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Abstract. Dynamic functional connectivity (FC) has in recent years
become a topic of interest in the neuroimaging community. Several mod-
els and methods exist for both functional magnetic resonance imaging
(fMRI) and electroencephalography (EEG), and the results point to-
wards the conclusion that FC exhibits dynamic changes. The existing
approaches modeling dynamic connectivity have primarily been based
on time-windowing the data and k-means clustering. We propose a non-
parametric generative model for dynamic FC in fMRI that does not rely
on specifying window lengths and number of dynamic states. Rooted in
Bayesian statistical modeling we use the predictive likelihood to investi-
gate if the model can discriminate between a motor task and rest both
within and across subjects. We further investigate what drives dynamic
states using the model on the entire data collated across subjects and
task/rest. We find that the number of states extracted are driven by sub-
ject variability and preprocessing differences while the individual states
are almost purely defined by either task or rest. This questions how we in
general interpret dynamic FC and points to the need for more research
on what drives dynamic FC.
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1 Introduction

The invention of functional magnetic resonance imaging (fMRI) paved the way
for non-invasive studies of neuronal activity in the human brain. Especially the
correlation of activity between brain regions, functional connectivity (FC), has
been of interest for over a decade. In recent years the term dynamic functional
connectivity has emerged in the field trying to explain temporal changes in
the FC pattern [1,2,3]. Intuitively this makes sense since we expect that the
interaction between segregated brain regions changes. These changes can be due
to a number of factors such as the experimental design (task and resting state),
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non-experimental physical factors (fatigue, caffeine intake) and even neurological
disorders [4]. An important aim of modeling FC as a dynamic concept is to
run the models in a fully-unsupervised setting to achieve greater knowledge
of how the brain functions and even extract biomarkers for diseases [5]. One
very prominent approach to analysing dynamic FC was presented in [6]. Here
windowed covariance matrices was extracted from a group-ICA representation
of 405 healthy subjects resting state fMRI data. The upper triangular part of
each extracted covariance matrix was then stacked into a vector yielding a vector
space representation of the covariance structure for each window and subject.
These vectors were then clustered using K-means clustering and the number of
clusters was chosen using the Elbow-criterion. The results indicated that the
resting state paradigm exhibits a temporally dynamical structure and that some
of the FC patterns extracted diverge from the classical stationary results (such as
the default mode network). In order to validate that the FC patterns (or states)
extracted can be used to characterize resting state, we must test that the models
find meaningful results in a setting where we have ground truth information
available. [7] constructed an experiment where the participants were scanned
while being asked to do different tasks in one continuous scan. They found that
using windowed covariance matrices and k-means clustering (similar to [6]) the
cluster centroids could be used to explain the tasks carried out. But the number
of dynamic states k (fixed to the number of tasks) and window length had to be
pre-specified whereas the model was not evaluated on independent test data.

In this paper we propose an extension of the infinite hidden Markov model
(IHMM) [8] tailored for the modeling of dynamic FC states in fMRI. We further-
more present a predictive likelihood framework for validating that the extracted
structure can be used to characterize a motor task from rest. Using the IHMM
circumvents having to specify the number of states in the model and window
length. Instead the model can be viewed as an adaptive windowing method,
where states can persist on different state specific time scales and the number of
states learned as part of the inference. We will use this framework to investigate
what drives dynamic FC.

2 Methods

The IHMM-Wishart model: A commonly used representation of FC is to
represent the connectivity between areas of the brain by the covariance matrix.
In a dynamic setting we model each state as having separate covariance matrices.
We thus model fMRI in terms of a latent sequence of states, zt for t = 1..T
that for each time point generates a brain image according to the state specific
covariance matrix xt ∼ N (0, σ2

tΣ
(zt)), where σ2

t defines the magnitude of the

state specific covariance structureΣ(k) at time t allowing states to be invariant to
data magnitude but defined in terms of the connectivity profile. For the modeling
of transitions between states we use the infinite hidden Markov model (IHMM),
first proposed in [8] and further developed in [9,10]. Completing the IHMM with
a Gaussian distribution on the observed data and an inverse Wishart prior on



the covariance structure, similar to the Wishart mixture modeling considered in
[11,12] and the infinite Gaussian mixture model of [13], we arrive at the following
generative model,

β ∼ GEM(γ), (1)

π(k)|β ∼ DP(α,β), (2)

zt|zt−1 ∼ Multinomial(π(zt−1)), (3)

Σ(k) ∼ W−1(ηΣ0, v0), (4)

xt ∼ N (0, σ2
tΣ

(zt)). (5)

GEM is the stick-breaking construction (cf. [14,15]), DP is the Dirichlet process,
γ and α are positive hyper-parameters controlling the state sequence, π(k) de-
notes the k’th row of the transition matrix π, η a is (positive) scale parameter,
Σ0 is a p × p matrix (covariance prior), and W−1(Σ0, v0) denotes the inverse
Wishart distribution, and σ2

t is the time specific covariance scaling. Viewing this
in light of fMRI and FC (cf. also [16,12]), each state can further be represented
by a covariance matrix defining the FC where each state is invariant to mag-
nitude of the FC due to the time-specific scaling parameter σ2

t . We learn this
parameter in the inference procedure (cf. next section) using a vague improper
1/X -prior. Σ0 in the inverse Wishart prior plays the role of the default connec-
tivity. In the experiments we estimate Σ0 from a separate resting state fMRI
scan. The parameter η is the scaling or level of this default connectivity, which
is learned during the inference. The degrees of freedom, v0, set to the number of
dimensions p to make the inference well posed.

Inference: For inference we use Markov chain Monte Carlo (MCMC). Due

to conjugacy we can analytically integrate the state specific covariancesΣ(k) and
infer the state sequence z using Gibbs sampling as described in [10] and split-
merge sampling [17,18] which has been demonstrated to improved mixing and
convergence properties for non-parametric Bayesian mixture models. We learn η
and σ2

t by Metropolis-Hastings with proposal distribution, η∗ = exp(ln η+z), z ∼
N (0, σ = 0.1) (and similarly for σ2

t ) imposing an improper and uninformative
1/X -prior on both variables. The implementation of the model was done in
MATLAB building on top of Juergen Van Gael’s iHMM-toolbox [19]. We used
the code available online3 for sampling state-sequence relevant hyperparameters,
where vague Gamma priors are placed on α and γ and inferred via. an auxiliary
variable Gibbs sampler [20]. The predictive likelihood can be calculated using a
modified Viterbi algorithm [21], and analytically integrating out σ2

t and using
parameter posterior samples from the inference.

3 Results

We used fMRI data from a population of 29 subjects, that carried out a simple
finger-tapping experiment (denoted motor) [22] as well as a resting state scan

3 http://mloss.org/software/view/205/
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[23]. Preprocessing included normalization to MNI space and wavelet despiking
[24]. We did a group ICA [25] using the GIFT toolbox4 into 20 components
using the maximum likelihood ERBM algorithm [26] with default settings. We
discarded six components by visual inspection of the spatial maps representing
common noise confounds. We split each subjects motor and resting-state data
into a training (116 images) and a test set (120 images). Each training and test
set was individually corrected for motion- and respiratory effects [27], reference
signal from cerebrospinal fluid (lateral ventricles) and white matter along with
high-pass filtering (1/128 s cut-off) in a single regression step. The resting state
scan was twice as long as the motor experiment so the second half of the resting
state scan was removed and used for estimating the prior covarianceΣ0. For each
of the 29 subjects training sets available (motor and rest) we ran ten IHMM-
Wishart models and ten constant Wishart models, i.e. an IHMM-Wishart forced
to be in one state.

First of all, we investigate if a model trained on the motor task (denoted a
motor-model) predicts better on the motor-test set relative to a model trained on
the resting state (denoted a rest-model). Second of all, we can test if predictive
performance increases using a dynamic model, compared to a one-state constant
model. For the motor data, we calculated the predictive likelihood for all ten
runs, and made a paired t-test to evaluate if the predictive performance was
better by the motor-model or the rest-model. The same was done for the resting
state data. We saw on test data that within all 29 subjects, motor and rest was
distinguishable with an IHMM-Wishart model. We furthermore tested if there
was a significant difference between using a dynamic model vs. a static model.
Except for one subject, this difference was not significant, which can be explained
by the IHMM-Wishart finding almost exclusively one state on both motor and
rest.

The above analysis can be extended to group level, i.e. to investigate if a
subjects task and resting state data can be distinguished by models trained on
other subjects. We looked at 4 hypothesis tests, 1) that the motor- and rest-
model predict equally well on motor data, 2) that the rest- and motor-model
predict equally well on resting state data, 3) that the motor-model is equal to
using a one state constant model on motor data and 4) that the rest-model is
equal to using a one state constant model on the resting state data. For motor
hypothesis 1 was rejected on average 26.5± 2 out of 28 times for a subject, and
for resting-state hypothesis 2 was rejected on average 26.1 ± 2 out of 28 times.
Similarly as the within-subject analysis, very few dynamic models perform better
on testing data than the one-state counterpart models. Hypothesis 3) and 4)
could only be rejected 0.31± 0.5 and 0.24± 0.6 times respectively.

To investigate dynamic FC at group level, we collated all subjects motor and
resting state data together and ran the IHMM-Wishart fully unsupervised on the
whole data set. In the modeling, states are shared across subjects and tasks but
we handle discontinuities in the data by restarting the chain at each block that
has been preprocessed individually (4 per subject). We ran the IHMM-Wishart

4 http://mialab.mrn.org/software/gift/
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five times, and the sample with highest posterior probability was taken out for
further analysis. The results can be seen in figure 1. In figure 1a we report the four
most populated states’ covariance matrices in both motor and resting-state along
with the ICA components (IC). We note IC1 that well corresponds to the motor
task is active in all the motor-states, and has been down-weighted in the resting-
states. Inspecting the two tasks, the average number of states pr. subject in the
motor-task was 3.28 ± 0.21 and for the resting state 3.60 ± 0.27. Furthermore,
the states extracted are generally pertaining almost perfectly to either motor
or rest (cf. figure 1b). However, from figure 1c we see that the average mutual
information (MI) over posterior samples with state sequences describing the
subjects, task and preprocessing shows that subjects and preprocessing drives
the dynamics more than the tasks themselves.

4 Discussion

The IHMM-Wishart can distinguish between motor and rest on test data from
the same subject. One confound is that the two experiments are recorded sepa-
rately meaning that our ability to distinguish between motor and resting-state
test data probably is caused by training and test set being recorded close in
time. Since the group analysis shows that models trained on a subject can well
distinguish between motor and rest of others, this confound is not present in this
setting. This means that the IHMM-Wishart is able to well extract states that
characterize motor from rest. In this analysis the model only found support for
a single state in most of these single subject analyses carried out. The number
of states found by the IHMM-Wishart is influenced though by the number of
data points available and dimensionality, and this could influence the ’absence’
of dynamics found due to the size of the training set (116 images). Collating data
together from all subjects, we ran our model on the entire data set and saw each
state were clearly pertaining to mainly either motor or rest. We see though that
preprocessing has an impact on the states extracted - in an information theoretic
perspective, the dynamics found are closer related to preprocessing than both
to subjects and task (cf. figure 1c).

Our predictive framework demonstrates that the IHMM-Wishart can be used
to characterize task vs. rest. This is a very controlled setting and should also
be possible to achieve for simpler models than the one we are proposing here
but evidences the utility of the IHMM-Wishart in characterizing fMRI data.
Importantly, the IHMM-Wishart enables us to infer the number of dynamic
states from data which for the collated data turned out to be more than just
two states, i.e. one for rest and one for motor. We here observed multiple task
specific dynamic states driven by subject variability and preprocessing, which is
aligned with the conclusion in [12]. This tells us that care must be taken when
interpreting dynamics at a group level as preprocessing even of blocks of data
from the same subject evidences the presence of multiple dynamic functional
states.
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(a) Covariance estimate for each of the most populated states in the motor task (top
row) and resting state (bottom row), along with the ICA component maps.
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(b) A bar plot displaying how frequently
each state is populated. The states have
been sorted by the difference in frequency
in motor and rest-state.
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samples with three state sequences, 1) sub-
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Fig. 1: We collated all subjects motor and resting state experiments together and
ran 5 chains of the IHMM-Wishart model. We show how the different states are
populated, and investigate what drives the dynamics; subjects, tasks or prepro-
cessing, for the sample with highest posterior probability.
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