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ABSTRACT

We determine the conditions for maximally supersymmetric AdS5 vacua of five-dimensional

gauged N = 2 supergravity coupled to vector-, tensor- and hypermultiplets charged under

an arbitrary gauge group. In particular, we show that the unbroken gauge group of the

AdS5 vacua has to contain an U(1)R-factor. Moreover we prove that the scalar deformations

which preserve all supercharges form a Kähler submanifold of the ambient quaternionic

Kähler manifold spanned by the scalars in the hypermultiplets.
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1 Introduction

Anti-de Sitter (AdS) backgrounds of supergravity are an essential part of the AdS/CFT

correspondence [1] and have been studied in recent years from varying perspectives. On the

one hand they can be constructed as compactifications of higher-dimensional supergravities

as is the natural set up in the AdS/CFT correspondence.1 Alternatively, one can investigate

and, if possible, classify their appearance directly in a given supergravity without relating it

to any compactification.

For a given AdS background it is also of interest to study its properties and in particular

its moduli spaceM, i.e. the subspace of the scalar field space that is spanned by flat directions

of the AdS background. This moduli space has been heavily investigated in Minkowskian

backgrounds of string theory as it prominently appears in its low energy effective theory.

For AdS backgrounds much less is known about M, partly because the defining equations

are more involved and furthermore quantum corrections contribute unprotected.

In [5, 6] supersymmetric AdS4 vacua and their classical supersymmetric moduli spaces

were studied in four-dimensional (d = 4) supergravities with N = 1, 2, 4 supersymmetry

without considering their relation to higher-dimensional theories.2 For N = 1 it was found

that the supersymmetric moduli space is at best a real submanifold of the original Kähler field

space. Similarly, for N = 2 the supersymmetric moduli space is at best a product of a real

manifold times a Kähler manifold while N = 4 AdS backgrounds have no supersymmetric

moduli space. This analysis was repeated for AdS5 vacua in d = 5 gauged supergravity

with 16 supercharges (N = 4) in [7] and for AdS7 vacua in d = 7 gauged supergravity with

16 supercharges in [8]. For the d = 5, N = 4 theories it was shown that the supersymmetric

moduli space is the coset M = SU(1, m)/(U(1)×SU(m)) while in d = 7 it was proven that

1See [2, 3] for earlier work and e.g. [4] and references therein for a more recent review.
2Throughout this paper we only consider AdS backgrounds that preserve all supercharges of a given super-

gravity and furthermore only consider the subspace of the moduli space that preserves all these supercharges.

This is what we mean by supersymmetric AdS backgrounds and supersymmetric moduli spaces.

1



again no supersymmetric moduli space exists.

In this paper we focus on supersymmetric AdS5 vacua in d = 5 gauged supergravities

with eight supercharges (N = 2) coupled to an arbitrary number of vector-, tensor- and

hypermultiplets. A related analysis was carried out in [9] for the coupling of Abelian vector

multiplets and hypermultiplets. We confirm the results of [9] and generalize the analysis by

including tensor multiplets and non-Abelian vector multiplets. In particular, we show that

also in this more general case the unbroken gauge group has to be of the form H × U(1)R
where the U(1)R-factor is gauged by the graviphoton. This specifically forbids unbroken

semisimple gauge groups in AdS backgrounds.

In a second step we study the supersymmetric moduli spaceM of the previously obtained

AdS5 backgrounds and show that it necessarily is a Kähler submanifold of the quaternionic

scalar field space TH spanned by all scalars in the hypermultiplets.3 This is indeed consistent

with the AdS/CFT correspondence where the moduli space M is mapped to the conformal

manifold of the dual superconformal field theory (SCFT). For the gauged supergravities

considered here the dual theories are d = 4, N = 1 SCFTs. In [10] it was indeed shown that

the conformal manifold of these SCFTs is a Kähler manifold.

The organization of this paper is as follows. In section 2 we briefly review gauged N = 2

supergravities in five dimensions. This will then be used to study the conditions for the

existence of supersymmetric AdS5 vacua and determine some of their properties in section 3.

Finally, in section 4 we compute the conditions on the moduli space of these vacua and show

that it is a Kähler manifold.

2 Gauged N = 2 supergravity in five dimensions

To begin with let us review five-dimensional gauged N = 2 supergravity following [11–13].4

The theory consists of the gravity multiplet with field content

{gµν ,Ψ
A
µ , A

0
µ} , µ, ν = 0, ..., 4 , A = 1, 2 , (2.1)

where gµν is the metric of space-time, ΨA
µ is an SU(2)R-doublet of symplectic Majorana

gravitini and A0
µ is the graviphoton. In this paper we consider theories that additionally

contain nV vector multiplets, nH hypermultiplets and nT tensor multiplets. A vector multi-

plet {Aµ, λ
A, φ} transforms in the adjoint representation of the gauge group G and contains

a vector Aµ, a doublet of gauginos λA and a real scalar φ. In d = 5 a vector is Poincaré

dual to an antisymmetric tensor field Bµν which carry an arbitrary representation of G.

3This result was also obtained in [9]. Our results is more general as we include tensor multiplets and

non-Abelian vector multiplet in the analysis.
4Ref. [13] constructed the most general version of five-dimensional gauged N = 2 supergravity.
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This gives rise to tensor multiplets which have the same field content as vector multiplets,

but with a two-form instead of a vector. Since vector- and tensor multiplets mix in the

Lagrangian, we label their scalars φi by the same index i, j = 1, ..., nV + nT . Moreover, we

label the vector fields (including the graviphoton) by I, J = 0, 1, ..., nV , the tensor fields by

M,N = nV + 1, ..., nV + nT and also introduce a combined index Ĩ = (I,M). Finally, the

nH hypermultiplets

{qu, ζα}, u = 1, 2, ..., 4nH , α = 1, 2, ..., 2nH , (2.2)

contain 4nH real scalars qu and 2nH hyperini ζα.

The bosonic Lagrangian of N = 2 gauged supergravity in five dimensions reads5 [13]

e−1L = 1
2
R− 1

4
aĨ J̃H

Ĩ
µνH

J̃µν − 1
2
gijDµφ

iDµφj − 1
2
GuvDµq

uDµqv − g2V (φ, q)

+ 1
16g
e−1ǫµνρστΩMNB

M
µν

(

∂ρB
N
στ + 2gtNIJA

I
ρF

J
στ + gtNIPA

I
ρB

P
στ

)

+ 1
12

√

2
3
e−1ǫµνρστCIJKA

I
µ

[

F J
νρFστ + fJ

FGA
F
ν A

G
ρ

(

−1
2
FK
στ +

g2

10
fK
HLA

H
σ A

L
τ

)]

− 1
8
e−1ǫµνρστΩMN t

M
IKt

N
FGA

I
µA

F
ν A

G
ρ

(

−g

2
FK
στ +

g2

10
fK
HLA

H
σ A

L
τ

)

.

(2.3)

In the rest of this section we recall the various ingredients which enter this Lagrangian. First

of all H Ĩ
µν = (F I

µν , B
M
µν) where F

I
µν = 2∂[µA

I
ν]+gf

I
JKA

J
µA

K
ν are the field strengths with g being

the gauge coupling constant. The scalar fields in L can be interpreted as coordinate charts

from spacetime M5 to a target space T ,

φi ⊗ qu :M5 −→ T . (2.4)

Locally T is a product TV T × TH where the first factor is a projective special real manifold

(TV T , g) of dimension nV + nT . It is constructed as a hypersurface in an (nV + nT + 1)-

dimensional real manifold H with local coordinates hĨ . This hypersurface is defined by

P (hĨ(φ)) = CĨJ̃K̃h
ĨhJ̃hK̃ = 1, (2.5)

where P (hĨ(φ)) is a cubic homogeneous polynomial with CĨ J̃K̃ constant and completely

symmetric. Thus TV T = {P = 1} ⊂ H.

The generalized gauge couplings in (2.3) correspond to a positive metric on the ambient

space H, given by

aĨ J̃ := −2CĨ J̃K̃h
K̃ + 3hĨhJ̃ , (2.6)

where

hĨ = CĨ J̃K̃h
J̃hK̃ . (2.7)

5 Note that we set the gravitational constant κ = 1 in this paper.
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The pullback metric gij is the (positive) metric on the hypersurface TV T and is given by

gij := hĨih
J̃
j aĨ J̃ , (2.8)

where

hĨi := −
√

3
2
∂ih

Ĩ(φ) . (2.9)

These quantities satisfy (see Appendix C in [13] for more details)

hĨhĨ = 1 , hĨh
Ĩ
i = 0 , hĨhJ̃ + hi

Ĩ
hJ̃i = aĨ J̃ , (2.10)

where we raise and lower indices with the appropriate metrics aĨ J̃ or gij respectively. The

metric gij induces a covariant derivative which acts on the hĨi via

∇ih
Ĩ
j = −

√

2
3
(hĨgij + Tijkh

Ĩk) , (2.11)

where Tijk := CĨ J̃K̃h
Ĩ
ih

J̃
j h

K̃
k is a completely symmetric tensor.

The second factor of T in (2.4) is a quaternionic Kähler manifold (TH , G,Q) of real

dimension 4nH (see [14] for a more extensive introduction). Here Guv is a Riemannian

metric and Q denotes a ∇G invariant rank three subbundle Q ⊂ End(TTH) that is locally

spanned by a triplet Jn, n = 1, 2, 3 of almost complex structures which satisfy J1J2 = J3

and (Jn)2 = −Id. Moreover the metric Guv is hermitian with respect to all three Jn and one

defines the associated triplet of two-forms ωn
uv := Guw(J

n)wv . In contrast to the Kählerian

case, the almost complex structures are not parallel but the Levi-Civita connection ∇G of G

rotates the endomorphisms inside Q, i.e.

∇Jn := ∇GJn − ǫnpqθpJq = 0 . (2.12)

Note that ∇ differs from ∇G by an SU(2)-connection with connection one-forms θp. For

later use let us note that the metric Guv can be expressed in terms of vielbeins UαA
u as

Guv = CαβǫABU
αA
u UβB

v , (2.13)

where Cαβ denotes the flat metric on Sp(2nH ,R) and the SU(2)-indices A,B are raised and

lowered with ǫAB.

The gauge group G is specified by the generators tI of its Lie algebra g and the structure

constants fK
IJ ,

[tI , tJ ] = −fK
IJ tK . (2.14)

The vector fields transform in the adjoint representation of the gauge group, i.e. tKIJ = fK
IJ

while the tensor fields can carry an arbitrary representation. The most general representation

for nV vector multiplets and nT tensor multiplets has been found in [12] and is given by

tK̃
IJ̃

=

(

fK
IJ tNIJ
0 tNIM

)

. (2.15)

4



We see that the block matrix tNIJ mixes vector- and tensor fields. However the tNIJ are only

nonzero if the chosen representation of the gauge group is not completely reducible. This

never occurs for compact gauge groups but there exist non-compact gauge groups containing

an Abelian ideal that admit representations of this type, see [12]. There it is also shown

that the construction of a generalized Chern-Simons term in the action for vector- and

tensor multiplets requires the existence of an invertible and antisymmetric matrix ΩMN . In

particular, the tN
IJ̃

are of the form

tN
IJ̃

= CIJ̃PΩ
PN . (2.16)

The gauge group is realized on the scalar fields via the action of Killing vectors ξI for

the vector- and tensor multiplets and kI for the hypermultiplets that satisfy the Lie alge-

bra g of G,
[ξI , ξJ ]

i := ξjI∂jξ
i
J − ξjJ∂jξ

i
I = −fK

IJ ξ
i
K ,

[kI , kJ ]
u := kvI∂vk

u
J − kvJ∂vk

u
I = −fK

IJ k
u
K .

(2.17)

In the case of the projective special real manifold, one can obtain an explicit expression for

the Killing vectors ξiI given by [13]

ξiI := −
√

3
2
tK̃
IJ̃
hJ̃hi

K̃
= −

√

3
2
tK̃
IJ̃
hJ̃ihK̃ . (2.18)

The second equality is due to the fact that [15]

tK̃
IJ̃
hJ̃hK̃ = 0 , (2.19)

and thus

0 = ∂i(t
K̃

IJ̃
hJ̃hK̃) = tK̃

IJ̃
hJ̃∂ihK̃ + tK̃

IJ̃
(∂ih

J̃)hK̃ , (2.20)

which implies6

tK̃
IJ̃
hJ̃hi

K̃
= tK̃

IJ̃
hJ̃ihK̃ . (2.21)

The Killing vectors kuI on the quaternionic Kähler manifold TH [12, 14, 16] have to be

triholomorphic which implies

∇uk
I
w(J

n)wv − (Jn)wu∇wk
I
v = 2ǫnpqωp

uvµ
Iq . (2.22)

Here µn
I is a triplet of moment maps which also satisfy

1
2
ωn
uvk

v
I = −∇uµ

n
I , (2.23)

6Note that the derivative h
Ĩi

=
√

3

2
∂ihĨ

has an additional minus sign compared to (2.9) which can be

shown by lowering the index with a
ĨJ̃

given in (2.6).
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and the equivariance condition

fK
IJµ

n
K = 1

2
ωn
uvk

u
I k

v
J − 2ǫnpqµIpµJq . (2.24)

Furthermore the covariant derivative of the Killing vectors obeys [16, 17]

∇ukIv +∇vkIu = 0 , ∇ukIv −∇vkIu = ωn
uvµnI + LIuv , (2.25)

where the LIuv are related to the gaugino mass matrix and commute with Jn. For later use

we define

Sn
Iuv := LIuw(J

n)wv , Luv := hILIuv , Sn
uv := hISn

Iuv , (2.26)

where the Sn
Iuv are symmetric in u, v [16].

Before we proceed let us note that for nH = 0, i.e. when there are no hypermultiplets,

constant Fayet-Iliopoulos (FI) terms can exist which have to satisfy the equivariance condi-

tion (2.24). In this case the first term on the right hand side of (2.24) vanishes which implies

that there are only two possible solutions [13]. If the gauge group contains an SU(2)-factor,

the FI-terms have to be of the form

µn
I = cenI , c ∈ R , (2.27)

where the enI are nonzero constant vectors for I = 1, 2, 3 of the SU(2)-factor that satisfy

ǫmnpemI e
n
J = fK

IJe
p
K . (2.28)

The second solution has U(1)-factors in the gauge group and the constant moment maps are

given by

µn
I = cIe

n , cI ∈ R , (2.29)

where en is a constant SU(2)-vector and I labels the U(1)-factors.

Finally, the covariant derivatives of the scalars in (2.3) are given by

Dµφ
i = ∂µφ

i + gAI
µξ

i
I(φ) , Dµq

u = ∂µq
u + gAI

µk
u
I (q) . (2.30)

The scalar potential

V = 2gijW
iABW j

AB + 2gijK
iKj + 2Nα

AN
A
α − 4SABS

AB, (2.31)

is defined in terms of the couplings7

SAB := hIµn
Iσ

AB
n , WAB

i := hIiµ
n
Iσ

AB
n ,

Ki :=
√
6
4
hIξiI , NαA :=

√
6
4
hIkuIU

αA
u .

(2.32)

7Note that the hM in the direction of the tensor multiplets do not appear explicitly. Nevertheless, the

couplings can implicitly depend on the scalars in the tensor multiplet as they might appear in hI after solving

(2.5).
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Here σn
AB are the Pauli matrices with an index lowered by ǫAB, i.e.

σ1
AB =

(

1 0

0 −1

)

, σ2
AB =

(

−i 0

0 −i

)

, σ3
AB =

(

0 −1

−1 0

)

. (2.33)

As usual the couplings (2.32) are related to the scalar parts of the supersymmetry variations

of the fermions via
δǫψ

A
µ = Dµǫ

A − ig√
6
SABγµǫB + ... ,

δǫλ
iA = gKiǫA − gW iABǫB + ... ,

δǫζ
α = gNα

Aǫ
A + ... .

(2.34)

Here ǫA denote the supersymmetry parameters. This concludes our review of d = 5 super-

gravity and we now turn to its possible supersymmetric AdS backgrounds.

3 Supersymmetric AdS5 vacua

In this section we determine the conditions that lead to AdS5 vacua which preserve all eight

supercharges. This requires the vanishing of all fermionic supersymmetry transformations,

i.e.

〈δǫψ
A
µ 〉 = 〈δǫλ

iA〉 = 〈δǫζ
α〉 = 0 , (3.1)

where 〈 〉 denotes the value of a quantity evaluated in the background. Using the fact

that W iAB and Ki are linearly independent [11] and (2.34), this implies the following four

conditions,

〈WAB
i 〉 = 0 , 〈SAB〉 ǫ

B = ΛUAB ǫ
B , 〈NαA〉 = 0 , 〈Ki〉 = 0 . (3.2)

Here Λ ∈ R is related to the cosmological constant and UAB = vnσ
n
AB for v ∈ S2 is an

SU(2)-matrix. UAB appears in the Killing spinor equation for AdS5 which reads [18]

〈DµǫA〉 =
ia
2
UAB γµǫ

B , a ∈ R . (3.3)

As required for an AdS vacuum, the conditions (3.2) give a negative background value for the

scalar potential 〈V (φ, q)〉 < 0 which can be seen from (2.31). Using the definitions (2.32),

we immediately see that the four conditions (3.2) can also be formulated as conditions on

the moment maps and Killing vectors,

〈hIiµ
n
I 〉 = 0 , 〈hIµn

I 〉 = Λvn , 〈hIkuI 〉 = 0 , 〈hIξiI〉 = 0 . (3.4)

Note that due to (2.5), (2.8) we need to have 〈hI〉 6= 0 for some I and 〈hĨi 〉 6= 0 for every i

and some Ĩ.8

8 In particular this can also hold at the origin of the scalar field space 〈φi〉 = 0, i.e. for unbroken gauge

groups.
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In order to solve (3.4) we combine the first two conditions as

〈

(

hI

hIi

)

µn
I 〉 =

(

Λvn

0

)

. (3.5)

Let us enlarge these equations to the tensor multiplet indices by introducing µn

Ĩ
where we

keep in mind that µn
N ≡ 0. Then we use the fact that the matrix (hĨ , hĨi ) is invertible in

special real geometry (see Appendix C of [13]), so we can multiply (3.5) with (hĨ , hĨi )
−1 to

obtain a solution for both equations given by

〈µn

Ĩ
〉 = Λvn〈hĨ〉 . (3.6)

Note that this condition is non-trivial since it implies that the moment maps point in the

same direction in SU(2)-space for all I. Furthermore, using the SU(2)R-symmetry we can

rotate the vector vn such that vn = vδn3 and absorb the constant v ∈ R into Λ. Thus only

〈µI〉 := 〈µ3
I〉 6= 0, ∀I in the above equation. Since by definition 〈µn

N〉 = 0, this implies

〈µI〉 = Λ〈hI〉 , 〈hN〉 = 0 . (3.7)

In particular, this means that the first two equations in (2.10) hold in the vacuum for only

the vector indices, i.e.

〈hIhI〉 = 1 , 〈hIh
I
i 〉 = 0 . (3.8)

Moreover due to the explicit form of the moment maps in (3.7), the equivariance condition

(2.24) reads in the background

fK
IJ〈µK〉 =

1
2
〈ω3

uvk
u
I k

v
J〉. (3.9)

Since (2.31) has to hold in the vacuum, 〈hI〉 6= 0 for some I and thus the background

necessarily has non-vanishing moment maps due to (3.7). This in turn implies that part

of the R-symmetry is gauged, as can be seen from the covariant derivatives of the fermions

which always contain a term of the form AI
µ〈µ

3
I〉 [13]. More precisely, this combination gauges

the U(1)R ⊂ SU(2)R generated by σ3. From (3.7) we infer AI
µ〈µ

3
I〉 = ΛAI

µ〈hI〉 which can be

identified with the graviphoton [15].

We now turn to the last two equations in (3.4). Let us first prove that the third equation

〈hIkuI 〉 = 0 implies the fourth 〈hIξiI〉 = 0. This can be shown by expressing 〈ξiI〉 in terms of

〈kuI 〉 via the equivariance condition (3.9). Note that we learn from (2.18) that the background

values of the Killing vectors on the manifold TV T are given by

〈ξiI〉 = −
√

3
2
〈tK̃

IJ̃
hJ̃ihK̃〉 = −

√

3
2
〈fK

IJh
JihK + tNIJh

JihN 〉 = −
√

3
2
〈fK

IJh
JihK〉 , (3.10)

8



where we used (2.15) and (3.7). Inserting (3.7), (3.9) into (3.10) one indeed computes

〈ξiI〉 = −
√

3
2

1
2Λ

〈hJi ω
3
uvk

u
I k

v
J〉 . (3.11)

But then 〈hIξiI〉 = 0 is always satisfied if 〈hIkuI 〉 = 0. Moreover this shows that 〈ξiI〉 6= 0 is

only possible for 〈kuI 〉 6= 0. Note that the reverse is not true in general as can be seen from

(3.10). We are thus left with analyzing the third condition in (3.4).

Let us first note that for nH = 0 there are no Killing vectors (kuI ≡ 0) and the third equa-

tion in (3.4) is automatically satisfied. However (3.7) can nevertheless hold if the constant

FI-terms discussed below (2.26) are of the form given in (2.29) and thus only gauge groups

with Abelian factors are allowed in this case.

Now we turn to nH 6= 0. Note that then 〈hIkuI 〉 = 0 has two possible solutions:

i) 〈kuI 〉 = 0 , for all I

ii) 〈kuI 〉 6= 0 , for some I with 〈hI〉 appropriately tuned.
(3.12)

By examining the covariant derivatives (2.30) of the scalars we see that in the first case

there is no gauge symmetry breaking by the hypermultiplets while in the second case G is

spontaneously broken. Note that not all possible gauge groups can remain unbroken in the

vacuum. In fact, for case i) the equivariance condition (3.9) implies

fK
IJ〈µK〉 = 0 . (3.13)

This can only be satisfied if the adjoint representation of g has a non-trivial zero eigenvector,

i.e. if the center of G is non-trivial (and continuous).9 In particular, this holds for all gauge

groups with an Abelian factor but all semisimple gauge groups have to be broken in the

vacuum.

In the rest of this section we discuss the spontaneous symmetry breaking for case ii)

and the details of the Higgs mechanism. Let us first consider the case where only a set

of Abelian factors in G is spontaneously broken, i.e. 〈kuI 〉 6= 0 for I labeling these Abelian

factors. From (3.10) we then learn 〈ξiI〉 = 0 and thus we only have spontaneous symmetry

breaking in the hypermultiplet sector and the Goldstone bosons necessarily are recruited

out of these hypermultiplets. Hence the vector multiplet corresponding to a broken Abelian

factor in G becomes massive by “eating” an entire hypermultiplet. It forms a “long” vector

multiplet containing the massive vector, four gauginos and four scalars obeying the AdS

mass relations.

Now consider spontaneously broken non-Abelian factors of G, i.e. 〈kuI 〉 6= 0 for I labeling

these non-Abelian factors. In this case we learn from (3.11) that either 〈ξiI〉 = 0 as be-

fore or 〈ξiI〉 6= 0. However the Higgs mechanism is essentially unchanged compared to the

9For more details on Lie groups and their adjoint representation, see for example [20].
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Abelian case in that entire hypermultiplets are eaten and all massive vectors reside in long

multiplets.10

However there always has to exists at least one unbroken generator of G which commutes

with all other unbroken generators, i.e. the unbroken gauge group in the vacuum is always

of the form H × U(1)R. To see this, consider the mass matrix MIJ of the gauge bosons AI
µ.

Due to (2.30) and (3.11), this is given by

MIJ = 〈Guvk
u
I k

v
J〉+ 〈gijξ

i
Iξ

j
J〉 = 〈Kuvk

u
I k

v
J〉 . (3.14)

Here Kuv is an invertible matrix which can be given in terms of Guv and Suv defined in (2.26)

as

Kuv = 〈
(

5
8
Guv −

6
8Λ
Suv

)

〉 . (3.15)

Since 〈hIkuI 〉 = 0 the mass matrixMIJ has a zero eigenvector given by 〈hI〉, i.e. the gravipho-

ton 〈hI〉Aµ
I always remains massless in the vacuum. In the background the commutator of

the corresponding Killing vector hIkuI with any other isometry kJ is given by

〈[hIkI , kJ ]
u〉 = 〈hI(kvI∂vk

u
J − kvJ∂vk

u
I )〉 = −〈hIkvJ∂vk

u
I 〉 . (3.16)

This vanishes for 〈kuJ〉 = 0 and thus the R-symmetry commutes with every other symmetry

generator of the vacuum, i.e. the unbroken gauge group is H × U(1)R. In particular, every

gauge group G which is not of this form has to be broken G→ H × U(1)R.

Let us close this section with the observation that the number of broken generators is

determined by the number of linearly independent 〈kuI 〉. This coincides with the number of

Goldstone bosons nG. In fact the 〈kuI 〉 form a basis in the space of Goldstone bosons G and

we have G = span
R
{〈kuI 〉} with dim(G) = rk 〈kuI 〉 = nG.

In conclusion, we have shown that the conditions for maximally supersymmetric AdS5

vacua are given by

〈µI〉 = Λ 〈hI〉, 〈hM〉 = 0, 〈hIkuI 〉 = 〈hIξiI〉 = 0 . (3.17)

Note that the tensor multiplets enter in the final result only implicitly since the hI and its

derivatives are functions of all scalars φi. The first equation implies that a U(1)R-symmetry

is always gauged by the graviphoton while the last equation shows that the unbroken gauge

group in the vacuum is of the formH×U(1)R. This reproduces the result of [9] that the U(1)R
has to be unbroken and gauged in a maximally supersymmetric AdS5 background. In the dual

four-dimensional SCFT this U(1)R is defined by a-maximization. Moreover we discussed that

if the gauge group is spontaneously broken the massive vector multiplets are long multiplets.

Finally, we showed that space of Goldstone bosons is given by G = span
R
{〈kuI 〉} which will

be used in the next section to compute the moduli space M of these vacua.

10Note that short BPS vector multiplets which exist in this theory cannot appear since the breaking

necessarily involves the hypermultiplets.
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4 Structure of the moduli space

We now turn to the computation of the moduli space M of the maximally supersymmetric

AdS5 vacua determined in the previous section. Let us denote by D the space of all possible

deformations of the scalar fields φ → 〈φ〉+ δφ, q → 〈q〉+ δq that leave the conditions (3.4)

invariant. However, if the gauge group is spontaneously broken the corresponding Goldstone

bosons are among these deformations but they should not be counted as moduli. Thus the

moduli space is defined as the space of deformations D modulo the space of Goldstone bosons

G, i.e. M = D/G. In order to determine M we vary (3.4) to linear order and characterize

the space D spanned by δφ and δq that are not fixed.11 We then show that the Goldstone

bosons also satisfy the equations defining D and determine the quotient D/G.

Let us start by varying the second condition of (3.4). This yields

〈δ(hIµn
I )〉 = 〈(∂ih

I)µn
I 〉 δφ

i + 〈hI∇uµ
n
I 〉 δq

u = −1
2
〈ωn

uvh
IkvI 〉δq

u ≡ 0 , (4.1)

where we used (3.4) and (2.23). Since this variation vanishes automatically, no conditions

are imposed on the scalar field variation.

The variation of the first condition in (3.4) gives

〈δ(hIiµ
n
I )〉 = 〈(∇jh

I
i )µ

n
I 〉 δφ

j + 〈hIi∇uµ
n
I 〉 δq

u

= −
√

2
3
〈µn

I (h
Igij + hIkTijk)〉 δφ

j − 1
2
〈hIiω

n
uvk

v
I 〉 δq

u

= −
√

2
3
Λδn3δφi −

1
2
〈hIiω

n
uvk

v
I 〉 δq

u = 0 ,

(4.2)

where in the second step we used (2.11), (2.23) while in the third we used (3.4). For n = 1, 2

(4.2) imposes

〈hIiω
1,2
uv k

v
I 〉 δq

u = 0 , (4.3)

while for n = 3 the deformations δφi can be expressed in terms of δqu as

δφi = −
√

3
2

1
2Λ
〈hIiω

3
uvk

v
I 〉 δq

u . (4.4)

Thus all deformations δφi are fixed either to vanish or to be related to δqu. In other words,

the entire space of deformations can be spanned by scalars in the hypermultiplets only, i.e.

D ⊂ TH . Note that this is in agreement with (3.11) and also G ⊂ TH .

Finally, we vary the third condition in (3.4) to obtain

〈δ(hIkIu)〉 = 〈∂ih
IkIu〉 δφ

i + 〈hI∇vkIu〉 δq
v = 0. (4.5)

11Since we consider the variations of the vacuum equations (3.4) to first order in the scalar fields, this

procedure only gives a necessary condition for the moduli space.
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Inserting (4.4) and using (2.10), (3.4) we find

(

1
2Λ
〈kIuω3

vwk
w
I 〉+ 〈hI∇vk

u
I 〉
)

δqv = 0 . (4.6)

Thus we are left with the two conditions (4.3) and (4.6) whose solutions determine D. For

a generic supergravity we will not solve them here in general. However the conditions alone

suffice to prove that the moduli space is a Kähler submanifold of TH as we will now show.

As a first step we prove that the Goldstone bosons satisfy (4.3) and (4.6). We know from

section 3 that the Goldstone directions are of the form δqu = cI〈kuI 〉 where c
I are constants.

Inserted into (4.3) we find

cI〈hJi ω
1,2
uv k

u
I k

v
J〉 = 2cI〈hJi f

K
IJµ

1,2
K 〉 = 0 , (4.7)

where we used (3.9) and the fact that 〈µ1,2
K 〉 = 0. To show that the Goldstone bosons also

satisfy (4.6) we first observe that

〈hI(∇vk
u
I )k

v
J〉 = 〈hI(∂vk

u
I )k

v
J − hI(∂vk

u
J)k

v
I 〉 = −〈hI [kI , kJ ]

u〉 = 〈fK
IJh

IkuK〉 , (4.8)

where in the first step we used (3.4), added a term which vanishes in the background and

then in the second step used (2.17). In addition we need to show

〈fK
IJh

IkuK〉 = 〈fK
IJhKk

Iu〉 . (4.9)

Indeed, using (2.10) and 〈hIkuI 〉 = 0 we find

〈fK
IJh

IkuK〉 = 〈fK
IJh

IkLuaKL〉 = 〈fK
IJh

IkLuhiKhLi〉 . (4.10)

Inserting (2.21) evaluated in the vacuum, i.e. 〈fK
IJh

JhiK〉 = 〈fK
IJh

JihK〉 and using again (2.10)

we obtain

〈fK
IJh

IkuK〉 = 〈fK
IJh

IikLuhKhiL〉 = 〈fK
IJhKk

LuδIL〉 = 〈fK
IJhKk

Iu〉 , (4.11)

which proves (4.9) as promised.

Turning back to (4.6), we insert δqu = cI〈kuI 〉 and use (3.9) and (4.8) to arrive at

1
2Λ
cI〈kJuω3

vwk
w
J k

v
I 〉+ cI〈hJ∇vk

u
Jk

v
I 〉 =

1
Λ
cI〈kJufK

IJµK〉+ cI〈fK
JIh

JkuK〉 . (4.12)

Using again that 〈µI〉 = Λ〈hI〉 and applying (4.9), this yields

1
Λ
cI〈kJufK

IJµK〉+ cI〈fK
JIh

JkuK〉 = (fK
JI + fK

IJ)c
I〈hJkuK〉 = 0 . (4.13)

Thus the Goldstone directions δqu = cI〈kuI 〉 leave the vacuum conditions (3.4) invariant and

hence G ⊂ D.
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Let us now consider the moduli space M = D/G and show that J3(M) = M, i.e.

J3 restricts to an almost complex structure on M. Concretely we show that the defining

equations for the moduli space, (4.3) and (4.6), are invariant under J3. For equations (4.3)

this follows from the fact that J3 interchanges the two equations. This can be seen by

substituting δq′u = (J3)uvδq
v and using that J1J2 = J3 on a quaternionic Kähler manifold.

Turning to (4.6), we note that since only 〈µ3
I〉 6= 0 the covariant derivative (2.22) of the

Killing vectors kuI commutes with J3 in the vacuum, i.e.

〈∇uk
I
w(J

n)wv − (Jn)wu∇wk
I
v〉 = 2ǫnpq〈ωp

uvµ
Iq〉 = 0 . (4.14)

This implies that the second term in (4.6) is invariant under J3 and we need to show that

this also holds for the first term. In fact, we will show in the following that this term vanishes

on the moduli space and is only nonzero for Goldstone directions.

Let us first note that in general rk 〈kuIω
3
vwk

wI〉 ≤ rk 〈kuI 〉 = nG. However, 〈kuIω
3
vwk

wIkvJ〉 6=

0 (as we saw in (4.12)) implies that the rank of the two matrices has to coincide. This in turn

says that the first term in (4.6) can only be nonzero in the Goldstone directions and thus

has to vanish for the directions spanning M. Thus the whole equation (4.6) is J3-invariant

on M. Therefore we have an almost complex structure J̃ := J3|M and a compatible metric

G̃ := G|M on M. Thus (M, G̃, J̃) is an almost hermitian submanifold of the quaternionic

Kähler manifold (TH , G,Q).

In the following we want to use theorem 1.12 of [19]: an almost Hermitian submanifold

(M,G, J) of a quaternionic Kähler manifold (M̃, G̃, Q) is Kähler if and only if it is totally

complex, i.e. if there exists a section I of Q that anticommutes with J and satisfies

I(TpM) ⊥ TpM ∀p ∈M . (4.15)

In particular, this condition is satisfied if the associated fundamental two-form ωuw = GuwI
w
v

on M vanishes.

Now let us show that the moduli space M actually is totally complex and hence Kähler.

To do so, we use (2.25) and (2.26) to note that in the vacuum (3.7) 〈ω3
uv〉 is given by

〈ω3
uv〉 =

2
Λ
〈hI∇ukIv − Luv〉 . (4.16)

We just argued that 〈kuIω
3
vwk

wI〉 vanishes onM and thus (4.6) projected onto M also implies

〈hI∇ukvI〉|M = 0 . (4.17)

Since 〈ω1
uv〉 = −〈ω3

uw(J
2)wv 〉, we can multiply (4.16) with −(J2)wv from the right and obtain

〈ω1
uv〉|M = 2

Λ
〈S2

uv − hI∇ukwI(J
2)wv 〉|M = 0 , (4.18)
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where in the first step we used (2.26). This expression vanishes due to (4.17) and the fact that

S2
uv is symmetric while ω1

uv is antisymmetric. Thus M is totally complex and in particular

(M, G̃, J̃) is a Kähler submanifold.

As proved in [19] a Kähler submanifold can have at most half the dimension of the ambient

quaternionic Kähler manifold, i.e. dim(M) ≤ 2nH .
12 Note that in the case of an unbroken

gauge group we have G = {∅} and thus D = M. This is the case of maximal dimension of

the moduli space. If the gauge group is now spontaneously broken then additional scalars are

fixed by (4.3). Since M is J3-invariant, every δqu ∈ M can be written as δqu = (J3)uvδq
′v for

some δq′u ∈ M. Combined with the fact that J1J2 = J3 this implies that the two conditions

in (4.3) are equivalent on M. Furthermore we have rk 〈hIiω
1
uvk

v
I 〉 = rk 〈kIu〉 = nG and thus

nG scalars are fixed by (4.3). In conclusion, we altogether have

dim(M) = dim(D)− dim(G) ≤ (2nH − nG)− nG , (4.19)

so the moduli space has at most real dimension 2nH − 2nG.
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