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Motivating Time-Inconsistent Agents: A Computational Approach

Susanne Albers∗ Dennis Kraft†

Abstract

In this paper we investigate the computational complexity of motivating time-inconsistent agents to
complete long term projects. We resort to an elegant graph-theoretic model, introduced by Kleinberg and
Oren [4], which consists of a task graphG with n vertices, including a sources and targett, and an agent
that incrementally constructs a path froms to t in order to collect rewards. The twist is that the agent is
present-biased and discounts future costs and rewards by a factorβ ∈ [0, 1]. Our design objective is to
ensure that the agent reachest i.e. completes the project, for as little reward as possible. Such graphs are
called motivating. We consider two strategies.

First, we place a single rewardr at t and try to guide the agent by removing edges fromG. We prove
that deciding the existence of such motivating subgraphs isNP-complete ifr is fixed. More importantly, we
generalize our reduction to a hardness of approximation result for computing the minimumr that admits
a motivating subgraph. In particular, we show that no polynomial-time approximation to within a ratio of√
n/4 or less is possible, unlessP = NP. Furthermore, we develop a(1 +

√
n)-approximation algorithm

and thus settle the approximability of computing motivating subgraphs.
Secondly, we study motivating reward configurations, wherenon-negative rewardsr(v) may be placed

on arbitrary verticesv of G. The agent only receives the rewards of visited vertices. Again we give an NP-
completeness result for deciding the existence of a motivating reward configuration within a fixed budget
b. This result even holds ifb = 0, which in turn implies that no efficient approximation of a minimumb
within a ration grater or equal to1 is possible, unlessP = NP.

1 Introduction

Motivated by a recent paper of Kleinberg and Oren [4], we study the phenomenon oftime-inconsistent be-
havior from a computer science perspective. This fundamental problem in behavioral economics has many
examples in every day life, including academia. Consider, for instance, a referee who agrees to evaluate a sci-
entific proposal. Despite good intentions, the referee getsdistracted and never submits a report. Or consider a
student who enrolls in a course. After successfully completing the first couple of homework assignments the
student drops out without earning any credit points. In general, these situations have a reoccurring pattern. An
agent makes a plan to complete a set of tasks in the future but changes the plan at a later point in time. Some-
times this is the result of unforeseen circumstances. However, in many cases the plan is changed or abandoned
even if the circumstances are the same as when the plan was made. This paradox behavior ofprocrastination
andabandonmentis well-known in the field of behavioral economics and can have substantial effects on the
performance of agents in an economic or social domain, see e.g. [1, 7, 8].

A sensible explanation for time-inconsistent behavior is that agents assign disproportionally greater value
to current cost than to future expenses. As an example, consider a simplecar wash problemin which an agent,
say Alice, is promised extra pocket money for washing her family’s car. Each day Alice can either do the chore
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or postpone it to the next day. However, the longer she waits,the dirtier the car gets. Assume that washing
the car on dayi, with i ≥ 1, incurs a cost ofi/50. The cost of waiting another day is0. After completion of
the task, she will receive a reward of1 Euro from the family. Alice is present-biased, i.e. she perceives current
cost according to its true value but discounts future costs and rewards by a factor ofβ ∈ [0, 1]. On dayi she
compares the cost of washing the car right away, which isi/50, to the perceived cost of washing it on the next
day, which isβ(i + 1)/50. Suppose thatβ = 1/3. Becausei/50 > β(i + 1)/50, she procrastinates with
good intentions of doing the job on the following day. On dayi = 50 Alice realizes that her perceived cost
for washing the car on the next day, or any of the following days, is at leastβ(50 + 1)/50, which exceeds the
perceived value ofβ. Thus she abandons the project altogether.

Previous work: In the economic literature there exists a considerable bodyof work on time-inconsistent
behavior, cf. again [1, 7, 8]. We build on work by Kleinberg and Oren [4] who propose a graph-theoretic
model that elegantly captures the phenomena of procrastination and abandonment as observed in the car wash
problem. We will formally define the model in Section 2. Essentially, it consists of a directed acyclic graphG
with n vertices that models a long term project. An agent, with biasfactorβ ∈ [0, 1], incrementally constructs
a path from a designated sources to a targett. The edges ofG, which represent the individual tasks of the
project, are assigned non-negative costs. The vertices, except fors andt, correspond to intermediate states of
the project. When located at a vertexv, the agent chooses a pathP from v to t that minimizes itsperceived
cost. This means, the agent accounts for the first edge ofP by its true cost, whereas all remaining edges are
discounted byβ.

Kleinberg and Oren [4] first investigating structural properties ofG under the assumption that the agent
must not abandon the project. In particular, they characterize task graphs in which the ratio between the
total cost of a path traversed by the agent and the minimum cost of a path froms to t is exponential inn.
Interestingly, any such graph, after removing the direction of its edges, must contain ak-fan, with k ∈ O(n),
as a minor. Furthermore, Kleinberg and Oren analyze the number of different paths traversed the agent as
β varies between0 and1. They show that this number is inO(n2). The later result requires a consistent
tie-breaking rule should the agent be indifferent between outgoing edges of the same vertex.

Next, Kleinberg and Oren [4] assume that the agent is free to abandon the project and place a rewardr
at t as to motivate it to finish. When located atv, the agent continues to follow a path that minimizes its
perceived cost as long as it does not exceed the perceived value of the reward. A graph in which the agent
always successfully traverses a path froms to t is calledmotivating. Kleinberg and Oren [4] are interested in
finding motivating subgraphs, by removing edges fromG. The authors present structural properties that any
motivating subgraph with a minimal number of edges must satisfy.

Finally, Kleinberg and Oren [4] point to a number of open computational problems, including the com-
plexity of finding motivating subgraphs. Moreover, Kleinberg and Oren propose a problem setting in which
rewards may be placed at intermediate vertices instead of just t. In this caseG may not be pruned. We call
such a construct areward configuration.

In an unpublished manuscript Tang et al. [9] address some of the open problems. They refine the result on
the cost ratio, which relates the path traversed by the agentto a cheapest path. More specifically, they show
that any task graph that does not contain ak-fan as minor after removing the direction of its edges must have
a cost ratio of at mostβ2−k. Hence, for any fixedk, the cost ratio is constant inn. Moreover, Tang et al.
prove that it is NP-hard to decide ifG contains a motivating subgraph for a fixed reward. Finally, they explore
the problem of deciding the existence of a motivating rewardconfiguration within a given budget. Tang et
al. give NP-hardness results for three variations of the problem. They distinguish between configurations that
are restricted to non-negative rewards and configurations that allow for any real-valued rewards. Furthermore,
they consider a setting in which every reward that is laid outonG must also be collected. In each of the three
problem variations, Tang et al. measure the total value of a configuration by the sum of the absolute values of
all rewards placed onG.
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Our contribution: In this paper we focus on the complexity and approximabilityof finding motivating
subgraphs and reward configurations. Our objective is budget efficiency. Note that we take a design perspec-
tive. In particular, we are not interested in minimizing thetotal cost experienced by the agent on its walk from
s to t but rather the reward necessary to motivate the agent.

As for the first problem, by removing edges fromG, it is possible to limit the agent’s options in each
of its steps. Ideally, this prevents the agent from pursuingcostly distractions and thereby reduces the reward
required for it to finish the project. The benefit of choice reduction is a well-known phenomenon in the field of
behavioral economics. It also has a very natural intuition in many real-live projects. Take for instance the car
wash problem. As we will show in Section 2, the removal of edges in the problem’s task graph corresponds
to the introduction of deadlines.

The second problem takes a slightly less restrictive approach and allows the placement of intermediate
rewards at arbitrary vertices ofG. Again this is meant to prevent the agent from pursuing distractions and
encourage it to complete the project. We examine a version ofthe problem that, in our view, is the most
sensible one. First, only non-negative rewards may be laid out. This assumption is reasonable as it could be
hard to convince an agent to pursue projects in which it has tomake payments. Furthermore, it is not clear
how to account for such payments in the budget. Secondly, thecost of a reward configuration is only measured
by the sum of the rewards that are placed at vertice visited bythe agent on its walk froms to t. This setting
is a fundamentally different from the ones analyzed by Tang et al. as it may lead to configurations in which
the agent is motivated by rewards that are never claimed. Such configurations are also calledexploitative. We
give an example in Section 2.

In Section 3 we settle the complexity of finding a motivating subgraph for a fixedr. We first observe that
the problem is polynomially solvable ifβ = 0 or β = 1. We then prove that, for generalβ ∈ (0, 1), it is NP-
complete to decide the existence of a motivating subgraph. In their paper [9], Tang et al. showed NP-hardness
via a reduction from 3-SAT. In contrast, we present a different reduction viak DISJOINT CONNECTING
PATHS [3]. We believe that this reduction is slightly simpler. More importantly, we are able to generalize the
reduction and show a hardness of approximation result in thefollowing section.

In Section 4 we study the optimization version of the motivating subgraph problem. More formally, given
a β ∈ (0, 1), determine the smallest possible value ofr such thatG contains a motivating subgraph. We
develop a(1 +

√
n)-approximation algorithm that outputsr as well as a corresponding motivating subgraph.

Interestingly, these subgraphs are paths. The algorithm isin fact a combination of two strategies, one which
computes good solutions for smallβ and one which is effective for largeβ. Furthermore, the approximation
factor of our algorithm is asymptotically tight. As the maintechnical contribution of this paper, we prove that
the optimization problem cannot be approximated in polynomial-time to within a ratio of

√
n/4 or less unless

P = NP. Thus we resolve the approximability of the problem.
In Section 5 we explore the problem of finding reward configuration within a fixed total budget of at most

b. We show that the problem can again be solved in polynomial-time if β = 0 or β = 1. Using a reduction
from SET PACKING [3], we prove that deciding the existence ofa motivating reward configuration is NP-
complete for generalβ ∈ (0, 1), even ifb = 0. This immediately implies that the optimization problem of
computing the minimumb that admits a motivating reward configuration cannot be approximated efficiently
to within any ratio greater or equal to1 unlessP = NP.

2 The formal model

In the following, we present the model by Kleinberg and Oren [4]. Let G = (V,E) be a directed acyclic
graph. Associated with each edge(v,w) is a non-negative costcG(v,w). An agent, with a bias factor
β ∈ [0, 1], has to incrementally construct a path from a sources to a targett. At any vertexv the agent
evaluates itslowest perceived cost. For this purpose, the agent considers all paths fromv to t and accounts
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Figure 1: The task graph of the car wash problem.

for the cost of incident outgoing edges by their actual value, whereas it discounts future edges byβ. More
specifically, letdG(w) denote the cost of a cheapest path from some vertexw to t, considering the origi-
nal edge costs. If no path exists, we assume thatdG(w) = ∞. Accordingly, the agent’s lowest perceived
cost is defined asζG(v) = min{cG(v,w) + βdG(w) | (v,w) ∈ E} if v has at least one incident outgoing
edge. Otherwise we assume thatζG(v) = ∞. The agent only traverses outgoing edges(v,w) for which
cG(v,w) + βdG(w) = ζG(v). Ties are broken arbitrarily. ShouldG be clear from context, we will omit the
index and writec(v,w), d(v) andζ(v) instead.

In Section 3 and 4 we will investigate problems in which a single non-negative rewardr is placed att.
The agent perceives the value of this reward asβr at every vertex different fromt. A graphG is motivating
if the agent does not abandon the project while constructinga path froms to t in G. More specifically, at any
vertexv along the agent’s path, it comparesζ(v) to βr and continues moving ifζ(v) ≤ βr, i.e. the reward
is sufficiently motivating. Otherwise, ifζ(v) > βr, the agent abandons. Because ties are broken arbitrarily,
there could be more than one path for the agent. Consequently, G is only considered motivating if the agent
abandons the project on non of these paths.

In Section 5 we will generalize Kleinberg and Oren’s model toallow the placement of non-negative re-
wardsr(v) at arbitrary verticesv. We call such a placement areward configuration. Given a specific reward
configurationr, let cr(v,w) = c(v,w) − r(w) be the cost of traversing(v,w) minus the reward collected at
w with respect tor. Usingcr as new cost metric, we denote the cost of a cheapest path fromw to t asdr(w).
When located atv, the agent considers all paths fromv to t and accounts for incident outgoing edges by their
actual value, whereas future costs and rewards are discounted byβ. More specifically, we define the agent’s
perceived cost asζr(v) = min{c(v,w) + β(dr(w) − r(w)) | (v,w) ∈ E}. The agent continues moving if
ζr(v) ≥ 0. In this case the agent traverses an outgoing edge(v,w) which minimizes its perceived cost, i.e.
c(v,w) + β(dr(w) − r(w)) = ζr(v). Again ties are broken arbitrarily. Otherwise, ifζr(v) > 0, the agent
abandons. The agent only collects the rewards that it visitson its path froms to t. We are only interested in
the value of the total reward handed out to the agent. We sayr is within some given budgetb if the agent does
not collect a total reward greater thanb on any of these paths.

To illustrate the model, we consider the car wash problem once more. Assume that the car has to be
washed during the nextm days, wherem > 50. The task graphG is depicted in Figure 1. For each dayi,
with 1 ≤ i ≤ m, there is a vertexvi. Let v1 be the source. There is an edge(vi, t) of costi/50 representing
the action that Alice washes the car on dayi. In order to keep the drawing simple, the edges(vi, t) merge in
Figure 1. Moreover, for everyi < m there is an edge(vi, vi+1) of cost0 that represents the postponement of
the job from dayi to the next day. Assume for now that Alice is located at somevi, with i < m. Her perceived
cost for procrastination is at leastβ(i + 1)/50. This lower bound is tight if Alice plans to traverse the edges
(vi, vi+1) and(vi+1, t). Alternatively, her perceived cost for using(vi, t) and washing the car on dayi is i/50.
Remember thatβ = 1/3. It follows thatζ(vi) = β(i+1)/50, which means that Alice always prefers to wash
the car on the next day instead of the current day. Moreover, if i < 50, thenζ(vi) ≤ βr for the reward ofr = 1
provided by the family att. Thus Alice procrastinates and moves along(vi, vi+1). Note that her planning is
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time-inconsistent. On dayi she intends to follow the path(vi, vi+1), (vi+1, t). However when located atvi+1

she pursues a different strategy. Once Alice reachesv50, she realizes thatζ(v50) = β(50 + 1)/50 exceeds the
perceived value of the rewardβr and abandons. ThusG is not motivating.

Next assume that we delete(v16, v17) from G. In other words, we remove a procrastination edge and
thereby set a deadline at dayi = 16. Let G′ be the resulting graph. When Alice reachesv16 she can not
procrastinate anymore and her perceived cost isζG′(v16) = 16/50 which is less than the perceived value
βr = 1/3 of the reward. Hence Alice washes the car and reachest. SubgraphG′ is motivating. However,
it is interesting to observe, that there is no reward configurationr within a budget less than(m/50)/β that is
motivating in the original task graphG. This is due to the fact that no matter how much reward is placed att,
Alice will always prefer to procrastinate until daym, when her cost for washing the car ism/50.

To illustrate the strengths of reward configurations, we consider a second scenario. Suppose that at day
i = 50 Alice’s family offers her a new opportunity to earn pocket money. If she first washes the family’s car,
which now incurs a cost of1, and afterwards also cleans her room, which due to years of neglect incures a
cost of6, she receives10 Euros. Secretly, the family does not care about Alice cleaning her room. They only
try to trick her into washing the car for free. We model this project with a new task graphG that consists of a
path froms to t via an intermediate vertexv and another path fromv to t via an intermediate vertexw. The
edge(s, v) corresponds to the job of washing the car and has a cost of1, while (v,w) is the job of cleaning
Alice’s room and has a cost of6. The edges(v, t) and(w, t) are of cost0. Assuming thatβ = 1/3, there
is a reward configurationr for which the family can motivate Alice to complete the project within a budget
of 0. Settingr(w) = 10, Alice traverses(s, v) with a lowest perceived cost ofζr(s) = −1/3. This cost is
realized along the edges(s, v), (v,w) and(w, t). When atv, Alice perceives cost of8/3 for traversing(v,w)
and cleaning her room but0 for ending the project right away along(s, t). Thus she changes her plan and
moves tot without collecting a reward. Interestingly, there is no motivating subgraph ofG for a reward less
than3 if the reward must be placed att. This suggests that, depending on the structure of the task graph, the
performance of our two design strategies may vary drastically.

3 The complexity of finding motivating subgraphs

In this section we first observe that ifβ = 0 or β = 1, then the problem of finding a motivating subgraph can
be solved in polynomial-time. We then prove that the decision problem, which we refer to as MOTIVATING
SUBGRAPH (MS), is NP-complete for generalβ ∈ (0, 1). Our proof is based on a reduction fromk DIS-
JOINT CONNECTING PATHS (k-DCP), cf. [3]. Lynch [6] showed thatk-DCP is NP-complete in undirected
graphs. In the Appendix, by adapting Lynch’s proof, we show that k-DCP is also NP-complete in directed
acyclic graphs.

Proposition 1. A motivating sub graph can be found in polynomial time ifβ = 0 or β = 1.

Proof. We start withβ = 0. In this case a subgraphG′ of G is only motivating if at every vertex ofG′ the
agent’s perceived cost is0. HenceG contains a motivating subgraph if and only ifG contains a path froms
to t such that all of its edges have cost0. Any such path is a motivating subgraph. Ifβ = 1, then the agent
follows a cheapest path froms to t in any subgraph. HenceG contains a motivating subgraph if and only if
there exists a path froms to t with a total edge cost of at mostr. Should such a path exist, thenG is its own
motivating subgraph. Clearly, a motivating subgraph can befound in polynomial-time for both casesβ = 0
andβ = 1.

We now formally define the decision problem MS.

Definition 1 (MOTIVATING SUBGRAPH). Given a task graphG, a rewardr and a bias factorβ ∈ [0, 1],
decide the existence of a motivating subgraph ofG.
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The following proposition, while being interesting in its own right, implies that MS is contained in the
complexity class NP.

Proposition 2. For any task graphG, rewardr and bias factorβ, it can be decided in polynomial-time ifG
is motivating.

Proof. We modifyG in the following way. For each vertexv, we calculate the lowest perceived costζG(v).
Next, we take a copy ofG, sayG′, and remove all edges(v,w) fromG′ such thatζG(v) < cG(v,w)+βdG(w).
In other words, we remove all edges fromG′ that do not minimize the agents perceived cost. Because the
vertices that can be reached froms in G′ are exactly those vertices that are visited by the agent inG, G is
motivating if and only ifζG(v) ≤ βr for all vertices that can be reached froms in G′. The latter condition can
be checked in polynomial-time by standard graph search algorithms.

Before we prove NP-hardness of MS, we restate the definition of k-DCP as a brief reminder.

Definition 2 (k DISJOINT CONNECTING PATHS). Given a directed acyclic graphH andk disjoint vertex
pairs (s1, t1), . . . , (sk, tk), decide ifH containk mutually vertex-disjoint paths, one connecting everysi to
the correspondingti.

Furthermore, we want to introduce to a simple but useful lemma, which lets us set prices along a path of
arbitrary lengthk, such that at every vertex, except for the last, the perceived cost of following the path to its
end is exactly1. Such price structures will be a reoccurring feature of the reductions in Theorem 1 and 3.

Lemma 1. For every positive integerk and bias factorβ ∈ [0, 1] it holds that

(1− β)k + β

(k−1
∑

i=0

(1− β)i
)

= 1.

Proof. If β is equal to0, this claim is easy to verify. However, shouldβ be greater than0, the geometric series
∑k−1

i=0
(1− β)i and can be rewritten as(1− (1− β)k)/β, which in turn implies that

(1− β)k + β

(k−1
∑

i=0

(1− β)i
)

= (1− β)k + β

(

1− (1− k)k

β

)

= 1.

We are now ready to prove NP-completeness of MS.

Theorem 1. MS is NP-complete, for any bias factorβ ∈ (0, 1).

Proof. By Proposition 2 we can take any motivating subgraphG′ as certificate for a ”yes”-instance of MS.
Hence MS is in NP. In the following we will present a polynomial-time reduction fromk-DCP to show NP-
hardness. This establishes the theorem. Consider an instance I of k-DCP, consisting of a directed acyclic
graphH andk disjoint vertex pairs(s1, t1), . . . , (sk, tk). We construct an instanceJ of MS that is composed
of a task graphG, a bias factorβ and a rewardr. The graphH will be embedded intoG in such a way thatG
has a motivating subgraph if and only if H hask disjoint connecting paths.

We proceed to describe the MS instanceJ . Letβ ∈ (0, 1) be any value with the property that its encoding
length is polynomial in that ofI. Setr = 1/β. The task graphG is constructed as follows, see also Figure 2.
It consists of a sources and a targett. These two vertices are connected by a directedmain pathalong
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Figure 2: The graphG with an embedding ofH.

intermediate verticesv1, . . . , vk+3. The firstk + 1 edges of this main path each have a cost of(1 − β)3 − ε,
whereε is a positive constant satisfying

ε < min

{

β
1− β

k + 1
, β

(1 − β)3

1 + β

}

.

The last three edges of the main path, connectingvk+1 to t, have a cost of(1− β)2, 1− β and1 respectively.
Additionally,G containsk shortcutsthat connect everyvi, with 1 ≤ i ≤ k, to t via an embedding ofH. More
formally, H is added toG. The i-th shortcut starts atvi. It visits a distinct vertexwi along an edge of cost
(1− β)2. Vertexwi is connected tosi in H. The edge cost is(k+1− i)(1−β)/(k+1). Finally, vertexti of
H is connected tot via an edge of costi(1− β)/(k + 1) + 1. In Figure 2 the latter edge cost is shown as two
terms, namelyi(1 − β)/(k + 1) and1, in order to keep the labels of the parallel edges(ti, t) simple. Note
that for any shortcuti, the edge costs of(wi, si) and(ti, t) complement each other, i.e. they sum to exactly
(1−β)+1. The edges ofH all have a cost of0. We remark that at every vertex different fromt, the perceived
value of the reward isβr = 1. The resulting graphG is acyclic and its encoding length is polynomial in that
of I. We next prove thatI has a solution if and only ifJ has one.

(=⇒) First assume thatI has a solution, i.e. there existk vertex-disjoint paths, one connecting everysi to
the correspondingti. In the embedding ofH we remove all edges, except for thek vertex-disjoint paths. Let
G′ be the resulting subgraph ofG. We will show thatG′ is motivating, forr = 1/β. More specifically, we will
argue that the agent travels along the main path froms to t. If the agent resides at one of the firstk vertices
vi it has two options. Either it traverses(vi, vi+1) and follows the main path, or it takes(vi, wi) and walks
along thei-th shortcut. Lets = 0. For0 ≤ i < k, the perceived cost of traversing(vi, vi+1) and following the
(i+1)-st shortcut afterwards is(1−β)3−ε+β((1−β)2 +(1−β)+1). According to Lemma 1, the value of
the perceived cost simplifies to1− ε. Note that similar calculations are scattered throughout the entire proof.
For the sake of brevity, Lemma 1 will not be referred to explicitly each time. If the agent is atvk, its perceived
cost in following the main path tot is also1−ε. Hence, taking(vi, vi+1) is a motivating option. In contrast, if
the agent resides atvi, with 1 ≤ i ≤ k, and plans to traverse(vi, wi), following thei-th shortcut, its perceived
cost is1. Although this option is also motivating, it is perceived asmore expensive than taking(vi, vi+1). As
a result, the agent follows the main path until it reachesvk+1. At this point the agent has no option but to stay
on the main path. The perceived cost at any of the verticesvk+1, vk+2 andvk+3 is 1. Thus subgraphG′ is
indeed motivating.
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(⇐=) Next assume thatI does not have a solution. We prove that no subgraphG′ of G is motivating.
Consider any subgraphG′. Observe thatG′ is only motivating if the agent never leaves the main path. Other-
wise the agent must visit someti on its way tot at which point it perceives a cost ofi(1−β)/(k+1)+1 > 1
and abandons. We therefore focus on subgraphsG′ that contain all edges of the main path. More specifically,
we focus on subgraphsG′ in which the agent walks along the main path. We say that thei-th shortcut is
degenerateif the total edge cost of a cheapest path fromvi to t via (vi, wi) is different from the target value
θ = (1 − β)2 + (1 − β) + 1. In particular, thei-th shortcut is degenerate if there is no path fromvi to
t via (vi, wi), in which case the perceived cost of the shortcut is infinite.Note that by construction, every
degenerate shortcut must miss the target value by(1− β)/(k + 1) or more.

We first argue that there is at least one degenerate shortcut inG′. For the sake of contradiction, assume no
such shortcut exists. This means that there is a cheapest path Pi from vi to t via (vi, wi) for all 1 ≤ i ≤ k.
By construction,Pi traverses(wi, si). Remember that the total cost ofPi must sum up toθ. The only way to
achieve this is ifPi ends in(ti, t). Furthermore,Pi must be vertex disjoint from all other pathsPj with j < i.
OtherwisePi would not be a shortest path fromvi to t, given thatc(tj , t) < c(ti, t). However, this implies
that there arek vertex disjoint paths inH, one from eachsi to the correspondingti, which contradicts the
assumption thatI has no solution.

Now that we established the existence of a degenerate shortcut, we distinguish two cases. Either there
exists a degenerate shortcuti such that the cost of a cheapest path fromvi to t via (vi, wi) is less thanθ or for
each degenerate shortcuti the cost of a cheapest path fromvi to t via (vi, wi) is greater thanθ.

We study the first case first. Leti be the largest index of a degenerate shortcut such that the cheapest path
from vi to t via (vi, wi) is less thanθ. When located atvi the agent perceives cost less or equal to

(1− β)2 + β

(

(1− β) + 1− 1− β

k + 1

)

= 1− β
1− β

k + 1
< 1− ε

along(vi, wi). Conversely, in planning a cheapest path along(vi, vi+1) and following a subsequent shortcut
or the main path, the agent perceives a cost of at least1− ε. This holds true because all subsequent shortcuts
are of costθ or more. By choice ofε, the perceived cost along(vi, wi) is less than the perceived cost along
(vi, vi+1). However, this contradicts our assumption that the agent stays on the main path.

We finally study the second case. Suppose that thei-th shortcut is degenerate and consider the agent
planing its path fromvi−1 to t via (vi−1, vi). The agent has two options. If the agent plans to follow thei-th
shortcut, it perceives a cost greater or equal to

(1− β)3 − ε+ β

(

(1− β)2 + (1− β) + 1 +
1− β

k + 1

)

= 1 + β
1− β

k + 1
− ε > 1.

The inequality holds by choice ofε. If the agent plans tor traverse(vi−1, vi) instead, taking either a shortcut
j > i or following the main path all the way tot, it perceives a cost of at least

(1− β)3 − ε+ β
(

(1− β)3 − ε+ (1− β)2 + (1− β) + 1
)

= 1 + (1 + β)

(

β
(1− β)3

1 + β
− ε

)

> 1.

This holds true because no shortcut is of cost less thanθ. Once more, the perceived cost is greater than1 by
definition ofε. Hence the agent certainly abandons atvi−1, which shows thatG′ cannot be motivating.

4 Approximating optimum rewards

Considering that the decision problem MS is NP-hard, the next and arguably natural question is whether there
exist good approximation algorithms. Hence we formulate MSas an optimization problem.
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Definition 3 (MOTIVATING SUBGRAPH OPT). Given a task graphG and a bias factorβ ∈ (0, 1), deter-
mine the minimum rewardr to place att such thatG contains a motivating subgraph.

We present two simple algorithms. The first algorithm is designed for small values ofβ. The second
algorithm computes good solutions for largeβ. The algorithms outputr as well as a corresponding motivating
subgraphG′. Both strategies are somewhat reminiscent of Proposition 1. A combination of them yields a
(1 +

√
n)-approximation, for anyβ ∈ (0, 1).

Suppose thatβ is small. Then the agent is highly oblivious to the future. Consequently it is sensible to let
the agent travel along a path that minimizes the maximum costof any edge. We call a path with this property
a minmax path. A minmax path can be computed easily in polynomial-time. For instance, starting with an
empty subgraph, insert the edges ofG in non-decreasing order of cost untils andt become connected for the
first time. Next, choose one of the possibly several paths that connects andt in the subgraph as minmax path.
Our first algorithm, called MINMAX PATHAPPROX, computes a minmax pathP and returns the corresponding
G′ containing only the edges ofP . Furthermore, the algorithm setsr according to the maximum over all
perceived cost alongP , or more formallyr = max{ζG′(v) | v ∈ P}/β. Clearly, this reward is sufficient to
makeG′ motivating.

Proposition 3. M INMAX PATHAPPROXachieves an approximation ratio of1 + βn, for anyβ ∈ (0, 1).

Proof. Let c denote the maximum cost of any edge along the pathP computed by MINMAX PATHAPPROX.
By definition ofP the agent must encounter an edge of cost at leastc in any motivating subgraph. Thus the
optimum reward is lower bounded byc/β. Conversely, the cost of every edge inP , of which there are at most
n − 1, is upper bounded byc. This means that MINMAX PATHAPPROX returns a rewardr, which is upper
bounded by

r =
max{ζG′(v) | v ∈ P}

β
≤ c

β
+ (n− 2)c ≤ c

β
+ nc,

which yields the desired approximation ratio of1 + βn.

Our second algorithm, called CHEAPESTPATHAPPROX, computes a pathP of minimum total cost froms
to t and returns the correspondingG′ containing only the edges ofP . Again, the algorithm sets the reward to
r = max{ζG′(v) | v ∈ P}/β.

Proposition 4. CHEAPESTPATHAPPROXachieves an approximation ratio of1/β, for anyβ ∈ (0, 1).

Proof. LetP be the path computed by CHEAPESTPATHAPPROX. At any vertexv of P , the agent perceives a
cost of at mostdG′(v), which is upper bounded bydG′(s). ThusdG′(s)/β is an upper bound on the the reward
r calculated by CHEAPESTPATHAPPROX. In an optimal solution, when located ats, the agent is faced with a
cost of at leastβdG(s). Consequently, a reward of at leastdG(s) is required to motivate the agent. BecauseP
is a cheapest path, it holds thatdG(s) = dG′(s), which establishes an approximation ratio of1/β.

Let COMBINEDAPPROX be the combined algorithm that chooses MINMAX PATHAPPROX if β ≤ 1/
√
n

and CHEAPESTPATHAPPROXotherwise. Propositions 3 and 4 immediately imply the following result.

Theorem 2. COMBINEDAPPROXachieves an approximation ratio of1 +
√
n, for anyβ ∈ (0, 1).

We next prove that, although our(1+
√
n)-approximation algorithm is simple, it achieves the best possible

performance guarantee, up to a small constant factor, that can be hoped for in polynomial-time. For the proof
of the theorem we need the next technical lemma.

Lemma 2. For any integerρ, with ρ ≥ 1, it holds that
(

1− 1

3ρ+ 3

)3ρ+3

>
1

3
.
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Figure 3: The central unit ofG.

Proof. The sequence(1− 1/n)n is monotonically increasing forn ≥ 1. Hence it holds that
(

1− 1

3ρ+ 3

)3ρ+3

≥ (1− 1/6)6 > 1/3.

Theorem 3. MS-OPT is NP-hard to approximated within a ratio of1/4
√
n.

Proof. Again we present a reduction fromk-DCP. Letρ be an arbitrary positive integer. The best choice ofρ
will be determined later. Given an instanceI of k-DCP we construct an instanceJ of MS-OPT, consisting of
a task graphG and a bias factorβ, having the following two properties. (a) IfI has a solution, thenG has a
subgraph that is motivating for a reward ofr = 1/β. (b) If I does not have a solution, then no subgraph ofG
is motivating for a reward of at mostr = ρ/β. Hence any algorithm that achieves an approximation ratio of ρ
or better must solve instances ofk-DCP.

We begin with the description ofJ . As before an instance ofI is specified by a graphH together withk
vertex pairs(s1, t1), . . . , (sk, tk). Considering that Proposition 4 gives a(1/β)-approximation, the bias factor
of J cannot be chosen arbitrarily anymore. It must be less than1/ρ. For convenience we setβ = 1/(3ρ+3).
From a structural point of viewG of J consists of two units, acentral unitand anamplification unit. The
central unit contains an embedding ofH. The amplification unit precedes the central unit and increases any
approximation error that might occur in the central unit.

The central unit, depicted in Figure 3, has the same overall structure as the graph constructed in the proof
of Theorem 1. There exists amain pathandk shortcuts, linking to an embedding ofH. However, there are
important differences. The main path is longer and edge costs are different. More specifically the main path
starts at a vertexu9ρ2 , which is the last vertex of the amplification unit, and ends at vertext. The path consists
of k + 3ρ+ 3 intermediate verticesv1, . . . , vk+3ρ+3. The firstk + 1 edges of the main path each have a cost
of (1− β)3ρ+3 − ε, whereε is a positive value satisfying

ε < min

{

β
(1− β)3ρ+1

k + 1
, β

(1 − β)3ρ+3

1 + β
,

1

1 + ρ
, (1 − β)3ρ+3 − 1

3

}

.

Note that(1−β)3ρ+3−1/3 is a positive quantity according to Lemma 2. The remaining edges of the main path
have increasing cost. In particular, we set the cost of(vi, vi+1), with k < i ≤ k+3ρ+3, to (1−β)k+3ρ+3−i.
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Figure 4: The amplification unit ofG.

Each of the firstk verticesvi is the starting point of a shortcut. Similar to the construction in Theorem 1,
the i-th shortcut is routed through a distinct vertexwi before it enters the emending ofH and eventually
reachest. The edges(vi, wi) have a cost of(1 − β)3ρ+2. Furthermore, the edges(wi, si) and(ti, t) are of
cost(k + 1 − i)(1 − β)3ρ+1/(k + 1) andi(1 − β)3ρ+1/(k + 1) +

∑3ρ
j=0

(1 − β)j respectively. In Figure 3,

the later edge cost is shown as two terms, namelyi(1 − β)3ρ+1/(k + 1) and
∑3ρ

j=0
(1 − β)j , in order to keep

the labels of the parallel edges(ti, t) simple. Note that for1 ≤ i ≤ k, the costs of(vi, si) and(ti, t) sum to
exactly

∑3ρ+1

j=0
(1− β)j . All edges ofH have cost 0.

Next we describe the amplification unit, which is shown in Figure 4. Starting at vertexs, there is a directed
path tou9ρ2 , called theamplification path, that consists of intermediate verticesu1, . . . , u9ρ2−1. Each edge of
the amplification path has a cost of(1− β)3ρ+3 − ε. From everyui, there is also an edge to a vertexz of cost
(1 − β)3ρ+2. Vertexz is connected tot via an edge of cost

∑3ρ+1

j=0
(1 − β)j . In the following we prove the

statements given in (a) and (b) above.
(a) Assume thatI has a solution. LetG′ be the subgraph ofG obtained by deleting all edges from the

embedding ofH that do not belong to one of thek vertex-disjoint paths in a fixed solution ofI. We claim
thatG′ is motivating with rewardr = 1/β. Remember that the agent perceivesr as1 on all vertices ofG
except fort. Furthermore, we will use Lemma 1 to calculate the agent’s perceived cost if not stated explicitly
otherwise. Letu0 = s. At every vertexui, with i < 9ρ2, the agent’s perceived cost for moving toui+1 and
then directly tot, hence traversing edges(ui, ui+1), (ui+1, z) and(z, t), is 1 − ε. Conversely, when residing
at ui, with i ≤ 9ρ2, the agent’s perceived cost in moving directly tot using edges(ui+1, z) and(z, t) is 1.
Thus the agent moves along the edges of the amplification path, until it reachesu9ρ2 . At u9ρ2 the agent moves
on tou1 because its perceived cost in traversing(u9ρ2 , v1) and then following the first shortcut, which starts
at v1, is 1 − ε. Similarly, when located atvi, with 1 ≤ i < k, agent perceives cost of1 − ε for traversing
(vi, vi+1) and then taking the(i+ 1)-st shortcut. In contrast, planning a path along(vi, wi), with 1 ≤ i ≤ k,
has a cost of1. Thus the agent follows the main path until reachingvk. By the same calculations, the agent
moves tovk+1. At this point the agent has no other option but to follow the main path. Because the agent’s
perceived cost is1 for all verticesvi, with k < 1 ≤ k + 3ρ+ 3, it eventually reachest.

(b) Suppose thatI does not have a solution and consider any subgraphG′ of G. We first argue that if the
agent leaves the amplification path or main path, then it abandons given a reward of at mostρ/β, which is
perceived asρ at every vertex different fromt. If the agent leaves at someui, it must passz where it perceives
cost of

∑3ρ+1

j=0
(1− β)j . However, it holds that

3ρ+1
∑

j=0

(1− β)j =

3ρ+1
∑

j=0

(

1− 1

3ρ+ 3

)j

>

3ρ+1
∑

j=0

(

1− 1

3ρ+ 3

)3ρ+3

>

3ρ+1
∑

j=0

1

3
> ρ,
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see Lemma 2 for the second inequality, and therefore the agent abandons. Similarly, if the agent leaves at
somevi, with 1 ≤ i ≤ k, then it must pass one of the verticestj, where the perceived cost is greater than
∑3ρ

j=0
(1 − β)j and consequently also greater thanρ. Hence, we will restrict ourselves of subgraphsG′ in

which the amplification path and main path are intact and assume that the agent walks them.
We say that thei-th shortcut isdegenerateif the cost of a cheapest path fromvi to t via (vi, wi) is different

from the target valueθ =
∑3ρ+2

j=0
(1 − β)j . In particular, thei-th shortcut is degenerate if there is no such

path. Note that by construction, every degenerate shortcutmust miss the target value by(1− β)3ρ+1/(k + 1)
or more. As in the proof of Theorem 1, the assumption thatI has no solution implies the existence of a
degenerate shortcut. By the same argument given in Theorem 1, it is also clear that if there is a degenerate
shortcut of cost less thanθ, the agent leaves the main path and abandons. In the remainder of the analysis of
(b) we therefore assume that for all shortcutsi, the cost of a cheapest path fromvi to t via (vi, wi) is greater
thanθ. We distinguish two cases depending on whether or not the first shortcut is degenerate.

If the first shortcut is not degenerate, then there exists an integeri, with 1 < i ≤ k, such that the(i− 1)-st
shortcut is not degenerate but shortcuti is. When the agent resides atvi−1 and plans a cheapest path along
(vi−1, wi−1), it perceives a cost of1. In contrast, traversing(vi−1, vi) and taking the next shortcuti, has a
perceives a cost of at least

(1− β)3ρ+3 − ε+ β

(3ρ+2
∑

j=0

(1− β)j +
(1− β)3ρ+1

k + 1

)

= 1 + β
(1− β)3ρ+1

k + 1
− ε > 1.

The inequality holds by the choice ofε. Moreover, there are no degenerate shortcuts of cost less than θ.
Thus traversing(vi−1, vi) and continuing further on the main path, possibly taking a subsequent shortcut, the
agent’s perceived cost is at least

(1− β)3ρ+3 − ε+ β

(

(1− β)3ρ+3 − ε+

3ρ+2
∑

j=0

(1− β)j
)

= 1 + (1 + β)

(

β
(1− β)3ρ+3

1 + β
− ε

)

> 1.

Again, the inequality holds by choice ofε. Thus the agent leaves the main path atvi−1 and abandons.
Finally, we study the case that the first shortcut is degenerate with cost of a cheapest path fromv1 to t via

(v1, w1) greater thanθ. Let i be highest index of a vertex on the amplification path such that ui is connected
to t via (ui, z) and(z, t) in G′. The perceived cost of such a path is1. Conversely, any path along(ui, ui+1),
or (u9ρ2 , v1) assumingi = 9ρ2, has a perceived cost greater than1 as calculated in the last paragraph. Thus
the agent leaves the amplification path and abandons. However, if no ui is connected tot via (ui, z) and(z, t),
then the agent’s lowest perceived cost ats is lower bounded by

(1− β)3ρ+3 − ε+ β

(

9ρ2
(

(1− β)3ρ+3 − ε
)

+

3ρ+2
∑

j=0

(1− β)j
)

= 1− ε+ 9βρ2
(

(1− β)3ρ+3 − ε
)

Taking into account thatβ = 1/(3ρ + 3), we can further simplify this term to

1− ε+ 9ρ2
1/3 + ((1 − β)3ρ+3 − 1/3− ε)

3ρ+ 3
> 1− ε+ 9ρ2

1/3

3ρ+ 3
= ρ+

(

1

1 + ρ
− ε

)

> ρ.

Once more, the two inequalities hold by choice ofε. HenceG′ is not motivating for a reward of at mostρ/β.
In order to finish the proof of the theorem we have to determineρ. We setρ = m, wherem is the number

of vertices inH. The total number of vertices inG isn = 2+(9m2+1)+(m+2k+3m+3). The first term
accounts fors andt, the following bracket accounts for the number of vertices in the amplification unit and the
last bracket accounts for the number of vertices in the central unit. Thus we have presented a polynomial-time
reduction. Moreover, it holds thatn ≤ 9m2 +6m+6 < 16m2 for everym ≥ 2, which means thatρ is lower
bounded by1/4

√
n.
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5 Motivation through intermediate rewards

In this section, we generalize the original model of Kleinberg and Oren [4] to incorporate the placement of
rewards on arbitrary vertices instead of justt. The goal is to minimize the total value of the rewards collected
by the agent as it travels froms to t. The problem of finding an optimal reward configuration can besolved in
polynomial-time ifβ = 0 orβ = 1. We prove that, for generalβ ∈ (0, 1), the corresponding decision problem,
which we call MOTIVATING REWARD CONFIGURATION (MRC), is NP-complete. Furthermore, we show
that the optimization version MRC-OPT, is NP-hard to approximate within any ratio greater or equal to1.

Proposition 5. An optimal reward configuration can be found in polynomial time forβ = 0 or β = 1.

Proof. First suppose thatβ = 0. In this case the agent does not perceive rewards placed at any vertex ofG
and will only traverse edges of cost0. Consider the subsetV ′ of the vertices that can be reached froms on
a path of cost0. The agent will definitely travel froms to t and not abandon if and only ift can be reached
from every vertex ofV ′ on a path of cost0. Because no rewards need to be placed in this scenario, the optimal
budget isb = 0. Next assumeβ = 1. When the agent is ats, its lowest perceived cost for moving froms to
t is equal tod(s). Settingr(t) = d(s) yields a motivating and also optimal reward configuration. This holds
true because the agent travels froms to t along the edges of a cheapest path and its lowest perceived cost do
not increase on its walk.

We now formally introduce the decision problem MRC.

Definition 4 (MOTIVATING REWARD CONFIGURATION). Given a task graphG, a non-negative budget
b and bias factorβ ∈ [0, 1], decide the existence of a motivating reward configurationr, with r(v) ≥ 0 for all
vertices ofG, such that the total reward collected on any of the agent’s walks is at mostb.

The following proposition establishes membership of MRC inNP.

Proposition 6. For any task graphG, reward configurationr and bias factorβ, it is possible to decided in
polynomial-time ifr is motivating within a given budget ofb.

Proof. Similar to Proposition 2, we modifyG in the following way. First, we compute the lowest perceived
costζr(v) for all vertices inG. Next we take a copy ofG, sayG′, and remove all edges fromG′ that do
not minimize the agents perceived cost in the original graphG. More formally, we remove all edges(v,w)
for which ζr(v) < cr(c) + β(dr(w) − r(w)). The given reward configurationr is motivating if and only if
ζr(v) ≤ 0 for all v that can be reached froms in G′. This condition can be checked in polynomial-time using
graph search algorithms. To determine if the budget constraint is satisfied, we assign all edges(v,w) of G′ a
cost ofr(w). Let c be the maximum cost among all paths froms to t in G′ according to these prices. Because
G′ is acyclic,c can be computed in polynomial-time. Thusr is within budget if and only ifc+ r(s) ≤ b.

Our NP-completeness proof of MRC relies on a reduction form SET PACKING (SP) [3]. For convenience,
we restate SP in the following Definition.

Definition 5 (SET PACKING). Given a collectionS1, . . . , Sℓ of finite sets and an integerk ≤ ℓ, decide if
there exist at leastk mutually disjoint sets?.

We are now ready to prove NP-completeness of MRC.

Theorem 4. MRC is NP-complete, for any bias factorβ ∈ (0, 1), even ifb = 0.
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Figure 5: The task graph forS1 = {a, c, d}, S2 = {a, b}, S3 = {b, c, e}, S4 = {b, e} andk = 2.

Proof. By Proposition 6, we can take any motivating reward configuration r within budgeb as certificate for a
”yes”-instance of MRC. Hence MRC is in NP. In the following wepresent a polynomial-time reduction from
SP to MRC. We focus on the case thatb = 0. At the end of the proof we show how to modify the reduction to
handle arbitrary valuesb > 0.

Let I be an arbitrary instance of SP, consisting of finite setsS1, . . . , Sℓ and an integerk ≤ ℓ. We start
by constructing the task graphG of an MRC instanceJ . Figure 5 depictsG for a small sample instance of
SP. In general,G consists of a sources, a targett andkℓ verticesvi,j, where1 ≤ i ≤ k and1 ≤ j ≤ ℓ.
Intuitively, if the agents visitvi,j , thenSj is thei-th set to be added to the solution ofI. For everyvi,j, with
i < k, there is a directed edge to all verticesvi+1,j′ on the next level. We call these edgesupward edges. The
cost of any such edge is1− β − ε. Hereβ ∈ (0, 1) is any value whose encoding length is polynomial in that
of I. Furthermore,ε is a positive value satisfying

ε < min

{

(1− β)2

k
,

β − β2

k − 1 + β

}

.

In Figure 5 the upward edges are merged to maintain readability. Froms there is a directed edge to every
vertexv1,j on the bottom level. Again, the cost of all such edges is1− β− ε. Finally, for every vertexvk,j on
levelk there exists an edge of cost0 to t.

In order guide the agent onto a specific upward edge, we addshortcutsto G that connect everyvi,j to t
via an intermediate vertexwi,j . The first edge(vi,j, wi,j) has cost1 and the second edge(wi,j , t) has cost0.
In Figure 5 the edges(wi,j , t) are omitted for the sake of a readability. As we will see, a reward of value
less than1/β can be placed onwi,j and the agent will not claim it. Finally we introducedownward pathsof
length two that connect eachvi,j with all wi′,j′ for which i′ < i andSj ∩ Sj′ 6= ∅, i.e. the sets are not disjoint.
The first edge has a cost of0, while the second edge has a cost of(1 − β − kε)/(β − β2). In Figure 5 each
downward path is drawn as a single dashed edge. The purpose ofthese paths is to let the agent claim a reward
or abandon whenever the disjointness constraints ofI are violated. Notice thatG is acyclic. We will show
thatI has a solution if and only ifJ has one.

(=⇒) First assume thatI has a solution, i.e. there existk mutually disjoint sets amongS1, . . . , Sℓ. Fix
such a selection ofk disjoint sets and assign each set to a distinct level ofG. Suppose thatSj of the collection
is assigned to leveli. Then place a reward of value(1 − ε)/β onwi,j. The corresponding shortcut fromvi,j
is referred to as anactive shortcut. We now analyze the agent’s walk throughG and show that it visits exactly
the verticesvi,j at which the active shortcuts start. The agent does not claimany reward.
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Suppose that the agent is located at the initial vertexvi,j, with i < k, of an active shortcut. There are
three options. First the agent could follow the shortcut towi,j. However, the perceived cost along this path
to t is ε, so the agent has no incentive to move towi,j. Secondly, the agent could take a downward path. By
construction, none of them leads to an active shortcut. Thismeans that the agent cannot collect any reward on
such a path but encounters a positive cost on the downward path. Hence this option is not motivating either.
The agent’s only remaining option is to take an upward edge. If the agent plans to take the active shortcut of
level i+ 1, it perceives a total cost of0. This is a motivating choice. Conversely, assume that the agent plans
a pathP to t that visits a vertexvi+1,j′ on the next level such that the corresponding shortcut is notactive. We
distinguish between four scenarios. IfP includes a downward path, then at best one reward can be located
alongP so that the agent’s perceived cost is at least

1− β − ε+ β

(

1− β − kε

β − β2
− 1− ε

β

)

=
k

1− β

(

(1− β)2

k
− ε

)

> 0,

which is not motivating. The inequality follows from our choice ofε. If P includes the shortcut atvi+1,j′ then
the agent encounters no reward but a positive cost, which is not motivating either. IfP includes a shortcut on
some level abovei + 1, then the agent must traverse at least two upward edges but can collect at most one
reward. In this case the agent’s perceived cost is lower bounded by

1− β − ε+ β

(

(1− β − ε) + 1− 1− ε

β

)

= β(1 − β − ε) > β

(

(1− β)2

k
− ε

)

> 0.

As always, the last inequality follows by choice ofε. Finally,P may neither include a downward path nor a
shortcut. However, this means that the agent has positive cost and does not collect any reward. All in all, the
only motivating option is to take the upward edge leading to the active shortcut of leveli+ 1.

The same arguments also apply when the agent is ats or the initial vertex of an active shortcut on the top
level. At s, the agents only option is to take an upward edge. Hence it moves to the initial vertex of the active
shortcut of the bottom level. At the top level the agent will take the direct edge tot, which incurs no cost. All
other options, namely taking a downward path or the current shortcut, are not motivating.

(⇐=) Next assume thatJ has a solution, i.e. there exists a motivating reward configuration such that the
agent does not claim any reward. Consider arbitrary walks ofthe agent. A first crucial observation is that
no such walk enters a shortcut or a downward path, because a positive reward on a vertex along these paths
is needed to guide the agent onto them. Considering that the agent cannot change its plan once it entered a
shortcut or downward path, it would either claim the reward or abandon, which contradicts the assumption
thatJ has a solution. Hence the agents visits one vertexvi,j at each leveli. We call everyvi,j that is contained
in one of the agent’s possible walks anactive vertices. Note that there might be more than one active vertex
per level.

We next prove that at every active vertex the agent’s lowest perceived cost at least(1− k)ε. More specifi-
cally, we show by backwards induction, from the top level down to the bottom level, that whenever the agent
is located at an active vertex of leveli, its perceived cost in planing a path tot is at least(i− k)ε. Moreover, if
i < k, then the only motivating paths are paths passing through the shortcuts of active vertices on leveli+ 1.
First assume that the agent is at an active vertexvk,j on the top level. As argued above, the agent cannot take
the shortcut or downward path tot. However, the edge(vk,j, t) is a motivating path with a perceived cost of
0, which is equal to(k − k)ε. This proves the basis of our induction.

For the inductive step, suppose thati < k and that the agent is located at some active vertexvi,j . Let
vi+1,j′ be the active vertex visited next by the agent. Because the agent will move fromvi,j to vi+1,j′, there
must exist a pathP from vi,j to t via (vi,j, vi+1,j′) that minimizes the agent’s perceived cost. We distinguish
four scenarios. First, assume thati = k − 1 andP contains(vi+1,j′ , t). This means that the agent receives no
reward but has positive cost, which is not motivating. Secondly, assumeP contains a forward edge leaving
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vi+1,j′ and consider the perceived cost of the remaining portion ofP when viewed fromvi+1,j′ . By induction
hypothesis this cost must be at least((i + 1)− k)ε. Furthermore, no reward must be placed atvi+1,j′ , as this
would violate the budget. This means that the perceived costof P at vi,j increases byβ(1 − β − ε) when
compared to the perceived cost ofP atvi+1,j′ . Thus the perceived cost at ofP at vi,j is at least

(

(i+1)−k
)

ε+β(1−β−ε) = (k−(i+1)+β)

(

β − β2

k − (i+ 1) + β
−ε

)

> (k−(i+1)+β)

(

β − β2

k − 1 + β
−ε

)

> 0.

The last inequality holds by choice ofε. HenceP is not motivating. Thirdly, assumeP contains a downward
path out ofvi+1,j′ . In this case, the perceived cost ofP at vi,j compared to the perceived cost ofP at vi+1,j′

increases by even more, namely1 − β − ε. Certainly,P can not be motivating. Finally, assumeP contains
the shortcut out ofvi+1,j′ . When viewed fromvi,j instead ofvi+1,j′ , the perceived cost ofP increases by
1 − β − ε and decreases by1 − β. Thus the perceived cost is at least((i + 1) − k)ε − ε = (i − k)ε which
concludes the induction step. By a similar argument, the only motivating paths out ofs traverse the shortcut
of an active vertex on the bottom level.

The last three paragraphs imply that for every active vertexvi,j a reward of at least(1 − ε)/β has to be
placed atwi,j. Otherwise the shortcut would not be motivating when the agent resides at an active vertex on
the previous leveli− 1, or ats if i = 1. This implies that there can be no downward path connecting an active
vertexvi,j to the shortcut of an active vertex on a lower level, because the perceived cost atvi,j for following
the downward path would be at most

β

(

1− β − kε

β − β2
− 1− ε

β

)

=
(1− k − β)ε

1− β
< (1− k)ε.

Thus the active verticesvi,j along any walk of the agent correspond tok disjoint setsSj, which proves thatI
has a solution.

We finally address the case that the agent may collect a total reward ofb > 0. Consider a slightly modify
version ofG. We renamet by t′ and add an edge fromt′ to a new targett. The cost of this edge isβb.
The agent only reachest from t′ if a reward of valueb is placed ont. With this observation the above proof
immediately carries over.

We next turn to the optimization variant of MRC.

Definition 6 (MOTIVATING REWARD CONFIGURATION OPT). Given a task graphG and a bias factor
β ∈ (0, 1), determine the minimum budgetb for which there exists a reward configurationr, with r(v) ≥ 0
for all vertices ofG,such that the total reward collected on any of the agent’s walks is at mostb.

Assuming thatP 6= NP, Theorem 4 implies that there exists no polynomial-time algorithm that approxi-
mates a motivating reward configuration such that the required budget is within any ratio greater of equal to1
compared to the budget of an optimal solution. This, followsfrom the fact that MRC is NP-complete even in
the special case thatb = 0.

Corollary 1. MRC-OPT is NP-hard to approximated within any ratio greaterof equal to1.

6 Conclusions

In this paper we have studied computational problems in time-inconsistent planning using a graph model by
Kleinberg and Oren [4]. As a main result, assumingP 6= NP, we established asymptotically tight upper and
lower bounds ofΘ(

√
n) on the efficient approximability of MSG-OPT as well as a negative approximability

result for MRC-OPT. Given the state of the art, we believe that a generalization of the graph model to quasi
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Figure 6:H for (x̄2 ∨ x̄3) ∧ (x1 ∨ x2 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x3)

hyperbolic discount functions is a promising research direction. In hyperbolic discounting, which is frequently
used in the behavioral economics literature [2, 5], there are two parametersβ, δ ∈ [0, 1]. Any valuec that
is realizedt time steps in the future is perceived with a current value ofβδtc. For t = 0, the perceived
value isc. Note that Kleinberg and Oren’s [4] model is a special case ofquasi hyperbolic discounting for
δ = 1. Although such discount functions are more involved, the exponentially fading value of future costs
and rewards might allow for improved approximation guarantees ifδ < 1.

Appendix

Proposition 7. k-DCP is NP-complete in directed acyclic graphs.

Proof. Membership ofk-DCP in NP is easy to see. In order to show NP-hardness we modify Lynch’s [6]
reduction that mapped instances of 3-SAT to instances ofk-DCP in undirected graphs. LetI be a3-SAT in-
stance withm clausesc1 . . . cm overn variablesx1 . . . xn. Furthermore, letJ be an(m+n)-DCP instance on
a directed acyclic graphH that is constructed in the following way. For every variablexi, there are terminals
si andti that are connected via two vertex-disjoint paths. One path,the so called high path, corresponds to
the case thatxi is set to true, while the other path, called low path, corresponds to the case thatxi is false.
Similar to the variables, there are terminalss′j andt′j for each clausecj . Again, the terminals are connected by
vertex-disjoints paths, this time one for each literal incj . If thek-th literal ofcj is equal toxi, a vertexvi,j,k is
added to the low path ofxi and the literal’s path. Should the literal be negated,vi,j,k is added to the high path
of xi and the literal’s path instead. Assuming that the position of the verticesvi,j,k along their respective paths
is ordered according to the indicesi andj, one obtains a directed acyclic graphH. Moreover, it is easy to
verify that the size ofH is polynomial with respect to the original3-SAT formula. Figure 6 shows an example
of H for a small sample instance of 3-SAT. We next prove thatI is feasible if and only ifJ is.

(⇐=) Given a variable assignment that satisfies the3-SAT formula, it is easy to constructm+ n vertex-
disjoint connecting path. For all pairssi andti, choose the high path ifxi is true or the low path ifxi is false.

17



Fors′j andt′j the path of any literal incj that evaluates to true can be selected. Because the formula is satisfied,
at least one such path must exist. By construction ofH, this yieldsm+ n vertex disjoint connecting path.

(=⇒) Observe, that every literal’s path has exactly one intermediate vertex. As a result, the only paths that
connect a terminals′j with t′j are exactly the paths that correspond to the literals ofcj. The same holds for the
high and low paths of a variablexi. Hence, if there arem+ n vertex-disjoint connecting path inH, then the
chosen high and low paths directly translate to a satisfyingvariable assignment of the3-SAT formula.
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