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COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS
AND

QUANTUM RESONANCE THEORY

MARTIN KÖNENBERG AND MARCO MERKLI

Abstract. Starting form a microscopic system-environment model, we construct a quantum
dynamical semigroup for the reduced evolution of the open system. The difference between the
true system dynamics and its approximation by the semigroup has the following two properties:
It is (linearly) small in the system-environment coupling constant for all times, and it vanishes
exponentially quickly in the large time limit. Our approach is based on the quantum dynamical
resonance theory.

1. The issue

Due to the entanglement of an open system with its surroundings, its dynamics V (t) : ρ0 7→
ρt, mapping an initial system density matrix ρ0 to its value at time t, is not a semigroup in time.
For each fixed t, the mapping V (t), called a dynamical map, is a linear, completely positive, trace
preserving transformation.1 Under certain assumptions, one can approximate the dynamics of
an open system by a continuous one-parameter semigroup of dynamical maps, called a quantum
dynamical semigroup [5, 11]. The dynamics given by such a semigroup has two important
features: (i) is it markovian due to the semigroup property and (ii) it maps density matrices
into density matrices due to its trace and positivity preserving quality. Complete positivity of
the dynamical semigroup implies its positivity preservation, but not vice-versa. It is a crucial
physical property which ensures that the dynamics of initially entangled systems interacting
with an environment is well defined [1, 3]. The semigroup property is particularly convenient
since the spectral analysis of the generator L of the semigroup yields dynamical properties
of the system, such as the final state(s) and convergence speeds. Controlling the remainder
in the approximation V (t)ρ0 ≈ etLρ0 rigorously is difficult. Microscopic derivations, passing
from a full (hamiltonian) model of system plus environment and tracing out the environment
degrees of freedom, involve approximations (Born, Markov, rotating wave) that are hard to deal
with mathematically. In some situations where the system-environment interaction is weak,
measured by a small coupling constant λ, one can implement a (time-dependent) perturbation
theory, λ = 0 giving the unperturbed (uncoupled) case. For certain systems it has been shown
[7] that for all a > 0,

lim
λ→0

sup
06λ2t<a

‖V (t)− et(L0+λ2K)‖ = 0,

Date: December 29, 2016.
1We recall that a map on bounded operators on a Hilbert space, V : B(H) → B(H), is called completely

positive if V ⊗1 : B(H⊗Cn) → B(H⊗Cn) is positive (maps positive operators into positive ones) for all n ∈ N.
1
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where L0 is the generator of the uncoupled (hamiltonian) dynamics and K is a (lowest order)
correction responsible for dissipative effects. We discuss here finite-dimensional open systems
and so the nature of the norm is immaterial. This weak coupling result allows a description of
the dynamics by a semigroup up to times t = O(λ−2). However, the asymptotics t→ ∞ is not

resolved correctly by the dynamical semigroup et(L0+λ2K). For instance, the invariant state of
the latter is typically the uncoupled system Gibbs equilibrium state, while the true asymptotic
state is the restriction of the coupled system-environment equilibrium to the system alone. A
more recent dynamical resonance theory [12, 16] improves the weak coupling result to

‖V (t)− etM(λ)‖ 6 Cλ2e−γ′t, t > 0,

where M(λ) = L0 + λ2K + · · · is analytic in λ and γ′ > 0. This approach grew out of
works proving ‘return to equilibrium’ of open systems using elements of algebraic quantum
field theory and spectral theory [13, 4] and is useful in different physical settings [15]. While it
is known that the ‘Davies generator’ L0 + λ2K, describing the weak coupling limit, generates
a dynamical semigroup [7, 9], this is not known for the generator M(λ) emerging from the
dynamical resonance theory. In the present paper, we construct a dynamical semigroup Tt

satisfying

T0 = 1, Tt+s = Tt Ts, ∀s, t > 0

and

‖V (t)− Tt‖ 6 C|λ|
(
1 + λ2t

)
e−λ2(1+O(λ))γt, t > 0,

where γ > 0. Giving the Schrödinger dynamics Tt is equivalent to giving the completely
positive, identity preserving semigroup τ t acting on the algebra of observables of the system
(Heisenberg dynamics), defined by the relation Tr({Ttρ0}X) = Tr(ρ0 τ

t(X)) for all system
density matrices ρ0 and all system observables X . Our main result, Theorem 2.1, shows the
existence of the Heisenberg dynamics τ t. We construct it by modifying the dynamical resonance
theory approach right at its starting point. Namely, instead of taking the uncoupled system
equilibrium state as a reference state, we take for it the effective, coupled system equilibrium
state, which contains all orders of interactions with the reservoir. We show that this leads to a
dynamics that is a quantum dynamical semigroup and that has the correct final state.

Our paper is organized as follows. In Section 2 we give the setup of the problem, state
our assumptions and present the main result, Theorem 2.1. At the beginning of Section 3 we
explain the mathematical description of the reservoir and, in Subsection 3.2 we construct the
renormalized quantities (i.e., the system reference state). We provide the proof of Theorem
2.1 in Subsection 3.3 (representation of the dynamics by τ t) and Subsection 3.4 (complete
positivity).

2. Main result

The Hilbert space of a finite dimensional quantum system S in contact with a bosonic quan-
tum field (reservoir) R is

(2.1) H = HS ⊗HR,



COMPLETELY POSITIVE DYNAMICAL SEMIGROUPS AND QUANTUM RESONANCE THEORY 3

where HS = Cd and HR = ⊕n>0L
2
sym(R

3n, d3nk) is the Fock space over the single particle space

L2(R3, d3k). We consider Hamiltonians

(2.2) H = HS +HR + λ VS ⊗ ϕ(g),

where HS and VS are self-adjoint matrices on HS,

(2.3) HS =

d∑

j=1

Ej |φj〉〈φj|, and HR =

∫

R3

|k| a∗(k)a(k)d3k

is the second quantization of multiplication with the function |k|, the energy of the mode k. The
creation operators a∗(k) and annihilation operator a(k) satisfy the Bose canonical commutation
relations [a(k), a∗(l)] = δ(k− l) (Dirac delta). We assume for convenience of exposition that all
eigenvalues Ej ofHS are simple – our arguments are readily generalized to degenerate spectrum.
The interaction strength is gauged by the coupling constant λ ∈ R and

ϕ(g) =
1√
2

(
a∗(g) + a(g)

)
, a∗(g) =

∫

R3

g(k)a∗(k)d3k,

is the field and the creation operator (whose adjoint is a(f), the annihilation operator), respec-
tively, smoothed out with a form factor g ∈ L2(R3, d3k).

In this work, we are concerned with the time evolution of observables X ∈ B(HS) under the
coupled system-reservoir Heisenberg dynamics αt

λ generated by the Hamiltonian H ,

(2.4) t 7→ ω
(
αt
λ(X ⊗ 1R)

)
.

The initial state ω is a “normal state”, characterized by the fact that asymptotically in space,
the reservoir is in its thermal equilibrium state. We do not demand that the system and
reservoir are initially disentangled. There is a slight mathematical complication in the precise
definition of (2.4) because thermal reservoirs are spatially infinitely extended systems. We
explain this point in Section 3.1.

The non-interacting dynamics is the product αt
0 = αt

S ⊗ αt
R, where the individual dynamics

of each factor is generated by its own Hamiltonian HS or HR. For small coupling constants λ
one can use a perturbation theory for the reduced system dynamics. Effectively, the energy
levels of HS acquire complex valued corrections (of O(λ2)) which describe irreversibility of the
open system dynamics. It is convenient to express this scheme in terms of the system Liouville
operator

(2.5) LS = HS ⊗ 1S − 1S ⊗HS

acting on the doubled space HS ⊗HS. The Liouville representation is quite standard [17]. The
eigenvalues of LS are the differences of those of HS. They describe the temporal oscillations of
the system density matrix elements in the energy basis under the uncoupled dynamics. Namely,
the density matrix elements oscillate in time with frequencies that are the eigenvalues of LS.
The coupling with the reservoir produces corrections. To lowest order in λ, the corrected
eigenvalues are those of LS+λ

2Λ, where Λ is the so-called level shift operator, a non-selfadjoint
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matrix on HS ⊗HS, which can be calculated explicitly (c.f. (3.17)). The operators LS and Λ
commute and satisfy

(2.6) (LS + λ2Λ)ΩS,β = 0

for all λ ∈ R, where (c.f. (2.3))

(2.7) ΩS,β = Z
−1/2
S

∑

j

e−βEj/2φj ⊗ φj, ZS = Tr e−βHS

is the system Gibbs (equilibrium) vector, defining the equilibrium state

(2.8) ωS,β(X) = Z−1
S TrS(e

−βHSX) = 〈ΩS,β | (X ⊗ 1S)ΩS,β 〉, X ∈ B(HS).

The relation (2.6) reflects the fact that the system Gibbs state is invariant under the coupled
dynamics, to lowest order in the perturbation. (In fact, generically, it is the final system state,
as t→ ∞, to lowest order in λ.) For simplicity of exposition, we assume that

(A1) (i) All eigenvalues of Λ are simple.
(ii) All eigenvalues of Λ but zero have strictly positive imaginary part,

(2.9) γ = min
{
Im a : a ∈ spec(Λ)\{0}

}
> 0.

Since LS and Λ commute, the eigenvalues of LS+λ
2Λ are of the form e+λ2a, with e ∈ spec(LS),

a ∈ spec(Λ). In particular, for small enough, but non-vanishing λ, the operator LS + λ2Λ has
only simple eigenvalues and, apart from zero, all its spectrum has imaginary part > γ. Both
assumptions are readily and generically verified in concrete examples. Assumption (i) simplifies
the analysis somewhat and guarantees in particular that LS+λ

2Λ is diagonalizable. Assumption
(ii) is commonly referred to as the Fermi Golden Rule Condition and ensures that irreversible
effects are visible already in the lowest order correction to the dynamics.

In the dynamical theory of quantum resonances, the resonances (complex energy eigenvalues)
associated to the Liouville operator are determined using spectral deformation- or Mourre
theory [13, 12, 4, 16, 15]. In order not to muddle the core ideas of the current work, we
follow here the technically least complicated situation, where the Hamiltonian is “translation
deformation analytic” [13, 4]. This requires a regularity assumption on the form factor g ∈
L2(R3, d3k). To state it, define the complex valued function gβ on R× S2 by

(2.10) gβ(u,Σ) =

√
u

1− e−βu
|u|1/2

{
g(u,Σ), u ≥ 0
−g(−u,Σ), u < 0

where g(v,Σ) is g(k) in spherical coordinates (v,Σ) ∈ R+ ×S2. The regularity condition is the
following.

(A2) For θ ∈ R, define (Tθgβ)(u,Σ) = gβ(u− θ,Σ). There is a θ0 > 0 such that, viewed as a
map from R to L2(R× S2, du × dΣ), the function θ 7→ Tθgβ has an analytic extension
to 0 < Imθ < 2θ0 which is continuous as Imθ → 0+.

This condition is satisfied for instance for the following family of form factors, given in spherical
coordinates (r,Σ) ∈ R+ × S2 = R3,

g(k) = g(r,Σ) = rpe−rmg1(Σ),
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where p = −1/2 + n, n = 0, 1, 2, . . ., m = 1, 2 and g1(σ) = eiφḡ1(σ) for an arbitrary phase φ
(see also [10]).

Let αt
λ be the coupled system-reservoir dynamics. The resonance approach gives the following

expansion if 0 < |λ| < λ0 for a sufficiently small λ0. For all system-reservoir initial states ω0

belonging to a dense set S0, all system observables X ∈ B(HS) and all times t > 0,

(2.11) ω0

(
αt
λ(X ⊗ 1R)

)
= ωSR,β,λ(X ⊗ 1R) + ω0

(
δtλ(X)⊗ 1R

)
+Rλ,t(X),

where ωSR,β,λ is the coupled system-reservoir equilibrium state, where δtλ : B(HS) → B(HS) and
where the remainder Rλ,t(X) satisfy

|δtλ(X)| 6 Ce−λ2γt ‖X‖(2.12)

|Rλ,t(X)| 6 C |λ|
(
e−θ0t + λ2t e−λ2(1+O(λ))γt

)
‖X‖.(2.13)

Here, γ is the gap (2.9) and θ0 is given in Assumption (A2).2 The resonance approach requires
that λ2γ << θ0. The map δtλ is defined by the relation

(2.14)
(
δtλ(X)⊗ 1S

)
ΩS,β = eit(LS+λ2Λ)P⊥

S,β

(
X ⊗ 1S

)
ΩS,β ,

where ΩS,β ∈ HS⊗HS is the system Gibbs vector (2.7), PS,β = |ΩS,β〉〈ΩS,β| and P⊥
S,β = 1S−PS,β.

3

The operators LS and Λ are the system Liouville- and the level shift operators, respectively,
acting on HS ⊗HS and commuting with each other. Under typical well-coupledness conditions
(e.g. “the Fermi Golden Rule condition”) one has

(2.15) Ker(LS + λ2Λ) = CΩS,β,

which sharpens (2.6). The property of return to equilibrium follows from (2.11), namely,

(2.16) lim
t→∞

ω0(α
t
λ(X ⊗ 1R)) = ωSR,β,λ(X ⊗ 1R).

By modifying δtλ, (2.14), on the “stationary subspace” RanPS,β, we define the map σt
λ :

B(HS) → B(HS) by

(2.17)
(
σt
λ(X)⊗ 1S

)
ΩS,β = eit(LS+λ2Λ)

(
X ⊗ 1S

)
ΩS,β .

It follows from (2.14) and (2.6) that

(2.18) σλ
t (X) = δλt (X) + ωS,β(X)1S, X ∈ B(HS).

Expanding the joint equilibrium state for small λ,

(2.19) ωSR,β,λ(X ⊗ 1R) = ωS,β(X) +R′
λ(X),

where

|R′
λ(X)| 6 Cλ2‖X‖,(2.20)

2If the initial state is of product form ωS ⊗ ωR,β, then the term C|λ|e−θ0t in (2.13) can be replaced by
Cλ2e−θ0t, see Theorem 3.1 of [16], Resonance theory of decoherence and thermalization.

3ΩS,β is cyclic, meaning that (B(HS) ⊗ 1S)ΩS,β = HS ⊗ HS and ΩS,β is separating, meaning that if (X ⊗
1S)ΩS,β = 0 then X = 0. Due to the cyclic and separating property, (2.14) defines the map δtλ uniquely, and it
shows that t 7→ δtλ is a group.
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and combining (2.11) and (2.18) we obtain

(2.21) ω0

(
αt
λ(X ⊗ 1R)

)
= ω0

(
σt
λ(X)⊗ 1R

)
+R′

λ(X) +Rλ,t(X),

where Rλ,t(X) and R′
λ(X) satisfy (2.13) and (2.20), respectively.

The expansion (2.21) has an advantage and a disadvantage over the expansion (2.11).

• The advantage. The main term in (2.21) is given by σt
λ, which is a quantum dynamical

semigroup (in the Heisenberg picture). This means that σt
λ is a semigroup of completely

positive maps and satisfies σt
λ(1S) = 1S. The latter property (which is equivalent to the

dual map acting on density matrices being trace preserving) follows directly from the
definition (2.17) and (2.15). We give a derivation of its complete positivity is Section
3.4.

• The disadvantage. The main term of expansion (2.21) describes the time-asymptotics
only up to an accuracy of O(λ2). Indeed, the final state of σt

λ is the uncoupled equilib-
rium ωS,β while the true final state is the reduction to S of the coupled state ωSR,β,λ, as
correctly described by (2.11). In other words, the remainder in expansion (2.21) does
not vanish as t→ ∞, but stays of O(λ2).

The main result of this paper is Theorem 2.1 below, which gives an effective system dynamics
τ tλ that combines the advantages of the above expansions (2.11) and (2.21), namely,

(i) τ tλ is a quantum dynamical semigroup of the system, and
(ii) τ tλ describes the correct long time asymptotics (vanishing remainder as t→ ∞).

Theorem 2.1. There is a constant λ0 > 0 such that the following holds for |λ| < λ0. There is
a completely positive, identity preserving semigroup τ tλ acting on B(HS), the observables of the
system, such that ∀ω0 ∈ S0, ∀t > 0, ∀X ∈ B(HS),

(2.22) ω0

(
αt
λ(X ⊗ 1R)

)
= ω0

(
τ tλ(X)⊗ 1R

)
+Rλ,t(X),

where Rλ,t(X) satisfies

(2.23) |Rλ,t(X)| 6 C|λ|
(
1 + λ2t

)
e−λ2(1+O(λ))γt ‖X‖.

The dynamical semigroup τ tλ can be constructed perturbatively in λ, by using the resonance data
(energies and vectors) of a renormalized, λ-dependent system Hamiltonian.

In analogy with (2.14) and (2.17), we will construct τ tλ by the definition

(2.24)
(
τ tλ(X)⊗ 1S

)
Ω̃S,β,λ = eit(L̃S+λ2Λ̃)(X ⊗ 1S)Ω̃S,β,λ,

where L̃S = L̃S(λ) and Λ̃ = Λ̃(λ) are suitably renormalized Liouville- and level shift operators,

respectively, which commute with each other. Here, Ω̃S,β,λ is a cyclic and separating vector

spanning the kernel of L̃S + λ2Λ̃.

3. The renormalized dynamics and complete positivity.

3.1. States and dynamics. The description (2.1)-(2.3) given above is common in the theo-
retical physics literature and serves, in particular, to introduce the system-reservoir interaction
operators (taken here to be linear in the field, (2.2)). It is, however, well known that the Fock
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space HR above is not the correct Hilbert space on which one can represent the state of a
spatially infinitely extended bose gas in thermal equilibrium. To find that Hilbert space, one
has to first perform the thermodynamic limit of the reservoir equilibrium state and then recon-
struct its Hilbert space representation using the Gelfand-Naimark-Segal construction. This is
the Araki-Woods representation for thermal reservoirs [2].

It consists of a triple (HR,β, πβ,ΩR), where HR,β is the representation Hilbert space, πβ :
W → B(HR,β) is a representation of the Weyl algebra and ΩR ∈ HR,β is a normalized vector
representing the equilibrium state. Explicitly,

(3.1) HR,β = F
(
L2(R× S2, du× dΣ)

)
≡

⊕

n>0

L2
sym

(
(R× S2)n, (du× dΣ)n

)

is the bosonic Fock space over the single particle space L2(R × S2, du × dΣ), where dΣ is
the uniform measure on the sphere S2. The vector ΩR is the vacuum vector of F and the
representation map is given by

(3.2) πβ(W (f)) = W (fβ),

where f 7→ fβ was defined by (2.10). The operatorW (f) on the left side of (3.2) is an (abstract)
Weyl operator in W, while the represented W (fβ) on the right side is given by W (fβ) = eiϕ(fβ),
with ϕ(fβ) = 2−1/2[a(fβ) + a∗(fβ)]. Here, a∗(fβ) is the creation operator smoothed out with
fβ, acting on F and a(fβ) its adjoint. The reservoir equilibrium state at temperature T = 1/β
is represented as

ωR,β(W (f)) = 〈ΩR | πβ(W (f))ΩR 〉.
The free reservoir dynamics is implemented as πβ(W (eiωtf)) = eitLRπβ(W (f))e−itLR, where

(3.3) LR = dΓ(u)

is the reservoir Liouville operator, the second quantization of multiplication with the radial
variable u.

Together with (2.5), the joint system-reservoir Hilbert space and non-interacting Liouville
operator are given by

(3.4) H = C
d ⊗ C

d ⊗HR,β and L0 = LS + LR.

The interaction associated with (2.2) is represented by the operator

(3.5) I = VS ⊗ 1S ⊗ ϕ(gβ)− J
(
VS ⊗ 1S ⊗ ϕ(gβ)

)
J,

where J = JS⊗JR is the modular conjugation. It is given explicitly as follows. Let C be the anti-
linear operator acting on Cd by taking complex conjugates of vector coordinates in the energy
basis {ϕn}, then JS acts on C

d⊗C
d as JSχ⊗ψ = Cψ⊗Cχ. Similarly, JR acts on F sector-wise

and on the n-sector, its action is JRψn(u1,Σ1, . . . , un,Σn) = ψn(−u1,Σ1, . . . ,−un,Σn). The full
Liouville operator is then

(3.6) Lλ = L0 + λI.

The non-interacting and interacting systems, whose dynamics is generated by L0 and Lλ, have
unique β-KMS states ωSR,β,0 and ωSR,β,λ, which are represented by the KMS vectors ΩSR,β,0 and
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ΩSR,β,λ respectively, where (recall (2.7))

(3.7) ΩSR,β,0 = ΩS,β ⊗ ΩR and ΩSR,β,λ =
e−β(L0+λVS⊗1S⊗ϕ(gβ))/2ΩSR,β,0

‖e−β(L0+λVS⊗1S⊗ϕ(gβ))/2ΩSR,β,0‖
.

We refer to [6, 8, 4] for more detail on the construction of the interacting KMS state.

3.2. Construction of the renormalized quantities. The reduction of the joint equilibrium
state to the system is given by the density matrix ρS,β,λ, defined by

(3.8) TrS
(
ρS,β,λX

)
= ωSR,β,λ(X ⊗ 1R) for all X ∈ B(HS).

Since ωSR,β,λ is faithful, it is readily seen that ρS,β,λ is strictly positive. Set

(3.9) Z̃ := ‖ρS,β,λ‖−1

(operator norm) and define the renormalized system Hamiltonian by

(3.10) H̃S = − 1
β
ln
(
Z̃ρS,β,λ

)
,

so that

(3.11) ρS,β,λ = Z̃−1 e−βH̃S .

Note that Z̃ = TrS e
−βH̃S . The operator H̃S depends on λ and we have H̃S|λ=0 = HS and

Z̃|λ=0 = TrS e
−βHS ≡ ZS (c.f. (2.7)).

Lemma 3.1. Let {φn}n=1,...,d be an orthonormal basis of eigenvectors of HS, such that HSφn =

Enφn. The eigenvalues of H̃S are Ẽn, satisfying En− Ẽn = O(λ). The normalized eigenvectors,

H̃Sφ̃n = Ẽnφ̃n, satisfy φn − φ̃n = O(λ).

Proof of Lemma 3.1. Araki’s perturbation theory of KMS states [6, 8, 4] yields ‖ρS,β,λ −
ρS,β,0‖ = O(λ). It follows from (3.9) that |Z̃−ZS| = O(λ), where ZS is the unperturbed system

partition function, (2.7). Then (3.10) gives ‖H̃S −HS‖ = O(λ). The lemma then follows from
usual analytic perturbation theory for matrices. �

We define

L̃S = H̃S ⊗ 1S − 1S ⊗ CH̃SC(3.12)

Ω̃S,β,λ = Z̃−1/2

d∑

n=1

e−βẼn/2φ̃n ⊗ Cφ̃n,(3.13)

where C is the antilinear map satisfying Cφn = φn (i.e., C implements complex conjugation of

coordinates in the basis {φn}). The vector Ω̃S,β,λ represents the state ρS,β,λ, meaning

(3.14) 〈Ω̃S,β,λ, (X ⊗ 1S)Ω̃S,β,λ〉 = TrS (ρS,β,λX), X ∈ B(HS).

ΩS,β,λ and is a β-KMS vector with respect to the dynamics eitL̃S ·e−itL̃S of the system observable
algebra B(HS)⊗ 1S. We let

L̃0 = L̃S + LR(3.15)

Ω̃0 = Ω̃S,β,λ ⊗ ΩR(3.16)
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and denote by P̃ẽ the eigenprojection onto the eigenvalue ẽ of L̃0.
The level shift operators of the original (not renormalized) system are given as follows. For

each e ∈ spec(LS),

(3.17) Λe = −PeIP
⊥
e (L0 − e + i0+)

−1IPe, and Λ =
∑

e∈spec(LS)

Λe,

where Pe is the spectral projection of L0 onto the eigenvalue e (having multiplicity me). Λe is
diagonalizable and has the spectral representation

(3.18) Λe =
me∑

j=1

λe,jQe,j,

where Qe,j = PeQe,j = Qe,jPe and λe,j are the spectral projections and eigenvalues, which are
all simple (Assumption (A1)(i)). According to Assumption (A1)(ii), we have kerΛ = CΩS,β and
Imλe,j > 0 for all e 6= 0 and j, Imλ0,j > 0 for j = 1, . . . , d − 1 and λ0,d = 0 (one-dimensional
kernel of Λ).

We now define the level shift operator Λ̃ of the renormalized system. For each ẽ ∈ spec(L̃S),
set

(3.19) Λ̃ẽ = −P̃ẽIP̃
⊥
ẽ (L̃0 − ẽ+ i0+)

−1IP̃ẽ , and Λ̃ =
∑

ẽ∈spec(L̃S)

Λ̃ẽP̃ẽ .

Proposition 3.2. The operator Λ̃ẽ exists for each ẽ ∈ spec(L̃S) and satisfies Λe − Λ̃ẽ = O(λ).

Its spectrum consists of simple eigenvalues λ̃ẽ,j, j = 1, . . . , me, satisfying λe,j−λ̃ẽ,j = O(λ). The

associated Riesz spectral projections Q̃ẽ,j satisfy Qe,j − Q̃ẽ,j = O(λ). Moreover, kerΛ̃ = CΩ̃0.

The proposition implies that Λ̃ has the spectral representation

(3.20) Λ̃ =

d−1∑

j=1

λ̃0,j Q̃0,j +
∑

ẽ6=0

me∑

j=1

λ̃ẽ,j Q̃ẽ,j .

Proof of Proposition 3.2. Let Uθ = eiθdΓ(−i∂u), so that UθL0U
∗
θ = L0+θN , where N = dΓ(1R)

is the number operator. Setting Iθ = UθIU
∗
θ and using that UθPe = PeUθ = Pe, we have for all

θ ∈ R and ǫ > 0

PeI(L0 − e+ iǫ)−1IPe = PeIθ(L0 + θN − e+ iǫ)−1IθPe.

By assumption (A2), the right side has an analytic extension into values of θ in a strip with
Im θ < 2θ0, for some θ0 > 0 and so

PeI(L0 − e+ iǫ)−1IPe = PeIiθ0(L0 + iθ0N − e+ iǫ)−1Iiθ0Pe

= P̃ẽIiθ0(L̃0 + iθ0N − ẽ+ iǫ)−1Iiθ0P̃ẽ +O(λ),

where the error term bounded uniformly in ǫ > 0. As UθP̃ẽ = P̃ẽUθ = P̃ẽ, we can undo the
spectral deformation in the main term on the right side and take ǫ→ 0+ to obtain

(3.21) Λe = Λ̃ẽ +O(λ).
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The statements about the eigenvalues and Riesz eigenprojections follow from basic perturbation
theory. (Recall that Λe has simple, λ-independent eigenvalues by Assumption (A1).) To show

that kerΛ̃ = CΩ̃0 it suffices to show that Λ̃0Ω̃0 = 0, as all the eigenvalues λ̃ẽ,j associated to
e 6= 0 and for e = 0 and j = 1, . . . , d − 1, have strictly positive imaginary part, a property
which is inherited from the eigenvalues of Λ (for λ small).

To show Λ̃0Ω̃0 = 0 we introduce the auxiliary Liouville operator

(3.22) L̃µ = L̃0 + λµI,

where I is given in (3.5). By Araki’s perturbation theory of KMS states, we know that

(3.23) L̃µΩ̃µ = 0,

where

(3.24) Ω̃µ =
e−β{L̃0+λµVS⊗1S⊗ϕ(gβ)}/2Ω̃0

‖e−β{L̃0+λµVS⊗1S⊗ϕ(gβ)}/2Ω̃0‖
.

Lemma 3.3. Let g0 > 0 be the spectral gap of L̃S at zero. The operator L̃⊥
µ := P̃⊥

0 L̃µP̃
⊥
0 |RanP̃⊥

0

has purely absolutely continuous spectrum in the open interval (−g0/2, g0/2). In particular,

zero is not an eigenvalue of L̃⊥
µ .

Proof of Lemma 3.3. Let ϕ be a Uθ-analytic vector. For Imz < 0
〈
ϕ, (L̃⊥

µ − z)−1ϕ
〉

=
〈
ϕθ̄, (L̃

⊥
0 + θN⊥ + λµI⊥θ − z)−1ϕθ

〉

=

〈
ϕθ̄, (L̃

⊥
0 + θN⊥ − z)−1

∑

n≥0

(−λµ)n
[
I⊥θ (L̃

⊥
0 + θN⊥ − z)−1

]n
ϕθ

〉
,(3.25)

where X⊥ = P̃⊥
0 XP̃

⊥
0 |RanP̃⊥

0

. Using the decomposition P̃⊥
0 = P̃⊥

S ⊗ PR + 1S ⊗ P⊥
R , where P̃S

is the orthogonal projection onto the kernel of L̃S and PR = |ΩR〉〈ΩR|, we easily obtain the
bounds

‖(L̃⊥
0 + iθ0N

⊥ − z)−1‖ 6 max
{
max
ẽ 6=0

|ẽ− z|−1, |θ0 − Imz|−1
}

(3.26)

‖I⊥iθ0(L̃
⊥
0 + iθ0N

⊥ − z)−1‖ 6 Cθ0 max
{
max
ẽ 6=0

|ẽ− z|−1, |θ0 − Imz|−1
}
.(3.27)

Thus, for Imz 6 0 and |Rez| 6 g0/2, where g0 > 0 is the spectral gap of L̃S at zero, the
combination of (3.25), (3.26) and (3.27) gives the limiting absorption principle

sup
z : |Rez|6g0/2,Imz60

∣∣∣
〈
ϕ, (L̃⊥

µ − z)−1ϕ
〉∣∣∣ 6 C(ϕ).

This implies that L̃⊥
µ has purely absolutely continuous spectrum in the interval (−g0/2, g0/2).

Lemma 3.3 is proven.
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Combining (3.23) with Lemma 3.3, and invoking the isospectrality of the Feshbach map (see
for instance Proposition B.2 in [14]), we obtain

(3.28) F(L̃µ; P̃0)P̃0Ω̃µ = 0,

where

(3.29) F(L̃µ; P̃0) = −λ2µ2P̃0IP̃
⊥
0 (L̃⊥

µ + i0+)
−1IP̃0.

We now use the translation analyticity to obtain

(3.30) P̃0I(L̃
⊥
µ + i0+)

−1IP̃0 = P̃0Iiθ0(L̃
⊥
0 + iθ0N

⊥ + λµI⊥iθ0)
−1Iiθ0P̃0.

Combining (3.28), (3.29) and (3.30), and taking µ→ 0, gives

(3.31) P̃0Iiθ0(L̃
⊥
0 + iθ0N

⊥)−1Iiθ0P̃0Ω̃0 = 0.

Reversing the spectral deformation on the left hand side of (3.31) gives precisely Λ̃0Ω̃0 = 0.
This completes the proof of Proposition 3.2. �

3.3. Representation of the dynamics: Proof of (2.22). We first introduce the dense set
of initial states for which the dynamical resonance theory based on spectral deformation can

be applied. The three vectors Ω̃0, ΩSR,β,0 and ΩSR,β,λ play a role in what follows. We recall
their definitions, (3.16) and (3.7).

LetM0 ⊂ M be the set of all finite linear combinations of operators of the form π(AS⊗W (f)),
where AS ∈ B(HS) and W (f) is a Weyl operator smoothed out with a test function f that

satisfies Assumption (A2). The following properties of the set of vectors JM0Ω̃0 = JM0JΩ̃0

are not difficult to verify:

(3.32) JM0Ω̃0 is dense in H and JM0Ω̃0 ⊂ Aθ0 ∩ Dom(eαN ) for all α ∈ R.

Here, Aθ0 is the set of vectors ψ ∈ H such that θ 7→ eiθAψ, A = dΓ(−i∂u), is analytic in θ in a
strip Imθ < θ0 and N = dΓ(1R) is the number operator. We consider the set of states

(3.33) S0 =
{
ω(·) = 〈JCΩ̃0, π(·)JCΩ̃0〉 : C ∈ M0

}
.

Lemma 3.4. We have Ω̃0 = JDΩSR,β,λ for an operator D affiliated with M. Moreover, given
any α > 0, we have for small enough λ, Dom(D#) ⊃ Dom(eαN ) and D#e−αNAθ0 ⊂ Aθ0. Here,
D# stands for D or its adjoint D∗. Moreover, ΩSR,β,λ ∈ Aθ0.

Remark. The vectors ΩSR,β,0, ΩSR,β,λ and Ω̃0 are all invariant under the action of the

modular conjugation J . This implies that Ω̃0 = DΩSR,β,λ = JDJΩSR,β,λ.

Proof of Lemma 3.4. We first construct an operator G satisfying Ω0 = JGΩSR,β,λ having
the desired regularity properties. The perturbation theory of KMS states gives

(3.34) ΩSR,β,λ = c−1e−β(L0+λK)/2eβL0/2ΩSR,β,0 and ΩSR,β,0 = ce−βL0/2eβ(L0+λK)/2ΩSR,β,λ,
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where c is a normalization constant and, for short, K = VS ⊗ 1S ⊗ ϕ(gβ). A Dyson series
expansion yields

(3.35) e−βL0/2eβ(L0+λK)/2 =
∑

n>0

λn
∫

06s16···6sn6β/2

ds1 · · · dsnK(sn) · · ·K(s1) =: c−1G,

where K(s) = e−sL0KesL0. Using that

sup
06s6β/2

‖eαNK(s)e−αN (N + 1)−1/2‖ <∞,

one readily sees that, for any α > 0 fixed and λ small enough, the series in (3.35) con-
verges strongly on Dom(eαN ) and defines an element affiliated with M, and that furthermore,
Ran(Ge−αN) ⊂ Dom(eαN ). The analogous expansion and result can be obtained starting with
e−β(L0+λK)/2eβL0/2, which shows that ΩSR,β,λ ∈ Dom(eαN ). Combining this with (3.34) gives

(3.36) ΩSR,β,0 = GΩSR,β,λ = JGΩSR,β,λ.

The last equality follows from JΩSR,β,0 = ΩSR β,0. The cyclicity of ΩS,β implies that there is a

DS ∈ B(HS) satisfying Ω̃0 = J(DS ⊗ 1S ⊗ 1R)ΩSR,β,0. Thus from (3.36),

(3.37) Ω̃0 = J(DS ⊗ 1S ⊗ 1R)GΩSR,β,λ =: JDΩSR,β,λ.

It remains to prove the analyticity statement, which is the same as Ge−αNAθ0 ⊂ Aθ0. This
follows again from the series expansion of G, (3.35), and the fact that eiθAK(sn) · · ·K(s1)e

−iθA =
Kθ(sn) · · ·Kθ(s1), where Kθ(s) = eiθAe−sL0KesL0eiθA, is analytic.

Finally, to show that ΩSR,β,λ ∈ Aθ0, we note that the adjoint of the Dyson series expansion
(3.35) gives that G∗e−αNAθ0 ⊂ Aθ0 and the desired result follows from (3.34). �

For ω0 ∈ S0 and X ∈ B(HS), we have

ω0

(
αt
λ(X ⊗ 1R)

)
=

〈
JCΩ̃0, e

itL(X ⊗ 1S ⊗ 1R)e
−itLJCΩ̃0

〉

=
〈
JC∗CΩ̃0, e

itL(X ⊗ 1S ⊗ 1R)e
−itLΩ̃0

〉

=
〈
JC∗CΩ̃0, e

itL(X ⊗ 1S ⊗ 1R)e
−itLJDJΩSR,β,λ

〉

=
〈
JC∗CΩ̃0, JDJe

itL(X ⊗ 1S ⊗ 1R)ΩSR,β,λ

〉

=
〈
JD∗C∗CΩ̃0, e

itL(X ⊗ 1S ⊗ 1R)ΩSR,β,λ

〉
.(3.38)
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Lemma 3.4 gives ΩSR,β,λ ∈ Aθ0 and since C∗CΩ̃0 ∈ Dom(eαN )∩Aθ0, it also gives JD∗C∗CΩ̃0 ∈
Aθ0. Thus one can apply the spectral deformation method to (3.38) to obtain

ω0

(
αt
λ(X ⊗ 1R)

)
=
〈
[JD∗C∗CΩ̃0]θ̄, (|[ΩSR,β,λ]θ〉〈[ΩSR,β,λ]θ̄|) (X ⊗ 1S ⊗ 1R)[ΩSR,β,λ]θ

〉

+

d−1∑

j=1

eitλ
2a0,j

〈
[JC∗CΩ̃0]θ̄,Π0,j(θ)(X ⊗ 1S ⊗ 1R)[ΩSR,β,λ]θ

〉

+
∑

e 6=0

me∑

j=1

eit(e+λ2ae,j )
〈
[JC∗CΩ̃0]θ̄,Πe,j(θ)(X ⊗ 1S ⊗ 1R)[ΩSR,β,λ]θ

〉
+R(X, t),(3.39)

where [ψ]θ = eiθAψ and (recall (3.18))

Πe,j(θ) = Qe,j +O(λ)(3.40)

ae,j = λe,j +O(λ).(3.41)

The remainder R(X, t) in (3.39) satisfies

(3.42) |R(X, t)| 6 const.|λ|
(
e−θ0t + e−λ2(1+O(λ))γt

)
‖X‖ 6 const.|λ|e−λ2(1+O(λ))γt ‖X‖.

The contribution ∝ e−θ0t is the usual contour integral term (c.f. [16]), the other term is due to
the fact that in the summands decaying in time t, we can replace D∗ by 1 plus a remainder of
O(λ) and we have |eitλ2ae,j | = e−λ2(1+O(λ))γt. The first term on the right side of (3.39) equals

〈
JD∗C∗CΩ̃0,ΩSR,β,λ

〉
〈ΩSR,β,λ, (X ⊗ 1S ⊗ 1R)ΩSR,β,λ〉

= 〈ΩSR,β,λ, (X ⊗ 1S ⊗ 1R)ΩSR,β,λ〉

=
〈
Ω̃0, (X ⊗ 1S ⊗ 1R)Ω̃0

〉

=
〈
JC∗CΩ̃0, (|Ω̃0〉〈Ω̃0|)(X ⊗ 1S ⊗ 1R)Ω̃0

〉
.(3.43)

In the first step, we have made use of

〈JD∗C∗CΩ̃0,ΩSR,β,λ〉 = 〈JC∗CΩ̃0, JDΩSR,β,λ〉 = 〈JC∗CΩ̃0, Ω̃0〉 = ‖CΩ̃0‖2 = 1

and in the last step, again, 〈JC∗CΩ̃0, Ω̃0〉 = 1. The second equality in (3.43) follows from (3.8),
(3.14) and (3.16).

Since all “directions” but the stationary one in (3.39) are decaying, i.e., Im ae,j > 0 for all

e, j, we can replace in these terms in the exponents e and ae,j by ẽ and λ̃ẽ,j, Πe,j by Q̃ẽ,j and

ΩSR,β,λ by Ω̃0 (see Proposition 3.2). This changes the remainder into a new one which, instead
of (3.42), has the bound (2.23).4 Making this replacement and using the spectral representation
(3.20),

eit(L̃S+λ2Λ̃) =|Ω̃0〉〈Ω̃0|+
d−1∑

j=1

eitλ
2λ̃0,jQ̃0,j +

∑

ẽ6=0

me∑

j=1

eit(ẽ+λ2λ̃ẽ,j)Q̃ẽ,j,

4Use the estimate |e−λ2tImae,j − e−λ2tImλ̃e,j | = e−λ2tImae,j |1− eλ
2tIm(ae,j−λ̃ẽ,j)| 6 const.|λ|3te−λ2(1+O(λ))γt.
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we obtain

(3.44) ω0

(
αt
λ(X ⊗ 1R)

)
=

〈
JC∗CΩ̃0, e

it(L̃S+λ2Λ̃)(X ⊗ 1S ⊗ 1R)Ω̃0

〉
+Rλ,t(X),

where Rλ,t(X) satisfies (2.23). According to the definition (2.24) of τ tλ, the main term on the
right side of (3.44) is

〈
JC∗CΩ̃0, (τ

t
λ(X)⊗ 1S ⊗ 1R)Ω̃0

〉
= ω0(τ

t
λ(X)).

This shows the representation (2.22).

3.4. Proof of complete positivity of τ tλ. We first show complete positivity of the weak
coupling dynamics σt

λ, (2.17). Then we modify that argument just slightly to show complete
positivity of τ tλ.

3.4.1. Complete positivity of the weak coupling dynamics σt
λ. Using (2.21) and a density argu-

ment, one sees that for any system-reservoir state ω,

(3.45) lim
λ→0

ω
(
α
t/λ2

λ ◦ α−t/λ2

0 (X ⊗ 1R)
)
= ω

(
σ̄t(X)⊗ 1R

)
,

where σ̄t(X) is defined by
(
σ̄t(X) ⊗ 1S

)
ΩS,β = eitΛ

(
X ⊗ 1S

)
ΩS,β and satisfies (see (2.17))

σt
λ = σ̄ λ2t ◦ αt

S = αt
S ◦ σ̄ λ2t. Since αt

S is completely positive, complete positivity of σt
λ follows

from that of σ̄t. Let ωR,β be the reservoir equilibrium state and let PR be the partial trace
over the reservoir, relative to ωR,β, defined by (linear extension of) PR(X⊗B)PR = X ωR,β(B).
Taking ω = ωS ⊗ ωR,β in (3.45), where ωS is any system state, gives

lim
λ→0

ωS

(
PRα

t/λ2

λ ◦ α−t/λ2

0 (X ⊗ 1R)PR

)
= ωS(σ̄

t(X)).

As the system is finite-dimensional, this is equivalent to

lim
λ→0

PRα
t/λ2

λ ◦ α−t/λ2

0 (X ⊗ 1R)PR = σ̄t(X).

The left side is the limit of a family of completely positive maps. Hence σ̄t is completely positive
as well.

3.4.2. Complete positivity of τ tλ. We denote by γtλ,µ(·) = eitL̃µ · e−itL̃µ the dynamics of M gen-

erated by the Liouville operator L̃µ defined in (3.22). The level shift operator of L̃µ is λ2µ2Λ̃
(see also (3.19)). Repeating the argument of the weak coupling limit, we have (c.f. (3.45))

(3.46) lim
µ→0

ω
(
γ
t/µ2

λ,µ ◦ γ̃−t/µ2

λ,0 (X ⊗ 1R)
)
= ω

(
τ̄ tλ(X)⊗ 1R

)
,

where τ̄ tλ is defined by (τ̄ tλ(X)⊗ 1S)Ω̃S,β,λ = eitλ
2Λ̃(X ⊗ 1S)Ω̃S,β,λ. Thus, by the same argument

as in Section 3.4.1, τ̄ tλ is completely positive, and hence so is τ tλ = τ̄ tλ ◦ α̃S,λ, where α̃S,λ(·) =

eitH̃S · e−itH̃S .
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