picking a random first cluster member, i. Then, all peptides j

interacting with peptide i (εij < 0) are identified and added to the cluster with probability

Pij = 1− eβεij , where β is inverse temperature. This step is iterated until there are no more

peptides to be tested for inclusion in the growing cluster. The resulting cluster is subject to

a trial rigid-body translation or rotation, which is accepted whenever it does not cause any

steric clashes. Unlike simpler cluster moves, this update can split and merge aggregates.

The update fulfills detailed balance with respect to the canonical microstate distribution,

Pν ∝ e−βEν .

To further enhance the sampling, we use the multicanonical method,41–43 which can be

very useful for systems with multimodal energy landscapes. Our simulation procedure con-

sists of three steps.47 First, we estimate the density of states, g(E), by the Wang-Landau

method43 (an early variant of which was proposed in Ref. 48). Second, keeping this esti-

mate, g̃(E), fixed, we simulate the ensemble Pν ∝ 1/g̃(Eν), whose energy distribution is

approximately flat.41 Finally, we calculate canonical averages via reweighting to the desired

temperature.49 Throughout these simulations, we restrict the sampling to energies above

a cutoff Emin. This cutoff is taken sufficiently high to avoid sampling of states containing

unphysical cyclic aggregates, but sufficiently low to permit unbiased studies over the temper-

ature range of interest. A more advanced, diffusion-optimized generalized-ensemble method

was recently tested on this model.50 For our present purposes, the speed-up brought by the

flat-histogram method suffices.

In our flat-histogram simulations, we use both single-peptide moves and the cluster move.

The cluster move, as defined above, does not satisfy detailed balance with respect to Pν ∝

1/g̃(Eν). This can be easily rectified by adding a Metropolis accept/reject step with the

acceptance probability given by Pacc(ν → ν ′) = min[1, g(Eν)e−βEν/g(Eν′)e−βEν′ ]. Note that,

in this context, β is a tunable algorithm parameter, entering in the cluster construction,

rather than a physical parameter. In our simulations, this parameter is chosen in the vicinity

of the inverse fibrillation temperature.

In addition to the thermodynamic simulations, we perform relaxation simulations under

fibril-favoring constant-temperature conditions. Here, motivated by experimental indica-

tions that amyloid growth occurs dominantly via monomer addition,51 we use single-peptide

moves only; the elementary moves are translations by one lattice spacing and rotations of

individual peptides. Since there is no need to observe transitions back and forth between
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states with and without large aggregates, the systems can be much larger than in the ther-

modynamic simulations (∼105 rather than ∼102 peptides).

All statistical uncertainties quoted below are 1σ errors.

C. Semi-analytical approximation

In this section, we present a semi-analytical method which can be used to estimate ther-

modynamic properties of the model for system sizes not amenable to direct simulation. Let

ξ denote a certain configuration of mξ peptides forming an aggregate, and let Nξ denote

the number of such aggregates in the system. Treating the Nξ’s as independent variables,

the chemical potential for aggregates with configuration ξ may be defined as µξ ≡ ∂F/∂Nξ,

where F (T, V, {Nξ}) is a Helmholtz free energy. Imposing that the total number of peptides∑
ξmξNξ adds up to N , the function

F̃ = F + λ

(∑
ξ

mξNξ −N

)
, (3)

is minimized at equilibrium. After eliminating the Lagrange multiplier λ, this leads to an

equilibrium condition on the chemical potentials, namely

µξ = mξµ1, (4)

where µ1 is the monomer chemical potential.

With a simplified grand-canonical description, the partition function for the set of aggre-

gates with configuration ξ is given by

Zξ =
∞∑

Nξ=0

eβµξNξ

Nξ!
Z

(1)
ξ

Nξ
= exp

[
gV eβ(µξ−Eξ)

]
, (5)

where Z(1)
ξ = gV e−βEξ is the single-aggregate partition function, Eξ is the internal energy,

and g = 24 is the number of possible spatial orientations of the aggregate. This description

neglects interactions between aggregates, but note that two adjacent ξ aggregates correspond

to one aggregate of some other type ξ′. Eq. 5 implies that the Nξ variable is Poisson

distributed with mean

〈Nξ〉 =
1

β

∂ logZξ
∂µξ

= gV eβ(µ1mξ−Eξ), (6)
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where Eq. 4 has been used. Given β, V and N , the monomer chemical potential can be

determined by approximating Nξ ≈ 〈Nξ〉 and solving

N =
∑
ξ

mξNξ, (7)

for µ1. Knowing µ1, one can obtain the Nξ’s from Eq. 6 and compute the total energy as

E =
∑
ξ

EξNξ . (8)

The fibrillation temperature Tf may be defined as the maximum of the heat capacity, and can

therefore be estimated by numerically differentiating Eq. 8. This procedure for computing

Tf is fast and can be repeated for many different concentrations c = N/V , once the relevant

aggregates ξ and their energies Eξ are specified. Hence, it can be used to estimate the state

of the system as a function of both T and c.

The above scheme has similarities to the approach of Oosawa and Kasai,52 but has here

been derived for more general choices of included aggregates. When applying it to the

present model, we only consider rectangular aggregates with an energetically optimal internal

organization. The generic index ξ can therefore be replaced by the aggregate length l and

width w. This set of configurations turns out to be sufficient to obtain quite accurate

estimates of Tf. To respect the finite size of the systems, we limit the sums over l and w to

l ≤ lmax = min(N,L) and w ≤ wmax(l) = min [L, floor (N/l)]. For the potential C, which

leads to aggregates with at most two proper sheets, we set wmax(l) = min [2, floor(N/l)].

The energy of an aggregate with length l and width w, Elw, is a sum of intra- and

intersheet contributions. In the minimum energy configuration, the intrasheet energy is

−(1 + ap)(l − 1)w, corresponding to a parallel organization of the l peptides, whereas the

intersheet energy depends on the parameters bhh, bhp and bpp. For the potentials A, B and

C (Table I), the respective minimum total energies are given by

E
(A)
lw = −(1 + ap)(l − 1)w − 3l(w − 1)

2
(9)

E
(B)
lw = −(1 + ap)(l − 1)w − 3l(w − 1)

2
− (1 + (−1)w)l

4
(10)

E
(C)
lw = −(1 + ap)(l − 1)w − 2l(w − 1) (w = 1, 2) (11)

With potential B, the minimal energy is achieved when both outer surfaces are entirely

polar, which maximizes the number of favorable hh contacts. Likewise, with potential C,

the energy of a two-sheet aggregate is minimal if the entire interface is of hh type.

8



III. RESULTS AND DISCUSSION

We study both equilibrium and relaxation properties of the above model for the three

choices of intersheet interaction parameters listed in Table I, which correspond to 2D, quasi-

2D and 1D growth and are referred to as A, B and C, respectively. The intrasheet interac-

tions, which are stronger, stay the same in all three cases.

A. Equilibrium properties

The equilibrium properties of the model are investigated by using MC simulations and

the semi-analytical approximation described in Sec. II. We first present the MC results

which, unless otherwise stated, are obtained using N = 256 and L = 64, corresponding to a

concentration of c = 0.977× 10−3 per unit volume.

All three systems contain large fibril-like aggregates at low T , while being disordered

at high T . The onset of fibril formation is accompanied by a peak in the heat capacity

CV = (〈E2〉−〈E〉2)/T 2 (Fig. 2a). The fibrillation temperature, Tf, may therefore be defined

as the maximum of CV , and is found to be given by T
(A)
f = 0.66500 ± 0.00007, T (B)

f =

0.67093± 0.00007 and T (C)
f = 0.6548± 0.0002 for systems A, B and C, respectively.

While Tf is thus roughly similar for all three systems, there are large differences in the

height of the CV peak (Fig. 2a). This fact reflects a fundamental difference between systems

A and B, on one hand, and system C, on the other hand, as can be seen from the probability

distribution of the total system energy E (Fig. 2b). For systems A and B, with a pronounced

peak in CV , the energy distribution is clearly bimodal, showing that these systems can exist

in two distinct types of states at T = Tf. The difference between the two potentials shows

up in the location of the low-energy peak. For system C, the CV peak is broader and lower.

In this system, the onset of fibril formation is smooth. As the temperature is reduced, the

energy distribution slides toward lower values while retaining a unimodal shape.

The behavior of the systems at the fibrillation temperature can be further characterized

in terms of the aggregate-size distribution, p(m), which gives the probability for a random

peptide to be part of an aggregate with size m (Fig. 3a). For systems A and B, p(m)

is bimodal at T = Tf. Hence, whereas both small and large aggregates occur in these

systems, there is a range of suppressed intermediate sizes. Above, it was seen that the energy
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FIG. 2. (a) Temperature-dependence of the heat capacity, CV , from MC simulations with N =

256 and L = 64 for the potentials A, B and C (Table I). The shaded bands indicate statistical

uncertainty. Our flat-histogram simulations sample energies E > Emin, where Emin is a cutoff.

Data are shown only at temperatures that are sufficiently high for the effects of this cutoff to

be negligible. (b) Distribution of energy, P (E), at T = Tf, for the same three systems. Due to

short-scale irregularities in the density of states, a moving average is used (window size ∆E = 10).

distribution is bimodal as well (Fig. 2b). States belonging to the low-energy peak contain

both small and large aggregates and contribute, therefore, to both peaks in p(m), whereas

high-energy states are dominated by small aggregates. Fig. 3b shows the contributions to

p(m) from low- and high-energy states in system B, which indeed are bi- and unimodal,

respectively. Also worth noting in this figure is that the amount of aggregates with size

between m ≈ 7 and m ≈ 35 tends to be much smaller in low-energy states than in high-

energy states. Hence, the appearance of large aggregates in low-energy states occurs, at least

in part, at the expense of these mid-size ones. For system C, the aggregate-size distribution

p(m) is fundamentally different (Fig. 3a). In this system, there is no intermediate range of

suppressed sizes m, and therefore no clear division into either small or large species.

The intersheet interactions directly influence the width of the aggregates, w (see Sec. II).

Fig. 4 shows the mass-weighted distribution of w, p(w), at T = Tf for our three systems.

As expected, p(w) decays rapidly beyond w = 2 for potential C, whereas potentials A

and B permit the formation of wider aggregates (Fig. 4). The data also confirm that the

asymmetric intersheet interactions of potential B indeed favor even-layered aggregates over
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FIG. 3. (a) Mass fraction of aggregates with size m, p(m), against m at T = Tf, as obtained from

MC simulations with N = 256 and L = 64 for the potentials A, B and C (Table I). The shaded

bands indicate statistical uncertainty. The saw-tooth-like behavior that occurs for systems B and C

is due to even-odd effects for two-layered aggregates. (b) Decomposition of p(m) for system B into

contributions from low- and high-energy states, respectively (compare Fig. 2b). Each configuration

in the simulated ensemble is classified as either low energy (E < −500) or high energy (E ≥ −500).
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FIG. 4. Mass fraction of aggregates with width w, p(w), against w at T = Tf, as obtained from

MC simulations with N = 256 and L = 64 for the potentials A, B and C (Table I).

odd-layered ones.

The above discussion focused on results obtained using N = 256 and L = 64. To better

understand the sharp onset of fibril formation in systems A and B, additional simulations

were performed for a few different N , keeping the concentration approximately constant.
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MC simulations with N = 128, 256, 512 and 1028 (L = 51, 64, 81 and 102). (a) Temperature

dependence of the specific heat, CV /N . The shaded bands indicate statistical uncertainty. (b)

Probability distribution of the energy density E/N at the specific-heat maximum Tf.

Fig. 5a shows the specific heat, CV /N , of system B for N = 128, 256, 512 and 1024. As N

increases, the peak in CV /N gets sharper. However, the height of the peak increases more

slowly than the linear growth expected at a first-order phase transition with a non-zero

specific latent heat. Indeed, the latent heat, or energy gap, does not scale linearly with

N (Fig. 5b). Still, the gap grows sufficiently fast (faster than N1/2) for the bimodality of

the energy distribution to become more and more pronounced with increasing N (Fig. 5b).

Therefore, fibril formation sets in at a first-order-like transition, where distinct states coexist.

Similar analyses were performed for potentials A and C, using N = 128, 256 and 512. The

results obtained with potential A are qualitatively similar to those just described for potential

B. For potential C, CV,max/N does not grow with N , thus confirming the conclusion that, in

this case, the onset of fibril formation represents a crossover rather than a sharp transition.

Our systems resemble a lattice gas at fixed particle number, albeit with asymmetric in-

teractions. For finite-volume liquid-vapor systems at phase coexistence, the formation of

droplets due to a fixed particle excess above the ambient gas concentration has been ex-

tensively investigated,53–63 often by mapping to the Ising model at fixed magnetization. A

sharp transition has been shown to occur, below which the particle excess can be accommo-

dated by gas-phase fluctuations. At the transition point, a large droplet appears, whereas

intermediate-size droplets remain strongly suppressed. The volume of the droplet and the
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FIG. 6. Concentration of free peptides, cs, against total concentration, c, as obtained by MC

simulations of system B (Table I) for T = 0.67093, L = 64 and different N . At this temperature,

fibrillation sets in at cf ≈ 256/643. Our definition of free peptides includes monomers and aggregates

with size m ≤ 6, so cs = c×
∑6

m=1 p(m).

latent heat scale as V 3/4. To accurately determine the corresponding scaling behavior for

our systems A and B, data over a wider range of system sizes would be required. However,

the scaling of the latent heat does seem to be faster than V 1/2 and slower than V (Fig. 5b).

At the droplet condensation transition, the gas concentration drops by an amount that

scales as V −1/4.55,59 In our systems A and B, at the threshold concentration for fibril forma-

tion, cf(T ), a similar drop occurs in the concentration of free peptides, cs, as is illustrated in

Fig. 6 by data obtained with potential B for L = 64 and different N . To test the scaling with

system size, this drop, ∆cs, was computed at the heat-capacity maxima of Fig. 5a, for system

B and four different V . These ∆cs values vary roughly as V −1/4 with V (∆cs×V 1/4 = 0.0089,

0.0079, 0.0085 and 0.0086 for N = 128, 256, 512 and 1024, respectively).

The results presented so far were obtained by MC simulations, which are bias-free but

time-consuming. To be able to study larger systems, the approximate but much faster

semi-analytical approach (Sec. II) is used. For L = 64 and N = 256, this method provides

estimates of the fibrillation temperature (T (A)
f = 0.6783, T (B)

f = 0.6866, T (C)
f = 0.6509) that

agree to within ∼1% with the MC results, and the ordering T (C)
f < T

(A)
f < T

(B)
f is correct.

Having seen this agreement, the method is applied to estimate the threshold concentration,

cf(T ), as a function of temperature for the box size used in the relaxation simulations below,

that is L = 512. To this end, the fibrillation temperature is calculated for a large set of
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(Table I), as obtained by the semi-analytical approximation (Sec. II) for L = 512. For system C,

cf(T ) represents a crossover rather than a sharp transition. The grey vertical bar indicates the T, c

interval studied in our relaxation simulations.

concentrations in the range 1.0×10−6 < c < 2.3×10−3. The resulting estimates of cf(T ) are

shown in Fig. 7. The curves for systems A and B, with closely related energies (Eqs. 9,10),

agree to within ∼1% at T = 0.65 and become even more similar at higher T . For system C,

our method estimates a higher cf(T ). As discussed above, in this system, cf(T ) represents a

crossover rather than a sharp transition. The same scheme also provides an estimate of the

heat capacity. It predicts CV to vary smoothly with T in system C but that a jump occurs

at T = Tf in systems A and B, all of which match well with our earlier conclusions based on

MC data for smaller systems.

B. Relaxation simulations

Having located the threshold concentration cf(T ) for fibril formation, we next study the

relaxation of the systems in constant-temperature MC simulations with c > cf(T ), starting

from random initial states. Assuming fibril growth to occur through monomer addition,51

the simulations are performed using single-peptide moves only. The parameters T = 0.6535

and L = 512 are the same in all these calculations, whereas N varies between 217 = 131, 072

and 300,000. The corresponding c interval is indicated in Fig. 7. To assess statistical

uncertainties, a set of eight independent runs is generated for each choice of concentration

and potential.
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FIG. 8. MC time evolution of the mass fractions of monomers (m = 1), small aggregates (1 <

m ≤ 6), mid-size aggregates (6 < m ≤ 60) and large aggregates (m > 60) in simulations with the

potentials A, B and C (Table I), using T = 0.6535, L = 512 and N = 170, 000. At large times,

small and large species dominate in systems A and B, whereas mid-size aggregates remain present

in system C. Each MC sweep consists of N single-peptide moves. The data represent averages over

eight independent runs. The statistical uncertainties, indicated by shaded bands, are barely visible.

Fig. 8 illustrates how aggregation proceeds with potentials A, B and C, by showing

the evolution of the respective mass fractions of (i) monomers, (ii) small aggregates with

1 < m ≤ 6 peptides, (iii) mid-size aggregates with 6 < m ≤ 60, and (iv) large aggregates

with m > 60. The number of peptides is the same in all three cases (N = 170, 000).

The monomer fraction is close to unity in the random initial states, but roughly a factor

2 smaller already at the time of the first measurement, due to rapid equilibration between

monomers and small aggregates. After this point, the amounts of monomers and small

aggregates decrease monotonically toward apparent steady-state levels. The fate of the mid-

size aggregates depends on the potential. In systems A and B, these aggregates are transient

species. Examples of final configurations from the simulations of these systems can be found

in Fig. 9, both of which contain many large fibril-like aggregates but only very few mid-size

ones. In system C, there is, by contrast, a non-negligible amount of mid-size aggregates still

present in the apparent steady-state regime.

The apparent steady-state regimes in these simulations need not correspond to thermody-

namic equilibrium states. In fact, it is likely that the true equilibrium states of the systems

shown in Fig. 9 contain only one very large aggregate accompanied by surrounding small

species, as observed in our equilibrium simulations of smaller systems. However, due to the
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potential A potential B

FIG. 9. Final configurations from relaxation simulations with potentials A and B (Table I), using

T = 0.6535, L = 512 and N = 170, 000. Large (m > 60) and mid-size (6 < m ≤ 60) aggregates

are shown in blue and red, respectively. For clarity, small species (m ≤ 6) are not shown. At this

stage, the mid-size aggregates have almost disappeared (compare Fig. 8). Red circles indicate one

of ≤5 such aggregates in each configuration. Large aggregates tend to be shorter and wider with

potential A than they are with potential B.

very slow dynamics of large aggregates, the states shown in Fig. 9 are effectively frozen on

the timescales of our simulations.

Finally, we also study how the overall rate of fibril formation scales with concentration in

our relaxation simulations, focusing on systems A and B. Here, an aggregate is taken to be

a fibril if its width w exceeds 3.5, because thinner aggregates are unstable. This definition

is somewhat arbitrary, but ambiguous assemblies close to the cutoff in width are transient

species that essentially disappear as aggregation proceeds.

Fig. 10 shows the MC evolution of the total fibril mass in systems A and B for different

concentrations. The curves are sigmoidal in shape, especially at low c. As expected, as

c is increased, aggregation gets faster and the saturation level gets higher. The statistical

errors are small because our systems are large. A simple measure of the overall rate of

fibril formation is the time, t1/2, at which half the saturation level is reached. In amyloid

formation, the scaling of t1/2 with c has often, but not always,64 been found to be well

described by a power law, t1/2 ∼ cγ, where the exponent γ ≤ −0.5 depends on both the

protein and the conditions under which the fibrils grow.5 Data for t1/2 from our relaxation

simulations do not show a perfect power-law behavior, as can be seen from a log-log plot
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represent averages over eight independent runs, started from random initial states. The statistical

uncertainties, indicated by shaded bands, are barely visible.
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FIG. 11. Concentration-dependence of the half-time for fibril formation, t1/2, as extracted from

the simulations shown in Fig. 10. The lines are power-law fits to the data, t1/2 ∝ cγ . The fitted

exponents are γ(A) = −2.3± 0.2 and γ(B) = −0.8± 0.1 for potentials A and B, respectively.

(Fig. 11). Nevertheless, to get a measure of the overall strength of the c-dependence, power-

law fits were performed. For system B, with quasi-2D growth, the fitted exponent, γ(B) =

−0.8± 0.1, indicates a c-dependence comparable in strength to that of typical experimental

data.5 For system A, with 2D growth, the c-dependence is slightly stronger, with a fitted

exponent of γ(A) = −2.3± 0.2.

17



IV. SUMMARY

Amyloid formation involves a wide range of spatial and temporal scales. In this article,

we have used a minimal lattice-based model to investigate the overall thermodynamics of

amyloid formation in finite systems under NV T conditions. With 2D or quasi-2D aggregate

growth, the model exhibits a sharp transition, from a supersaturated solution state to a dis-

tinct state where small and large species exist in equilibrium. At the threshold concentration,

cf(T ), these states coexist, thus giving rise to a bimodal energy distribution. At concentra-

tions not too much higher than cf(T ), there exists, therefore, a local free-energy minimum

corresponding to a metastable solution state, in which the system can get trapped, thereby

causing fibril formation to occur after a lag period. At and above cf(T ), while both small

and large aggregates are present, intermediate-size ones are suppressed. With 1D growth,

this suppression is not observed, and the energy distribution is unimodal. Intuitively, the

first-order-like transition seen with 2D or quasi-2D growth stems from a competition be-

tween bulk and surface energies. With 1D growth, this mechanism is missing, because the

surface energy is associated with the fibril endpoints, whose size does not grow with fibril

mass. Previous work has studied the dependence of the solubility of fibrils on their width,

using different models.17,36 One study compared one-, two- and three-layered aggregates,

and showed that the stability region in the T ,c plane grows with increasing fibril width.17

This behavior suggests that fibril formation in a finite system may set in at a concentration

roughly corresponding to the solubility of the widest aggregates that occur for this system

size. Upon increasing N (at fixed c and T ), one would then expect a growth in both latent

heat and threshold concentration, as is indeed observed in our simulations.

The first-order-like onset of fibril formation that we observe with 2D or quasi-2D growth

shows similarities with the droplet evaporation/condensation transition at liquid-vapor co-

existence, which has been extensively investigated.53–63 Indeed, at this transition, mid-size

droplets are suppressed and the energy distribution is bimodal. Furthermore, the specific

latent heat, which we find to decrease with system size (Fig. 5b), is known to vanish at the

droplet transition in the limit of infinite system size.

Our equilibrium findings may be used to rationalize, in part, properties observed in our

relaxation simulations. For the systems studied here, with >105 peptides, the MC evolution

of the total fibril mass turns out to be highly reproducible from run to run. The trajectories
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are, at not too high concentrations, sigmoidal, with an initial lag phase (Fig. 10). Due to slow

dynamics of large aggregates, the apparent steady-state levels at the end of the runs need not

correspond to equilibrium states. However, as at equilibrium, intermediate-size aggregates

are suppressed in the final states (Fig. 8), which is in line with experimental findings.65.

With the droplet interpretation, this statistical suppression occurs because intermediate-

size aggregates correspond to a free-energy maximum, at which the bulk free energy and

surface energy terms balance each other. The precise shape of the aggregate-size distribution

is influenced by factors that are unlikely to be captured by our simple model, such as the

existence of specific oligomeric states with enhanced stability. One type of aggregate that

does not occur in our simulations, due to the model geometry, is closed β-barrels, which

have a potentially high stability for their size.11
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