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Abstract

We review some results of calculations, having the property of
maximal transcendentality.

1 Introduction

It is well known that the popular property of maximal transcendentality,
which was introduced in [I] for the Balitsky-Fadin-Kuraev-Lipatov (BFKL)
kernel [2, 3] in the N' = 4 Supersymmetric Yang-Mills (SYM) model [], is
also applicable for the anomalous dimension (AD) matrices of the twist-2
and twist-3 Wilson operators and for the coefficient functions of the “deep-
inelastic scattering” (DIS) in this model. The property gives a possibility
to recover the results for the ADs [II, Bl [6] and the coefficient functions [7]
without any direct calculations by using the QCD corresponding values [§].

The very similar property appears also in the results of calculation of the
large class of Feynman integrals (FIs), mostly for so-called master integrals
[9]. The results for most of them can be reconstructed also without any
direct calculations using a knowledge of several terms in their inverse-mass
expansion [10]. Note that the properties of the results are related with the
ones of the amplitudes, form-factors and correlation functions (see [11], 12} [13]
and references therein) studied recently in the framework of the N = 4 SYM.

In this brief review, we demonstrate the existence of the propertiy of
maximal transcendentality (or maximal complexity) in the results of two-loop
two- and three-point FIs (see also [14]). Moreoveer, we show its manifistation
for the eigenvalues of AD matrices of the twist-2 Wilson operators.
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Figure 1: The examples of usual and dual FIs.

2 Calculation of Feynman integrals

The arguments based on the propertiy of maximal transcendentality give a
possibility to calculate a large class of Fls in a simplest way. Let us consider
the results in some details.

1. At the beginning, we note that hereafter we will consider our FIs in
the momentum space but it is ruther convenient also to work in the dual
coordinate space (see, for example, [15] [I6] [I7]), where all momentums of
diagrams are replaced by the corresponding coordinates. Of course, the re-
sults of the integration of the diagrams do not changed during the procedure.
However the graphic representations of the Fls are different. Shortly speak-
ing, all loops (triangls, n-leg one-loop internal graphs) should be replaced
by the corresponding chains (three-leg vertices, n-leg vertices). For some
simplest cases, the replacement is shown on Fig. 1, where the thin lines cor-
respond to the standard Fls and the thick ones show the corresponding dual
graphs. More complicated cases were considered, for example, in Ref. [I§].
The integration in dual graphs are doing on the internal points. The rules of
the integration, including the integration-by-part (IBP) procedure [19], were
considered in [15] [16].

With the usage of the dual technique, the evaluation of the aj-corrections
to the longitudinal DIS structure fuction has been done in [15, 20]. All the
calculations were done for the masless diagrams. The extenstion of such cal-
culations to the massice case were done in [21]. Some recent evaluations of
the massive dual FIs can be found also in [22].

2. Now we will return to the momentum space. Application of the IBP
procedure [19] to loop internal momenta leads to relations between differ-
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Fig. 2

ent FlIs and, thus, to necessity to calculate only some of them, which in a
sense, are independent. These independent diagrams (which were chosen
quite arbitrary, of course) are called the master-integrals [9].

The application of the IBP procedure [19] to the master-integrals them-
selves leads to the differential equations (DEs) [21], 23] for them with the
inhomogeneous terms (ITs) containing less complicated diagrams. The
application of the IBP procedure to the diagrams in I'Ts leads to the new
DEs for them with the new I'Ts containing even farther less complicated dia-
grams (= less? complicated ones). Repeating the procedure several times, at
a last step one can obtain the I'Ts containing mostly tadpoles which can be
calculated in-turn very easily (see also the discussions in the part 3 below).

Solving the DEs at this last step, one can reproduce the diagrams for I'Ts
of the DEs at the previous step. Repeating the procedure several times one
can obtain the results for the initial Fls.

This scheme has been used successfully for calculation of two-loop two-
point [21] 23] 25] and three-point diagrams [26], [[0] with one nonzero mass.
This procedure is very powerful but quite complicated. There are, however,
some simplifications, which are based on the series representations of FIs.

Indeed, the inverse-mass expansion of two-loop two-point (see Fig. 2)
and three-point diagrams (see Fig. 3) B with one nonzero mass (massless and

!The “less complicated diagrams” contain usually less number of propagators and some-
times they can be represented as diagrams with less number of loops and with some “ef-
fective masses” (see, for example, [10, 24] and references therein).

2The diagrams shown in Figs. 2 and 3, are complicated two-loop FIs, which have
no three-massive-particle cuts. So, their results should be expressed as combinations of



massive propagators are shown as dashed and solid lines, respectively), can
be considered as

m::ﬁ%g:axmw{ﬂmw+Pmﬂ@ﬂgm+éme4 (1)

+ [mz(_x) Fia(n) + 2 In(=2) Fya(n) + 5 Fas(n) +((2) F2,4(”)} . }

where z = ¢>/m? n=1or —1 and a = 1 and 2 for two-point and three-point
cases, respectively.

Here the normalization N = (2/m?)*, where T = 4me " is in the
standard M S-scheme and 7 is the Euler constant. Moreover, the space-
time dimension is D = 4 — 2¢ and

C. - gg)! o (2)

for diagrams with two-massive-particle-cuts (2m-cuts). For the diagrams
with one-massive-particle-cuts (m-cuts) C,, = 1.
For m-cut case, the coefficients Fiy x(n) should have the form

Siaw' C(ﬂ:a)
FN,k(n) ~ b b (3)
where Sy, = Si,. . (j —1) are harmonic sums

Sj:a(j) = Z (Zlil)m7 Sj:a,ﬂ:b,j:c,---(j) = Z (:l:l)m Sﬂ,,ﬂ,...(m), (4)

me me

and ((+a) are the Euler-Zagier constants

o) = 3 B casnre ) = 2 E G ),
5)

For 2m-cut case, the coefficients Fiy x(n) can be more complicated

Va,. Wa

nb,...’ n,b...’ nl;,,,’ (6)

Fva (TL) ~

polylogarithms. Note that we consider only three-point diagrams with independent upward
momenta ¢; and g2, which obey the conditions ¢7 = ¢3 = 0 and (q1 + ¢2)? = ¢* # 0, where
q is downward momentum.
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The terms ~ V, and ~ W, can come only in the 2m-cut case. The
origin of the appearance of these terms is the product of series (II) with the
different coefficients C,, = 1 and C,, = é’n

As an example, consider two-loop two-point diagrams /; and I shown
in Fig. 2 and studied in [10]

L = q_fj 22: %n {% In?(—z) — %ln(—:):) +((2)+ 25, — 2% + %} ©)
I, = q_ff 3 Z—Z {% + ((;L); (—21n(—x) — 3, + %) } . (10)

n=1

From (@) one can see that the corresponding functions Fy ;(n) have the
form

Fyp(n) ~ ngL_N (N >2), (11)

5



if we introduce the following complexity of the sums (® = (S, V, W))

m

1
(I):I:a ~ (I):I:al,:tag ~ (I):I:al,:l:az,---,:tam ~ ga ~ — (Z a; = a) . (12>

nae’
i=1

The number 3 — N defines the level of transcendentality (or complexity,
or weight) of the coeflicients Fyy(n). The property reduces strongly the
number of the possible elements in Fix(n). The level of transcendentality
decreases if we consider the singular parts of diagrams and/or coefficients
in front of (-functions and of logarithm powers. Thus, finding the parts we
are able to predict the rest, using the ansatz based on the results already
obtained but containing elements with a higher level of transcendentality.

Other I-type integrals in [10] have similar form. They have been calcu-
lated exactly by DE method 21} 23].

Now we consider two-loop three-point diagrams, Ps and Pj5 shown in Fig.
3 and calculated in [10]:

N (—z)" Sy S .S
P = (q2)2 nz_:l ” {—643 + 2(51<2 + 653 — 2515, + 4; — Z + 2@
+<—4Sg + 82 — 2%) In(—z) + 51 1112(—1')} : (13)
N —z" )2 (2 2 1
P, = ? nZ:; ﬁ (271)' {5_2 + g (Sl — 3W; + E — hl(—:(f)) + 12W5 — 18W171

S 2 1
—1352 + 512 - 651W1 + 2—1 + - = 2<Sl + —) ln(—:lj') + ln2(—l’)} s
n n n

Now the coefficients Fiy ;(n) have the form

Fualn) ~ —. (N23) (1)

The diagram Ps (and also Py, P3 and Py in [I0]) have been calculated
exactly by DE method [2I), 23]. To find the results for P, (and also all
others in [I0]) we have used the knowledge of the several n terms in the
inverse-mass expansion ([Il) (usually less than n = 100) and the following
arguments:

e If a two-loop two-point diagram with the “similar topology” (for ex-
ample, I15 for Pj5 an so on) has been already calculated, we should
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consider a similar set of basic elements for corresponding Fy x(n) of
two-loop three-point diagrams but with the higher level of complexity.

e Let the considered diagram contain singularities and/or powers of loga-
rithms. Because in front of the leading singularity, or the largest power
of logarithm, or the largest (-function the coefficients are very sim-
ple, they can be often predicted directly from the first several terms of
expansion.

Moreover, often we can calculate the singular part using another tech-
nique (see [10] for extraction of ~ Wj(n) part). Then we should expand
the singular parts, find the basic elements and try to use them (with
the corresponding increase of the level of complexity) to predict the
regular part of the diagram. If we have to find the e-suppressed terms,
we should increase the level of complexity for the corresponding basic
elements.

Later, using the ansatz for Fy x(n) and several terms (usually, less than
100) in the above expression, which can be calculated exactly, we obtain the
system of algebraic equations for the parameters of the ansatz. Solving the
system, we can obtain the analytical results for FI without exact calculations.
To check the results, it is needed only to calculate a few more terms in the
above inverse-mass expansion ([Il) and compare them with the predictions of
our anzatz with the above fixed coefficients.

So, the considered arguments give a possibility to find the results for many
complicated two-loop three-point diagrams without direct calculations. Some
variations of the procedure have been successfully used for calculating the
Feynman diagrams for many processes (see [20], [10] 24] 27]).

Note that the properties similar to (IIl) and (I4]) have been observed re-
cently [I3] in the so-called double operator-product-expansion limit of some
four-point diagrams.

3. The coefficients have the structure ([Il) and (I4)) with the rule (I2).
We note that these conditions reduces strongly the number of possible har-
monic sums. In turn, the restriction relates with the specific form of the DEs
for the considered FIs. The DEs formaly can be represented like [14], 28]

((:c + a)% — Ea) FI = less complicated diagrams(= FI,), (15)



with some number a and some function k(z). Such form is generated by IBP
procedure for diagrams including an internal triangle with the index [ equal
to D — 1+ O(¢e) in D-dimensional space.

Taking the set of the less complicated Feynman integrals FI; as diagrams
having internal triangles with the similar indices, we will have their result
stucture similar to above one (I4]) but with the one less level of complexity.

So, the integrals FI; should obey to the equation similar to one in (IH).
It has the following form

d —
((a: + al)% - k:l»s) FI;, = less? complicated diagrams(= FI,). (16)

Thus, we will have the set of equations for all Feynman integrals FI,, as
d - 1 . .

(x + a")d_ — kpe | FI, = less"™ complicated diagrams(= FI,.),(17)
x

with the last integral F1,,,; contains only tadlopes.
Moreover, following to [29] we can recover the above set of the inhomo-
geneous equations as the homogeneous matrix equation

%]5\1 — eKFI =0, (18)
for the vector
FI
7T FIy /e 7
'F”In/efsrl

where the matrix A contains the functions k;/(z + a;) as its elements. The
form (I8)) is very popular now (see the recent report [30] and discussion
therein)

Note that for the real calculations of FI, it is convenient to do the re-
placement

FI, — FL,, FI, = FI,FL,,

3The index of the triangle is equal to the sum of powers of its propagators. The internal
loop corresponds to the triangle with one propagator having the power equal to 0.



where the term FI,, obeys the corresponding homogeneous equation
(z + an) a kne | FI, = 0 (19)
T Qn)—7— — Rp n — Y,
dx

The replacement simplifies the above equation () to the following form

d = -~ FI,
having the solution
- @ ~ FI
F1,(x) = / dz, FInH(xl)_"L(g:l) (21)
0 L1 + ay FIn(l'l)

Usually there are some cancellations in the ratio FI,,; /ﬁn and some-
times it is equal to 1. In the last case, the equation ([2II) coincides wuth
definition of Goncharov Polylogariths (see [31] and references therein).

The series ([@)), (I0) and (I3]) can be expressed as combination of the Nilson
[32] and Remiddi-Vermaseren [33] polylogarithms with the weight 4 — N (see
[T0, 26]). More complicated case was considered in [34].

3 N=4SYM

The ADs govern the Bjorken scaling violation for parton distributions (=
matrix elemens of the twist-2 Wilson operators) in a framework of Quantum
Chromodynamics (QCD).

The BFKL and Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) [35]
equations resum, respectively, the most important contributions ~ o, In(1/zg)
and ~ a,In(Q?/A?) in different kinematical regions of the Bjorken variable
xp and the “mass” Q? of the virtual photon in the lepton-hadron DIS and,
thus, they are the cornerstone in analyses of the experimental data from
lepton-nucleon and nucleon-nucleon scattering processes. In the supersym-
metric generalization of QCD the equations are simplified drastically [36]. In
the N =4 SYM the eigenvalues of the AD matrix contain only one universal
function with shifted arguments [37, [J.



1. The three-loop result H for the universal AD 7,,,;(j) for N =4 SYM
is [6]

tuld) = @O0+ @G GO+ a=S (22)
where

i%(ﬁq)i(j +2) = =5, (23)

% 1(122(] +2) = <53 + §—3> —28 51 +25; <52 + §—2>, (24)

1 _ _ _ _
39 g@)i(.j—i_z) = 2538, —855—-285 55 —-35_5+245 5111

+6 <§—4,1 + §—3,2 + §—2,3) —12 (g—g,m + F—z,l,z + §—2,2,1)
- <S2 +2 Sf) (3 S 5+ 8;— 2§_271) — S <8 5,45,
48,5+ 252438 — 125 51 —1050p+ 16 3_2,1,1) (25)

with Siq 4t +c,... = Sta4b,+e,..(J) and
Saper () = (-1 S ) + Soape(o0) (1= (<17). (26)

The expression (26) is the analytical continuation (to real and complex
7) 138] of the harmonic sums S_,p....(7).

The results for 7,,%(j) [3 B0, () [ and 7,7,(j) B2 can be ob-
tained from the long-range asymptotic Bethe equations [43] for twist-two
operators and the additional contribution of the wrapping corrections. The
similar calculations for the twist-three ADs can be found in [44].

2. Similary to the eqs. (I]) and (I4]) let us to introduce the transcenden-
tality level i for the harmonic sums Si,(j) and and Euler-Zagier constants
((#£a) in the following way

S:I:a,:l:b,:l:c,---(j) ~ C(iaa j:ba :i:C, o ) ~ 1/]Za (Z =a+btc+-- ) (27)

4 Note, that in an accordance with Ref. [3] our normalization of v(j) contains the extra
factor —1/2 in comparison with the standard normalization (see [I]) and differs by sign in
comparison with one from Ref. [§].

10



Then, the basic functions yg%(j), fyiln)l(j) and %ﬁ)l(j) are assumed to be

of the types ~ 1/5" with the levels i« = 1, i = 3 and ¢ = 5, respectively. A
violation of this property could be derived from contributions of the terms
appearing at a given order from previous orders of the perturbation theory.
Such contributions could be generated and/or removed by an appropriate
finite renormalization and/or redefinition of the coupling constant. But these
terms do not appear in the DR-scheme [45].

It is known, that at the first three orders of perturbation theory (with
the SUSY relation for the QCD color factors Cr = C4 = N,) the most com-
plicated contributions (with i« = 1, 3 and 5, respectively) are the same as in

QCD [§]. This property allows one to find the universal ADs 7(0) (7), (1) (7)

uni uni

and fyffn)z( j) without knowing all elements of the AD matrix [I], which was

verified for %(Lln)l

(7) by the exact calculations in [5].

Note that in /' = 4 SYM the some partial cases of ADs are known also at
the large couplings from string calculations and AdS/QFT correspondence
[46]. We would like to note that if the property of the maximal transcen-
dentality is existed at low coupling, then sometimes it appeares at large
couplings, too (see, for example, the results for the cusp AD at low [47] and
large [48] couplings, both of which are based on the Beisert-Eden-Staudacher
equation [49]). This is not correct, however, for Pomeron intercept, which re-
sults are lost the property of the maximal transcendentality at large couplings
(see [0 B0, 51]). The reason of the difference in the results for the cusp AD
and Pomeron intercept is not clear now. It needs additional investigations.

4 Conclusion

In the first part of this short review we presented the consideration of Feyn-
man diagramss (mostly master integrals), which obey to the transcendentality
principle (), (I2) and ([I4). Its application leads to the possibility to get
the results for most of master integrals without direct calculations.

The second part contains the universal AD 7,,:(j) for the N' =4 SYM
in the first three terms of perturbation theory. All the results have been
obtained with using the transcendentality principle (27)). At the first three
orders, the universal ADs have been extracted directly from the correspond-
ing QCD calculations. The results for four, five and six loops have been

11



obtained from the long-range asymptotic Bethe equations [43] together with
some additional terms, so-called wrapping corrections, coming in agreement
with Luscher approach.

This work was supported by RFBR grant 16-02-00790-a. Author thanks
the Organizing Committee of V International Conference “Models in Quan-
tum Field Theory” (MQFT-2015) for invitation.
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