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POSITIVE SEMICLASSICAL STATES FOR A
FRACTIONAL SCHRODINGER-POISSON SYSTEM

EDWIN GONZALO MURCIA AND GAETANO SICILIANO

ABSTRACT. We consider a fractional Schrodinger-Poisson system in the whole space RY in
presence of a positive potential and depending on a small positive parameter . We show
that, for suitably small € (i.e. in the “semiclassical limit”) the number of positive solutions
is estimated below by the Ljusternick-Schnirelmann category of the set of minima of the
potential.

1. INTRODUCTION

In the last decades a great attention has been given to the following Schrodinger-Poisson
type system

—A¢p = u?,
which arises in non relativistic Quantum Mechanics. Such a system is obtained by looking for
standing waves solutions in the purely electrostatic case to the Schrodinger-Maxwell system.
For a deduction of this system, see e.g. [12]. Here the unknowns are u, the modulus of the wave
function, and ¢ which represents the electrostatic potential. V is a given external potential
and p > 2 a suitable given number.

The system has been studied by many authors, both in bounded and unbounded
domains, with different assumptions on the data involved: boundary conditions, potentials,
nonlinearities; many different type of solutions have been encountered (minimal energy, sign
changing, radial, nonradial...), the behaviour of the solutions (e.g. concentration phenomena)
has been studied as well as multiplicity results have been obtained. It is really difficult to give
a complete list of references: the reader may see [13] and the references therein.

However it seems that results relating the number of positive solutions with topological
invariants of the “objects” appearing in the problem are few in the literature. We cite the
paper [34] where the system is studied in a (smooth and) bounded domain Q C R3 with
u=¢=0o0n 0 and V constant. It is shown, by using variational methods that, whenever p
is sufficiently near the critical Sobolev exponent 6, the number of positive solutions is estimated
below by the Ljusternick-Schnirelamnn category of the domain ).

{ —Au+V(2)u + ¢u = |[ulP~?u

On the other hand it is known that a particular interest has the semiclassical limit of the
Schrodinger-Poisson system (that is when the Plank constant i appearing in the system, see
e.g. [12], tends to zero) especially due to the fact that this limit describes the transition from
Quantum to Classical Mechanics. Such a situation is studied e.g. in [33], among many other
papers. We cite also Fang and Zhao [23] which consider the following doubly perturbed system
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in the whole space R3:
—e2Aw + V(z)w + Ypw = |w|P~2w
{ —eAp = w?.
Here V is a suitable potential, 4 < p < 6, and ¢ is a positive parameter proportional to A.
In this case the authors estimate, whenever ¢ tends to zero, the number of positive solutions
by the Ljusternick-Schnirelamnn category of the set of minima of the potential V', obtaining a
result in the same spirit of [34].

Recently, especially after the formulation of the Fractional Quantum Mechanics, the
derivation of the Fractional Schrodinger equation given by N. Laskin in [27-29], and the notion
of fractional harmonic extension of a function studied in the pioneering paper [15], equations
involving fractional operators are receiving a great attention. Indeed pseudodifferential
operators appear in many problems in Physics and Chemistry, see e.g. [30,31]; but also in
obstacle problems [32, 35], optimization and finance [20], conformal geometry and minimal
surfaces [14,16,17], etc.

Motivated by the previous discussion, we investigate in this paper the existence of positive
solutions for the following doubly singularly perturbed fractional Schrédinger-Poisson system
in RV:

(P.) e (—A) w + V(@)w + w = f(w)
) O
where 7, := % is a constant (T" is the Euler function). By a positive solution of (P-)

we mean a pair (w,) where w is positive. To the best of our knowledge, there are only few
recent papers dealing with a system like (P.): in [37] the author deals with ¢ = 1 proving
under suitable assumptions on f the existence of infinitely many (but possibly sign changing)
solutions by means of the Fountain Theorem. A similar system is studied in [36] and the
existence of infinitely many (again, possibly sign changing) solutions is obtained by means of
the Symmetric Mountain Pass Theorem.

In this paper we assume that
(H1) s €(0,1), « € (O,N), 0 € (0,a), N € (25,25 + ),
moreover the potential V' and the nonlinearity f satisfy the assumptions listed below:

(V1) V:RY — R is a continuous function and

0< m}iVnV =Wy < Vg := liminf V € (V, +o00];

R 2| =400
(f1) f:R — R is a function of class C* and f(t) = 0 for ¢ < 0;
(f2) limyo f(¢)/t = 0;
(f3) there is qo € (2,2% — 1) such that lim;_,o f(¢)/t%° = 0, where 2% := 2N/(N — 2s);
(f4) there is K > 4 such that 0 < KF(t) := Kfot f(r)dr < tf(t) for all t > 0;
(f5) the function t — f(t)/t3 is strictly increasing in (0, +00).

The assumptions on the nonlinearity f are quite standard in order to work with variational
methods, use the Nehari manifold and the Palais-Smale condition. The assumption (V1) will
be fundamental in order to estimate the number of positive solutions and also to recover some
compactness.
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We recall, once for all, that a C' functional 7, defined on a smooth manifold 90, is said to
satisfy the Palais-Smale condition at level ¢ € R ((PS).. for brevity) if every sequence {u,,} C MM
such that

(1.1) Jup) —c and  J'(uy) — 0
has a convergent subsequence. A sequence {u,, } satisfying (1.1) is also named a (PS). sequence.

To stay our result let us introduce
M = {xERN:V(az):Vb}
the set of minima of V. Our result is the following

Theorem 1.1. Under the above assumptions (H1), (V1), (f1)-(f5), there exists an * > 0 such
that for every e € (0,e*] problem (P.) possesses at least cat M positive solutions.

Moreover if cat M > 1 and M is bounded, then (for suitably small ) there exist at least
cat M + 1 positive solutions.

Hereafter, given a topological pair (X,Y"), cat x (V) is the Ljusternick-Schnirelmann category
of Y in X, and, if X =Y this is just denoted with cat X.

The proof of Theorem 1.1 is carried out by adapting some ideas of Benci, Cerami and
Passaseo [10, 11] and using the Ljusternick-Schnirelmann Theory. We mention that these
ideas and techniques have been extensively used to attack also other type of problems, and
indeed similar results are obtained for other equations and operators, like the Schriodinger
operator [18,19], the p—laplacian [3,4], the biharmonic operator [7], p&g—laplacian, fractional
laplacian [24,25], magnetic laplacian [5,6] or quasilinear operators [2,8,9].

The plan of the paper is the following. In Section 2 we recall some basic facts, we present some
preliminaries and the variational setting for the problem. Section 3 is devoted to prove some
compactness properties; as a byproduct we prove the existence of a ground state solution for our
problem, that is a solution having minimal energy. In Section 4 we introduce the barycenter
map, we show some of its properties and prove, by means of the Ljusternick-Schnirelamnn
Theory, Theorem 1.1.

Notations. In the paper we will denote with |- |, the usual L” norm in RY: we denote with
B,.(z) the closed ball in RY centered in z with radius r > 0, with B¢(x) its complementary;
if £ = 0 we simply write B,; moreover the letters C,C7,Cs,... will denote generic positive
constants (whose value may change from line to line). Other notations will be introduced
whenever we need.

2. PRELIMINARIES

2.1. Some well known facts. Before to introduce the variational setting of our problem, we
recall some basic facts concerning the fractional Sobolev spaces and their embeddings.

Given § € (0,1), the fractional Laplacian (—A)? is the pseudodifferential operator which
can be defined via the Fourier transform

F((=8)%u) = | - [* Fu,

or, if u has sufficient regularity, by

C u(z+y) —ul(z —y) — 2u(z)
—_A)B _ _ZNp N
(—A)u(z) 5 /RN PR dy, z€RY,

where Cy g is a suitable normalization constant.
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For s € (0,1) let
H*(RY) = {u e L2RY) : (~A) 2y e L2(]RN)}
be the Hilbert space with scalar product and (squared) norm given by
(o) = [ APy [ el = |-l + fuf

It is known that H*(RY) — LP(RN),p € [2,2!] with 2% := 2N/(N — 2s). Moreover the
embedding of H*(12) is compact if @ C R" is bounded and p # 2%.

We will consider also the homogeneous Sobolev spaces H*/2(RY) defined as the completion
of C°(RN) with respect to the norm |(—A)®/*u|y. This is a Hilbert space with scalar product
and (squared) norm

e T e e

It is well known that H*/2(RN) — L% (RM),2% = 2N /(N — ). For more general facts about
the fractional Laplacian we refer the reader to the beautiful paper [22].

We recall here another fact that will be frequently used:
(2.1) Ve >03dMg >0 : / flwu < 5/ u? + Mg/ lu|?t ) vu e H¥(RY).
RN RN RN

This simply follows by (f2) and (f3).

2.2. The variational setting. It is easily seen that, just performing the change of variables
w(z) :=u(x/e),Y(x) := ¢(x/e), problem (P.) can be rewritten as

(=AY u+V(ex)u+ ¢(x)u = f(u)
(—A)*2¢ = 2Oy u?,

to which we will refer from now on.

A usual “reduction” argument can be used to deal with a single equation involving just u.
Indeed for every u € H*(RY) the second equation in (P¥) is uniquely solved. Actually, for
future reference, we will prove a slightly more general fact.

Let us fix two functions u,w € H*(R") and consider the problem

@) [ oo et

(PZ)

¢ € HY?(RN)

whose weak solution is a function ¢ € H*/? (RY) such that

Vo e HY2(RV) : / (=A)AG(—A)/ 1y = Ea—@,ya/ uwv.
RN RN

For every v € H®/? (R™), by the Hélder inequality and the continuous embeddings, we have
| [ o] < lud gy ol g ok, < Cllulllol s

deducing that the map

Tow : v € HY2(RY) — uwv € R
RN
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is linear and continuous: then there exists a unique solution ¢ ., € HY2RN) to (Q.).
Moreover this solution has the representation by means of the Riesz kernel K, (z) = v |z|*V,
hence

_ 1
G = 7 g * ().
Furthermore
—0 —0
(2.2) 10wl grare = €l Tuwll £ograrzmy < €7 Cllulll|w]]
and then, for ¢,n € H*(RY)
(23) [ e < el <L g Il g < e~Collallal il

where C, is a suitable embedding constant. Altough its value is not important, we will refer
to this constant later on.

A particular case of the previous situation is when v = w. In this case we simplify the
notation and write

o T,(v) :=Tyu(v) = [pn uv, and
e ¢, for the unique solution of the second equation in (P.) for fixed u € H*(RY). Then
16eull grare < €*7Cull?
and the map
ue H(RY) — ., € HY2RY)
is bounded.
Observe also that
2 2 . 2N N . rra/2mN
(24) ui - u®in LN+a(RY) =T, — T, as operators == ¢z, — Pcq in HY=(RY).

For convenience let us define the map (well defined by (2.3))
A:ue H(RY) — / pewu? € R.
RN

Then
(2:5) [A(w)] < e Celull*
(where C, is the same constant in (2.3)). Some relevant properties of ¢., and A are listed

below. Although these properties are known to be true, we are not able to find them explicitely
in the literature; so we prefer to give a proof here.

Lemma 2.1. The following propositions hold.
(i) For everyu € H¥(RN) : ¢, > 0;
(ii) for everyu € HS(RN),t € R : Getu = t2Peu;
(#7) if up — w in H*(RN) then deu, — beu in HY?(RN);
(iv) A is of class C% and for every u,v,w € H*(RN)

Al =4 [ o, @l =4 [ wts [ o,

(V) if up — w in L™ (RN), with 2 <r < 2% | then A(uy,) — A(u);
(vi) if up — w in H¥(RN) then A(u, —u) = A(u,) — A(u) + o, (1).
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Proof. Ttems (i) and (i) follow directly by the definition of ¢ ,,.
To prove (iii), let v € C°(RY); we have

L/(—Awﬂwmm—¢mm—AWMv - / (w2 — 12y
RN RN

1/2 1/2
< ‘U‘OO(/ (un — u)2) (/ (un + u)2>
supp v supp v
— 0.
The conclusion then follows by density.
The proof of (iv) is straightforward: we refer the reader to [23].
To show (v), recall that 2 < AA;—fa < 2%. Since by assumption |[u2| ov — |u?| ax  and
oN N+a N+«
u? — u? a.e. in RV, using the Brezis-Lieb Lemma, u2 — u? in L¥+a (RN). But then using
(2.4) we get ey, — Peq in L2ar2 (RM). Consequently

A ) = A< [ (bt = 0 < [ [0u = e 0]+ [ [ (1 =)

§ ’¢E,un ¢a u‘2

from which we conclude.

|uZ — u?| an N
a/2 +a

\u ‘ 2N +’¢5u’2

a/2

To prove (vi), for the sake of simplicity we drop the factor €~ in the expression of e uv-

Defini
R u?(y)u?(z)
0::/ / N adydzx,
RN JrN |2 —y|N

2 2
:/ / u? (y)u (_a:)dyd% / / U (y n(_w) (w)dydx
RN JRN ’l’— \N ¢ RN JRN \x— \N
Ju(x) 4 / / un(y)u(y)u® (z)
dydz , o, = dydz,
/RN/RN \fﬂ— \N * RN JRN \fc—y\N‘o‘

it is easy to check that
Aty —u) — Aup) + A(u) = 20 + 20, + 402 — 403 — 403,
Now we claim that, whenever u,, — u in H*(RY),

lim 0 =0, 1=1,2,3,4

n—oo

which readily gives the conclusion.
We prove here only the cases i = 1,2 since the proof of the other cases is very similar. Recall

¢aux— 9 ¢€ulx—
7() / — y 77() / ay

N |z —y|Ne N |z —y[NT
Since u? € L¥+a (RV) = L%/2) (RN) and by item (iid) it holds ¢e., — de.q in L2/2(RN), we

conclude that
= / ¢€,unu2 — / ¢€,uu2 =0
RN RN
and the claim is true for ¢ = 1.

For i = 2 recall that (W) u )
Up (y)uy
Pe.tnul(T) /RN @~y
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First we show that ¢. v, u — ¢c, a.€. in RY. Given ¢ > 0 and choosing R > 1/¢, % <p< %
and NL < q (so that 2p/,2¢" € (2,2%)), we have, for large n:

—Q

dy 1/p
92.00(@) = B @) < tn = Ul 2y o) [0l 2 (e /y—x<R W)

1/q
dy
+ |un - U|L2q/(3%(x))|U|L2q/(3%(x)) </y—x>R |3j _ y|q(N—a)>

< Cié+ O,
concluding the pointwise convergence. Moreover by the Sobolev embedding and using (2.2),

|besunutinl2 < |Geunul2z, ,ltnlon/a < Cullun|*[lull < C2

and therefore, up to subsequence, ¢y, wtn — ¢eyu in L2(RY), by [26, Lemma 4.8]. Since

u € L2(RY)
2 2
o, = / e un ullnt — / Gept” =0
RN RN

and the claim is proved for i = 2. O

We introduce now the variational setting for our problem. Let us define the Hilbert space

W, = {u e H*RY) /RN V(ex)u? < oo}

endowed with scalar product and (squared) norm given by

(u,v)e == /RN(—A)S/zu(—A)S/zv—i-/ V(ex)uv

RN
and

\mﬁzzj'u—Af”ml+/ V(ex)d?.
RN RN

Then it is standard to see that the critical points of the C? functional (see Lemma 2.1 (iv))

1 . 1 1
I.(u) := 3 /RN\(—A) /2u\2 + 3 . V(&?az)u2 + 1 /]RN qﬁa,uuZ — /]RN F(u),

on W, are weak solutions of problem (PX).
By defining
N, = {u e W\ {0} : Jo(u) = o},
where
Tw) o= L)) = [l + [ b= [ fwu,
RN RN
we have, by standard arguments:

Lemma 2.2. For every u € N, J.(u)[u] <0 and there are positive constants h., k. such that
llulle > he, Ic(u) > k. Furthermore, N is diffeomorphic to the set

Se={ueW.:|ull:=1, u>0 ae.}.

N; is the Nehari manifold associated to I.. By the assumptions on f, the functional I has
the Mountain Pass geometry. This is standard but we give the easy proof for completeness.

(MP1) I.(0) = 0;
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since, for every £ > 0 there exists > 0 such that F'(u) < fu” + U , we have
(MP2) since, f ¢ >0 th ists Mg > 0 such that F(u) < fu? + Me|u|®F!, we h
1
Lw = - [ F
RN

1
> Slull = €CuJull2 — MeCollu][2*

and we conclude I. has a strict local minimum at u = 0;

(MP3) finally, since (f4) implies F(t) > CtX for t > 0, with K > 4 (and less then qo + 1), fixed
v € CX(RN), v > 0 we have

t2 ) t4 )
L) = Sl + 5 [ den® = [ Pt
RN RN

2
SlIvlE+ / Genv” —CtK/ vt
RN RN

concluding that the functional is negative for suitable large ¢.

IN

Then denoting with

coi= inf sup L((1),  He={yeC(0,1,W.):9(0) = 0, L(+(1)) < 0}
YEH: tefo,1]
the Mountain Pass level, and with

me 1= 1an()

uEN;

the ground state level, it holds, in a standard way, that

2.6 ¢ =m. = inf supl.(tu
(2:6) ST T W0y 13 © (t).

It is known that for “perturbed” problems a major role is played by the problem at infinity
that we now introduce.

2.3. The problem at “infinity”. Let us consider the “limit” problem (the autonomous
problem) associated to (P.), that is

(—=A)*u+ pu = f(u)
(AM) { = HS(RN)

where > 0 is a constant. The solutions are critical points of the functional

Buw =3 [ oy b [ - [

in H*(RY). Denoting with H? (RN ) simply the space H*(R") endowed with the (equivalent
squared) norm

2 2,12 2
lullZry = [(=A)ul3 + ulul3,
by the assumptions of the nonlinearity f, it is easy to see that the functional E, has the
Mountain Pass geometry with Mountain Pass level

= jnf s BO(). M= {7 € C0.1), H;®Y)) :4(0) = 0, Bu(v(1)) < 0}.

Introducing the set

M= {ue @)\ (0} <l = [ Fag
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it is standard to see that

e M, has a structure of differentiable manifold (said the Nehari manifold associated to
E,),
e M, is bounded away from zero and radially homeomorfic to the unit sphere,

e the mountain pass value ¢ coincide with the ground state level
mo’ = inf E,(u) > 0.
# ueEM, M( )

The symbol “co” in the notations is just to recall we are dealing with the limit problem. In
the sequel we will mainly deal with © = Vj and p = Vo (whenever this last one is finite). Of
course the inequality

me > my,
holds.

3. COMPACTNESS PROPERTIES FOR I, E, :
EXISTENCE OF A GROUND STATE SOLUTION

We begin by showing the boundedness of the Palais-Smale sequences for E, in H Z(}RN ) and
I. in We. Let {u,} C HZ(}RN) be a Palais-Smale sequence for E,,, that is, |E,(u,)| < C and
E/Q(un) — 0. Then, for large n,

C t lunllg > Bulun) = e Bnunlun] = (5 = ) Nl + 52 [ (FCu)un = K]

11 ,
> 5T ® HunHng

and thus {u,} is bounded. Similarly we conclude for I., using that
1 1 1 1 1 1
——1 n)Un] =\ 5 = 7~ n2 - T - u 2 _/ n)Un — K F(up

1 1
> (3 %) Il

In order to prove compactness, some preliminary work is needed. Let us recall the following
Lions type lemma, whose proof can be found in [21, Lemma 2.3].

I (up)

Lemma 3.1. If {u,} is bounded in H*(R™) and for some R >0 and 2 < r < 2% we have

sup / lun|" =0 as n— oo,
z€RN J Br(x)

then u, — 0 in LP(RY) for 2 < p < 2.
Then we can prove the following

Lemma 3.2. Let {u,} C W, be bounded and such that I.(u,) — 0. Then we have either
a) up, — 0 in W, or
b) there exist a sequence {y,} C R and constants R,c > 0 such that

liminf/ ul >c¢>0.
n—-+o0o BR(yn)
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Proof. Suppose that b) does not occur. Using Lemma 3.1 it follows
up — 0 in LP(RY) for p e (2,27).

Using (2.1), the boundedness of {u,} in L2(RY) and the fact that u, — 0 in LO+(RY), we
conclude that

f(up)uy, — 0.
RN
Finally, since

lunll? — / F(tun)im < [lunl? + / bl / F )i = I (1) [tn] = 0n(1),
RN RN RN
it follows that u, — 0 in Wk. O

In the rest of the paper we assume, without loss of generality, that 0 € M, that is, V(0) = Vj.

Lemma 3.3. Assume that Vo < oo and let {v,} C W be a (PS)q sequence for I. such that
v, — 0 in W,.. Then
vy A0 in W, = d>my_.

Proof. Observe, preliminarly, that by condition (V1) it follows that
(3.1) VéE>03R=Re>0: V(ex)>Vo—§&  Vaod B

Let {t,} C (0,4+00) be such that {t,v,} C My, . We start by showing the following
Claim: The sequence {t,} satisfies limsup,,_, . t, < 1.

Supposing by contradiction that the claim does not hold, there exists 6 > 0 and a subsequence
still denoted by {t,}, such that

(3.2) t,>14+6 forall neN.
Since {v,} is a bounded (PS)4 sequence for I., IL(v,)[vn] = o, (1), that is,

a2 + / Gem 2= [ F(v)im+0n(1).
R” R”

Moreover, since {t,v,} C My, we get

th'UnH%{‘S,OO = /RN f(tnvn)tnvn-

These equalities imply that

Lo (F5 st o= [ 0= Vi = [ 6enno o)

and thus

(3.3) /R ) (f (tnvn) _ Fon))va < /R (Voo = V()2 +on(1).

tn

Using (3.1), the fact that v, — 0 in L?(Bj) and that {v,} is bounded in W¢, let us say by
some constant C' > 0, we deduce by (3.3)

(3.4) VE>0: /RN (f(t;vn) - f(vn)> v, < EC + 0,(1).

Since v, 4 0 in W., we may invoke Lemma 3.2 to obtain {y,} C R and R,c > 0 such that

(3.5) / v2 > e
Br(yn)
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Defining 0, := v, (- + yn), we may suppose that, up to a subsequence,
b, — 0 in H¥(RY)

and, in view of (3.5), there exists a subset Q C R with positive measure such that o > 0 in
Q2. By (f5) and (3.2), (3.4) becomes

S(A+6)on)  f(0n)) o
— < n(1).
0</Q< 15 0)5, o 0 < EC +0,(1)
Now passing to the limit and applying Fatou’s Lemma, it follows that, for every £ > 0

oo [0 1)

which is absurd and proves the claim.
Now we distinguish two cases.

Case 1: limsup,, ,, tn, = 1.

Up to subsequence we can assume that ¢, — 1. We have,
(3.6) d+on(1) = I.(vy) =2 myy + I.(vn) — Ev,, (thvp).
Moreover,

42
I.(vy) — By (thv,) = w /RN \(—A)s/zvn\2 + % /RN(V(Ex) — 2V )02

1
3 | bl [ (Pltwin) = Plow),

and due to the boundedness of {v,} we get, for every £ > 0,

I.(v) — Ev_(thvn) > on(1) — CE+ /RN(F(tnvn) — F(vyn)),

where we have used again (3.1). By the Mean Value Theorem, [pn (F(tnvyn) — F(vy)) = 0n(1),
therefore (3.6) becomes

d+on(1) 2 my, — C&+on(1),
and taking the limit in n, by the arbitrariness of £, we deduce d > my?_.

Case 2: limsup,,_, t, =ty < L.
We can assume t, — ty and t, < 1. Since t > %f(t)t — F(t) is increasing in (0, 00),

myr_ < By, (thvn) = /RN <%f(tnvn)tnvn — F(tnvn)>

1 1
= /RN Zf(tnvn)tnvn + /RN <Zf(tn’l)n)tn’l)n — F(tnvn)>
— ol + [ (70t - Fn) )

) < gl + [ (3o - PG

(3.8) ltoll?. < / (—A) 20,2 + / 2V,
RN RN
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Again by (3.1), given £ > 0,
2V — £ < Voo — & < V(ew) forz ¢ Bp

/ 2V, 2 < /
RN By

<on(1) + / V(ex)? + CE.
RN

and hence

Voovfﬂ—/ ~V(€:E)U,%—|—/ v
z|>R

|z|>R

From this and (3.8) we have
[tnvallZz, < llonllZ + C€ + 0a(1).
Therefore, using (3.7)
wig, < gl + [ (30— F) + e+ o,
= L(vn) — 372(vn)on] + CE + 0 (1)
=d+ C&+ o,(1).
concluding the proof. O
Proposition 3.4. The functional I. in W, satisfies the (PS). condition
1. at any level c < mi;_, if Voo < 00,
2. at any level c € R, if Vo, = 00.

Proof. Let {u,} C W, be such that I.(u,) — ¢ and I’(u,) — 0. We have already seen that
{un} is bounded in W,. Thus there exists u € W such that, up to a subsequence, u,, — u in
W.. Note that I’(u) = 0, since by Lemma 2.1 (iv), we have for every w € W,

(U, w), = (u,w)e, A'(up)[w] = A'(u)[w] and flup)w — f(uw)w.
RN RN
Defining vy, := u, — u, we have that [pn F(v,) = [pn F(un) — [pn F(u) 4+ 0,(1) (see [1]) and
by Lemma 2.1 (vi), we have A(vy,) = A(uy) — A(u) + 0,(1); hence arguing as in [4], we obtain
also

(3.9) I'(v,) = 0.
Moreover
(3.10) I (vy) = I (up) — Ic(u) + 0p,(1) = ¢ — I.(u) + 0,(1) =: d 4+ 0,(1)

and (3.9) and (3.10) show that {v,} is a (PS)4 sequence. By (f4),
() = L) = 374 = gl + [ (3= Fw)
1] (s ap) 20

and then coming back in (3.10) we have
(3.11) d<ec.
Then,



FRACTIONAL SCHRODINGER-POISSON SYSTEM 13

L. if Voo < 00, and ¢ < mg?_, by (3.11) we obtain
d<c<my_.
It follows from Lemma 3.3 that v, — 0, that is u, — u in W_.
2. If Vo = 00, by the compact imbedding W, << L"(R"),2 < r < 2%, up to a subsequence,
vp — 0 in L"(RY) and since I.(v,) — 0, we have
(312) L) lon) = [l + [ b= [ 0o = 0,00
RN RN
By Lemma 2.1 (v), A(vy) = [an w02 = o0n(1), and since by (2.1) it holds again
S~ f(vn)vn = 0n(1), we have by (3.12) |lv,[|? = 0,(1), that is u,, — u in W.
The proof is thereby complete. O
As a consequence it is standard to prove that
Proposition 3.5. The functional I. restricted to N satisfies the (PS). condition
1. at any level c < mi;_, if Voo < 00,

2. at any level c € R, if Vo, = 0.

Moreover, the constrained critical points of the functional I. on N are critical points of I. in
We, hence solution of (P).

Let us recall the following result (see [24, Lemma 6]) concerning problem (A,,).

Lemma 3.6 (Ground state for the autonomous problem). Let {u,} C M, be a sequence
satisfying E,(up) — my°. Then, up to subsequences the following alternative holds:

a) {uy} strongly converges in H*(RN);
b) there eists a sequence {Gn,} C RY such that w,(- + @) strongly converges in H*(RY).

In particular, there exists a minimizer v, > 0 for my.

Now we can prove the existence of a ground state for our problem. Assumption (H1) is
tacitly assumed.

Theorem 3.7. Suppose that f verifies (f1)-(f5) and V werifies (V1). Then there exists a
ground state solution u. € W, of (PZ),

1. for every e € (0,£], for some & > 0, if Voo < 00;
2. for every e > 0, if Voo = 00.

Proof. Since the functional I. has the geometry of the Mountain Pass Theorem in W, there
exists {uy} C W, satisfying
I.(uy) — ce and I.(u,) — 0.

1. If Vx < o0, in virtue of Proposition 3.4, we have only to show that c¢. < mj;_ for every
positive € smaller than a certain £.
Let p € (Vp, Voo), so that

(3.13) myy < my < my .

For » > 0 let n. be a smooth cut-off function in RN which equals 1 on B, and with
support in By,. Let w, := n,t, and s, > 0 such that s,w, € M,. If it were, for every
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r>0: Ey(spwy) > miy_, since w, — 1o, in H3(RN) for r — 400, we would have s, — 1 and
then

o0

my,, < liminf Eyu(srwy) = Ep(vy) = my,

which contradicts (3.13). This means that there exists 7 > 0 such that w = spwz € M,
satisfies

(3.14) E, (w) <m{_.

Given € > 0, let t. > 0 the number such that ¢, w € N;. Therefore

t?‘Hw”g + tg/ ¢a,w w2 = ta/ f(ta W)w
RN RN

implying that

o] oo [ flw)
(319 et [ o [ Gt

Now we claim that there exists 7" > 0 such that limsup,_,q+ t- < 7. If by contradiction there
exists e, — 07 with ., — oo, then by (3.15) and (f5) we have

w2, 2 o [(te, w(T)) 1
(3.16) ?4—/]1@\] @gmww > W/B?w s

where w(Z) := ming_ w (z). The absurd is achieved by passing to the limit in n, since by (f4)
the right hand side of (3.16) tends to co, while the left hand side tends to 0.
Then there exists €; > 0 such that

(3.17) Ve e (0,e1]: t. € (0,T].
Condition (V1) implies also that there exists some €2 > 0 such that
%
(3.18) Ve € (0,e2] 1 Viex) < %, for all z € suppw.

Finally let

€3 1=

(1= Vo)lwl3 ) ™
Ce T?|w]|* ’
where C, is the same constant appearing in (2.5), hence in particular

(3.19) Ve € (0,e3] / e ww® < e C|w|* and T OC[|w||* < (u— Vo) / w?.
RN RN

Let & := min{ey, e9,e3}. By using (3.17)-(3.19) we have, for every ¢ € (0, &]:

t2 Vo + 1 _
V(ex)w? + —5/ e w? < u]w\% + ZT%2700, ||lw||* < u/ w?,
RN 2 RN 2 2 RN

from which we infer I.(t.w) < E,(t.w). Then by (2.6) and (3.14),
ce < L(tew) < E,(tew) < Ey(w) < miy,.
which concludes the proof in this case.

2. If Vo = oo, by Proposition 3.4, {u,} strongly converges to some u. in H*(R"), which
satisfies
I.(u.) = c. and I.(u.) = 0.

and u, is the ground state we were looking for. O



FRACTIONAL SCHRODINGER-POISSON SYSTEM 15

4. PROOF OF THEOREM 1.1

In this Section we introduce the barycenter map in order to study the “topological
complexity” of suitable sublevels of the functional I. in the Nehari manifold. Let us start
with the following

Proposition 4.1. Let e, — 07 and u, € N, be such that I., (u,) — m3S. Then there exists a

sequence {fn} C RN such that u, (- + §,) has a convergent subsequence in H*(R™). Moreover,
up to a subsequence, yn = enln — y € M.

Recall that M is the set where V achieves the minimum V.

Proof. We begin by showing that {u,} is bounded in Hy (RM). By assumptions, IZ (u)[u,] =
0 and I, (un) — mi; write as

(4.1) lunl2, + / Ger i = / £ttt
RN RN

and
1 1
g, + 5 [ bt = [ F(u) =i + 0,01

which combined together give
1 1
1 Lt = [P =5 (Bl 4 [ o) = [Pl < i+ 0, 0).
R R R R

Using (f4) we get

1 1

0= (3= 50) L, wn)un < miE +ou(1),

and therefore, coming back to (4.1), for some positive constant C' (independent on n)

(4.2) Junllmy, < llunlle, < C.

We prove the following

Claim: there exists {§,} C RY and R,c > 0 such that liminf, . fBR(gn) u? >c>0.

Indeed, if it were not the case then

lim sup / ufl =0, forevery R > 0.
Br(y)

n—oo yERN

By Lemma 3.2, u, — 0 in LP(RY), for 2 < p < 2% and then
f(up)uy, — 0.
RN
Therefore [[u,||2, + [pn @ untiz = 0 (1), and also from
1
0< Flup) < — f(up)un
RN K RN

we have [pn F(un) = 0,(1). But then lim,, o I, (un) = mg? = 0 which is a contradiction and
proves our claim.

Then the sequence v,, := uy(- + ) is also bounded in H*(R") and
(4.3) v, =~ v#Z0 in  HYRY)
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since

/ v2:1iminf/ vi:liminf/ u > ¢ >0,
BR n—oo BR n—o0 BR('gn)

by the claim.
Let now ¢, > 0 be such that v, := t,v, € My;; the next step is to prove that
(4.4) Evy (0n,) — myy.

For this, note that

- L
i < By (5a) = 51l — [ Flwn)
RN

£2

=2 8 e+ 5P 4 Vol ) |de = [ Pty 5a))do
2 RN RN
t2 t2

= —"/ ](—A)S/Qun(z)]2dz+ —"/ Vou? (z)dz —/ F(tyun(2))dz
2 ]RN 2 ]RN ]RN
ﬁ ANS/2, 12 ﬁ 2 é 2

< [(—A)* Fup|” + V(enz)uy, + Gy un U, F(tnuy)
2 RN 2 RN 4 RN ’ RN

= Isn (tnun)

and then
my, < By (0n) < I, (thun) < I, (un) = my; + on(1)

which proves (4.4).

We can prove now that v, — v in H*(R™). As in the first part of the proof (where we
proved the boundedness of {u,} in Hy, (RM)), it is easy to see that

{on} C My, and By, (9,) = my, = H’Dn”H‘S/O <C

and an analogous claim as before holds for the sequence {,,}. Then @, — v in Hy (RY) and
(as before) there exists § > 0 such that
(4.5) 0<o< H@nHH‘ﬁfo'
This implies
0< tn5 < ”tnvn”H‘s}o = ”@n”H‘S/O < Ca
showing that, up to subsequence, t,, — to > 0. If now to = 0 using (4.2) we derive
0< H'DnHH“"/O = thUnHH“"/O < 751161 — 07
so that v, — 0 in Hy, (RM). From this and (4.4) it follows my; = 0 which is absurd. So ¢y > 0.
Then t,v, — tov =: ¥ in H*(RY) and by (4.5) ¥ #Z 0. By Lemma 3.6 applied to {o,} we get

Up — 0 in H*(RY) and then v, — ©. By (4.3) we deduce v, — v and the first part of the
proposition is proved.

We proceed to prove the second part. We first state that {y,} is bounded in RY (here
Yn = EnTn With g, given in the above claim). Assume the contrary; then
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1. if Vo < 00, since @, — o in H*(RY) and Vy < Vi, we have
- 1, 9 -
o~ [ PO <5l ~ [ O

1 1
< lim inf —/ |(=A)*"%5,|% + lim <—/ V(en® + yn)02 (z)da — /
2 RN n—o0 \ 2 RN RN

Fi))

2 2
= lim inf <—” / [(=A)* 2, |? + f / V(en2)u2 — F(tnun)>
n—oo 2 RN 2 R RN

N
.. 1 2 tilz 2
<liminf | =|[thunllZ — F(thu,) + =+ Pe i U,
n—o00 2 " RN 4 Jrn ’

from which

s . .. s
my, < hnrglonof I, (thuy,) < hnrglonof I, (u,) = my;
which is a contradiction.

2. If Vo = oo, we have

/]RN V(enz + yn)v2 (z)dx S/

R

2
+ [ O @)
— / F (on(2))on () de,
RN

and by the Fatou’s Lemma we obtain the absurd

\(—A)s/zfun(az)lzdaz + / V(enx + yn )02 (z)da
RN

oo = lim inf f(op)v, = f()v.
n—oo RN RN

Then {y,} has to be bounded and we can assume y,, — y € RY. If y ¢ M then Vj < V(y),

and similarly to the computation made in case 1. above (simply replace Vo with V(y)) we

have a contradiction. Hence y € M and the proof is thereby complete. O

For § > 0 (later it will be fixed conveniently) let n be a smooth nonincreasing cut-off function
defined in [0, 00) such that

M) =0 s>

Let oy, be a ground state solution given in Lemma 3.6 of problem (A,) with © = V; and for
any y € M, let us define

{1 if0<s<d/2

ey o) =l — ylor, ().

Let t. > 0 verifying max;>o L.(tU, ) = L (t: U, ), so that t. ¥, , € N¢, and let
O cye M —1t.¥,., € MN..

By construction, ®.(y) has compact support for any y € M and it is easy to see that ®. is a
continuous map.

The next result will help us to define a map from M to a suitable sublevel in the Nehari
manifold.

Lemma 4.2. The function ®. satisfies

lim I.(®:(y)) = my,, uniformly in y € M.
e—0t
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Proof. Suppose by contradiction that the lemma is false. Then there exist dyp > 0, {y,} C M
and &, — 07 such that

(4.6) e, (P<,, (yn)) — myg| = do.
Using Lebesgue’s Theorem, we have
(47) T [0, 2, = ol |

im [ F(v.,,) = / F(woy,) |
RN

n—oo RN
i (e, By = llvove 5,

This last convergence implies that {||¥.,, ,. |} is bounded. From (2.3)

2 —0 4
/]RN ¢5n7\1/sn,yn \Ilan,yn S Eg Ce”\:[jfnyyn” ’

and then

(48) fim /N qbe”’\pgnvyn \Ijgnyyn =0.

n—o0 R

Remembering that ¢, V., , € N, (see few lines before the Lemma), the condition
Il (te, Ve, yn)[te, Ve, y,) = 0 means

f (tEn\PE'myn) 2

2 2 2 _
(49) H\Il5n7y7LHEn + t&‘n /]RN (Zsffny‘ljsn,yn \Ilan,yn - RN tan\Ila,“yn \I/En,yn'

We now prove the following
Claim: lim, , ., = 1.

We begin by showing the boundedness of {t._}. Since &, — 07, we can assume §/2 < §/(2¢,,)
and then from (4 9), using (f5) and making the change of varlable 2= (en® — Yn)/en, wWe get

te 1oy, (Z
(4.10) Enyyn”an / (2557“ S €n7yn > M/ ml‘l/o (2)7
Bs 2

(te,tov; (2))°
where oy, (Z) 1= minB(S/2 oy, (z). If {tc, } were unbounded, passing to the limit in » in (4.10),
the left hand side would tend to 0 (due to (4.7) and (4.8)), the right hand side to +oo (due to

(f4)). So we can assume that t., — to > 0.
For given £ > 0, by (2.1), there exists Mg > 0 such that

f (ta En,Y / _1/ 1
4.11 Lo Tmdng n) <¢ + Mte pat
( ) RN te \Ile,myn €n,yn €n,yn Elen, RN EnyYn "

Since {¥., ., } is bounded in H*(RY), if t; = 0, from (4.11) we deduce
f(tEn\I/Enyyn) 2

nh—>n;o RN tan\Ilanvyn b B 07
which joint with (4.8) and (4.9) led to lim, ool ¥es, 4, /|2 = 0 contradicting (4.7). Then

te, — to > 0. Now taking the limit in n in (4.9) we arrive at

J (totoy
HmVoH%{‘S, :/ ftorov,) 0)1‘0\/0,
0 RN to

and since toy, € My, it has to be ¢ty = 1, which proves the claim.
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Finally, note that

t2 t2
IEn(¢€n (yn)) = % |(_A)S/2\II5nyyn|2 + % / V(enaj)\llgnyyn
RN RN

e, 2
+ T /RN ¢5n7\p5n,yn \IIEn,yn - /RN F (tf':n\Pf':nvyn) .

and then (by using the claim) lim, oo Ic, (®c, (yn)) = Ev,(oy,) = mif, which contradicts
(4.6). Thus the Lemma holds. O

The remaining part of the paper mainly follows the arguments of [24].
By Lemma 4.2, h(e) = |[I(P(y)) — mi| = o(1) for ¢ — 0T uniformly in y, and then
I (®c(y)) —m7; < h(e). In particular the sublevel set in the Nehari manifold

me +h
N © = {u €N : I(u) <my; + h(a)}
is not empty, since for sufficiently small ¢,
mse +h
(4.12) Vye M:d.(y) e N,

From now on we fix a § > 0 in such a way that M and
Msys := {3: e RV : d(x, M) < 25}

are homotopically equivalent (d denotes the euclidean distance). Take a p = p(d) > 0 such
that Mss C B, and  : RN — RN be defined as follows

x if || <p
x(@) = p— if 2| > p.
||
Define the barycenter map 3.
IREEE
Be(u) = L&Y e RV

| @)
RN
for all uw € W, with compact support.
We will take advantage of the following results (see [24, Lemma 8 and 9)).

Lemma 4.3. The function 5. satisfies

lim B:(®:(y)) =y, wuniformly iny € M.
e—=0t+

Lemma 4.4. We have

lim sup inf |B:(u) — ‘ = 0.
e—0t m% +h(e) yEM;s 5( ) 4
ueN,

In virtue of Lemma 4.4, there exists €* > 0 such that
Ve e (0,e%]: sup  d(B:(u), Ms) < /2.

m° +h(e)
A%
UENe 0

Define now
M* = {x e RV : d(z, M) < 35/2}

so that M and M™ are homotopically equivalent.
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Now, reducing £* > 0 if necessary, we can assume that Lemma 4.3, Lemma 4.4 and (4.12)
hold. Then by standard arguments the composed map

M 25 AT

In case V, < 0o, we eventually reduce €* in such a way that also the Palais-Smale condition
is satisfied in the interval (m{?, m3? + h(e)), see Proposition 3.5. By well known properties of
the category, it is

& M™  is homotopic to the inclusion map.

cat ( o (e)) > catp+ (M)
and the Ljusternik-Schnirelman theory ensures the existence of at least caty;+ (M) = cat(M)
constraint critical points of I. on N.. The proof of the main Theorem 1.1 then follows by
Proposition 3.5.
If M is bounded and not contractible in itself, then the existence of another critical point of
I. on N follows from some ideas in [11]. We recall here the main steps for completeness.
The goal is to exhibit a subset A C N; such that
i) A is not contractible in N2 Vo (6),
ii) A is contractible in N = {u € N : I.(u) < ¢}, for some ¢ > m§? + h(e).

This would imply, since the Palais-Smale holds, that there is a critical level between m{? + h(e)
and c.

First note that when M is not contractible and bounded the compact set A := ®.(M) can

not be contractible in ./\/::n Yo +h(€), proving i).

Let us denote, for u € W, \ {0}, with t-(u) > 0 the unique positive number such that
te(u)u € N.. Choose a function u* € W, be such that u* > 0, I.(t-(u*)u*) > m + h(e) and
consider the compact and contractible cone

C.= {tu*+(1—t)u:t€ [0,1], u eA}.

Observe that, since the functions in € have to be positive on a set of nonzero measure, it is
0 ¢ €. Now we project this cone on N;: let

te(€) := {ta(w)w fw E (’:} C N

and set
c:= 21(&@))( I > my; + h(e)
(indeed the maximum is achieved being t.(€) compact). Of course A C t.(€) C N and ¢.(€)
is contractible in N: we deduce ii).
Then there is a critical level for I. greater than mS? +h(e), hence different from the previous
ones we have found. The proof of Theorem 1.1 is complete.
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