
ar
X

iv
:1

60
1.

00
50

6v
1 

 [
m

at
h.

C
O

] 
 4

 J
an

 2
01

6

Tri-connectivity Augmentation in Trees

S.Dhanalakshmi, N.Sadagopan, D.Sunil Kumar

Indian Institute of Information Technology, Design and Manufacturing, Kancheepuram, Chennai, India.
{mat12d001,sadagopan}@iiitdm.ac.in

Abstract. For a connected graph, a minimum vertex separator is a minimum set of vertices whose
removal creates at least two connected components. The vertex connectivity of the graph refers to the
size of the minimum vertex separator and a graph is k-vertex connected if its vertex connectivity is k,
k ≥ 1. Given a k-vertex connected graph G, the combinatorial problem vertex connectivity augmentation

asks for a minimum number of edges whose augmentation to G makes the resulting graph (k+1)-vertex
connected. In this paper, we initiate the study of r-vertex connectivity augmentation whose objective
is to find a (k + r)-vertex connected graph by augmenting a minimum number of edges to a k-vertex
connected graph, r ≥ 1. We shall investigate this question for the special case when G is a tree and
r = 2. In particular, we present a polynomial-time algorithm to find a minimum set of edges whose
augmentation to a tree makes it 3-vertex connected. Using lower bound arguments, we show that any
tri-vertex connectivity augmentation of trees requires at least ⌈ 2l1+l2

2
⌉ edges, where l1 and l2 denote

the number of degree one vertices and degree two vertices, respectively. Further, we establish that our
algorithm indeed augments this number, thus yielding an optimum algorithm.

1 Introduction

The study of vertex separators and associated combinatorial problems has been a fascinating research in
the field of combinatorial computing. One such classical problem, namely connectivity augmentation focuses
on increasing the vertex connectivity by one by augmenting a minimum number of edges. This study was
initiated by Eswaran et al [4] and they studied the fundamental problem bi-connectivity augmentation:
given a 1-connected graph G, find a minimum number of edges whose augmentation to G makes it 2-
vertex connected (bi-vertex connected). Subsequently, Hsu [5,6] studied the tri-connectivity augmentation
of bi-vertex connected graphs, making a bi-vertex connected graph 3-vertex connected by augmenting a
minimum number of edges. The complexity of general vertex connectivity augmentation, i.e., given a k-
vertex connected graph, find a minimum number of edges whose augmentation to the given graph makes
it (k + 1)-vertex connected, was settled by Vegh [3] and this result has been a breakthrough result as the
complexity of which was open for al most three decades.
There are some note-worthy results as far as bi (tri)-connectivity augmentation problems are concerned. To
solve bi-connectivity augmentation, in [1,4], the given 1-vertex connected graph is transformed into a block
tree and the augmentation is done with the help of the block tree. In [7], a bi-connected component tree
transforms the 1-connected graph and helps in obtaining a biconnectivity augmentation set. Interestingly,
in both the approaches a minimum bi-vertex connectivity augmentation can be obtained with the help
of proposed tree-like graphs. Recent work due to Surabhi et. al [2] developed a strategy using which one
can augment many edges in parallel, thus obtaining a simpler approach for sequential and parallel bi-
vertex connectivity augmentation. However, their work is restricted to the class of trees which are 1-vertex
connected. Similarly, for tri-connectivity augmentation of 2-vertex connected graphs, a 3-block tree of 2-
vertex connected graphs was used to obtain a minimum tri-connectivity augmentation set [1,7].
In this article, we initiate the study of r-vertex connectivity augmentation which is to find a (k + r)-vertex
connected graph from a k-vertex connected graph by augmenting a minimum number of edges. Having
known the results of [3], it is natural to know whether iterative application of algorithm mentioned in [3]
r times will yield a (k + r)-vertex connected graph. It is important to highlight the fact that even for tri-
connectivity augmentation of 1-connected graphs the chain approach fails to produce a minimum connectivity
augmentation set, i.e, the approach of making a 1-vertex connected graph 2-vertex connected and making a
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2-vertex connected graph 3-vertex connected does not yield an optimum augmentation set. This calls for a
good understanding of minimum vertex separators of k-vertex connected graphs and their role in r-vertex
connectivity augmentation. Towards this attempt, we shall explore the study of tri-connectivity augmentation
in trees. In particular, we present the following results in this paper;

– Given a tree T , any minimum tri-connectivity augmentation set has at least ⌈ 2l1+l2
2

⌉ edges, where l1 and
l2 denote the number of degree one vertices and degree two vertices, respectively.

– A polynomial-time algorithm to compute a minimum tri-connectivity augmentation set meeting the
above bound.

We believe that the results presented in this paper can be extended to tri-connectivity augmentation of
1-connected graphs.
Roadmap: In the next section, we present lower bound results for tri-connectivity augmentation followed
by an algorithm which will yield the minimum tri-connectivity augmentation set in polynomial time. We
conclude this paper with some directions for r-connectivity augmentation of 1-connected graphs, r ≥ 3.

1.1 Connectivity Augmentation Preliminaries

Notation and definitions are as per [8,9,10]. Let G = (V,E) be an undirected connected graph where V (G)
is the set of vertices and E(G) ⊆ {{u, v} | u, v ∈ V (G), u 6= v}. For v ∈ V (G), NG(v) = {u | {u, v} ∈ E(G)}
and dG(v) = |NG(v)| refers to the degree of v in G. Let v ∈ V (G) is said to be a leaf if dG(v) = 1. δ(G)
and ∆(G) refers to the minimum and maximum degree of G, respectively. For simplicity, we use δ and ∆
when the associated graph is clear from the context. Puv = (u = u1, u2, . . . , uk = v) is a path defined on
V (Puv) = {u = u1, u2, . . . , uk = v} such that E(Puv) = {{ui, ui+1}|{ui, ui+1} ∈ E(G), 1 ≤ i ≤ k − 1}. For
a graph G, we define D1 = {v | dG(v) = 1} such that l1 = |D1| refers to the number of vertices in D1 and
we define D2 = {v | dG(v) = 2} such that l2 = |D2| refers to the number of vertices in D2. For S ⊂ V (G),
G[S] denotes the graph induced on the set S and G \ S is the induced graph on the vertex set V (G) \ S. A
vertex separator of a graph G is a set S ⊆ V (G) such that G\S has more than one connected component. A
vertex separator S is said to be minimal if there no proper subset S′ of S such that S′ is a vertex separator.
A minimum vertex separator S is a vertex separator of least size and the cardinality of such S is the vertex
connectivity of a graph G, written κ(G). A graph is k-vertex connected if κ(G) = k. If κ(G) = 1 then the
graph is 1-connected (also known as singly connected) and in such a graph a minimum vertex separator
S is a singleton set and the vertex v ∈ S is a cut-vertex of G. A cycle is a connected graph in which the
degree of each vertex is two. A tree is a connected and an acyclic graph. For a graph G with κ(G) = k, a
minimum connectivity augmentation set Eca = {{u, v} | u, v ∈ V (G) and {u, v} /∈ E(G)} is such that the
graph obtained from G by augmenting Eca is of vertex connectivity k + r, r ≥ 2. This paper is written in
the context of augmenting Eca edges to a tree such that the obtained graph is 3-connected.

2 Tri-connectivity Augmentation in Trees

In this section, we shall first present the lower bound analysis which is a number representing the number of
edges to be augmented in any minimum connectivity augmentation set to make a tree 3-vertex connected.
In the subsequent sections, we first give an sketch of the algorithm and then we shall present an algorithm
with analysis which will output a connectivity augmentation set meeting the lower bound. Our approach
finds a minimum tri-connectivity augmentation set for trees with ∆(G) ≤ 2 (which are called paths) and for
trees with ∆(G) ≥ 3 (called non-path trees) separately.

Lemma 1. Let T be a tree and l1 and l2 denote the number of degree one and degree two vertices, respectively.
Then, any tri-connectivity augmentation set Eca is such that |Eca| ≥ ⌈ 2l1+l2

2
⌉.

Proof. It is well-known that for any 3-connected graph G, δ(G) ≥ 3. Therefore to make T a 3-connected
graph, we must increase the degree of elements in D1 by at least two and the degree of elements in D2 by at
least one. Since an edge joins a pair of vertices, any augmentation set Eca has at least ⌈ 2l1+l2

2
⌉ edges. This

completes the proof of the lemma. ⊓⊔
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2.1 Outline of the Algorithm

Our approach varies for the path and the non-path, for the input tree on n vertices. If the input is a path,
the algorithm converts the path to a cycle and then augments edges in such a way that every edge creates
a cycle of length ⌊n

2
⌋ + 1. If the input is a non-path tree, T : First root the tree T at the maximum degree

vertex, r. Let {v1, v2, . . . , vl} denotes the set of leaves in T . Now, we group the vertex set into branches,
namely Bi. The branch Bi contains the vertices in the path from the root r to the leaf vi. Thus, the number
of branches in the input tree is the number of degree one vertices. Next we perform a level ordering and label
the degree two vertices as per the ordering as w1, w2, . . . , wk. Let W = (w1, w2, . . . , wk). Now we initialize
every vertex in W as unmarked. As we iterate, we augment edges as follows: for every unmarked vertex
y ∈ W find the least unmarked vertex x of different branch and if such x exists for y, mark the vertices x and
y and augment an edge between x and y. Once this process is done, group the unmarked vertices in W . If
there are no unmarked vertices then we form a cycle among the degree one vertices, if there are odd number
of unmarked vertices we form a cycle among the degree one vertices and then we augment edges between the
remaining degree two vertices using the ordering of vertices. If there are even number of unmarked vertices
we form a path among the leaves and then we augment edges between the remaining degree two vertices using
the ordering of vertices. Interestingly, this new approach guarantees that the algorithm augments exactly
⌈ 2l1+l2

2
⌉ edges.

2.2 The Algorithm

We now present an algorithm for tri-connectivity augmentation of trees. Further, we show that our algorithm
is optimal followed by the proof of correctness.

Algorithm 1 Tri-connectivity Augmentation of a Tree
Input: Tree T

Output: Tri-vertex connected graph H .
if T is a path then

Path Augmentation(T )
else

Non-path Augmentation(T )
end if

Output H

Algorithm 2 Tri-connectivity Augmentation in path like trees: Path Augmentation(Tree T )

1: Let Pn = (v1, v2, . . . , vn) denotes an ordering of vertices of T such that for all 1 ≤ i ≤ n − 1, vi is adjacent to
vi+1.

2: Augment the edge {v1, vn} to T and update Eca. /* Converts path to a cycle */

3: for i = 1 to ⌈n

2
⌉ do

4: if deg(vi) == 2 then

5: Augment the edge {vi, v⌊n
2
⌋+i} to T and update Eca.

6: /* Every augmented edge will create a Ck, k = ⌊n

2
⌋+ 1 */

7: end if

8: end for

9: if deg(vn) == 2 then

10: /* True, if n is odd */

11: Augment the edge {vn, v⌊n
2
⌋+1} to T and update Eca.

12: end if

13: Return the augmented graph H and Eca

3



Algorithm 3 Tri-connectivity Augmentation in non-path like Trees: Non-path Augmentation(Tree T )

1: Let r be a vertex of maximum degree and T is rooted at r.
2: Let D1 = {v1, v2, . . . , vl} be the set of leaves in T .
3: Perform Level ordering starting from r and (u1 = r, u2, . . . , un) denote the ordering.
4: for i = 1 to l do

5: Bi = V (Prvi)
6: /* Bi is the set of vertices in branch i i.e., set of vertices in the path Pr,vi. */

7: end for

8: Perform level ordering starting from r and W = (w1, w2, . . . , wk), k ≤ n − l − 1, denote the ordering of degree
two vertices in T

9: mark[wi] = FALSE, ∀ 1 ≤ i ≤ k

10: for i = 1 to k do

11: Find the least j in W , 1 ≤ j ≤ i− 1, in such a way that mark[wj ] = FALSE and there exists s 6= t such that
wi ∈ Bs and wj ∈ Bt.

12: if such j exists then
13: Augment {wi, wj} to T and update Eca

14: mark[wi] = mark[wj ] = TRUE

15: end if

16: end for

17: Let A = {x1, x2, . . . , xm} denotes the set of unmarked vertices in W , where xi preserves the ordering in wj

18: if |A| = 0 then

19: Augment {v1, vl} and {vi, vi+1} ∀ 1 ≤ i ≤ l − 1 to T and update Eca

20: else if A = {x1, x2, . . . , xm}, where m is even then

21: Augment {x2, xm},{x3, xm−1}, . . ., {xm
2
, xm

2
+2} to T and update Eca

22: Augment {vi, vi+1} ∀ 1 ≤ i ≤ l − 1 to T and update Eca

23: if {xm
2

+1, vl} ∈ E(T ) then
24: Augment {x1, vl}, {xm

2
+1, v1} and update Eca

25: else

26: Augment {x1, v1}, {xm
2

+1, vl} and update Eca

27: end if

28: else if A = {x1, x2, . . . , xm}, where m is odd then

29: Augment {x1, xm}, {x2, xm−1}, . . . , {x⌊m
2
⌋, x⌊m

2
+2⌋} to T and update Eca

30: Augment {v1, vl} to T and update Eca

31: Augment {vi, vi+1} ∀ 1 ≤ i ≤ l − 1 to T and update Eca

32: if {xm+1

2

, vl} ∈ E(T ) then

33: Augment {xm+1

2

, v1} and update Eca

34: else

35: Augment {xm+1

2

, vl} and update Eca

36: end if

37: end if

38: Return the augmented graph H and Eca

Lemma 2. Let T be a tree with n ≥ 4 vertices. Algorithm Path Augmentation() yields a graph H, where
∀ v ∈ V (H), degH(v) ≥ 3.

Proof. The algorithm, first converts the path Pn = (v1, v2, . . . , vn) to a cycle Cn = (v1, v2, . . . , vn), by
adding an edge between two end vertices, i.e., the algorithm augments an edge {v1, vn} in Step 2. Now, the
degree of each vertex in the resultant graph is two. In Steps 3-8, for each vertex vi of degree two in the
set {v1, v2, . . . , v⌈n

2
⌉}, we identify a vertex vj such that the length of the path Pvivj = ⌊n

2
⌋+ 1 and further,

we augment an edge between vi and vj . Thus, in the resulting graph, degree of every vertex is three if n is
even and degree of all vertices other than the vertex vn is three, if n is odd. So, if n is odd, the algorithm
augments an edge {vn, v⌊n

2
⌋+1} in Step 9-11. This completes the path augmentation and in the resulting

graph H degree of each vertex is at least three. ⊓⊔
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Lemma 3. Let T be a tree with n ≥ 4 vertices. Algorithm Non-Path Augmentation(T) yields a graph H,
where ∀ v ∈ V (H), degH(v) ≥ 3.

Proof. The algorithm, collects all degree two vertices and augment edges between those vertices which
satisfies the condition in Step 11 and marks the end vertices of the augmented edges. Now, the marked
vertices are of degree three. Collect the unmarked vertices (remaining vertices of degree 2) into the set A.
We shall now analyze the Steps 18-37 of the algorithm by considering the following cases.

Case 1: A = ∅
i.e., all the degree two vertices in the given tree have become the degree three vertices in H . We now
augment edges among the leaves such that there is a cycle (v1, v2, . . . , vl). We can easily see that in the
resultant graph H , for every vertex v ∈ V (H), degH(v) = 3.

Case 2: A 6= ∅ and | A | is even, say A = {x1, x2, . . . , xm}.
We first form a path among leaves from v1 to vl such that all the degree one vertices are converted
to degree three vertices except v1 and vl, which is of degree two. Now, augment the edges {x2, xm},
{x3, xm−1}, . . . , {xm

2
,xm

2
+2}. Thus, the only remaining degree two vertices are x1, xm

2
+1, v1 and vl.

Therefore, if {xm
2
+1, vl} ∈ E(T ), then augment {x1, vl} and {xm

2
+1, v1} and if {xm

2
+1, vl} /∈ E(T ), then

augment {x1, v1} and {xm
2
+1, vl}. Hence in the resultant graph H every vertex is of degree three.

Case 3: A 6= ∅ and | A | is odd, say A = {x1, x2, . . . , xm}.
We first form a cycle among leaves such that all the degree one vertices are converted to degree three
vertices. Now, augment the edges {x1, xm}, {x2, xm−1}, . . . , {x⌊m

2
⌋,x⌊m

2
+2⌋}. Thus, the only remain-

ing degree two vertex is xm+1

2

. Therefore, if {xm+1

2

, vl} ∈ E(T ), then augment {xm+1

2

, v1} such that

degH(xm+1

2

) = 3 and degH(v1) = 4 and if {xm+1

2

, vl} /∈ E(T ), then augment {xm+1

2

, vl} such that

degH(xm+1

2

) = 3 and degH(vl) = 4. Hence in the resultant graph H every vertex is of degree at least

three. ⊓⊔

Lemma 4. Let T be a tree with n ≥ 4 vertices. Algorithm Path Augmentation() precisely augments ⌈
2l1 + l2

2
⌉

edges.

Proof. Step 2 of algorithm augments an edge between two leaves and this increases l2 by two. Thus there are
l1 + l2 degree two vertices and Steps 3-8 augments ⌈ l1+l2

2
⌉ new edges, if n is even and ⌊ l1+l2

2
⌋ new edges, if

n is odd. If n is odd, Steps 9-12 augments an edge. Thus, if n is odd, we have augmented l1
2
+ ⌊ l1+l2

2
⌋+1 =

l1
2
+ ⌈ l1+l2

2
⌉ (Since, l2 is odd). If n is even, we have augmented l1

2
+ ⌈ l1+l2

2
⌉ edges. In total, since l1 = 2, the

algorithm augments ⌈ l1
2
+ l1+l2

2
⌉ = ⌈ 2l1+l2

2
⌉. Therefore, the algorithm augments ⌈ 2l1+l2

2
⌉ edges in total. ⊓⊔

Lemma 5. Let T be a tree with n ≥ 4 vertices. Algorithm Non-Path Augmentation() precisely augments

⌈
2l1 + l2

2
⌉ edges.

Proof. We present a proof by case analysis based on the cardinality of the set A generated by Algorithm 3
in Step 17.

Case 1: |A| = 0
l1 edges are augmented in Step 19 by forming a cycle among leaves. In Steps 10-16, we augment edges
between the degree two vertices and since |A| = 0, l2 is even and ⌈ l2

2
⌉ edges are augmented. In total, we

have augmented l1 + ⌈ l2
2
⌉ edges, i.e., we have augmented 2l1

2
+ ⌈ l2

2
⌉ = ⌈ 2l1+l2

2
⌉ edges.

Case 2: |A| = 2k, k ∈ Z.
Let |A| = m. Among l2 degree two vertices, degree of (l2−m) vertices increases by one in Steps 10-16, i.e.,
l2−m

2
edges are augmented. Note that m

2
− 1 edges are augmented in Step 21, l1− 1 edges are augmented

in Step 22, 2 edges are augmented in Steps 23-27. In total, we have augmented l2−m
2

+ m
2
− 1+ l1− 1+2

edges. Since l2 is even, l2−m
2

+ m
2
− 1 + l1 − 1 + 2 = l1 +

l2
2
= l1 + ⌈ l2

2
⌉ = ⌈ 2l1+l2

2
⌉. Therefore, ⌈ l1+l2

2
⌉

edges are augmented.
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Case 3: |A| = 2k + 1, k ∈ Z.
Let |A| = m. Among l2 degree two vertices, degree of (l2−m) vertices increases by one in Steps 10-16 i.e.,
l2−m

2
edges are augmented in Steps 10-16. m−1

2
edges are augmented in Step 29, l1 edges are augmented

in step 30-31 and a edge is augmented in Steps 32-36. In total, we have augmented l2−m
2

+ m−1

2
+ l1 +1

edges. Since m is odd and (l2 −m) is even, l2−m
2

+ (m−1

2
+1)+ l1 = ⌈ l2−m

2
⌉+ ⌈m

2
⌉+ l1 = ⌈ 2l1+l2

2
⌉ edges

are augmented in total.

Thus, the algorithm augments ⌈ 2l1+l2
2

⌉ edges. ⊓⊔

Lemma 6. For a tree T , the graph obtained from the algorithm Path Augmentation() is 3-connected.

Proof. Our claim is to prove that every minimal vertex separator is of size at least 3 and there exist at least
one vertex of degree 3. On the contrary, assume that there exist at least one minimal vertex separator of
size at most 2, say |S| ≤ 2. Let C = (v1, v2, . . . , vn) be the cycle formed in Step 2 of Algorithm 2, where
{v1, vn} ∈ Eca.

Case 1: |S| = 1.
For every vertex vi ∈ V (H), vi ∈ V (C). Hence, H\S is connected.

Case 2: |S| = 2. Let S = {vi, vj}, i 6= j and 1 ≤ i, j ≤ n.

Case 2.1: {vi, vj} ∈ E(C). Since C is a cycle, H\S is connected.
Case 2.2: {vi, vj} ∈ Eca\E(C) or {vi, vj} /∈ E(H)

For every internal vertex vk in the path P ′
vivj

= {vi, vi+1, . . . , vj} there exist a vertex vl ∈ V (H)
such that {vk, vl} ∈ E(H) and vl /∈ V (P ′

vivj
) by Steps 3-12 of Algorithm 2. Thus, H\S is connected.

In all the above cases, the graph H\S is connected, which is a contradiction to the assumption that S is
a vertex separator. Therefore, every minimal vertex separator of H is of size at least 3. Note that by our
augmentation procedure, degH(v1) = 3. Clearly, NH(v1) is a minimal vertex separator of size three. Thus,
the graph H is 3-connected. ⊓⊔

Lemma 7. For a tree T , the graph obtained from the algorithm Non-Path Augmentation() is 3-connected.

Proof. It is enough to prove that the size of every minimal vertex separator is at least 3 and there exists at
least one minimal vertex separator of size 3. On the contrary, assume that there exist at least one minimal
vertex separator S such that |S| ≤ 2. Let P = {v1, v2, . . . , vl} be the path formed in Steps 18-37 of Algorithm
3, where E(P ) ⊂ Eca.

Case 1: |S| = 1. Let S = {u}. The vertex u can be a root node, r, or a node in the path, P , or neither. By
case analysis, we prove that the graph H\S is connected, which forms a contradiction to the definition
of S.

Case 1.1: If u = r, then since P is the path H\S is connected.
Case 1.2: If u ∈ V (P ), then, since degT (u) = 1, T \S is connected, Hence H\S is also connected.
Case 1.3: If u ∈ V (H)\(V (P ) ∪ {r}), then every vertex w ∈ Pru\{u} has a path Pwr such that

u /∈ V (Pwr) and every vertex x ∈ Puvi\{u}, where vi ∈ D1 for some 1 ≤ i ≤ l such that Puvi exist
in T , has a path Pxvi such that u /∈ V (Pxvi). Thus, the graph H\S is connected.

Case 2: If |S| = 2, say S = {u, v}. S can either be a clique or an independent set. If S is a clique then
either the edge is from the tree T or from the augmentation set Eca. In each case, we prove that the
graph H\S is connected, which is a contradiction to the definition of S.

Case 2.1: {u, v} ∈ E(T ).

• If either u or v is a root node. Without loss of generality, let u be the root node. By the path P
in H , every pair of vertex w, x ∈ V (H)\S has a path connecting them in H\S. Thus, the graph
H\S is connected.

6



• If neither u nor v is a root node. In H\S, for every vertex w ∈ V (Pru)\{u}, there exists a
path Pwr such that u, v /∈ V (Pwr) and for every vertex x ∈ V (Pvvi ), where vi ∈ D1 for some
1 ≤ i ≤ l such that Puvi exist in T , there exists a path from Pxvi such that u, v /∈ V (Pxvi). Since
degH(r) ≥ 3 and by the path P in H , the graph H\S is connected.

Case 2.2: {u, v} ∈ Eca.

• If degT (u) = 1 and degT (v) = 1 then, the graph T \S is connected. Thus, the graph H\S is
connected.

• If either degT (u) = 1 or degT (v) = 1. w.l.o.g, assume that degT (v) = 1.

- If u, v ∈ Bi, for some 1 ≤ i ≤ l.
Since ∀ w ∈ V (H), degH(w) ≥ 3, every internal vertex of Puv in T contributes degree 2 to
the path Puv and the remaining degree to the vertices which does not belong to V (Puv) (by
Steps 10-37 ). For every internal vertex w ∈ V (Pru) of T , there exists a path from Pwr such
that u, v /∈ V (Pwr). Since degH(r) ≥ 3 and by the path P , the graph H\S is connected.

- If u ∈ Bi and v ∈ Bj for some 1 ≤ i, j ≤ l and i 6= j.
Since degT (v) = 1, H\{v} is connected. For every internal vertex w ∈ V (Pru) of T , there
exists a path from Pwr such that u, v /∈ V (Pwr) and for every internal vertex x ∈ V (Puvi) of
T , where vi ∈ D1 for some 1 ≤ i ≤ l such that Puvi exist in T , there exists a path from Pxvi .
Since degH(r) ≥ 3 and by the path P , the graph H\S is connected.

• If neither degT (u) = 1 nor degT (v) = 1.

- If u, v ∈ Bi, for some 1 ≤ i ≤ l.
i.e., the edge {u, v} is augmented by the Step 21 or the Step 29. Thus, there exists an internal
vertex y ∈ V (Puv) in T and one of the internal vertex in the path Puv is adjacent to a vertex
in different branch, by the Steps 23-27 or by the Steps 32-36. For every internal vertex
w ∈ V (Pru) of T , there exists a path Pwr such that u, v /∈ V (Pwr), since if dT (w) = 2 then
the vertex w is augmented to a vertex in different branch by the least degree two vertex
condition in Step 11 and if dT (w) ≥ 3 then there exists a path from w to a vertex in different
branch in T . For every internal vertex x ∈ V (Puvi ) of T , where vi ∈ D1 for some 1 ≤ i ≤ l
such that Puvi exist in T , there exists a path Pxvi . Since degH(r) ≥ 3 and by the path P ,
the graph H\S is connected.

- If u ∈ Bi and v ∈ Bj for some 1 ≤ i, j ≤ l and i 6= j.
i.e., the edge {u, v} is augmented by the Steps 10-16. For every internal vertex w ∈ V (Pru)
(a ∈ V (Prv) ), there exists a path Pwr (Par) such that u, v /∈ V (Pwr) (u, v /∈ V (Par)) and for
every internal vertex x ∈ V (Puvi) (b ∈ V (Pvvi)), where vi ∈ D1 for some 1 ≤ i ≤ l such that
Puvi exist in T , there exists a path Pxvi (Pbvi ). Since degH(r) ≥ 3 and by the path P , the
graph H\S is connected.

Case 2.3: {u, v} /∈ E(H).

• If u = r or v = r Without loss of generality, assume that u = r. Then deg(u) = k, k ≥ 3. Since,
all the degree one vertices are connected by a path P , the graph H\{u} is connected. Every
internal vertex w ∈ Puv of T contributes degree 2 to the path Puv and remaining to the vertices
which are not in the path Puv. Thus, the graph H\S is connected.

• If u, v ∈ Bi, for some 1 ≤ i ≤ l. Similar argument as in Case 2.2.
• If u ∈ Bi and v ∈ Bj for some 1 ≤ i, j ≤ l and i 6= j. Similar argument as in Case 2.2.

In all the above cases, the graph H\S is connected, which is a contradiction to the fact that S is a vertex
separator. Therefore, our assumption that there exists at least one minimal vertex separator in H of size at
most two is wrong. Hence, every minimal vertex separator of H is of size at least 3.
Now, our claim is to prove that there exists at least one minimal vertex separator of size 3. By Lemma 2,
the degree of every vertex in V (P )\{vl} is 3. The graph H is 3-connected. ⊓⊔

Theorem 1. For a tree T , the graph H obtained from Algorithm 1 is 3-connected. Further, H is obtained
from T by augmenting a minimum set of edges.
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Proof. The lower bound for the tri-connectivity augmentation of trees is ⌈ 2l1+l2
2

⌉ by Lemma 1. If the tree T
is a path, Algorithm 1 calls Algorithm 2, which converts the tree to a 3-connected graph H by augmenting
exactly ⌈ 2l1+l2

2
⌉ edges (by Lemma 4 and Lemma 6 ). If the tree T is a non-path tree, the Algorithm 1 calls

Algorithm 3, which converts the tree to a 3-connected graph H by augmenting exactly ⌈ 2l1+l2
2

⌉ edges (by
Lemma 5 and Lemma 7 ). Thus, for a tree T the graph obtained from Algorithm 1 is 3-connected. Further,
H is obtained by using a minimum connectivity augmentation set. Therefore, the claim follows. ⊓⊔

2.3 Implementation and Analysis of the algorithm

Let T be a tree with the vertex set V (T ) such that |V (T )| = n, with the edge set E(T ) such that |E(T )| = m
and l be the number of leaves. The Algorithm Path Augmentation() takes O(1) time in Step 2, O(n) time
for Steps 3-8 and O(1) time for Steps 9-12 of Algorithm 2. Thus, the Algorithm Path Augmentation() takes
O(n) time.

The Algorithm Non-Path Augmentation(): Since, the level ordering can be implemented by the data
structure QUEUE, the Step 3 takes O(n) time, takes O(ln) time for Steps 4-7 of Algorithm 3 and O(n)
time for the Step 8. We implement the data structure QUEUE for the Steps 8-16, which is used to keep
track of marked and unmarked vertices in W . This process ends after visiting all vertices in T and it takes
O(n2) time for Steps 10-16 and the algorithm takes O(n) time for Steps 18-38. In total, the Algorithm
Non-Path Augmentation() takes O(n2) time. Therefore, Algorithm 1 takes O(n2) time. Thus, for a given
tree, a minimum tri-connectivity augmentation set can be found in O(n2) time.

2.4 Trace of the Algorithm (Algorithm 2)
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Fig. 1. Trace of Algorithm 2 when n = 7
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2.5 Trace of the Algorithm (Algorithm 3)
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9



3 Conclusions and Future Directions

In this paper, we have presented an algorithm for finding a minimum tri-connectivity augmentation set in
trees. We believe that the approach can be extended to 1-connected graph with the help of block trees,
biconnected component trees proposed in [4,7]. A logical extension of this work would be to look at r-
connectivity augmentation of trees for any r ≥ 2.
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