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Abstract

In this work, we study the effects of coherent and incoherent transport of energy

through two types of configurations of four interacting two-level systems. Both of the

configurations are irreversibly attached to the respective reaction centers. For the first

type, the dynamics is only coherent, while for the second one the coherent evolution is

completely suppressed and the evolution of the system is only incoherent induced from

interaction of the system with fluctuating environments. We calculate the efficiency of

transport for both of the configurations in the presence of harmonic deformations. It

is found that for a special type of deformations, the efficiency of incoherent transport

becomes better than the coherent one.

PACS Nos:

Keywords: Coherent transport, Incoherent transport, Harmonic deformations, De-

phasing noises.

1 Introduction

Transport phenomena have been central to quantum mechanics since its early days. Recently
it has been renewed by the prospect of transferring quantum information across quantum
networks [1, 2, 3, 4] and the recurring interest in understanding the fundamental processes
influencing energy transport in photosynthetic systems [5, 6, 7, 8, 9]. The presence of envi-
ronmental noises is generally considered to be an unavoidable hindrance to efficient transport
of charge or energy through quantum systems and the general view is that transport in quan-
tum systems relies on their coherence which is inevitably reduced by interactions with an
external noisy environment. However, inspired by the experimental results, further theo-
retical studies of energy transport in light harvesting complexes have been carried out that
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investigate the role of noises, and in particular dephasing ones, in the process of exciton
transport in these complexes [10, 11, 12, 13]. Indeed, the efficient transport observed in
certain biological systems is not compatible with a fully coherent evolution, so in this way,
interplaying between coherent (unitary) dynamics and incoherent (irreversible) dynamics
gives the optimal way for quantum transport in many noisy systems. Recently it has be-
gun to be appreciated that vibrational modes arising in molecular structures may play an
important role in the dynamics of such systems [14, 15]. Particularly, at room temperature,
what is clear is that exciton energy transport depends not only on the topology of electronic
couplings among sites but also on the simultaneous effects of the molecular motions and
environmental fluctuations which drive efficient transport processes. Also, collective vibra-
tional motions which may arise through a coupled many-body quantum system can lead to
an enhancement in the transport of excitations across such systems [16, 17].

On the other hand, the optimal mixing of coherent and incoherent quantum transport
is dependent on the initial state preparation [18, 19]. In Ref. [18], it was shown that
the optimal transport of excitation through a linear chain when the excitation is initially
prepared in one of ends of the chain, is only coherent. In other words, optimal transport
is obtained by only self evolution of the system. Also, in Ref. [20], incoherent quantum
transport in regular networks has been investigated where the coherent transport, due to
the destructive interferences, is completely suppressed. In this case, the optimality of the
incoherent quantum transport is dependent on the optimal effects of dephasing noises.

In the present work, we consider two configurations which each of them composed of
four two-level atoms with the same geometries and with an additional sink site attached
to them respectively. For the first configuration, the optimal dynamics is only coherent,
while for the second one is only incoherent, which in turns, related to the optimal effects of
dephasing noises on the system. In this situation, we consider some harmonic deformations
on the geometry of configurations and highlight their effects on the respective efficiency of
transports. It is shown that, in the absence of harmonic deformations, the efficiency of
coherent transport is better than the incoherent one which is in accordance with the results
of Ref. [18]. However, in the presence of harmonic deformations, it is observed that the
efficiency of incoherent transport can be improved to be better than the coherent one. These
results, in turn, ensure the point that the induced evolutions can be more effective than the
self evolutions of a system, the fact that can be observed in biological systems.

This paper is organized as follows: In section 2, we demonstrate the basic ingredients
for achieving the optimal coherent and incoherent quantum transport through two types of
configurations with fixed vertices, along with making a comparison between them. Section
3 is devoted for describing the various useful harmonic deformations which can be occurred
in the structure of configurations and explaining their effects on the respective efficiency
of coherent and incoherent quantum transport. Finally, a brief conclusion is presented in
section 4.

2 The model

The general Hamiltonian describing the energy transport of an excitation through a network
composed of four two-level quantum system, as depicted in Fig. 1(a) and Fig. 2(a), is given
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as follows

H =

4
∑

i=1

~ωiσ
+

i σ
−
i +

∑

{i,j}∈E
~Ji,j

(

σ−
i σ

+

j + σ+

i σ
−
j

)

, (1)

where σ+

i = |i〉〈0| and σ−
i = |0〉〈i| are the raising and lowering operators for a two-level

system lied at ith vertex of the network with transition frequency ωi. We assume that the
atoms are identical and so we have ω1 = ω2 = ω3 = ω4 = ω. The strength of coupling between
the ith and jth atoms is denoted by Ji,j which indicates the hopping rate of excitation
between them. E is the set of edges of the network, corresponding to the coupling between
the sites as shown in Fig. 1(a) and Fig. 2(a). We consider a configuration in which the all
of the coupling constants are equal to each other, i.e. J1,2 = J1,3 = J2,4 = J3,4 = J (see
Fig. 1(a)). This consideration is corresponding to the configuration in which the optimal
dynamics is coherent. To clarify this point, let’s introduce a new set of basis as [21] as follows

|s1〉 := |1〉, |s2〉 := 1√
2
(|2〉+ |3〉), |s3〉 := |4〉, (2)

where |s1〉, |s2〉 and |s3〉 are basis correspond to the three column of Fig. 1(a) (see Ref. [21]).
The Hamiltonian (1) in this basis becomes as

H =
√
2J(|s1〉〈s2|+ |s2〉〈s3|) + h.c.. (3)

Clearly, (3) is similar to the Hamiltonian of a chain of three site with equal coupling
√
2J

(see Fig. 1(b)). As denoted in Ref. [18], for this configuration, if the excitation is initially
prepared at site 1, the coherent evolution is the optimal dynamics in transferring it to the
sink or reaction center.

Now let‘s consider the other configuration in which for the coupling constants we have:
J1,2 = J1,3 = J2,4 = −J3,4 = J (see Fig. 2(a)). By this assumption, we introduce another set
of basis in the single excitation subspace, [2, 3, 4, 20], as

|s1〉 := |1〉, |s±1 〉 := 1√
2
(|2〉 ± |3〉), |s2〉 := |4〉. (4)

The Hamiltonian (1), indeed, is left with a direct sum structure as

H = H1

⊕

H2, (5)

where

H1 =
√
2J(|s1〉〈s+1 |+ |s+1 〉〈s1|),

H2 =
√
2J(|s−1 〉〈s2|+ |s2〉〈s−1 |),

(6)

and the respective invariant subspaces are denoted as follow

H1 = span{|s1〉, |s+1 〉},

H2 = span{|s−1 〉, |s2〉}.
(7)
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It is well-known that, for this configuration, coherent evolution can not transfer the excitation
from site 1 to the reaction center (see Fig. 2(b)). Because the coherent evolution of the
system is restricted only in the invariant subspace H1, and therefore, the existence of induced
or incoherent evolution arisen from interaction of the system with fluctuating environments,
which conserves the energy, is necessary. We consider, without lose of generality, that the
system interacts with the structureless environments through the sites 2 and 3. Therefore,
in the Markovian approximation, the effects of these interactions on the dynamics of the
system, called dephasing noises, are described by the following Lindblad super-operator

Ldeph(ρ) =

3
∑

i=2

γi(2σ
+

i σ
−
i ρσ

+

i σ
−
i − {σ+

i σ
−
i , ρ}), (8)

where γjs are the rates of dephasing noises which randomize the phases of local excitations
and {A,B} := AB + BA. In order to measure how much of the excitation energy is trans-
ferred along the network, we introduce an additional site, the sink, that connected to site 4.
The sink is populated by an irreversible decay process from a chosen site as described by

Lsink(ρ) = Γ(2σ+

5 σ
−
4 ρσ

+

4 σ
−
5 − {σ+

4 σ
−
5 σ

+

5 σ
−
4 , ρ}), (9)

where Γ is the rate of dissipative irreversible process that reduces the number of excitations
in the system. Therefore, the population of the sink referred as efficiency of transport, is
given by

Psink(t) = 2Γ

∫ t

0

ρ
4,4
(t′)dt′. (10)

We note, in this paper, that the Lindblad operators are time-independent and the dephasing
rates are positive, i.e. γj ≥ 0, therefore the dynamics for the second configuration, as an open
system, can be described by time-independent Markovian master equation in the following
Lindblad form [22]

dρ

dt
= −i[H, ρ] + L(ρ), (11)

where L(ρ) = Ldeph(ρ) + Lsink(ρ). Remember that, the term −i[H, ρ] is responsible for the
transfer of excitation to the reaction center in the first configuration, while in the second
configuration this task is performed by the term Ldeph(ρ). When all of the sites are fixed,
both of the systems are initially prepared with a single excitation localized at the site 1, i.e.
ρ(0) = |1〉〈1|, and it is assumed that, γ2 = γ3 = γ and Γ = 2γ. For the second system, the
maximal efficiency of incoherent transport is occurred for the optimal value of dephasing rate
γ = γopt = 1.05. Fig. 3, shows the population of the sink versus time for both systems. It is
clear that the optimal efficiency of coherent transport is more than the optimal efficiency of
incoherent transport. This observations is in complete agreement with results of Refs [18].

3 Effects of harmonic deformations

We consider the harmonic deformations as mechanical oscillations of the vertices around
their respective equilibrium positions which change their relative distance and therefore,
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modulate the distance-dependent dipolar coupling. Time-dependent distance between the
sites i and j is as follows

di,j(t) = d0 − [ui(t)− uj(t)] = d0(1− 2ai,jsin(ω0t+ φi,j)) (12)

where d0 is the equilibrium distance between two connected sites, ui is the displacement
of the ith site from its equilibrium position and ai,j is the individual relative amplitude of
oscillations of sites ith and jth when they move with opposite phase around their equilibrium
positions. The dipole-dipole coupling between the sites i and j has the form [17] as

Ji,j(t) =
J̃0

[di,j(t)]3
=

J0

(1− 2ai,jsin(ω0t + φi,j))3
, (13)

where J̃0 contains the dipole moments and physical constants, and we define J0 = J̃0/d
3
0,

which has the units of energy. Henceforth, all energies, time scales and rates will be expressed
in units of J0. Therefore, by existence some time-dependent coupling strength such as Ji,j(t),
the equation (1) represents a time-dependent Hamiltonian.

We consider deformations for which the conditions, J1,2(t) = J1,3(t) ≡ ζ1(t) and J2,4(t) =
±J3,4(t) ≡ ζ2(t), are satisfied for all of times (+ is devoted for the coherent evolution of the
first configuration and - for the incoherent evolution of the second system). Therefore, the
deformed time-dependent Hamiltonian for the coherent evolution becomes as

H(t) =
√
2ζ1(t)(|s1〉〈s2|+ |s2〉〈s1|) +

√
2ζ2(t)(|s2〉〈s3|+ |s3〉〈s2|), (14)

and for the incoherent one becomes as H(t) = H1(t)
⊕

H2(t), with

H1(t) =
√
2ζ1(t)(|s1〉〈s+1 |+ |s+1 〉〈s1|),

H2(t) =
√
2ζ2(t)(|s−1 〉〈s2|+ |s2〉〈s−1 |).

(15)

By these considerations, the time-independent Markovian master equation (11) becomes a
time-dependent one for the description of the incoherent evolution of the second config-
uration. When only the site 1 oscillates around its equilibrium along the horizontal line
connecting the sites 1 and 4, then ζ1(t) = J1,2(t) = J1,3(t) varies oscillatory with time,
while, ζ2(t) = J2,4(t) = ±J3,4(t) = 1, is constant (see Fig. 4(b)). For this case, the opti-
mal efficiency of transport for the coherent and incoherent transfer of excitation from site
1 to the sink, with respect to time, is shown in Fig. 4 (a). In contrast to the case shown
in Fig. 3, we see particularly that, as time goes on, the optimal efficiency of incoherent
transport becomes better than the coherent one. Now let’s only the site 4 oscillates, simi-
lar to the oscillation of site 1 in the previous case, such that ζ1(t) = J1,2(t) = J1,3(t) = 1
and ζ2(t) = J2,4(t) = ±J3,4(t) (Fig. 5(b)). Fig. 5(a), shows that the optimal efficiency of
transport for the coherent and incoherent evolutions are completely different from those that
depicted in Fig. 4(a). It is, indeed, hard to judge that the efficiency of incoherent transport
is more favorable than the coherent one.

The interesting instance that witnesses the superiority of incoherent transport on the
coherent one is occurred when the sites 1 and 4 oscillate simultaneously with phase difference
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∆ϕ = π along the horizontal line so both of ζ1(t) and ζ2(t) change differently with time as
shown in Fig. 6(b). As time grows, in optimal way, the efficiency of transport for incoherent
evolution becomes more better than the coherent one, as sketched in Fig. 6(a). This is an
evidence for the preference of the optimal incoherent transport to the coherent one when
they are accompanied by this type of harmonic deformations. The oscillations of site 2 and
3 (or 1 and 4) with the same phase, i.e. ∆ϕ = 0, which give the ζ1(t) = ζ2(t) (see Fig.
7(b)), do not lead to the improvement of incoherent transport relative to the coherent one
,as shown in Fig. 7(a), so it is in agreement with the result of [18].

4 Conclusions

In this paper, we investigated the accompaniment of harmonic deformations, which may be
created from thermal fluctuations, with the optimal coherent and incoherent quantum trans-
port. For the configurations discussed in this paper, and for many similar but complex ones,
in the absence of deformations, the optimal transport is only the pure coherent transport.
However, we found out that, in the presence of some rare harmonic deformations, optimal
transport is pure incoherent one. This, indeed, induces the notion in mind that the envi-
ronmental effects on the quantum transport in many body quantum systems may be more
efficient than the intrinsic quantum mechanical effects in that systems. The other point,
which may be interested in this regard, is the analysis of structural effects of the environ-
ments interact with the second configuration via sites 2 and 3, which can be investigated in
future.

6



References

[1] M. B. Plenio, J. Hartley, and J. Eisert, New J. Phys. 6, 36 (2004).

[2] P. J. Pemberton-Ross, and Alastair Kay, Phys. Rev. Leet. 106 (2011) 020503.

[3] V. karimipour, M. Sarmadi Rad, and M. Asoudeh, Phys. Rev. A 85 (2012) 010302(R).

[4] N. Behzadi, S. Kazemi Rudsary, B. Ahansaz Salmasi, Eur. Phys J. D——(2013).

[5] M. Mohseni, P. Rebentrost, S. Lloyd and A. Aspuru-Guzik, J. Chem. Phys. 129, 174106
(2008).

[6] R.J. Sension, Nature 446, 740 (2007).

[7] M. B. Plenio and S. F. Huelga. New J. Phys. 10, 113019 (2008).

[8] F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, J. Chem. Phys. 131,
105106 (2009).

[9] A. W. Chin, A. Datta, F. Caruso, S. F. Huelga, and M. B. Plenio, New J. Phys. 12,
065002 (2010).

[10] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd and A. Aspuru-Guzik, New J. Phys. 11,
0330 (2009).

[11] I. Kassal and A. Aspuru-Guzik, New J. Phys. 14, 053041 (2012).

[12] I. Sinayskiy, A. Marais, F. Petruccione and A. Ekert, Phys. ev. Lett. 108, 020602 (2012).

[13] J. Lim, M. Tame, K. H. Yee, J-S. Lee and J. Lee, New J. Phys. 16, 053018 (2014).

[14] E. J. OReilly and A. Olaya-Castro, Nature Communications,——-, (2014).

[15] E. K. Irish, R. Gomez-Bombarelli and B. W. Lovett, Phys. Rev. A 90, 012510 (2014).

[16] F. L. Semi, K. Furuya and G. J. Milburn, New J. Phys. 12, 083033 (2010).

[17] A. Asadian, M. Tiersch, G. G. Guerreschi, J. Cai, S. Popescu and H. J. Briegel, New J.
Phys. 12, 075019 (2010).

[18] F. Caruso, New J. Phys. 16 (2014) 055015

[19] B. Cui, X. X. Yi and C. H. Oh, J. Phys. B: At. Mol. Opt. Phys. 45, 085501 (2012).

[20] N. Behzadi, B. Ahansaz and H. kasani, Phys. Rev. E, ——-, (2015).

[21] M. Christandl, N. Datta, T. C. Dorlas, A. Ekert, A. Kay, and A. J. Landahl, Phys. Rev.
A, 71, 032312 (2005).

[22] E. M. Laine, J. Piilo and H. P. Breuer, Phys. Rev. A, 81, 062115 (2010).

7



Figure 1:

Fig. 1. (a) Configuration of four interacting two-level atoms with J1,2 = J1,3 = J2,4 =
J3,4 = J , irreversibly connected to the sink site. (b) The equivalent configuration when the
set of basis introduced in Eqs. 2, is used.
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Fig. 2. (a) Configuration of four interacting two-level atoms with J1,2 = J1,3 = J2,4 =
−J3,4 = J , irreversibly connected to the sink site. Dephasing Markovian noises affect the
system through site 2 and 3. (b) The equivalent configuration when the set of basis intro-
duced in Eqs. 4, is used. Invariant subspaces are connected incoherently to each other by
the dephasing noises.
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Figure 2:
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Figure 3:

Fig. 3. The solid and dashed blue curves show the populations of the sinks or optimal
efficiency of transports for the coherent and incoherent transfer of excitation through first
and second configurations represented in Fig. 1 and Fig. 2 respectively, when all of the sites
are fixed. The solid and the dashed green curves indicate the sum of populations of all sites,
for the first and second configurations respectively.
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Figure 4:

Fig. 4. (a) Populations of the sinks for the optimal coherent (solid blue curve) and optimal
incoherent (dashed blue curve) transport when the site 1 oscillates around its equilibrium
along the horizontal line for both configurations with assumptions that, a = 1/4, φ = 0 and
ω0 = 1. (b) Time dependent of the coupling strength ζ1(t) = J1,2(t) = J1,3(t) (red curve)
and ζ2(t) = J2,4(t) = ±J3,4(t) = 1 (black curve) where, plus and minus are corresponding to
the coherent and incoherent transports respectively.
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Figure 5:

Fig. 5. (a) Populations of the sinks for the optimal coherent (solid blue curve) and optimal
incoherent (dashed blue curve) transport when the site 4 oscillates around its equilibrium
along the horizontal line for both configurations with assumptions that, a = 1/4, φ = 0 and
ω0 = 1. (b) Time dependent of the coupling strength ζ1(t) = J1,2(t) = J1,3(t) = 1 (black
curve) and ζ2(t) = J2,4(t) = ±J3,4(t) (red curve).

13



0 5 10 15 20 25 30
0

0.5

1

time(J
0
t)

po
pu

la
tio

n
(a)

0 5 10 15 20 25 30
0

2

4

6

8

time(J
0
t)

(b)

Figure 6:

Fig. 6. (a) Populations of the sinks for the optimal coherent (solid blue curve) and
optimal incoherent (dashed blue curve) transport when the sites 1 and 4 oscillate around
their equilibrium positions with the phase difference ∆φ = π, along the horizontal line with
assumptions for each of the oscillations that, a = 1/4 and ω0 = 1. (b) Time dependent of
the coupling strength ζ1(t) = J1,2(t) = J1,3(t) (black curve) and ζ2(t) = J2,4(t) = ±J3,4(t)
(red curve).
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Figure 7:

Fig. 7. (a) Populations of the sinks for the optimal coherent (solid blue curve) and
optimal incoherent (dashed blue curve) transport when the sites 2 and 3 (or site1 and 4)
oscillate around their equilibrium positions with the phase difference ∆φ = 0, along the
vertical line (horizontal line) with assumptions for each of the oscillations that, a = 1/4 and
ω0 = 1. (b) Time dependent of the coupling strength ζ1(t) = J1,2(t) = J1,3(t) = ζ2(t) =
J2,4(t) = ±J3,4(t).
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