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Motivating Time-Inconsistent Agents: A Computational Apach
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Abstract

In this paper we investigate the computational complexitynotivating time-inconsistent agents to
complete long term projects. We resort to an elegant grapbretic model, introduced by Kleinberg and
Oren [4], which consists of a task graphwith n vertices, including a sourceand target, and an agent
that incrementally constructs a path franto ¢ in order to collect rewards. The twist is that the agent is
present-biased and discounts future costs and rewardsdmta # € [0,1]. Our design objective is to
ensure that the agent reachiés®. completes the project, for as little reward as possiBlech graphs are
called motivating. We consider two strategies.

First, we place a single rewardat¢ and try to guide the agent by removing edges fi@m\e prove
that deciding the existence of such motivating subgrapPisomplete if- is fixed. More importantly, we
generalize our reduction to a hardness of approximatiatréess computing the minimum that admits
a motivating subgraph. In particular, we show that no pohgiad-time approximation to within a ratio of
\/n/4 or less is possible, unle§s= NP. Furthermore, we develop(a + /n)-approximation algorithm
and thus settle the approximability of computing motivgtsubgraphs.

Secondly, we study motivating reward configurations, wineme-negative rewardgv) may be placed
on arbitrary vertices of G. The agent only receives the rewards of visited verticegif\ge give an NP-
completeness result for deciding the existence of a matiyaeward configuration within a fixed budget
b. This result even holds & = 0, which in turn implies that no efficient approximation of animumb
within a ration grater or equal tbis possible, unlesB = NP.

1 Introduction

Motivated by a recent paper of Kleinberg and Oren [4], we wtild phenomenon dfme-inconsistent be-
havior from a computer science perspective. This fundamentallgmoln behavioral economics has many
examples in every day life, including academia. Considerirfstance, a referee who agrees to evaluate a sci-
entific proposal. Despite good intentions, the referee distsacted and never submits a report. Or consider a
student who enrolls in a course. After successfully conmiethe first couple of homework assignments the
student drops out without earning any credit points. In ganéhese situations have a reoccurring pattern. An
agent makes a plan to complete a set of tasks in the futurenbages the plan at a later point in time. Some-
times this is the result of unforeseen circumstances. Hewevmany cases the plan is changed or abandoned
even if the circumstances are the same as when the plan was iitaid paradox behavior gfocrastination
andabandonmenis well-known in the field of behavioral economics and canehswbstantial effects on the
performance of agents in an economic or social domain, ge¢le.7, 8].

A sensible explanation for time-inconsistent behavioh#t figents assign disproportionally greater value
to current cost than to future expenses. As an example,demsisimplecar wash problenin which an agent,
say Alice, is promised extra pocket money for washing heilfegsrcar. Each day Alice can either do the chore
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or postpone it to the next day. However, the longer she witsdirtier the car gets. Assume that washing
the car on day, with i > 1, incurs a cost of /50. The cost of waiting another day s After completion of
the task, she will receive a reward bEuro from the family. Alice is present-biased, i.e. she pwes current
cost according to its true value but discounts future castrawards by a factor of € [0,1]. On dayi she
compares the cost of washing the car right away, whiélhie, to the perceived cost of washing it on the next
day, which is5(i + 1)/50. Suppose that = 1/3. Because /50 > ((i + 1)/50, she procrastinates with
good intentions of doing the job on the following day. On day 50 Alice realizes that her perceived cost
for washing the car on the next day, or any of the followingsjay at leasti(50 + 1) /50, which exceeds the
perceived value of. Thus she abandons the project altogether.

Previous work: In the economic literature there exists a considerable lobayork on time-inconsistent
behavior, cf. again [1, 7, 8]. We build on work by Kleinbergda®@ren [4] who propose a graph-theoretic
model that elegantly captures the phenomena of procréistinand abandonment as observed in the car wash
problem. We will formally define the model in Sectioh 2. Eg&a#ly, it consists of a directed acyclic gragh
with n vertices that models a long term project. An agent, with faator 5 € [0, 1], incrementally constructs
a path from a designated soure¢o a targett. The edges of7, which represent the individual tasks of the
project, are assigned non-negative costs. The verticespesors andt, correspond to intermediate states of
the project. When located at a vertexthe agent chooses a pathfrom v to ¢ that minimizes iterceived
cost This means, the agent accounts for the first edge by its true cost, whereas all remaining edges are
discounted bys.

Kleinberg and Oren_[4] first investigating structural prdjes of G under the assumption that the agent
must not abandon the project. In particular, they chareetdask graphs in which the ratio between the
total cost of a path traversed by the agent and the minimuraofas path froms to ¢ is exponential imn.
Interestingly, any such graph, after removing the directbits edges, must containkafan, with k& € O(n),
as a minor. Furthermore, Kleinberg and Oren analyze the rumibdifferent paths traversed the agent as
3 varies betweerd and 1. They show that this number is i@(n?). The later result requires a consistent
tie-breaking rule should the agent be indifferent betwegtgaing edges of the same vertex.

Next, Kleinberg and Oren [[4] assume that the agent is fredam@don the project and place a reward
att¢ as to motivate it to finish. When located @tthe agent continues to follow a path that minimizes its
perceived cost as long as it does not exceed the perceivad géthe reward. A graph in which the agent
always successfully traverses a path froto ¢ is calledmotivating. Kleinberg and Orerl[4] are interested in
finding motivating subgraphs, by removing edges fr@dmThe authors present structural properties that any
motivating subgraph with a minimal number of edges musskati

Finally, Kleinberg and Orer\ [4] point to a number of open comagional problems, including the com-
plexity of finding motivating subgraphs. Moreover, Kleinpeand Oren propose a problem setting in which
rewards may be placed at intermediate vertices insteadsbf.jun this case> may not be pruned. We call
such a construct @ward configuration

In an unpublished manuscript Tang et al. [9] address sonteeddppen problems. They refine the result on
the cost ratio, which relates the path traversed by the @gemtheapest path. More specifically, they show
that any task graph that does not contaffan as minor after removing the direction of its edges masth
a cost ratio of at mos@z—k. Hence, for any fixed:, the cost ratio is constant im. Moreover, Tang et al.
prove that it is NP-hard to decided contains a motivating subgraph for a fixed reward. Findfigytexplore
the problem of deciding the existence of a motivating rewadfiguration within a given budget. Tang et
al. give NP-hardness results for three variations of thélpra. They distinguish between configurations that
are restricted to non-negative rewards and configuratiuatsallow for any real-valued rewards. Furthermore,
they consider a setting in which every reward that is laidayut; must also be collected. In each of the three
problem variations, Tang et al. measure the total value oh@iguration by the sum of the absolute values of
all rewards placed otv.



Our contribution: In this paper we focus on the complexity and approximabditfinding motivating
subgraphs and reward configurations. Our objective is dugf§ieiency. Note that we take a design perspec-
tive. In particular, we are not interested in minimizing tb&al cost experienced by the agent on its walk from
s to t but rather the reward necessary to motivate the agent.

As for the first problem, by removing edges fra®) it is possible to limit the agent’s options in each
of its steps. Ideally, this prevents the agent from pursgiogfly distractions and thereby reduces the reward
required for it to finish the project. The benefit of choiceuetibn is a well-known phenomenon in the field of
behavioral economics. It also has a very natural intuittomany real-live projects. Take for instance the car
wash problem. As we will show in Sectidn 2, the removal of exdigethe problem'’s task graph corresponds
to the introduction of deadlines.

The second problem takes a slightly less restrictive ambr@end allows the placement of intermediate
rewards at arbitrary vertices ¢f. Again this is meant to prevent the agent from pursuing alisions and
encourage it to complete the project. We examine a versidheoproblem that, in our view, is the most
sensible one. First, only non-negative rewards may be laid This assumption is reasonable as it could be
hard to convince an agent to pursue projects in which it hasake payments. Furthermore, it is not clear
how to account for such payments in the budget. Secondlygasisof a reward configuration is only measured
by the sum of the rewards that are placed at vertice visitetthéyygent on its walk from to ¢. This setting
is a fundamentally different from the ones analyzed by Taraj.eas it may lead to configurations in which
the agent is motivated by rewards that are never claimech Safigurations are also calledploitative We
give an example in Sectidn 2.

In Sectior B we settle the complexity of finding a motivatindpgraph for a fixed:. We first observe that
the problem is polynomially solvable i = 0 or 5 = 1. We then prove that, for generdle (0,1), itis NP-
complete to decide the existence of a motivating subgrapthéir paper [9], Tang et al. showed NP-hardness
via a reduction from 3-SAT. In contrast, we present a difiemeduction viak DISJOINT CONNECTING
PATHS [3]. We believe that this reduction is slightly simpl&iore importantly, we are able to generalize the
reduction and show a hardness of approximation result ifolf@ving section.

In Sectior 4 we study the optimization version of the mothgsubgraph problem. More formally, given
ap € (0,1), determine the smallest possible valueraguch thatG' contains a motivating subgraph. We
develop a1 + /n)-approximation algorithm that outputsas well as a corresponding motivating subgraph.
Interestingly, these subgraphs are paths. The algorithmféet a combination of two strategies, one which
computes good solutions for smalland one which is effective for large. Furthermore, the approximation
factor of our algorithm is asymptotically tight. As the ma&achnical contribution of this paper, we prove that
the optimization problem cannot be approximated in polyiabtime to within a ratio of,/n/4 or less unless
P = NP. Thus we resolve the approximability of the problem.

In Sectior b we explore the problem of finding reward configarawithin a fixed total budget of at most
b. We show that the problem can again be solved in polynorimad-if 3 = 0 or 5 = 1. Using a reduction
from SET PACKING [3], we prove that deciding the existenceaaghotivating reward configuration is NP-
complete for generah € (0,1), even ifb = 0. This immediately implies that the optimization problem of
computing the minimund that admits a motivating reward configuration cannot be @pprated efficiently
to within any ratio greater or equal founlessP = NP.

2 The formal model

In the following, we present the model by Kleinberg and Oi#h [Let G = (V, E) be a directed acyclic
graph. Associated with each ed@e w) is a non-negative cost;(v,w). An agent, with a bias factor
B € 10,1], has to incrementally construct a path from a sourde a targett. At any vertexv the agent
evaluates itdowest perceived castor this purpose, the agent considers all paths feaim¢ and accounts
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Figure 1: The task graph of the car wash problem.

for the cost of incident outgoing edges by their actual valieereas it discounts future edges by More
specifically, letd(w) denote the cost of a cheapest path from some veutéa ¢, considering the origi-
nal edge costs. If no path exists, we assume dadiv) = co. Accordingly, the agent’s lowest perceived
cost is defined agg(v) = min{cq(v,w) + Bdg(w) | (v,w) € E} if v has at least one incident outgoing
edge. Otherwise we assume tljat(v) = oo. The agent only traverses outgoing edgesw) for which
ca(v,w) + Bdg(w) = {c(v). Ties are broken arbitrarily. Shoutd be clear from context, we will omit the
index and writer(v, w), d(v) and({(v) instead.

In Section B andl4 we will investigate problems in which a Engon-negative reward is placed at.
The agent perceives the value of this rewar@@ast every vertex different from. A graphG is motivating
if the agent does not abandon the project while constructipgth froms to ¢ in G. More specifically, at any
vertexv along the agent's path, it compar€®) to 5r and continues moving if(v) < fr, i.e. the reward
is sufficiently motivating. Otherwise, f(v) > fSr, the agent abandons. Because ties are broken arbitrarily,
there could be more than one path for the agent. Consequéhigyonly considered motivating if the agent
abandons the project on non of these paths.

In Section b we will generalize Kleinberg and Oren’s modealiow the placement of non-negative re-
wardsr(v) at arbitrary vertices. We call such a placementraward configuration Given a specific reward
configurationr, let ¢, (v, w) = c(v,w) — r(w) be the cost of traversin@, w) minus the reward collected at
w with respect ta. Usingc, as new cost metric, we denote the cost of a cheapest pathdram asd,. (w).
When located at, the agent considers all paths franto ¢ and accounts for incident outgoing edges by their
actual value, whereas future costs and rewards are dismbbgt3. More specifically, we define the agent’s
perceived cost a§.(v) = min{c(v,w) + B(d,(w) — r(w)) | (v,w) € E}. The agent continues moving if
¢-(v) > 0. In this case the agent traverses an outgoing €dge) which minimizes its perceived cost, i.e.
c(v,w) + B(dr(w) — r(w)) = ¢-(v). Again ties are broken arbitrarily. Otherwisejf(v) > 0, the agent
abandons. The agent only collects the rewards that it \asitiss path froms to ¢. We are only interested in
the value of the total reward handed out to the agent. We sawithin some given budgétif the agent does
not collect a total reward greater thaen any of these paths.

To illustrate the model, we consider the car wash probleneonore. Assume that the car has to be
washed during the next days, wheren > 50. The task graplt: is depicted in Figurg]l. For each day
with 1 < i < m, there is a vertex,. Letv, be the source. There is an edgg, ¢) of costi/50 representing
the action that Alice washes the car on dayn order to keep the drawing simple, the edgest¢) merge in
Figure[l. Moreover, for every < m there is an edgév;, v;+1) of cost0 that represents the postponement of
the job from dayi to the next day. Assume for now that Alice is located at someith i < m. Her perceived
cost for procrastination is at leasti + 1)/50. This lower bound is tight if Alice plans to traverse the esige
(vi, vi41) and(vi41,t). Alternatively, her perceived cost for usifig, ¢) and washing the car on days i/50.
Remember that = 1/3. It follows that((v;) = 5(i + 1)/50, which means that Alice always prefers to wash
the car on the next day instead of the current day. Moredvék; i50, then((v;) < gr for the reward of = 1
provided by the family at. Thus Alice procrastinates and moves aldng v;;1). Note that her planning is
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time-inconsistent. On dayshe intends to follow the path;, v;+1), (vi+1,t). However when located at
she pursues a different strategy. Once Alice reackhgsshe realizes thaf(vso) = 5(50 + 1)/50 exceeds the
perceived value of the rewartt and abandons. Thus is not motivating.

Next assume that we delete;s,v17) from G. In other words, we remove a procrastination edge and
thereby set a deadline at day= 16. Let G’ be the resulting graph. When Alice reachgg she can not
procrastinate anymore and her perceived cost;isvis) = 16/50 which is less than the perceived value
pr = 1/3 of the reward. Hence Alice washes the car and reath&bgraphG’ is motivating. However,
it is interesting to observe, that there is no reward conditjom - within a budget less thafn/50) /5 that is
motivating in the original task grapf. This is due to the fact that no matter how much reward is platé
Alice will always prefer to procrastinate until day, when her cost for washing the canig/50.

To illustrate the strengths of reward configurations, wesatsr a second scenario. Suppose that at day
1 = 50 Alice’s family offers her a new opportunity to earn pocketmewy. If she first washes the family’s car,
which now incurs a cost of, and afterwards also cleans her room, which due to yearsgiécteincures a
cost of6, she receive30 Euros. Secretly, the family does not care about Alice cleghier room. They only
try to trick her into washing the car for free. We model thisjpct with a new task grapfy that consists of a
path froms to ¢ via an intermediate vertex and another path from to ¢ via an intermediate vertex. The
edge(s,v) corresponds to the job of washing the car and has a castwlile (v, w) is the job of cleaning
Alice’s room and has a cost 6f The edgegwv,t) and(w,t) are of cost). Assuming that3 = 1/3, there
is a reward configuration for which the family can motivate Alice to complete the paijavithin a budget
of 0. Settingr(w) = 10, Alice traverseqs, v) with a lowest perceived cost @f(s) = —1/3. This cost is
realized along the edgés, v), (v, w) and(w, t). When atv, Alice perceives cost af/3 for traversing(v, w)
and cleaning her room batfor ending the project right away alorig, t). Thus she changes her plan and
moves tot without collecting a reward. Interestingly, there is no iveting subgraph o for a reward less
than3 if the reward must be placed &t This suggests that, depending on the structure of the tagihgthe
performance of our two design strategies may vary drastical

3 The complexity of finding motivating subgraphs

In this section we first observe thatif= 0 or g = 1, then the problem of finding a motivating subgraph can
be solved in polynomial-time. We then prove that the denigimblem, which we refer to as MOTIVATING
SUBGRAPH (MS), is NP-complete for generale (0,1). Our proof is based on a reduction framDIS-
JOINT CONNECTING PATHSK-DCP), cf. [3]. Lynch|[6] showed that-DCP is NP-complete in undirected
graphs. In the Appendix, by adapting Lynch'’s proof, we shbat k-DCP is also NP-complete in directed
acyclic graphs.

Proposition 1. A motivating sub graph can be found in polynomial timé # 0 or 5 = 1.

Proof. We start withg = 0. In this case a subgraphi’ of G is only motivating if at every vertex of’ the
agent’s perceived cost (5 HenceG contains a motivating subgraph if and onlyGfcontains a path from
to ¢ such that all of its edges have c@stAny such path is a motivating subgraph.slf= 1, then the agent
follows a cheapest path fromto ¢ in any subgraph. Hena@ contains a motivating subgraph if and only if
there exists a path fromto ¢ with a total edge cost of at most Should such a path exist, théhis its own
motivating subgraph. Clearly, a motivating subgraph cafobead in polynomial-time for both casgs= 0
andg = 1. O

We now formally define the decision problem MS.

Definition 1 (MOTIVATING SUBGRAPH). Given a task grapltz, a rewardr and a bias factors € [0, 1],
decide the existence of a motivating subgraplrof



The following proposition, while being interesting in itsvo right, implies that MS is contained in the
complexity class NP.

Proposition 2. For any task graphz, rewardr and bias factorg, it can be decided in polynomial-timed#
is motivating.

Proof. We modify G in the following way. For each vertex we calculate the lowest perceived cgg(v).

Next, we take a copy df, sayG’, and remove all edgés, w) from G’ such that; (v) < cg(v, w)+Lda(w).

In other words, we remove all edges frai that do not minimize the agents perceived cost. Because the
vertices that can be reached franin G’ are exactly those vertices that are visited by the age, it is
motivating if and only if¢(v) < Br for all vertices that can be reached frarn G’. The latter condition can

be checked in polynomial-time by standard graph searchritiguts. O

Before we prove NP-hardness of MS, we restate the definifiégr@CP as a brief reminder.

Definition 2 (k DISJOINT CONNECTING PATHS) Given a directed acyclic grapH and & disjoint vertex
pairs (s1,t1), ..., (sk, tx), decide ifH contain k mutually vertex-disjoint paths, one connecting evgrjo
the corresponding;.

Furthermore, we want to introduce to a simple but useful lagwwhich lets us set prices along a path of
arbitrary lengthk, such that at every vertex, except for the last, the perdedest of following the path to its
end is exactlyl. Such price structures will be a reoccurring feature of gauctions in Theorefd 1 andl 3.

Lemma 1. For every positive integek and bias factors € [0, 1] it holds that

(1 - g +/3(kf<1 - ﬂ)i) 1.

=0

Proof. If 8 is equal ta), this claim is easy to verify. However, shoulce greater thaf, the geometric series
Zf;ol(l — )" and can be rewritten &8 — (1 — 3)*)/3, which in turn implies that

k—1

(1—/3)’“+6<Z(1—/3)i> = (1—ﬂ)k+6<71 — (1/3_ W) =1.

1=0

We are now ready to prove NP-completeness of MS.
Theorem 1. MS is NP-complete, for any bias factére (0,1).

Proof. By Propositio 2 we can take any motivating subgréghas certificate for a "yes™instance of MS.
Hence MS is in NP. In the following we will present a polynoirtine reduction fromk-DCP to show NP-
hardness. This establishes the theorem. Consider andasiaof £-DCP, consisting of a directed acyclic
graphH andk disjoint vertex pairgsy,t1), ..., (sk, tx). We construct an instancg of MS that is composed
of a task grapli7, a bias factod and a reward. The graphH will be embedded int@- in such a way thaf?
has a motivating subgraph if and only if H haslisjoint connecting paths.

We proceed to describe the MS instagg€elet 3 € (0, 1) be any value with the property that its encoding
length is polynomial in that of. Setr = 1/3. The task grapld is constructed as follows, see also Figure 2.
It consists of a source and a target. These two vertices are connected by a directedn pathalong
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Figure 2: The grapldz with an embedding off.
intermediate vertices, ..., v, 3. The firstk + 1 edges of this main path each have a cogtlof ) — ¢,
wheree is a positive constant satisfying
=8 (-5
< .
c mm{ﬁkﬂ’ﬂ 1+ 3

The last three edges of the main path, conneating to ¢, have a cost of1 — 3)2, 1 — 3 and1 respectively.
Additionally, G containsk shortcutsthat connect every;, with 1 < i < k, tot via an embedding off. More
formally, H is added to . Thei-th shortcut starts ai;. It visits a distinct vertexv; along an edge of cost
(1— B)2. Vertexw; is connected te; in H. The edge costigk +1 —14)(1 — 3)/(k + 1). Finally, vertext; of

H is connected to via an edge of cosi(1 — 3)/(k + 1) + 1. In Figure[2 the latter edge cost is shown as two
terms, namelyi(1 — 3)/(k + 1) and1, in order to keep the labels of the parallel edggst) simple. Note
that for any shortcut, the edge costs dfw;, s;) and(¢;,t) complement each other, i.e. they sum to exactly
(1—p)+1. The edges off all have a cost of. We remark that at every vertex different fragpthe perceived
value of the reward igr = 1. The resulting graplis is acyclic and its encoding length is polynomial in that
of Z. We next prove thal has a solution if and only if7 has one.

(=) First assume thaf has a solution, i.e. there existvertex-disjoint paths, one connecting eveyyo
the corresponding;. In the embedding off we remove all edges, except for thevertex-disjoint paths. Let
G’ be the resulting subgraph 6f We will show thatG’ is motivating, forr = 1/3. More specifically, we will
argue that the agent travels along the main path fedmt. If the agent resides at one of the fiksvertices
v; it has two options. Either it traversés;, v;11) and follows the main path, or it takes;, w;) and walks
along thei-th shortcut. Let = 0. For0 < i < k, the perceived cost of traversiltg;, v;+1 ) and following the
(i+1)-st shortcut afterwards {d — 3)2 — e+ B((1 - 8)? + (1 — ) +1). According to Lemmal1, the value of
the perceived cost simplifies 10— ¢. Note that similar calculations are scattered throughoeientire proof.
For the sake of brevity, Lemnia 1 will not be referred to explieach time. If the agent is at,, its perceived
cost in following the main path tois alsol —e. Hence, takindv;, v;11) is @ motivating option. In contrast, if
the agent resides af, with 1 < i < k, and plans to traverde;, w; ), following thei-th shortcut, its perceived
cost isl. Although this option is also motivating, it is perceivedmasre expensive than takin@;, v;11). As
a result, the agent follows the main path until it reachgs,. At this point the agent has no option but to stay
on the main path. The perceived cost at any of the vertiges, vxo andvy. 3 is 1. Thus subgraplt’ is
indeed motivating.



(<) Next assume thdf does not have a solution. We prove that no subgi@pbf G is motivating.
Consider any subgrapfi’. Observe tha€&’ is only motivating if the agent never leaves the main patle®t
wise the agent must visit somgon its way tot at which point it perceives acostdfl — 5)/(k+1)+1 > 1
and abandons. We therefore focus on subgréphhat contain all edges of the main path. More specifically,
we focus on subgraph§’ in which the agent walks along the main path. We say that-heshortcut is
degeneratéf the total edge cost of a cheapest path fronto ¢ via (v;, w;) is different from the target value
6 = (1 - B)%+ (1 - B)+ 1. In particular, thei-th shortcut is degenerate if there is no path fromto
t via (v;, w;), in which case the perceived cost of the shortcut is infinilete that by construction, every
degenerate shortcut must miss the target valuglby 3) /(k + 1) or more.

We first argue that there is at least one degenerate shamt€lt For the sake of contradiction, assume no
such shortcut exists. This means that there is a cheapésPpabm v; to ¢ via (v;, w;) forall 1 < i < k.

By construction,P; traversegw;, s;). Remember that the total cost Bf must sum up t@. The only way to
achieve this is if?; ends in(¢;, t). Furthermore P; must be vertex disjoint from all other pat with j < i.
OtherwiseP; would not be a shortest path from to ¢, given thatc(t;,t) < c(t;,t). However, this implies
that there are: vertex disjoint paths irf{, one from eacts; to the corresponding;, which contradicts the
assumption thdaf has no solution.

Now that we established the existence of a degenerate shonte distinguish two cases. Either there
exists a degenerate shortéuch that the cost of a cheapest path frgrto ¢ via (v;, w;) is less thard or for
each degenerate shortéuhe cost of a cheapest path franto ¢ via (v;, w;) is greater thai.

We study the first case first. Lébe the largest index of a degenerate shortcut such that gapeht path
from v; to ¢ via (v;, w;) is less thar®. When located at; the agent perceives cost less or equal to

2 1-p 1-5
(1-7) +[3<(1—6)+1—k—+1> _1—ﬁk—+1 <l-—c¢

along (v;, w;). Conversely, in planning a cheapest path alongv; 1) and following a subsequent shortcut
or the main path, the agent perceives a cost of at least. This holds true because all subsequent shortcuts
are of cost) or more. By choice of, the perceived cost alon@;, w;) is less than the perceived cost along
(vi, vi41). However, this contradicts our assumption that the agegtsin the main path.

We finally study the second case. Suppose thattimeshortcut is degenerate and consider the agent
planing its path from;_; to ¢ via (v;—1,v;). The agent has two options. If the agent plans to followittte
shortcut, it perceives a cost greater or equal to

(1—5)3—e+6(<1—5>2+<1—5>+1+%> —repl s

The inequality holds by choice ef If the agent plans tor traverge; 1, v;) instead, taking either a shortcut
j > 1 or following the main path all the way t9 it perceives a cost of at least

_ 3
(1—ﬁ)3_s+6((1—5)3_g+(1—ﬁ)2+(1—5)+1):1+(1+ﬁ)<5%—5> > 1.

This holds true because no shortcut is of cost less #h&nce more, the perceived cost is greater thay
definition ofe. Hence the agent certainly abandons;at, which shows tha6’ cannot be motivating. [

4  Approximating optimum rewards

Considering that the decision problem MS is NP-hard, the aed arguably natural question is whether there
exist good approximation algorithms. Hence we formulatedd&n optimization problem.

8



Definition 3 (MOTIVATING SUBGRAPH OPT) Given a task grapltz and a bias factor3 € (0, 1), deter-
mine the minimum rewardto place att such that contains a motivating subgraph.

We present two simple algorithms. The first algorithm is giesd for small values of. The second
algorithm computes good solutions for largeThe algorithms output as well as a corresponding motivating
subgraphG’. Both strategies are somewhat reminiscent of PropodifioA tombination of them yields a
(1 + /n)-approximation, for any} € (0,1).

Suppose that is small. Then the agent is highly oblivious to the futuren€eqguently it is sensible to let
the agent travel along a path that minimizes the maximumafasty edge. We call a path with this property
aminmax path A minmax path can be computed easily in polynomial-timer iRstance, starting with an
empty subgraph, insert the edgesbin non-decreasing order of cost urdiand¢ become connected for the
first time. Next, choose one of the possibly several pathitivanects andt in the subgraph as minmax path.
Ouir first algorithm, called MiMAX PATHAPPROX, computes a minmax path and returns the corresponding
G’ containing only the edges d@f. Furthermore, the algorithm setsaccording to the maximum over all
perceived cost along, or more formallyr = max{(q (v) | v € P}/5. Clearly, this reward is sufficient to
makeG’ motivating.

Proposition 3. MINMAX PATHAPPROXachieves an approximation ratio of+ gn, foranys € (0,1).

Proof. Let ¢ denote the maximum cost of any edge along the patomputed by MNMAX PATHAPPROX
By definition of P the agent must encounter an edge of cost at leastny motivating subgraph. Thus the
optimum reward is lower bounded lbyS. Conversely, the cost of every edgeftof which there are at most
n — 1, is upper bounded by. This means that MiMAX PATHAPPROX returns a rewara, which is upper
bounded by

max{(s(v) |[ve P} ¢ c
r= <=4+ n—-—2)c< =+nc
g g ( ) g
which yields the desired approximation ratiolof Sn. O

Our second algorithm, calledHEAPESTPATHAPPROX computes a patli of minimum total cost frons
to ¢t and returns the correspondiiyg containing only the edges @f. Again, the algorithm sets the reward to

r = max{(g (v) | v € P}/B.

Proposition 4. CHEAPESTPATHAPPROX achieves an approximation ratio of 3, for any 8 € (0, 1).

Proof. Let P be the path computed byHEAPESTPATHAPPROX At any vertexv of P, the agent perceives a
cost of at mostl¢ (v), which is upper bounded hi¢ (s). Thusdg(s)/f is an upper bound on the the reward
r calculated by GEAPESTPATHAPPROX In an optimal solution, when located gtthe agent is faced with a

cost of at leasBdq(s). Consequently, a reward of at ledst(s) is required to motivate the agent. Because
is a cheapest path, it holds th&i(s) = dg(s), which establishes an approximation ratiol gfs. O

Let ComBINEDAPPROX be the combined algorithm that chooses\MAX PATHAPPROXIf § < 1/y/n
and CHEAPESTPATHAPPROX otherwise. Propositiorid 3 aht 4 immediately imply the folltg result.

Theorem 2. CoMBINEDAPPROXachieves an approximation ratio of+ /n, for anys € (0, 1).

We next prove that, although o(ir+ /n)-approximation algorithm is simple, it achieves the bestsae
performance guarantee, up to a small constant factor, #mabe hoped for in polynomial-time. For the proof
of the theorem we need the next technical lemma.

Lemma 2. For any integerp, with p > 1, it holds that

3p+3 3
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Figure 3: The central unit af.

Proof. The sequencél — 1/n)™ is monotonically increasing for > 1. Hence it holds that

1 3p+3 6
1-— >(1—-1/6)">1/3.
(1-553) za-versy

Theorem 3. MS-OPT is NP-hard to approximated within a ratiolofd/n.

Proof. Again we present a reduction fromDCP. Letp be an arbitrary positive integer. The best choice of
will be determined later. Given an instariCef k-DCP we construct an instancé of MS-OPT, consisting of
a task grapiz and a bias factof, having the following two properties. (a) If has a solution, the& has a
subgraph that is motivating for a rewardrof= 1/5. (b) If Z does not have a solution, then no subgrapty of
is motivating for a reward of at most= p/3. Hence any algorithm that achieves an approximation rdtio o
or better must solve instances/eDCP.

We begin with the description ¢f . As before an instance dfis specified by a grapH together withk
vertex pairg sy, t1), - . -, (sk, tx). Considering that Propositidn 4 givesid 3)-approximation, the bias factor
of J cannot be chosen arbitrarily anymore. It must be less thianFor convenience we sgt= 1/(3p + 3).
From a structural point of views of 7 consists of two units, aentral unitand anamplification unit The
central unit contains an embedding &t The amplification unit precedes the central unit and irsgsany
approximation error that might occur in the central unit.

The central unit, depicted in Figuré 3, has the same ovdralitsre as the graph constructed in the proof
of Theorentll. There existsraain pathand shortcuts linking to an embedding off. However, there are
important differences. The main path is longer and edgescost different. More specifically the main path
starts at a vertex, 2, which is the last vertex of the amplification unit, and enteestex¢. The path consists

of k + 3p + 3 intermediate verticesy, . .., viy3,43. The firstk + 1 edges of the main path each have a cost
of (1 — B)3*+3 — ¢, wheree is a positive value satisfying
(- e+t

’5(1 - /8)3P+3 1 (1 . 5)3;}-{-3 _ l}

< i ) )
c mm{ﬁ 1+8 '1+p 3

k+1

Note that(1—3)3*+3 —1/3 is a positive quantity according to Lemfia 2. The remainingesaf the main path
have increasing cost. In particular, we set the cosvgfu; 1), with k < i < k+3p+3,t0 (1 — g)F+3r+3-1,
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Figure 4: The amplification unit of.

Each of the firstc verticesv; is the starting point of a shortcut. Similar to the consiarctin TheoreniL,
the i-th shortcut is routed through a distinct vertex before it enters the emending &f and eventually
reaches. The edgegv;, w;) have a cost of1 — 3)%°*2, Furthermore the edgéw;, s;) and(t;,t) are of
cost(k +1 —4)(1 — B)3 1 /(k + 1) andi(1 — B)*°T1/(k+ 1) + Z o(1 — B)? respectively. In Figurgl3,
the later edge cost is shown as two terms, namigly- 3)3+1/(k + 1) andzjz (1 — )7, in order to keep
the labels of the parallel edgés, ) simple. Note that fol < i < k, the costs ofv;, s;) and(¢;,t) sum to
exactlyy">” 5" (1 — 8)7. All edges ofH have cost 0.

Next we describe the amplification unit, which is shown indF&4. Starting at vertex there is a directed
path toug,, called theamplification paththat consists of intermediate vertices . . . , ug,2_;. Each edge of
the amplification path has a cost(@f— 3)3¢*3 — . From everyu;, there is also an edge to a vertenf cost
(1 — B)%+2. Vertexz is connected ta via an edge of cosg_>*¢'(1 — 8)7. In the following we prove the
statements given in (a) and (b) above.

(a) Assume thaf has a solution. Le€’ be the subgraph af' obtained by deleting all edges from the
embedding ofH that do not belong to one of thevertex-disjoint paths in a fixed solution @ We claim
that G’ is motivating with reward- = 1/8. Remember that the agent perceiveas1 on all vertices ofG
except fort. Furthermore, we will use Lemnia 1 to calculate the agent'sgieed cost if not stated explicitly
otherwise. Lety = s. At every vertexu;, with i < 9p?, the agent’s perceived cost for movinguigp_; and
then directly tof, hence traversing edgés;, u;11), (ui+1, 2) and(z,t), is1 — . Conversely, when residing
atu;, with i < 9p2, the agent’s perceived cost in moving directlyttasing edgesu; 1, z) and(z,t) is 1.
Thus the agent moves along the edges of the amplification patihit reachesug 2. At ug,2 the agent moves
on tou; because its perceived cost in traversiag,:,v1) and then following the first shortcut, which starts
atvq, is1 — e. Similarly, when located at;, with 1 < i < k, agent perceives cost @f— ¢ for traversing
(vi, vi4+1) and then taking th€ + 1)-st shortcut. In contrast, planning a path alding w; ), with 1 < ¢ < k,
has a cost of. Thus the agent follows the main path until reaching By the same calculations, the agent
moves tov 1. At this point the agent has no other option but to follow th@mpath. Because the agent’s
perceived cost i$ for all verticesy;, with k < 1 < k 4+ 3p + 3, it eventually reaches

(b) Suppose thdf does not have a solution and consider any subgépf G. We first argue that if the
agent leaves the amplification path or main path, then it @ given a reward of at mogf 3, which is
perceived ap at every vertex different from If the agent leaves at some, it must pasg where it perceives
cost of 274! (1 — B)7. However, it holds that

3p+1 3p+1 1 j 3p+1 1 3p+3 3p+1 1
1-8) = 1— > 1— > = >p,
Sa-=3(1-505) > (1 5hg) X3

J=0 J=0 J=0 J=0
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see Lemmal2 for the second inequality, and therefore thet ajpgamdons. Similarly, if the agent leaves at
somev;, with 1 < i < k, then it must pass one of the verticgs where the perceived cost is greater than
Zj.’io(l — B)7 and consequently also greater thanHence, we will restrict ourselves of subgragisin
which the amplification path and main path are intact andrasghat the agent walks them.

We say that the-th shortcut islegeneratéf the cost of a cheapest path framto ¢ via (v;, w;) is different
from the target valu@ = E?Qf(l — B)7. In particular, thei-th shortcut is degenerate if there is no such
path. Note that by construction, every degenerate shariast miss the target value oy — 3)%°!/(k + 1)
or more. As in the proof of Theorefd 1, the assumption thdias no solution implies the existence of a
degenerate shortcut. By the same argument given in Thedrénslalso clear that if there is a degenerate
shortcut of cost less thah the agent leaves the main path and abandons. In the remainithe analysis of
(b) we therefore assume that for all shortciytthe cost of a cheapest path framto ¢ via (v;, w;) is greater
thand. We distinguish two cases depending on whether or not thesfistcut is degenerate.

If the first shortcut is not degenerate, then there existategeéri, with 1 < i < k, such that thé; — 1)-st
shortcut is not degenerate but shortcig. When the agent resides@t ; and plans a cheapest path along
(vi—1,w;—1), it perceives a cost of. In contrast, traversinguv;_1, v;) and taking the next shortcut has a
perceives a cost of at least

3p+2 _ 2\3p+l
(1 _/8)3p+3 _E+/8<Z(1 _5)j+ (1 kf_)lp-i-

=0

(1 gt

>:1+ﬁ k+ 1

The inequality holds by the choice ef Moreover, there are no degenerate shortcuts of cost lassfth
Thus traversindv;_1, v;) and continuing further on the main path, possibly takingtzsequent shortcut, the
agent’s perceived cost is at least

3p+2 ' (1 _ 5)3;)-1—3
(1—5)3P+3—a+5<(1—ﬁ)3p+3—s+ 2(1—5)3> = 1+(1+ﬁ)<57 —a> > 1.
part 1+
Again, the inequality holds by choice of Thus the agent leaves the main path;at and abandons.
Finally, we study the case that the first shortcut is degémevah cost of a cheapest path framto ¢ via
(v1,wy) greater thar. Leti be highest index of a vertex on the amplification path such«¢he connected
to t via (u;, 2z) and(z,t) in G’. The perceived cost of such a path isConversely, any path alor(g;, u;11),
or (ug,2,v1) assuming = 9p?, has a perceived cost greater tHaas calculated in the last paragraph. Thus
the agent leaves the amplification path and abandons. Howewve «; is connected to via (u;, z) and(z, t),
then the agent’s lowest perceived cost & lower bounded by

3p+2
(1-p)% 8 —c+ ﬁ<9p2((1 — BT —e)+ Y (1 5)j> = 1—c+98p°((1 - B)*** —¢)
=0
Taking into account that = 1/(3p + 3), we can further simplify this term to

1/3 1—B)3t3 —1/3 — 1/3 1
/3+((1-8) 39 4 gp V/ :H(__E)M
3p+3 3p+3 1+p

Once more, the two inequalities hold by choicesoHenceG’ is not motivating for a reward of at mogf 5.

In order to finish the proof of the theorem we have to deterrpiné&e setp = m, wherem is the number
of vertices inH. The total number of vertices i@ isn = 2+ (9m? + 1) + (m + 2k + 3m + 3). The first term
accounts fos andt, the following bracket accounts for the number of verticethe amplification unit and the
last bracket accounts for the number of vertices in the akatit. Thus we have presented a polynomial-time
reduction. Moreover, it holds that < 9m? + 6m + 6 < 16m? for everym > 2, which means that is lower
bounded bwyi /4/n. O

1—e+9p°
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5 Motivation through intermediate rewards

In this section, we generalize the original model of Kleirgband Orenl[4] to incorporate the placement of
rewards on arbitrary vertices instead of jusThe goal is to minimize the total value of the rewards codidc
by the agent as it travels froatto ¢. The problem of finding an optimal reward configuration casdleed in
polynomial-time if3 = 0 or 8 = 1. We prove that, for genergl € (0, 1), the corresponding decision problem,
which we call MOTIVATING REWARD CONFIGURATION (MRC), is NReomplete. Furthermore, we show
that the optimization version MRC-OPT, is NP-hard to apprate within any ratio greater or equal 1o

Proposition 5. An optimal reward configuration can be found in polynomiaidifors = 0or g = 1.

Proof. First suppose that = 0. In this case the agent does not perceive rewards placeq aeaex of G
and will only traverse edges of cdst Consider the subsét’ of the vertices that can be reached freran
a path of cosd. The agent will definitely travel from to ¢ and not abandon if and only ifcan be reached
from every vertex of/’ on a path of codd. Because no rewards need to be placed in this scenario, tineabp
budget ishb = 0. Next assume? = 1. When the agent is at its lowest perceived cost for moving frosro
t is equal tod(s). Settingr(t) = d(s) yields a motivating and also optimal reward configuratiohisTholds
true because the agent travels freno ¢ along the edges of a cheapest path and its lowest perceigédao
not increase on its walk. O

We now formally introduce the decision problem MRC.

Definition 4 (MOTIVATING REWARD CONFIGURATION). Given a task grapltZ, a non-negative budget
b and bias factors € |0, 1], decide the existence of a motivating reward configurationith »(v) > 0 for all
vertices ofG, such that the total reward collected on any of the agent’(ksves at mosb.

The following proposition establishes membership of MRGIR

Proposition 6. For any task graphG, reward configuration- and bias factorg, it is possible to decided in
polynomial-time ifr is motivating within a given budget of

Proof. Similar to Proposition]2, we modifg in the following way. First, we compute the lowest perceived
cost(,-(v) for all vertices inG. Next we take a copy off, sayG’, and remove all edges frod’ that do
not minimize the agents perceived cost in the original gr@ptMore formally, we remove all edgés, w)

for which ¢, (v) < ¢ (¢) + B(d,(w) — r(w)). The given reward configurationis motivating if and only if
¢-(v) < 0for all v that can be reached frosin G'. This condition can be checked in polynomial-time using
graph search algorithms. To determine if the budget cansisasatisfied, we assign all edges w) of G’ a
cost ofr(w). Letc be the maximum cost among all paths frero ¢ in G’ according to these prices. Because
G’ is acyclic,c can be computed in polynomial-time. Thug within budget if and only it: + r(s) <b. O

Our NP-completeness proof of MRC relies on a reduction foE#m BACKING (SP)|[3]. For convenience,
we restate SP in the following Definition.

Definition 5 (SET PACKING) Given a collectionS, ..., .S, of finite sets and an integér < /, decide if
there exist at least mutually disjoint sets?.

We are now ready to prove NP-completeness of MRC.

Theorem 4. MRC is NP-complete, for any bias factére (0,1), even ifb = 0.

13
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Figure 5: The task graph fdt; = {a,c,d}, So = {a,b}, S5 = {b,c,e}, Sy = {b,e} andk = 2.

Proof. By Propositiori 6, we can take any motivating reward confitjoma- within budgeb as certificate for a
"yes”-instance of MRC. Hence MRC is in NP. In the following weesent a polynomial-time reduction from
SP to MRC. We focus on the case that 0. At the end of the proof we show how to modify the reduction to
handle arbitrary valuels > 0.

Let Z be an arbitrary instance of SP, consisting of finite $its .., S, and an integek < ¢. We start
by constructing the task gragh of an MRC instance7. Figure[5 depictgs for a small sample instance of
SP. In general(z consists of a source, a targett and k¢ verticesv; ;, wherel < ¢ < kandl < j < /.
Intuitively, if the agents visit; ;, thensS; is thei-th set to be added to the solutiondf For everyw; ;, with
i < k, there is a directed edge to all verticgs; ;» on the next level. We call these edgesvard edgesThe
cost of any such edge is— 3 — . Heres € (0,1) is any value whose encoding length is polynomial in that
of Z. Furthermores is a positive value satisfying

(1-p)? 6—52}
E k—14+8])"

In Figure[5 the upward edges are merged to maintain reatyalfirom s there is a directed edge to every
vertexv; ; on the bottom level. Again, the cost of all such edgeis-is3 — . Finally, for every vertexy, ; on
level k there exists an edge of casto ¢.

In order guide the agent onto a specific upward edge, weshddcutsto G that connect every; ; to ¢
via an intermediate vertex; ;. The first edg€v; ;, w; ;) has costl and the second edde; ;,t) has cosb.
In Figure[% the edgeéw; ;,t) are omitted for the sake of a readability. As we will see, aarelof value
less thanl /5 can be placed omw; ; and the agent will not claim it. Finally we introdudewnward path®f
length two that connect eaeh; with all w;s ;» for whichi’ < ¢ andS; N.Sj: # (, i.e. the sets are not disjoint.
The first edge has a cost 0f while the second edge has a costbf- 3 — ke)/(3 — 5%). In Figure[ each
downward path is drawn as a single dashed edge. The purptsesefpaths is to let the agent claim a reward
or abandon whenever the disjointness constraintg afe violated. Notice that is acyclic. We will show
thatZ has a solution if and only iff has one.

(=) First assume th& has a solution, i.e. there existmutually disjoint sets amon§y, ..., Sy. Fix
such a selection df disjoint sets and assign each set to a distinct levél.obuppose that; of the collection
is assigned to level Then place a reward of valug — €)/3 onw; ;. The corresponding shortcut from;
is referred to as aactive shortcutWe now analyze the agent's walk throughand show that it visits exactly
the vertices); ; at which the active shortcuts start. The agent does not cdaymeward.

e < min{

14



Suppose that the agent is located at the initial vertgx with i < k, of an active shortcut. There are
three options. First the agent could follow the shortcuivtg. However, the perceived cost along this path
tot is e, so the agent has no incentive to moveutg,. Secondly, the agent could take a downward path. By
construction, none of them leads to an active shortcut. fkeians that the agent cannot collect any reward on
such a path but encounters a positive cost on the downwalnd piance this option is not motivating either.
The agent’s only remaining option is to take an upward edigthelagent plans to take the active shortcut of
leveli + 1, it perceives a total cost @f This is a motivating choice. Conversely, assume that teatggans
a pathP to ¢ that visits a vertex, j on the next level such that the corresponding shortcut iactote. We
distinguish between four scenarios. Afincludes a downward path, then at best one reward can betbcat
along P so that the agent’s perceived cost is at least

_ _ _ _ 2
1‘5_”5(15?52%6_156) :1]—€5<(1 P _5> -0

which is not motivating. The inequality follows from our dbe of<. If P includes the shortcut at,, ;- then
the agent encounters no reward but a positive cost, whicbtigotivating either. IfP includes a shortcut on
some level above + 1, then the agent must traverse at least two upward edges uodlact at most one
reward. In this case the agent's perceived cost is lower dediby

2
1—ﬁ—5+5<(1—ﬁ—5)+1— 1ﬁ5> :B(l—ﬁ—5)>ﬁ<%—a> > 0.
As always, the last inequality follows by choice @f Finally, P may neither include a downward path nor a
shortcut. However, this means that the agent has positsteacm does not collect any reward. All in all, the
only motivating option is to take the upward edge leadindhdctive shortcut of levél+ 1.

The same arguments also apply when the agentsi®athe initial vertex of an active shortcut on the top
level. At s, the agents only option is to take an upward edge. Hence iesmvthe initial vertex of the active
shortcut of the bottom level. At the top level the agent véike the direct edge to which incurs no cost. All
other options, namely taking a downward path or the currdeaittsut, are not motivating.

(«==) Next assume thaf has a solution, i.e. there exists a motivating reward cordiipn such that the
agent does not claim any reward. Consider arbitrary walkh@fagent. A first crucial observation is that
no such walk enters a shortcut or a downward path, becaussitar@oeward on a vertex along these paths
is needed to guide the agent onto them. Considering thatgtivet @annot change its plan once it entered a
shortcut or downward path, it would either claim the rewardloandon, which contradicts the assumption
that.7 has a solution. Hence the agents visits one vertexat each level. We call everyy; ; that is contained
in one of the agent’s possible walks active vertices Note that there might be more than one active vertex
per level.

We next prove that at every active vertex the agent’s lowestgqived cost at least — k)s. More specifi-
cally, we show by backwards induction, from the top level ddawthe bottom level, that whenever the agent
is located at an active vertex of levielits perceived cost in planing a pathttis at leasii — k)c. Moreover, if
i < k, then the only motivating paths are paths passing througshbrtcuts of active vertices on level 1.
First assume that the agent is at an active vertexon the top level. As argued above, the agent cannot take
the shortcut or downward path to However, the edgévy ;, t) is a motivating path with a perceived cost of
0, which is equal tqk — k)e. This proves the basis of our induction.

For the inductive step, suppose that % and that the agent is located at some active verfex Let
v;+1,5 be the active vertex visited next by the agent. Because tbetagll move fromuv; ; to v, ;, there
must exist a pattP from v; ; to ¢ via (v; j, vi41,57) that minimizes the agent’s perceived cost. We distinguish
four scenarios. First, assume thiat £ — 1 and P contains(v;;1 j/,t). This means that the agent receives no
reward but has positive cost, which is not motivating. SebgrassumeP contains a forward edge leaving
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vi+1,5 and consider the perceived cost of the remaining portiaR when viewed from; ; ;. By induction
hypothesis this cost must be at le&@t+ 1) — k)e. Furthermore, no reward must be placeaat, ;/, as this
would violate the budget. This means that the perceived ot at v; ; increases by}(1 — 5 — ¢) when
compared to the perceived cost@®fatv;, ;. Thus the perceived cost at Bfatv; ; is at least

2 2
The last inequality holds by choice of HenceP is not motivating. Thirdly, assumg contains a downward
path out ofv; ; ;. In this case, the perceived costBfatv; ; compared to the perceived cost®fat v, ;-
increases by even more, namély- g — . Certainly, P can not be motivating. Finally, assuniecontains
the shortcut out ob;; ;7. When viewed from; ; instead ofv;; j, the perceived cost aP increases by
1 — B — ¢ and decreases by— 5. Thus the perceived cost is at led&t+ 1) — k)e — ¢ = (i — k)e which
concludes the induction step. By a similar argument, thg ordtivating paths out of traverse the shortcut
of an active vertex on the bottom level.

The last three paragraphs imply that for every active veriexa reward of at leastl — )/ has to be
placed atw; ;. Otherwise the shortcut would not be motivating when thenaiggsides at an active vertex on
the previous level — 1, or ats if i = 1. This implies that there can be no downward path connectirective
vertexv; ; to the shortcut of an active vertex on a lower level, becasgerceived cost at ; for following
the downward path would be at most

ﬁ<1—ﬁ—ks_1—s>_(1—k—5)z—:
B — B g ) 1-5

Thus the active vertices; ; along any walk of the agent correspondktdisjoint setsS;, which proves thal
has a solution.

We finally address the case that the agent may collect a emalrd ofb > 0. Consider a slightly modify
version of G. We rename by ¢/ and add an edge fromi to a new target. The cost of this edge igb.
The agent only reachesrom ¢ if a reward of value is placed ort. With this observation the above proof
immediately carries over. O

< (1—k)e.

We next turn to the optimization variant of MRC.

Definition 6 (MOTIVATING REWARD CONFIGURATION OPT) Given a task grapltz and a bias factor
B € (0,1), determine the minimum buddefor which there exists a reward configuratienwith (v) > 0
for all vertices ofG,such that the total reward collected on any of the agenttksvss at mosb.

Assuming thaf® # NP, Theoreni# implies that there exists no polynomial-timeoatgm that approxi-
mates a motivating reward configuration such that the reduiudget is within any ratio greater of equallto
compared to the budget of an optimal solution. This, follésesn the fact that MRC is NP-complete even in
the special case that= 0.

Corollary 1. MRC-OPT is NP-hard to approximated within any ratio greatéequal tol.

6 Conclusions

In this paper we have studied computational problems in-timensistent planning using a graph model by
Kleinberg and Oren_[4]. As a main result, assumihg: NP, we established asymptotically tight upper and
lower bounds of(,/n) on the efficient approximability of MSG-OPT as well as a nagaapproximability

result for MRC-OPT. Given the state of the art, we believe thgeneralization of the graph model to quasi
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hyperbolic discount functions is a promising researchatiive. In hyperbolic discounting, which is frequently
used in the behavioral economics literaturel [2, 5], theeetan parameters, s € [0, 1]. Any valuec that
is realizedt time steps in the future is perceived with a current valugg&t. Fort = 0, the perceived
value isc. Note that Kleinberg and Oren’s|[4] model is a special casqualsi hyperbolic discounting for
6 = 1. Although such discount functions are more involved, theosentially fading value of future costs
and rewards might allow for improved approximation guasestifé < 1.

Appendix
Proposition 7. k-DCP is NP-complete in directed acyclic graphs.

Proof. Membership oft-DCP in NP is easy to see. In order to show NP-hardness we ynbgifch’s [6]
reduction that mapped instances of 3-SAT to instancésDCP in undirected graphs. L&tbe a3-SAT in-
stance withn clauses: .. . ¢,,, overn variablesy; . .. z,,. Furthermore, lef/ be an(m+n)-DCP instance on
a directed acyclic grapK that is constructed in the following way. For every variabjethere are terminals
s; andt; that are connected via two vertex-disjoint paths. One ghthso called high path, corresponds to
the case that; is set to true, while the other path, called low path, comesls to the case that is false.
Similar to the variables, there are termin@sandt;- for each clause;. Again, the terminals are connected by
vertex-disjoints paths, this time one for each literatinif the k-th literal of ¢; is equal taz;, a vertexv; ; . is
added to the low path of; and the literal’s path. Should the literal be negated,. is added to the high path
of z; and the literal's path instead. Assuming that the positicth@verticesy; ; ;. along their respective paths
is ordered according to the indicesnd j, one obtains a directed acyclic graph Moreover, it is easy to
verify that the size of{ is polynomial with respect to the originadSAT formula. Figuré 6 shows an example
of H for a small sample instance of 3-SAT. We next prove thi feasible if and only if7 is.

(«=) Given a variable assignment that satisfiesH##®AT formula, it is easy to construet + n vertex-
disjoint connecting path. For all paigs andt;, choose the high path if; is true or the low path if; is false.
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Fors’: andt’ the path of any literal in; that evaluates to true can be selected. Because the forsraatisfied,

at least one such path must exist. By constructiof pthis yieldsm + n vertex disjoint connecting path.
(=) Observe, that every literal’'s path has exactly one inteliaie vertex. As a result, the only paths that

connect a termin&l} with t; are exactly the paths that correspond to the literats.of he same holds for the

high and low paths of a variable. Hence, if there aren + n vertex-disjoint connecting path i, then the

chosen high and low paths directly translate to a satisfyargable assignment of tteSAT formula. O
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