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G-marked moduli spaces

Binru Li

Abstract

The aim of this paper is to investigate the closed subschemes of the moduli

spaces corresponding to projective varieties which admit an effective action

by a given finite group G. To achieve this, we introduce the moduli fuctor

M
G
h of G-marked Gorenstein canonical models with Hilbert polynomial h,

and prove the existence of Mh[G], the coarse moduli scheme for MG
h . Then

we show that Mh[G] has a proper and finite morphism to Mh so that its

image Mh(G) is a closed subscheme.

1 Introduction

The moduli theory of algebraic varieties was motivated by the attempt to fully un-

derstand Riemann’s assertion in [Rie57] that the isomorphism classes of Riemann

surfaces of genus g > 1 depend on (3g − 3) parameters (called ”moduli”). The

modern approach to moduli problems via functors was developed by Grothendieck

and Mumford (cf. [MF82]), and later by Gieseker, Kollár, Viehweg, et al (cf.

[Gie77],[Kol13],[Vie95]). The idea is to define a moduli functor for the given mod-

uli problem and study the representability of the moduli functor via an algebraic

variety or some other geometric object. For instance, in the case of smooth pro-

jective curves of genus g ≥ 2, we consider the (contravariant) functor Mg from

the category of schemes to the category of sets, such that

(1) For any scheme T , Mg(T ) consists of the T -isomorphism classes of flat pro-

jective families of curves of genus g over the base T .

(2) Given a morphism f : S → T , Mg(f) : Mg(T ) → Mg(S) is the map

associated to the pull back.
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It has been showed by Mumford that there exists a quasi-projective coarse moduli

scheme Mg for the functor Mg (cf.[Mum62]), in the following sense:

there exists a natural transformation η : Mg → Hom(−,Mg), such that ηSpec(C) :

Mg(Spec(C)) → Hom(Spec(C),Mg) is bijective and η is universal among such

natural transformations. This means that the closed points of Mg are in one to

one correspondence with the isomorphism classes of curves of genus g and given a

family X → T of curves of genus g, we have a morphism (induced by η) from T to

Mg such that any (closed) point t ∈ T is mapped to [Xt] in Mg.

The definitions are the same in higher dimensions, if one replaces curves of genus

g ≥ 2 by Gorenstein varieties with ample canonical classes. The existence of a

coarse moduli space is then more difficult to prove, we refer to [Vie95] and [Kol13]

for further discussions.

For several purposes, it is important to generalize the method to moduli problems

of varieties which admit an effective action by a given finite group G. Here we

consider the concept of a G-marked variety, which is a triple (X ,G,α) such that X

is a projective variety and α : G×X → X is a faithful action. The isomorphsims

between G-marked varieties are G-equivariant isomorphisms (for more details, see

definition 2.1). In similarity to the case of Mg, we study in this article the moduli

functor MG
h of G-marked Gorenstein canonical models with Hilbert polynomial h

such that, for any scheme T , MG
h (T ) is the set of T -isomorphism classes of G-

marked flat families of Gorenstein canonical models with Hilbert polynomial h

over the base T and, given a morphism f : S → T , MG
h (f) is the map associated

to the set of pull-backs (cf. 2.4).

We refer to the recently published survey article [Cat15], Section 10, for some

applications in the case of algebraic curves and surfaces; there the author discusses

several topics on the theory of G-marked curves and sketches the construction of

the moduli space of G-marked canonical models of surfaces.

The main theorem of this article is the following:

Theorem 1.1. Given a finite group G and a Hilbert polynomial h ∈ Q[t], there

exists a quasi-projective coarse moduli scheme Mh[G] for M
G
h , the moduli functor

of G-marked Gorenstein canonical models with Hilbert polynomial h.

The structure of this paper is as follows:

In section 2 we introduce the definition of ”G-marked varieties” and the moduli
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problem associated to it by defining the moduli functor M
G
h for a given group G

and Hilbert polynomial h.

In section 3 we study two basic properties (boundedness and local closedness) of

the moduli functor MG
h .

Recall that a moduli functor of varieties M is called bounded if the objects in

M(Spec(C)) are parameterized by a finite number of families (For a stronger

definition, see [Kov09], Definition 5.1). In this article we show in (3.20) that MG
h

is bounded by a family UG
N,h′ → HG

N,h′ over an appropriate subscheme of a Hilbert

scheme.

However the versal family UG
N,h′ → HG

N,h′ that we get in (3.20) may not belong to

M
G
h (H

G
N,h′), i.e., not every fibre of the family is a G-marked canonical model. Here

comes the problem of local closedness: roughly speaking, a moduli functor M of

varieties is called locally closed if for any flat projective family X → T , the subset

{t ∈ T |Xt ∈ M(Spec(C))} is locally closed in T (for a precise definition of local

closedness, see [Kov09], 5.C). We solve this problem in (3.22) by taking a locally

closed subscheme H̄G
N,h′ of H

G
N,h′ and considering the restriction of UG

N,h′ → HG
N,h′

to H̄G
N,h′.

In Section 4 we first apply Geometric Invariant Theory, obtaining the quotient

Mh[G] of H̄
G
N,h′ by some reductive groups. Then we prove that Mh[G] is the

coarse moduli scheme for our moduli fuctor MG
h .

2 G-marked varieties

In this article we work over the complex field C. By a ”scheme” we mean a

separated scheme of finite type over C, a point in a scheme is assumed to be a

closed point. Moreover, G shall always denote a finite group.

Definition 2.1 ([Cat15], definition 181). (1) A G-marked (projective) variety

(resp. scheme) is a triple (X,G, ρ) where X is a projective variety (resp. scheme)

and ρ : G→ Aut(X) is an injective homomorphism. Or equivalently, it is a triple

(X,G, α) where α : X ×G→ X is a faithful action of G on X .

(2) A morphism f between two G-marked varieties (X,G, ρ) and (X ′, G, ρ′) is a

G-equivariant morphism f : X → X ′, i.e., ∀g ∈ G, f ◦ ρ(g) = ρ′(g) ◦ f .

(3) A family of G-marked varieties (resp. schemes) is a triple ((p : X → T ), G, ρ),
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where G acts faithfully on X via an injective homomorphsim ρ : G → Aut(X)

and trivially on T , p is flat, projective and G-equivariant and ∀t ∈ T , the induced

triple (Xt, G, ρt) is a G-marked variety (resp. scheme).

(4) A morphism between two G-marked families ((p : X → T ), G, ρ) and ((p′ :

X′ → T ′), G, ρ′) is a commutative diagram:

X
f̃

−−−→ X′





y

p





y

p′

T
f

−−−→ T ′

where f̃ : X → X′ is a G-equivariant morphism.

(5) Let ((p : X → T ), G, ρ) be a G-marked family and f : S → T a morphism.

Denote by XS (or f ∗X) the fiber product of f and p, ρ induces a G-action ρS (or

f ∗ρ) on XS such that ((pS : XS → S), G, ρS) =: f ∗((p : X → T ), G, ρ) is again a

G-marked family.

Remark 2.2. Observe that, given a flat family of varieties X → T with a group

G acting on each fiber, we do not yet have a G-marked family, i.e., we may not

find an action of G on X. For any point t ∈ T , we can find a suitable analytic

neighborhood D such that the action of G on Xt can be extended to an action on

X|D → D. However if one wants to extend the action to the whole family, there

comes the problem of monodromy: for another point t′ ∈ T , the extensions along

two different paths connecting t and t′ may not result in same actions on Xt′.

Definition 2.3. A normal projective variety X is called a canonical model if X

has canonical singularities (cf. [Rei87]) and KX is ample.

Definition 2.4. Denote by Sch the category of schemes (over C). The moduli

functor of G-marked Gorenstein canonical models with Hilbert polynomial h ∈ Q[t]

is a contravariant functor:

M
G
h : Sch → Sets, such that

(1) For any scheme T ,

M
G
h (T ) := {((p : X → T ), G, ρ)| p is flat and projective, all fibres of p

are canonical models, ωX/T is invertible,

∀t ∈ T, ∀k ∈ N, χ(Xt, ω
k
Xt
) = h(k)}/ ≃
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where ”≃” is the equivalence relation given by the isomorphisms of G-marked

families over T (i.e., in the commutative diagram of 2.1 (4), take T ′ = T and

f = idT ).

(2) Given f ∈ Hom(S, T ), MG
h (f) : M

G
h (T ) → M

G
h (S) is the map associated to the

pull back, i.e.,

[((p : X → T ), G, ρ)] 7→ [((pS : XS → S), G, ρS)].

Remark 2.5. In this article, whenever we write ((X → T ), G, ρ) ∈ M
G
h (T ), we mean

choosing a representative ((X → T ), G, ρ) from the isomorphism class [((X →

T ), G, ρ)] ∈ M
G
h (T ).

In the case where G is trivial, we denote by Mh the corresponding functor.

3 Basic properties of MG
h

In this section we study two important properties of the moduli functor M
G
h :

boundedness and local closedness. The main results are (3.19), (3.20) for bound-

edness and (3.22) for local closedness.

In the case where G is trivial boundedness is already known (cf. [Kar00], [Mat86]).

However we can not apply it directly to the general case since we have an action

by G. Here we introduce the notion of ”bundle of G-frames” to solve this problem.

Let Y be a scheme and E a locally free sheaf of rank n on Y . Set

V(E) := SpecY Sym(E∨),

the geometric vector bundle associated to E over Y (cf. [Har77], Exercise II.5.18).

Definition 3.1 (Frame Bundle). Let E be a locally free sheaf of rank n on a

scheme Y . In this article we call (what is in bundle theory called) the principal

bundle associated to V(E) the frame bundle F(E) of E over Y . For any y ∈ Y ,

the fibre F(E)y over y is called the set of frames (i.e., bases) for the vector space

E ⊗ C(y).

Hence F(E) is the open subscheme of V(HomOY
(On

Y , E)) such that, ∀y ∈ Y , the

fibre F(E)y corresponds to the invertible homomorphisms. We denote a point in

F(E) as a pair (y, ψ), where y is a point in Y and ψ : Cn → E ⊗ C(y) is an

isomorphism of C-vector spaces.
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Proposition 3.2. Let E be a locally free sheaf of rank n on a scheme Y and

p : F(E) → Y the natural projection. There exists a tautological isomorphism

φE : On
F(E) → p∗E of sheaves on F(E) such that, for any point z := (y, ψ) ∈ F(E),

φE |{z} = ψ via the isomorphism Hom(Cn, p∗E ⊗ C(z)) ≃ Hom(Cn, E ⊗ C(y)).

Proof. This proposition is well known (the idea is similar to that of [Gro58]).

Observe that p∗E has n global sections s1(E), ..., sn(E) such that for any z =

(y, ψ) ∈ F(E), si(E) ⊗ C(z) = ψ(ei), where {ei}
n
i=1 is the canonical basis of Cn

and we identify p∗E ⊗ C(z) with E ⊗ C(y). Then the universal basis morphism

φE := (s1(E), ..., sn(E)) : O
n
F(E) → p∗E is an isomorphism of locally free sheaves.

Remark 3.3. The set of sections {si(E)}
n
i=1 (or equivalently, the isomorphism φE)

satisfy the following properties:

(1) Any morphism f : X → Y induces a morphism fF : F(f ∗E) → F(E), then we

have that f ∗
F (si(E)) = si(f

∗E).

(2) Given an isomorphism l : E1 → E2 of locally free sheaves on Y , then we obtain

an induced isomorphism lF : F(E1) → F(E2) commuting with the projections

pj : F(Ej) → Y , j = 1, 2. We have that l∗F (φE2) = p∗1(l) ◦ φE1 .

Definition 3.4. Let E be a locally free sheaf of rank n on a scheme Y : we say

that a group G acts faithfully and linearly on E if

(1) The action is given by an injective homomorphism ρ : G →֒ AutOY
(E);

(2) ∀y ∈ Y , the induced action ρy is a faithful representation of G on Cn.

In this case we call the pair (E , ρ) a locally free G-sheaf.

Definition 3.5. (1) Given φ ∈ Aut(Y ), let Γφ : Y → Y × Y be the graph map of

φ. The fixpoints scheme of φ (denoted by Fix(φ)) is the (scheme-theoretic) inverse

image of ∆ by Γφ, where ∆ is the diagonal subscheme of Y × Y .

(2) Given an action of G on Y , the fixpoints scheme of G on Y is:

Y G := ∩g∈GFix(φg),

where φg : Y → Y, y 7→ gy.

Remark 3.6. (1) Let f : X → Y be aG-equivariant morphism between two schemes

on which G acts. Then there is a natural restriction morphism f |XG : XG → Y G.

(2) Let G act on Y ; then for any subgroup H of G there is an induced C(H)-action

on Y H , where C(H) is the centralizer group of H in G.
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Definition 3.7. Let (E , ρ) be a locally free G-sheaf of rank n on Y . Given a

faithful linear representation β : G → GL(n,C), we define an action (β, ρ) of G

on HomOY
(On

Y , E): ∀g ∈ G, open subset U ⊂ Y, φ ∈ HomOY
(On

Y , E)(U) and s ∈

On
Y (U); (gφ)(s) := ρ(g)φ(β(g−1)s). The action (β, ρ) restricts naturally to F(E),

we denote by F(E , G, ρ; β) the corresponding fixpoints scheme: it is called the

bundle of G-frames of E associated to the action ρ with respect to β.

Remark 3.8. (1) Denoting by C(G, β) the centralizer group of β(G) in GL(n,C),

an easy observation is that ∀y ∈ Y , the fiber F(E , G, ρ; β)y corresponds to the

set of G-equivariant isomorphisms between the G-linear representations β and ρy.

Therefore we have that either F(E , G, ρ; β)y = ∅, or F(E , G, ρ; β)y ≃ C(G, β).

(2) If β, β ′ : G → GL(n,C) are equivalent representations (i.e., there exists g ∈

GL(n,C) such that β ′ = gβg−1), then we have that F(E , G, ρ; β) ≃ F(E , G, ρ; β ′).

Observe that if Y is connected and there exists y ∈ Y such that F(E , G, ρ; β)y ≃

C(G, β), then F(E , G, ρ; β)y′ ≃ C(G, β) for all y′ ∈ Y (See [Cat13], Prop 37), hence

we have the following definition:

Definition 3.9. Let Y be a connected scheme and (E , ρ) a locally free G-sheaf of

rank n on Y . We say that (E , ρ) (or E if the action is clear from the context) has

decomposition type β, where β : G→ Cn is a faithful representation, if there exists

y ∈ Y , such that ρy ≃ β.

Definition 3.10 (Bundle of G-frames). Let (E , ρ) be a locally free G-sheaf of rank

n on a scheme Y . We define the bundle of G-frames of E associated to ρ, denoted

by F(E , G, ρ) (or F(E , G) when ρ is clear from the context), as follows:

If Y is connected and E has decomposition type β, then F(E , G, ρ) := F(E , G, ρ; β).

In general F(E , G, ρ) is the (disjoint) union of the bundles of G-frames of E re-

stricted to each connected component.

Remark 3.11. Since we can vary β in its equivalence class, we see from (3.8) that

F(E , G) is unique up to isomorphisms.

Definition 3.12. Let (E , ρ) be a free G-sheaf of rank n on a scheme Y . The

action is said to be defined over C if there exists a G-equivariant isomorphism

φ : (On
Y , β) → (E , ρ), where β : G→ GL(n,C) is a faithful representation.
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Proposition 3.13. Let (E , ρ) be a locally free G-sheaf of rank n on a connected

scheme Y with decomposition type β. The projection p : F(E , G) → Y induces

an action p∗ρ on p∗E . Then (p∗E , p∗ρ) is defined over C : the morphism φE,G :=

φE |F(E,G) : (O
n
F(E,G), β) → (p∗E , p∗ρ) is a G-equivariant isomorphism, where φE is

the universal basis morphism defined in (3.2.

Proof. It is clear that φE,G is an isomorphism of sheaves, what remains to show is

that φE,G is G-equivariant. Since φE,G is an isomorphism of locally free sheaves,

it suffices to show that ∀(y, ψ) ∈ F(E , G), φE,G|{(y,ψ)} is G-equivariant. By our

construction in (3.2), we have that p−1(y) ⊂ V(HomOY
(On

Y , E))
G
y ≃ Hom(Cn, E ⊗

C(y))G, where the G-action is (β, ρy). Under this isomorphism the point (y, ψ)

corresponds exactly to φE,G|{(y,ψ)}, hence φE,G|{(y,ψ)} is G-equivariant.

Remark 3.14. Given a locally free G-sheaf (E , ρ) of rank n on Y , set si(E , G) :=

si(E)|F(E,G), then {si(E , G)} and φE,G have similar properties as {si(E)} and φE

have in (3.3).

Proposition 3.15. Assume that Y is connected and (E , ρ) is a locally free G-sheaf

of rank n on Y with decomposition type β. Then there is a natural C(G, β)-action

on F(E , G) and Y is a categorical quotient of F(E , G) by C(G, β).

Proof. To see the C(G, β)-action, it suffices to notice that the actions β and ρ on

F(E) commute, i.e., ∀g ∈ G, β(g)ρ(g) = ρ(g)β(g) as elements in Aut(F(E)).

From the construction of F(E , G), one observes that the projection p : F(E , G) →

Y is affine and C(G, β)-equivariant, therefore we may assume that Y,F(E , G) are

affine schemes and A (resp. B) is the coordinate ring of Y (resp. F(E , G)). Since p

is surjective and C(G, β)-equivariant, we have that A ⊂ BC(G,β) ⊂ B. Noting that

B is a finitely generated C-algebra and C(G, β) is a reductive group (cf. 3.17),

we conclude that BC(G,β) is a finitely generated C-algebra and SpecBC(G,β) is the

universal categorical quotient of F(E , G) by C(G, β) (see [MF82], p.27). Now since

every fibre of p is a closed C(G, β)-orbit (in fact isomorphic to C(G, β)), which must

map to a point in SpecBC(G,β), for dimensional reasons we conclude that BC(G,β)

is a finite A-module. For any maximal ideal m of A, by the definition of a universal

categorical quotient (cf. [MF82], p.4) we see that Spec(BC(G,β) ⊗A C(m)) is the

categorical quotient of p−1(Spec(C(m))) ≃ C(G, β) by C(G, β), hence BC(G,β)⊗A

C(m) = C, which implies that (BC(G,β)/A)⊗A C(m) = 0. By Nakayama’s lemma,

we have that (BC(G,β)/A)m = 0, which implies that A = BC(G,β).
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Before stating the Boundedness theorem, let’s first recall the action of general

linear groups on Hilbert schemes (cf. [Vie95], Section 7.1).

Denote by Hn,h the Hilbert scheme of the closed subschemes of Pn with Hilbert

polynomial h and by Un,h ⊂ Hn,h×Pn the universal family. Let Φ : GL(n+1,C)×

Pn → Pn be the natural action, so that there is an action Ψ : GL(n+1)×Hn,h →

Hn,h, such that ∀g ∈ GL(n+1,C), Un,h is invariant under the morphism Ψg ×Φg.

Given a (finite) group G, a faithful representation of G on V := Cn+1 is given

by an injective homomorphism β : G → GL(n + 1,C), or equivalently, by a

decomposition V =
⊕

ρ∈Irr(G)W
n(ρ)
ρ . Two representations are equivalent (i.e. the

images of G are conjugate as subgroups of GL(n + 1,C)) if and only if they have

the same decomposition type (cf. [Ser77], Chap.2), hence the set of equivalence

classes Bn of G-representations on V is finite.

Definition 3.16. Let β : G → GL(n + 1,C) be an injective homomorphism, it

induces an action Ψ|β(G) of G on Hn,h. Define HG,β
n,h to be the fixpoints scheme of

β(G) on Hn,h. Denote by UG,β
n,h the restriction of Un,h from Hn,h to HG,β

n,h .

Remark 3.17. (1) We have already seen that C(G, β), the centralizer group of β(G)

in GL(n+1,C), has a natural action on HG,β
n,h (cf. remark 3.6). By Schur’s Lemma

one obtains that C(G, β) ≃ Πρ∈Irr(G)GL(n(ρ),C), hence C(G, β) is reductive.

(2) Let β, β ′ be two equivalent representations, such that β ′ = gβg−1 for some

g ∈ GL(n+1,C), then HG,β
n,h is isomorphic to HG,β′

n,h via Ψg as subschemes of Hn,h.

(3) Since UG,β
n,h (as a subscheme of HG,β

n,h × Pn) is invariant under the morphism

id× (Φ|β(G)), we obtain a G-marked family ((pβ : UG,β
n,h → HG,β

n,h ), G, β).

Definition 3.18. Let V be a C-vector space of dimension n + 1. Denoting by

Bn the set of equivalence classes of linear representations of G on V , we pick one

representative in each equivalence class of Bn and define:

((p : UG
n,h → HG

n,h), G,Bn) :=
⊔

[β]∈Bn

((pβ : UG,β
n,h → HG,β

n,h ), G, β),

where ”
⊔

” means a disjoint union.

Note that two different choices of representatives result in isomorphic families.

By Matsusaka’s big theorem ([Mat86], Theorem 2.4), there exists an integer

k0 such that ∀X ∈ Mh(SpecC), ω
k0
X is very ample and has vanishing higher coho-

mology groups, we fix one such k0 for the rest of the article (we refer to [Siu93],
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[Dem96] and [Siu02] for an effective bound on k0). Let (p : X → T ) ∈ Mh(T );

by ”Cohomology and Base change” (cf. [Mum70], II.5), p∗(ω
k0
X/T ) is a locally free

sheaf of rank h(k0). Moreover we have that p∗p∗(ω
k0
X/T ) ։ ωk0

X/T , which induces

a T -embedding X →֒ P(p∗(ω
k0
X/T )) such that ωk0

X/T ≃ O
P(p∗(ω

k0
X/T

))
(1) (cf. [Har77],

II.7.12). Assume in addition that p∗(ω
k0
X/T ) is trivial, the T -embedding becomes

X →֒ T × PN (N := h(k0)− 1). Set h′(k) := h(k0k), then there exists a morphsim

f : T → HN,h′ such that X ≃ f ∗UN,h′. Now taking the group action into account,

we have the following:

Proposition 3.19 (Boundedness). Given ((p : X → T ), G, ρ) ∈ M
G
h (T ), denote

by ρ̄ the induced action of G on p∗(ω
k0
X/T ). Assume that p∗(ω

k0
X/T ) is trivial and ρ̄

is defined over C, then there exists f : T → HG
N,h′, such that ((X → T ), G, ρ) ≃

f ∗((UG
N,h′ → HG

N,h′), G,BN), and ω
k0
X/T ≃ OT×PN (1)|X.

Proof. It suffices to prove the statement on each connected component of T , hence

we may assume that T is connected and p∗(ω
k0
X/T ) has decomposition type β. The

action ρ̄ on p∗(ω
k0
X/T ) induces an action of G on ProjT (p∗(ω

k0
X/T )) = T × PN such

that the embedding i : X → T × PN is G-equivariant. Since by assumption ρ̄ is

defined over C, we may require that the action of G on T × PN is given by π∗
2(β),

where π2 : T × PN → PN is the projection onto the second factor. Now by the

universal property of the Hilbert scheme, there exists f : T → HN,h′, such that

i(X) = (f × IdPN )∗UN,h′. To complete the proof, it remains to show that f factors

throughHG,β
N,h′, which is equivalent to the property that ∀g ∈ G,Ψβ(g)◦f = f ; again

by the universal property of the Hilbert scheme, this is equivalent to showing that

∀g ∈ G, ((Ψβ(g) ◦ f)× idPN )∗UN,h′ = i(X). However we have that

((Ψβ(g) ◦ f)× idPN )∗UN,h′ = (f × idPN )∗(Ψβ(g) × idPN )∗UN,h′

= (f × idPN )∗(idUN,h′
× Φβ(g)−1)∗UN,h′ = (idT × Φβ(g)−1)∗(f × idPN )∗UN,h′

= (idT × Φβ(g)−1)∗(i(X)),

which is simply i(X) as the embedding i : X → T × PN is G-equivariant.

Combining (3.13) with (3.19), we have the following corollary:

Corollary 3.20. For any scheme T and ((p : X → T ), G, ρ) ∈ M
G
h (T ), let q :

F(p∗(ω
k0
X/T ), G) → T be the bundle of G-frames of p∗(ω

k0
X/T ) over T. Then the

10



isomorphism φ
p∗(ω

k0
X/T

),G
induces a morphism fX/T,k0,G : F(p∗(ω

k0
X/T ), G) → HG

N,h′,

such that MG
h (q)((X → T ), G, ρ) ≃ f ∗

X/T,k0,G
((UG

N,h′ → HG
N,h′), G,BN), where N :=

h(k0)− 1, h′(k) := h(k0k).

Remark 3.21. Given an isomorphism ((p : X1 → T ), G, ρ1) ≃ ((p : X2 → T ), G, ρ2),

we have an induced isomorphsim l : p∗(ω
k0
X1/T

) → p∗(ω
k0
X2/T

) of G-sheaves on

T . Both p∗(ω
k0
X1/T

) and p∗(ω
k0
X1/T

) have decomposition type β. Then l induces a

C(G, β)-equivariant isomorphism: lF : F(p∗(ω
k0
X1/T

), G) → F(p∗(ω
k0
X2/T

), G). From

3.3, 3.14 and the proof of 3.19 we have that fX1/T,k0,G = fX2/T,k0,G ◦ lF .

We have already proven that MG
h is bounded (in the sense of 3.20). However

in general HG
N,h′ may not be a parametrizing space for M

G
h , i.e., some fibre of

((UG
N,h′ → HG

N,h′), G,BN) may not be a canonical model. We will see that the set

of points in HG
N,h′ over which the fibre is a Gorenstein canonical model forms a

locally closed subscheme H̄G
N,h′. In general such problems correspond to studying

the local closedness of the moduli functor (we refer to [Kov09], 5.C, for more

details).

Here we do not state a general ”G-version” of local closedness, but only consider

the case of Hilbert schemes.

Proposition 3.22. Using the same notations as in (3.19), there exists a locally

closed subscheme H̄G
N,h′ of H

G
N,h′, satisfying the following conditions:

(1) ((ŪG
N,h′ → H̄G

N,h′), G,BN) := ((UG
N,h′ → HG

N,h′), G,BN)|H̄G
N,h′

∈ M
G
h (H̄

G
N,h′)

(2) The morphism f that we get in (3.19) factors through H̄G
N,h′.

Proof. In the case where G is trivial the existence of H̄N,h′ follows from the

facts that the subset {x ∈ HN,h′| (ω
k0
UN,h′

)x ≃ (OPN (1)|UN,h′
)x} is closed in HN,h′

(cf.[Mum70], II.5, Corollary 6) and being canonical and Gorenstein is an open

property (cf.[Elk81]).

In general we set H̄G,β
N,h′ := H̄N,h′

⋂

HG,β
N,h′ and H̄

G
N,h′ :=

⊔

H̄G,β
N,h′. For condition (1),

the fact that ŪN,h′ → H̄N,h′ ∈ Mh(H̄N,h′) implies that ŪG
N,h′ → H̄G

N,h′ ∈ Mh(H̄
G
N,h′),

now taking the action of G into account, we have that ((ŪG
N,h′ → H̄G

N,h′), G,BN) ∈

M
G
h (H̄

G
N,h′). Condition (2) is satisfied for similar reasons.

Remark 3.23. (1) Given (X1, G, ρ1), (X2, G, ρ2) ∈ M
G
h (SpecC), such that H0(ωk0X1

)

and H0(ωk0X2
) have the same decomposition type β, by (3.22) there exist fi :

Spec(C) → H̄G,β
N,h′, (Xi, G, ρi) ≃ M

G
h (fi)((Ū

G,β
N,h′ → H̄G,β

N,h′), G, β) for i = 1, 2.
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From the proof of 3.19 we see that X1, X2 are isomorphic as G-marked varieties

⇐⇒ ∃g ∈ C(G, β) such that f1(Spec(C)) = Ψgf2(Spec(C)).

(2) Following the notations in (3.20), assume that T is connected and p∗(ω
k0
X/T ) has

decomposition type β, denote by Ψ′ the action of C(G, β) on F(p∗(ω
k0
X/T ), G), from

the proof in (3.13) we see that ∀g ∈ C(G, β), Ψ′
g×Φg leaves q

∗X = f ∗(ŪG,β
N,h′) invari-

ant as a subscheme of F(p∗(ω
k0
X/T ), G)× PN , i.e. (Ψ′

g × Φg)f
∗(ŪG,β

N,h′) = f ∗(ŪG,β
N,h′).

This implies that

(Ψ′
g × id)f ∗(ŪG,β

N,h′) = f ∗((id× Φg−1)(ŪG,β
N,h′)) = f ∗((Ψg × id)(ŪG,β

N,h′)).

Therefore we conclude that the map we get in (3.20), f : F(p∗(ω
k0
X/T ), G) → H̄G,β

N,h′,

is C(G, β)-equivariant.

4 The Construction of Mh[G]

In section 3 we have obtained a parametrizing space H̄G
N,h′ for the moduli functor

M
G
h , now we will construct Mh[G] as a quotient space of H̄G

N,h′ and show that it is

exactly the coarse moduli scheme for MG
h .

In (3.17) we have seen that the group C(G, β) acts on HG,β
N,h′: it is clear that the

subscheme H̄G,β
N,h′ is invariant under this action. The first goal of this section is to

show that the quotient H̄G,β
N,h′/C(G, β) exists (as a scheme).

Set SC(G, β) := SL(N + 1,C)
⋂

C(G, β), it is easy to see that H̄G,β
N,h′/C(G, β) ≃

H̄G,β
N,h′/SC(G, β) (if one of them exists). Therefore from now on we consider

H̄G,β
N,h′/SC(G, β) instead. (It is not difficult to show that SC(G, β) is reductive.)

Lemma 4.1. SC(G, β) acts properly on H̄G,β
N,h′ and ∀x ∈ H̄G,β

N,h′, the stabilizer

subgroup Stab(x) is finite.

Proof. In the case where G is trivial the lemma is known by studying the sepa-

ratedness of the corresponding functor (cf. [Vie95], 7.6, 8.21; [Kov09], 5.D). Now

since SC(G, β) is a closed subgroup of SL(N + 1,C) and H̄G,β
N,h′ is a closed sub-

scheme of H̄N,h′ which stays invariant under the action of SC(G, β), the lemma

follows immediately.

In order to apply Geometric Invariant theory, we have to find a SC(G, β)-

linearized invertible sheaf on H̄G,β
N,h′ and verify some stability conditions (cf. [MF82],

12



Chap.1). Let’s first look at the case where G is trivial, let p : ŪN,h′ → H̄N,h′ be

the universal family, define λk0 := det(p∗(ω
k0
ŪN,h′/H̄N,h′

)). A result of Viehweg (see

[Vie95] 7.17) states that λk0 admits an SL(N + 1,C)-linearization and H̄N,h′ =

(H̄N,h′)
s(λk0), where (H̄N,h′)

s(λk0) denotes the set of SL(N + 1,C)-stable points

with respect to λk0 . Then it is easy to get the following proposition:

Proposition 4.2. There exists a geometric quotient (MG,β
k0,h

, πβ) of H̄
G,β
N,h′ by SC(G, β),

moreover:

(1) The quotient map πβ : H̄G,β
N,h′ → M

G,β
k0,h

is an affine morphism.

(2) There exists an ample invertible sheaf L on M
G,β
k0,h

such that π∗
βL ≃ (λG,βk0

)n for

some n > 0, where λG,βk0
:= det(p∗(ω

k0
ŪG,β

N,h′
/H̄G,β

N,h′

)).

Proof. First note that ωk0
ŪN,h′/H̄N,h′

|ŪG,β

N,h′
≃ ωk0

ŪG,β

N,h′
/H̄G,β

N,h′

(cf. [HK04], Lemma 2.6),

then by applying ”cohomology and base change”, we have that λG,βk0
= λk0 |H̄G,β

N,h′
.

Since H̄G,β
N,h′ (as a subscheme of H̄N,h′) is invariant under the SC(G, β)-action, the

SL(N +1,C)-linearization of λk0 induces a natural SC(G, β)-linearization of λG,βk0
.

By Lemma 4.1, we have that SL(N + 1,C) acts properly on H̄N,h′ and SC(G, β)

acts properly on H̄G,β
N,h′. Noting that a one-parameter subgroup µ : C∗ → SC(G, β)

is also a subgroup of SL(N + 1,C) and that H̄G,β
N,h′ is closed in HG,β

N,h′, we see that

for any x ∈ H̄G,β
N,h′, limt→0(µ(t)x) exists in H̄G,β

N,h′ if and only if it exists in HG,β
N,h′.

Now by applying the Hilbert-Mumford criterion (cf. [MF82], Theorem 2.1), we

have that (H̄N,h′)
s(λk0) = H̄N,h′ ⇒ (H̄G,β

N,h′)
s(λG,βk0

) = H̄G,β
N,h′. Then the proposition

is just a result of the standard GIT methods (cf. [MF82], Theorem 1.10).

We are ready to prove the main theorem (1.1):

Proof of (1.1). Set Mh[G] :=
⊔

[β]∈BN
M

G,β
k0,h

, and note that if M
G
h (SpecC) = ∅

then Mh[G] = ∅.

Let us make the following convention: ∀ natural transformation θ : MG
h → Hom(−, Q),

∀ scheme T and [((p : X → T ), G, ρ)] ∈ M
G
h (T ), we write θT (X) or simply θ(X) as

an abbreviation for θT ([((p : X → T ), G, ρ)]).

Step 1. Construction of a natural transformation η : MG
h → Hom(−,Mh[G]):

Let T be a scheme and ((p : X → T ), G, ρ) ∈ M
G
h (T ). It suffices to define η on each

connected components of T , hence we assume furthermore that T is connected.

We have the bundle of G-frames of p∗(ω
k0
X/T ) over T , q : F(p∗(ω

k0
X/T ), G) → T .
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By (3.20) and (3.22) there exists a morphsim fX/T,k0,G : F(p∗(ω
k0
X/T ), G) → H̄G,β

N,h′,

such that MG
h (q)((X → T ), G, ρ) ≃ M

G
h (fX/T,k0,G)((Ū

G,β
N,h′ → H̄G,β

N,h′), G, β) for some

[β] ∈ BN . Set f̄X/T,k0,G := πβ ◦ fX/T,k0,G : F(p∗(ω
k0
X/T ), G) → M

G,β
k0,h

, by (3.23-2) we

see that f̄X/T,k0,G is C(G, β)-equivariant (we take the trivial action on M
G,β
k0,h

),

applying (3.15) we get a (unique) morphsim ηT (X) : T → Mh[G] such that

f̄X/T,k0,G = ηT (X) ◦ q. Note that by 3.21 ηT (X) is independent of the represen-

tative family ((p : X → T ), G, ρ) that we choose, hence well defined.

In order to show that η is a natural transformation, let l ∈ Hom(S, T ) and

((p : X → T ), G, ρ) ∈ M
G
h (T ), it suffices to show that ηS(XS) = ηT (X) ◦ l. With-

out loss of generality we assume that S and T are connected and p∗(ω
k0
X/T ) has

decomposition type β, now consider the following commutative diagram:

F((pS)∗(ω
k0
XS/S

), G)
l̃

−−−→ F(p∗(ω
k0
X/T ), G)





y

qS





y

q

S
l

−−−→ T

From (3.3-1) and (3.14) we see that f̄XS/S,k0,G = f̄X/T,k0,G ◦ l̃, then note that

f̄XS/S,k0,G, f̄X/T,k0,G and l̃ are all C(G, β)-equivariant, therefore we get that ηS(XS) =

ηT (X) ◦ l by (3.15).

Step 2. Mh[G] is the coarse moduli scheme for MG
h :

(1) ηSpecC induces a one-to-one correspondence between M
G
h (SpecC) and the set

of (closed) points of Mh[G].

Surjectivity follows from (3.22), injectivity follows from (3.23-1)

(2) The universal property of η.

Let θ : MG
h → Hom(−, Q) be another natural transformation. We will show that

there exists a unique morphism γ : Mh[G] → Q, such that θ = Hom(γ) ◦ η. For

any [β] ∈ BN , consider the universal family ((ŪG,β
N,h′ → H̄G,β

N,h′), G, β) ∈ M
G
h (H̄

G,β
N,h′).

It induces a morphism θH̄G,β

N,h′
(ŪG,β

N,h′) : H̄
G,β
N,h′ → Q. For any g ∈ C(G, β), we have

that

(Ψg × idPN )((ŪG,β
N,h′ → H̄G,β

N,h′), G, β) = (idH̄G,β

N,h′
× Φg−1)((ŪG,β

N,h′ → H̄G,β
N,h′), G, β)

as subschemes of H̄G,β
N,h′ × PN , noting that the right hand side is isomorphic to

((ŪG,β
N,h′ → H̄G,β

N,h′), G, β) as G-mark families, we see that

θH̄G,β

N,h′
(ŪG,β

N,h′) = θH̄G,β

N,h′
(ŪG,β

N,h′) ◦Ψg,
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which implies that θH̄G,β

N,h′
(ŪG,β

N,h′) is C(G, β)-equivariant (we take the trivial ac-

tion on Q), hence it induces a (unique) morphism γβ : M
G,β
k0,h

→ Q such that

θH̄G,β

N,h′
(ŪG,β

N,h′) = γβ ◦ ηH̄G,β

N,h′
(ŪG,β

N,h′). Now we can define γ : Mh[G] → Q, such that

the restriction of γ to each M
G,β
k0,h

is γβ.

Given ((p : X → T ), G, ρ) ∈ M
G
h (T ), let q : F(p∗(ω

k0
X/T ), G) → T be the bundle of

G-frames of p∗(ω
k0
X/T ), we assume again that T is connected and p∗(ω

k0
X/T ) has de-

composition type β. By (3.20) and (3.22) there exists fX/T,k0,G : F(p∗(ω
k0
X/T ), G) →

H̄G,β
N,h′ such that

M
G
h (q)((X → T ), G, ρ) ≃ M

G
h (fX/T,k0,G)((Ū

G,β
N,h′ → H̄G,β

N,h′), G, β),

hence we have that

θ(q∗X) = θH̄G,β

N,h′
(ŪG,β

N,h′) ◦ fX/T,k0,G = γβ ◦ ηH̄G,β

N,h′
(ŪG,β

N,h′) ◦ fX/T,k0,G = γβ ◦ η(q
∗X),

where the first and third equalities hold since θ, η are natural transformation, the

second equality holds from the construction of γβ. Finally the fact that fX/T,k0,G

and θH̄G,β

N,h′
(ŪG,β

N,h′) are C(G, β)-equivariant ⇒ θ(q∗X) is also C(G, β)-equivariant.

By (3.15) ∃! l ∈ Hom(T,Q) such that θ(q∗X) = l ◦ q, which implies that θT (X) =

l = γβ ◦ ηT (X).

As an application of our results, we show that the locus Mh(G) inside Mh

of the varieties which admit an effective action by the group G is closed. This

has been proven in [Cat83], theorem 1.8 for the case of surfaces, the idea there

generalizes naturally to the higher dimensional case.

Given a faithful representation β : G→ GL(N +1,C), we have a natural inclusion

iβ : H̄G,β
N,h′ ⊂ H̄N,h′. Note that the restriction of the quotient map π : H̄N,h′ → Mh

to H̄G,β
N,h′ is SC(G, β)-equivariant, hence we obtain a morphism uG,βk0,h

: MG,β
k0,h

→ Mh.

We define a morphism uGh : Mh[G] → Mh such that uGh |MG,β
k0,h

= uG,βk0,h
. We denote

by Mh(G) the (scheme-theoretic) image of uGh in Mh. Then we can interpret the

problem into showing that uGh maps Mh[G] surjectively onto Mh(G).

Corollary 4.3. The morphism uGh : Mh[G] → Mh is finite and maps Mh[G]

surjectively onto Mh(G); Mh(G) is a closed subscheme of Mh.

Proof. It is easy to see that uGh is quasi-finite: given a point [X ] ∈ Mh, since

Aut(X) is finite, then the set of injective homomorphisms ρ : G → Aut(X) is
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finite, hence (uGh )
−1([X ]), which corresponds to the set of isomorphism classes of

G-markings on X , is also finite.

For the remaining statements, it suffices to show that uGh is proper, which is equiv-

alent to showing that uG,βk0,h
: MG,β

k0,h
→ Mh is proper for each [β] ∈ BN . Applying

the valuative criterion of properness, we have to prove that for every pointed curve

(C,O) (not necessarily complete) and for any commutative diagram

C⋆ f ′

−−−→ M
G,β
k0,h





y

i





y

uG,β
k0,h

C
f

−−−→ Mh

where C⋆ := C − {O}, there exists a unique l : C → M
G,β
k0,h

making the whole

diagram commute.

By GIT we know that M
G,β
k0,h

is quasi-projective and hence separated, therefore

the uniqueness of l is clear. For the existence of l, since πβ : H̄G,β
N,h′ → M

G,β
k0,h

is

a quotient map of quasi-projective schemes, it suffices to show that there exist a

finite morphism v : (B,O′) → (C,O) and a morphism l′ : B → H̄G,β
N,h′ such that

(∗) uG,βk0,h
◦ πβ ◦ l

′ = f ◦ v and πβ ◦ (l
′|B⋆) = f ′ ◦ (v|B⋆),

where B⋆ := B − {O′}.

Considering the quotient map π : H̄N,h′ → Mh, we can assume without loss of

generality that we have a morphism m : C → H̄N,h′, such that f = π ◦m. Then

we obtain a family (m∗(ŪN,h′) := X → C) ∈ Mh(C) such that X ⊂ C × PN . The

idea of constructing the morphism v : (B,O′) → (C,O) is similar to that of 3.13.

We consider first the subspace

Z := {(t, A(t)|A(t)Xt corresponds to a point in H̄
G,β
N,h′} ⊂ C ×GL(N + 1,C).

By assumption we see that p1 : Z − p−1
1 (O) → C⋆ is surjective, where p1 : T ×

GL(n+1,C) → T is the projection onto the first factor, hence we can find a curve

B′ inside Z, such that p1|B′ : B′ → C⋆ is surjective. For similar reasons as in

3.13, we get a G-marked family ((p1|B′)∗X⋆ → B′), G, β), where X⋆ := X − XO.

After possibly taking the normalization of B′, we can extend the morphism p1|B′

to a morphism v : (B,O′) → (C,O) and we see that (((v|B⋆)∗X⋆ → B⋆), G, β) is a

G-marked family, where B⋆ := B − {O′}.
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We claim that the action of G on (v|B⋆)∗X⋆ → B⋆ can be extended to an action

on v∗X := X′ → B. Since ωk0
X′/T induces an embedding X′ → B × PN , we see that

the claim is equivalent to that the action of G on Γ(X′ − X′
O′, ω

k0
X′/T ) extends to

an action on Γ(X′, ωk0
X′/T ). Noting that X′ is normal (since X′ → T is a Gorenstein

fibration of canonical models over a smooth base) and X′
O′ has codimension≥ 2 in

X′, the restriction map

Γ(X′, ωk0
X′/T ) → Γ(X′ − X′

O′, ω
k0
X′/T )

is in fact an isomorphsim, hence the action of G on Γ(X′ − X′
O′, ω

k0
X′/T ) extends

naturally to an action on Γ(X′, ωk0
X′/T ).

Now we have a G-marked family ((X′ → B), G, β), by 3.19 we obtain a morphism

l′ : B → H̄G,β
N,h′, it is easy to check that l′ satisfies (∗).
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