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Abstract

We study the eigenvalue correlations of random Hermitian n × n matrices of the form
S = M + ǫH, where H is a GUE matrix, ǫ > 0, and M is a positive-definite Hermitian
random matrix, independent of H, whose eigenvalue density is a polynomial ensemble.
We show that there is a soft-to-hard edge transition in the microscopic behaviour of the
eigenvalues of S close to 0 if ǫ tends to 0 together with n → +∞ at a critical speed,
depending on the random matrix M . In a double scaling limit, we obtain a new family
of limiting eigenvalue correlation kernels. We apply our general results to the cases
where (i) M is a Laguerre/Wishart random matrix, (ii) M = G∗G with G a product of
Ginibre matrices, (iii) M = T ∗T with T a product of truncations of Haar distributed
unitary matrices, and (iv) the eigenvalues of M follow a Muttalib-Borodin biorthogonal
ensemble.

1 Introduction

We consider a class of Hermitian random matrices which are perturbed by additive Gaussian
noise, and investigate to what extent the microscopic behaviour of the eigenvalues is affected
by such a perturbation, in the limit where the size of the matrices tends to infinity. We take
the Gaussian noise to be a small multiple of a matrix from the Gaussian Unitary Ensemble
(GUE), which consists of Hermitian n × n matrices H with the probability distribution

1

Zgue
n

e− n
2

Tr(H2)dH, dH =
n∏

j=1

dHjj

∏

1≤i<j≤n

dReHijdImHij . (1.1)

Equivalently, the diagonal entries of H are independent identically distributed (iid) normal
random variables N (0, 1/n) with mean 0 and variance 1/n and the upper triangular entries
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are iid complex normal random variables N
(
0, 1

2n

)
+ iN

(
0, 1

2n

)
. Adding a small multiple of a

GUE matrix, ǫH , to another random matrix M can thus be viewed as an entry-wise Gaussian
perturbation of M . The above normalization of a GUE matrix is such that the large n limit
of the mean distribution λ of eigenvalues exists and is given by the Wigner semi-circle law

dλ(x) =
1

2π

√
4 − x2dx, x ∈ [−2, 2]. (1.2)

Gaussian perturbations of random matrices are closely related to random matrices with
external source. To see this, we note that, given M , the probability distribution of the random
matrix S = M + ǫH can be written as

1

Zn

e− n

2ǫ2 Tr((S−M)2)dS, dS =
n∏

j=1

dSjj

∏

1≤i<j≤n

dReSijdImSij .

This is known as the GUE with external source M [10, 38]. In our setting, the external source
matrix M is not deterministic but is itself a random matrix.

If M is a unitary invariant random matrix with probability measure

1

Zn

e−nTr V (M)dM, dM =
n∏

j=1

dMjj

∏

1≤i<j≤n

dReMijdImMij ,

for some potential V , then our model is equivalent to a special case of the two-matrix model
[6], which is defined as a probability measure on pairs of Hermitian matrices (M1, M2), given
by

1

Zn
e−nTr(V1(M1)+V2(M2)−τM1M2)dM1dM2,

for certain potentials V1, V2. If we take

V2(x) = x2/2, V1(x) = V (x) +
τ 2

2
x2, τ = 1/ǫ,

then it is straightforward to verify that M1 and M1 − τM2 are independent, that M1 has the
same distribution as M , and that 1

τ
M2 has the same distribution as the sum S = M + ǫH , see

also [14, Section 5].
The eigenvalues of Gaussian perturbations of (deterministic or random) matrices can al-

ternatively be realized as the positions of n non-intersecting Brownian paths with a common
endpoint and with (deterministic or random) starting points, see e.g. [21] and the recent work
[17].

In what follows, the random Hermitian n × n matrix M has to be independent of the GUE
matrix H and such that the joint probability density function of the eigenvalues is of the form

1

Zn

∆(x) det
[
fk−1(xj)

]n
j,k=1

, ∆(x) =
∏

1≤j<k≤n

(xk − xj), x1, . . . , xn ∈ R, (1.3)
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for certain functions f0, f1, . . . , fn−1, and where Zn is a normalizing constant. A density func-
tion on Rn of this form is called a polynomial ensemble [23]. For instance, the eigenvalues
of unitary invariant random matrix ensembles and of certain products and sums of random
matrices follow polynomial ensembles [12, 22]. Polynomial ensembles are special cases of de-
terminantal point processes, their correlation kernel Kn taking the special form

Kn(x, y) =
n−1∑

j=0

pj(x)qj(y), (1.4)

where pj is a polynomial of degree j, and qj is a linear combination of f0, . . . , fn−1, such that
the orthogonality conditions

∫

R

pj(x)qk(x)dx = δjk, j, k = 0, ..., n − 1, (1.5)

are satisfied. Later on, we will focus on polynomial ensembles defined by functions fj supported
on [0, +∞), but for now, they can be general.

If the joint eigenvalue density of a random matrix M is a polynomial ensemble with corre-
lation kernel Kn, then it was shown in [12] that the eigenvalues of S = M + ǫH , with H a GUE
matrix independent of M and ǫ > 0, also follow a polynomial ensemble, with the transformed
eigenvalue correlation kernel

KS
n (x, y) =

n

2πiǫ2

∫

iR

∫

R

Kn(s, t)e
n

2ǫ2 ((x−s)2−(y−t)2)dtds. (1.6)

In addition, if pn(x) = E[det(xI − M)] is the average characteristic polynomial of M , then the
average characteristic polynomial of S = M + ǫH is given by

Pn(x) = E[det(xI − S)] =

√
n√

2πiǫ

∫

iR
pn(s)e

n

2ǫ2
(x−s)2

ds. (1.7)

The formulas (1.6) and (1.7) follow from [12, formulas (2.6) and (2.8)] after a simple re-scaling
argument, and they will be the starting point of our analysis.

Macroscopic eigenvalue behaviour

The macroscopic large n behaviour of the eigenvalues of M + ǫH is well understood thanks to
free probability theory: if M = Mn is a sequence of random n × n matrices whose eigenvalue
distributions converge almost surely to a measure µ and if M is independent of the GUE matrix
H = Hn, then M and H are asymptotically free and we can apply results from free probability
theory [28, 33] to describe the limiting eigenvalue distribution of S = M + ǫH . Writing λǫ for
the rescaled semi-circle law,

dλǫ(x) =
1

2πǫ2

√
4ǫ2 − x2dx, x ∈ [−2ǫ, 2ǫ], (1.8)
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which is the limiting macroscopic density of the eigenvalues of ǫH , it is well-known that the
limiting eigenvalue distribution of S is almost surely given by the free additive convolution
µ⊞λǫ of µ and λǫ, see [8] for the definition and properties of the free convolution of a measure
µ with λǫ.

Another quantity containing global information about random matrix eigenvalues is the
zero counting measure of the average characteristic polynomial. The zeros of the average
characteristic polynomial are real and simple (see Lemma 3.1), and the zero counting measure
can heuristically be interpreted as a typical eigenvalue configuration. It can therefore be
expected that its large n limit coincides with the limiting (mean) eigenvalue distribution in
many cases. This is well-known for classical random matrix ensembles and was investigated in
a more general framework in [20]. The following result about convergence of the zero counting
measure of the average characteristic polynomial of S is not surprising in view of the above-
mentioned results from free probability. We will prove it in Section 3 directly using the integral
representation (1.7) and without relying on the more sophisticated results from free probability
theory.

Theorem 1.1. Let M be an n×n Hermitian random matrix such that its eigenvalue density is
a polynomial ensemble (1.3), let H be an n × n GUE matrix independent of M , and let ǫ > 0.
Write µn for the zero counting measure of the average characteristic polynomial of M , and νn

for the zero counting measure of the average characteristic polynomial of S = M + ǫH.
If, for sufficiently large n, the support of µn is contained in some n-independent compact

K, and if µn converges weakly to a probability measure µ, then νn converges weakly to µ ⊞ λǫ,
where λǫ is given by (1.8).

Microscopic eigenvalue behaviour

From now on, we consider polynomial ensembles supported on [0, +∞) or on an interval of
the form [0, b]. We mean by this that the functions fj in (1.3) are supported on [0, +∞) or
on [0, b]. Ensembles of this kind are said to have a hard edge at zero. Classical examples
of random matrix ensembles with a hard edge are the Laguerre Unitary Ensemble and the
Jacobi Unitary Ensemble. In these ensembles, the microscopic eigenvalue correlations near 0
are described in terms of Bessel functions. As we will see below, other ensembles may lead to
other types of microscopic eigenvalue correlations, described in terms of other functions, such
as Meijer G-functions or Wright’s generalized Bessel functions. A common feature of all hard
edge random matrix ensembles which we will study below, is the existence of a scaling limit
near the hard edge of the following form:

lim
n→+∞

1

cnγ
Kn

(
u

cnγ
,

v

cnγ

)
= K(u, v), v > 0, u ∈ C, (1.9)

for some values of c, γ > 0, and for some limiting kernel K(u, v), which depend on the particular
choice of random matrix ensemble.
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If we consider a Gaussian perturbation of M of the form S = M +ǫH , even if ǫ > 0 is small,
the matrix S is typically not positive-definite, in other words the hard edge at 0 is removed by
the perturbation. It is our aim to understand how scaling limits of the eigenvalue correlation
kernel near 0 of the form (1.9) change after the Gaussian perturbation. In particular, we want
to see what happens in double scaling limits where the constant ǫ goes to 0 as n goes to infinity,
as this is the limit in which the soft edge of the spectrum (which we have for fixed ǫ > 0) turns
into a hard edge at the origin. We now present a general auxiliary result, which we will apply
to several concrete examples later on. Given a scaling limit of the form (1.9), it states that
the scaling limit is preserved for the eigenvalue correlation kernel of S provided that ǫ → 0
sufficiently fast with n → ∞. If ǫ → 0 at a critical speed, the limiting kernel K is deformed.

Lemma 1.2. Consider a sequence of n × n random matrices M such that their eigenvalue
densities are polynomial ensembles on [0, +∞) or on [0, b]. We assume there exist constants
γ > 1/2, c, c1, c2, n0 > 0 and β ∈ [0, 1) such that the associated correlation kernels Kn satisfy
the following conditions:

1. there exists a function K(u, v) such that

lim
n→+∞

vβ 1

cnγ
Kn

(
u

cnγ
,

v

cnγ

)
= vβ

K(u, v), (1.10)

uniformly for u in any compact subset of C and v in any compact subset of [0, +∞). Here

vβK(u, v) and vβKn

(
u

cnγ , v
cnγ

)
for v = 0 have to be understood as the limits as v → 0

and it is supposed that these limits exist,

2. for every (u, v) ∈ iR × [0, +∞) and n > n0,

|Kn(u, v)| ≤ c1v
−βnγ(1−β)ec2nγ(|u|+|v|). (1.11)

Let S = M + ǫnH where H is a GUE matrix independent of M , and let KS
n be the eigenvalue

correlation kernel for S. Then,

1. if ǫn is such that limn→+∞ ǫnnγ− 1

2 = 0, we have

lim
n→+∞

1

cnγ
KS

n

(
x

cnγ
,

y

cnγ

)
= K(x, y), x, y > 0, (1.12)

2. if ǫn is such that limn→+∞ cǫnnγ− 1

2 = σ > 0, we have

lim
n→+∞

1

cnγ
KS

n

(
x

cnγ
,

y

cnγ

)
=

1

2πiσ2

∫

iR

∫

R+

K(s, t)e
1

2σ2 ((x−s)2−(y−t)2)dtds, (1.13)

uniformly for (x, y) in compact subsets of C2.
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Remark 1. The rate of decay O
(
n

1

2
−γ
)

for ǫn appears as a critical speed at which the local
eigenvalue behaviour changes. When ǫn goes to 0 faster than the critical speed, the eigenvalues
of the perturbed random matrix M +ǫnH behave locally near 0 as if there were no perturbation.
At the critical speed, a new limiting kernel appears at 0, given by (1.13). By a saddle point
approximation, it is easy to verify that

lim
σ→0

1

2πiσ2

∫

iR

∫

R+

K(s, t)e
1

2σ2 ((x−s)2−(y−t)2)dtds = K(x, y), (1.14)

which means that (1.12) and (1.13) are consistent.

Remark 2. Conditions 1 and 2 in the above lemma are designed in such a way that they
hold for a large class of random matrix ensembles. In some cases, we can just take β = 0.
However, it may happen that the functions fj(x) defining the polynomial ensemble (1.3) blow
up as x → 0. This implies that the kernel Kn(x, y) blows up as y → 0, and thus one cannot
expect (1.10) and (1.11) to hold for β = 0. This is why we allow β ∈ [0, 1).

In the next section, we discuss several concrete examples of random matrix ensembles to
which we can apply Lemma 1.2.

2 Examples

2.1 Perturbed Laguerre/Wishart random matrices

We define the generalized Laguerre Unitary Ensemble (LUE) as the set of n×n positive-definite
Hermitian matrices equipped with the probability measure

1

Zlue
n,α,k

(det M)αe−nTr(Mk)dM, dM =
n∏

j=1

dMjj

∏

1≤i<j≤n

dReMijdImMij, α > −1, k ∈ N.

(2.1)
Similarly as for the GUE, the factor n in the exponential ensures the eigenvalues to remain
bounded as n → +∞ with probability 1. For α ∈ N and k = 1, a random LUE matrix can be
realized as M = G∗G, where G is a (n+α)×n complex Ginibre matrix, which has independent
identically distributed complex normal entries N (0, 1

2n
) + iN (0, 1

2n
). In Figure 1, we present

numerical samples of the perturbed LUE for different values of ǫ.
The eigenvalues of a random matrix M with probability distribution (2.1) have the joint

probability distribution

1

Z̃lue
n,α,k

∆(x)2
n∏

j=1

xα
j e−nxk

j dxj, x1, . . . , xn > 0, (2.2)

which is a polynomial ensemble (1.3) with fj(x) = xj+αe−nxk

on R+. The limiting eigenvalue
distribution µ in this ensemble is almost surely given by a (generalized) Marchenko-Pastur law
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Figure 1: Numerical samples of the eigenvalues of M + ǫH , with M a 4000 × 4000 matrix
drawn from the LUE (with α = 0 and k = 1), and H a 4000 × 4000 matrix drawn from the
GUE. The chosen values for ǫ are 2, 1/2, 1/10 and 0. The case ǫ = 0 is the unperturbed LUE.
The eigenvalues are represented in histograms of 200 intervals.

of the form

dµ(x) =
1

2π

√
b − x

x
h(x)dx, x ∈ (0, b), (2.3)

for some n-independent b > 0 and polynomial h, positive on [0, b]. We denote

Gµ(z) =
∫ dµ(x)

z − x
, z ∈ C \ [0, b] (2.4)

for the Stieltjes transform of µ. The limiting eigenvalue distribution of a Gaussian perturbation
S = M + ǫH is almost surely the free convolution µ ⊞ λǫ. Its density can be shown to have
the form [30]

d(µ ⊞ λǫ)(x)

dx
= hǫ(x)

√
(x − aǫ)(bǫ − x), x ∈ [aǫ, bǫ], (2.5)

with hǫ positive on [aǫ, bǫ]. The density vanishes like a square root at both edges for any ǫ > 0,
whereas the density of µ blows up at the left edge like an inverse square root.

In [34], large n asymptotics for the eigenvalue correlation kernel Kn(x, y) of M have been
obtained using the Deift/Zhou steepest descent method [13] applied to the Riemann-Hilbert
problem for generalized Laguerre polynomials. In particular, by [34, Theorem 2.10 (a)], we
have

lim
n→+∞

1

cn2
Kn

(
x

cn2
,

y

cn2

)
= K

Bessel
α (x, y), (2.6)

uniformly for x, y in compact subsets of (0, +∞), with c = bh(0)2. The limiting kernel KBessel
α

is expressed in terms of Bessel functions of the first kind Jα and takes the explicit form

K
Bessel
α (x, y) = x− α

2 y
α
2

Jα(
√

x)
√

yJ ′
α(

√
y) − Jα(

√
y)

√
xJ ′

α(
√

x)

2(x − y)
. (2.7)

The Bessel kernel is usually defined without the factor x− α
2 y

α
2 in front, such that it is symmetric

in x and y. The pre-factor is present in our situation because the polynomial ensemble kernel
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is not symmetric, but it has no effect on the determinants defining the correlation functions
associated to the Bessel kernel. Using Lemma 1.2 and results from [34], we will prove the
following result.

Theorem 2.1. Let M be an n × n random matrix with probability measure (2.1), and let H
be an n × n GUE matrix with probability measure (1.1), independent of M . Write KS

n for the
eigenvalue correlation kernel of S = M + ǫnH.

(i) (Sub-critical perturbation) If limn→+∞ ǫnn
3

2 = 0, then for x, y > 0, we have

lim
n→+∞

1

cn2
KS

n

(
x

cn2
,

y

cn2

)
= K

Bessel
α (x, y), (2.8)

with c = bh(0)2, where h and b are defined by (2.3).

(ii) (Critical perturbation) If limn→+∞ cǫnn
3

2 = σ > 0, then for x, y ∈ C, we have

lim
n→+∞

1

cn2
KS

n

(
x

cn2
,

y

cn2

)
=

1

2πiσ2

∫

iR

∫

R+

K
Bessel
α (s, t)e

1

2σ2 ((s−x)2−(t−y)2)dtds. (2.9)

(iii) (Super-critical perturbation) If ǫn → 0 in such a way that ǫnn
3

2 → +∞ as n → +∞,
then for x, y ∈ C, we have

lim
n→+∞

e−ϕǫn,n(x)+ϕǫn,n(y) 1

cǫnn
2

3

KS
n

(
aǫn − x

cǫnn
2

3

, aǫn − y

cǫnn
2

3

)
= K

Ai(x, y), (2.10)

with aǫ as in (2.5), cǫ = ǫ−261/3G′′
µ(uǫ)

−1/3, where uǫ is the unique negative solution of
the equation

1 + ǫ2G′
µ(u) = 0, (2.11)

and with

ϕǫ,n(z) =
n1/3z

cǫǫ2
(uǫ − aǫ).

The limiting kernel KAi is the Airy kernel

K
Ai(u, v) =

Ai(u)Ai′(v) − Ai(v)Ai′(u)

u − v
. (2.12)

Remark 3. The natural interpretation of these results is as follows: if ǫn tends to 0 sufficiently
fast, then the perturbation is too weak to have an effect on the large n behaviour of the
eigenvalues near 0. In this case we have the same Bessel kernel limit as for the unperturbed
LUE, even though 0 is not a hard edge any longer (for any ǫ > 0 and n fixed, there is a non-zero
probability of having negative eigenvalues). On the other hand, if ǫn tends to zero slowly, one
is close to the fixed ǫ case where one has, macroscopically, soft edges, which suggests Airy

8



R

iR

C1C2
π
3

Figure 2: Contours in the definition of the Airy kernel KAi

behaviour. In (2.10), one should note that cǫ blows up as ǫ → 0: it is of the order ǫ−8/9. The
intuition behind this, is that the typical distance between eigenvalues near aǫ is of the order
ǫ8/9n−2/3. If ǫn → 0 at the critical speed, the typical distance between eigenvalues is of the
order n−2 and it is on this scale that the actual transition between the Bessel and the Airy
kernel takes place.

Remark 4. One could consider more general LUE type ensembles where the monomial Mk

in (2.1) is replaced by a polynomial V (M). As long as V is such that the limiting eigenvalue
density blows up like an inverse square root near 0, it leads no doubt that similar scaling limits
can be obtained, but we do not investigate this further.

Parts (i) and (ii) of Theorem 2.1 will be direct consequences of Lemma 1.2. We need the
results from [34] to show that the conditions of Lemma 1.2 are fulfilled, and also to prove part
(iii). Here, instead of (2.12), we will arrive at a different representation of the Airy kernel:

K
Ai(u, v) =

1

4π2

∫

C2

ds
∫

C1

dt
1

s − t

et3−vt

es3−us
, (2.13)

with C1 going from e− iπ
3 ∞ to e

iπ
3 ∞ and C2 its reflexion through the vertical axis, as in Figure

2. Using integration by parts on the integral representation of the Airy function [29, Formula
9.5.4], one can easily check that both kernels (2.12) and (2.13) are indeed the same.

2.2 Perturbed products of Ginibre matrices

Products of Ginibre matrices have been studied intensively during the last years, see e.g. [2, 3,
4, 16, 23, 24]. The squared singular values of products of m > 0 independent complex Ginibre
matrices follow also a polynomial ensemble with a hard edge at 0. Let Ym = XmXm−1...X1,
with Xj an (n + νj) × (n + νj−1) matrix with complex standard Gaussian iid entries, and with
the Xj’s independent. The νj’s are assumed to be non-negative integers, and ν0 = 0. For
n fixed, it was proved in [23] that the joint density of the squared singular values of Ym is a

9
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Figure 3: Numerical samples of the eigenvalues of 33

4440003 Y ∗
3 Y3 + ǫH , where Y3 is a product of

three 4000 × 4000 (i.e., νj = 0 for j = 1, 2, 3) Ginibre matrices, and H is a 4000 × 4000 matrix
drawn from the GUE. Because of the factor in front of Y3, the eigenvalues accumulate on [0, 1].
The chosen values for ǫ are 2, 1/2, 1/10 and 0. The eigenvalues are represented in histograms
of 200 intervals. The first column for the ǫ = 0 case has been truncated to 300 eigenvalues, its
actual value being around 1500.

polynomial ensemble. For m = 1, we recover the LUE with k = 1 and α = ν1 after rescaling.
Numerical samples for perturbed products of Ginibre matrices are presented in Figure 3.

The correlation kernel for the squared singular values of Ym, or the eigenvalues of Y ∗
mYm, is

given by [24, Formula (5.1)]

Kn(x, y) =
1

(2πi)2

∫

− 1

2
+iR

ds
∫

Σn

dt
m∏

j=0

Γ(s + νj + 1)

Γ(t + νj + 1)

Γ(t − n + 1)

Γ(s − n + 1)

xty−s−1

s − t
, (2.14)

where Γ denotes the Euler Gamma-function and where Σn is a closed contour encircling
0, 1, ..., n in the positive direction in such a way that Re t > −1

2
for t ∈ Σn. The largest

eigenvalue of this ensemble is typically of order nm [31], and it is therefore more natural for us
to rescale the kernel in the following way

K̃n(x, y) := nmKn (nmx, nmy)

=
1

(2πi)2

∫

− 1

2
+iR

ds
∫

Σn

dt
m∏

j=0

Γ(s + νj + 1)

Γ(t + νj + 1)

Γ(t − n + 1)

Γ(s − n + 1)

xty−s−1nm(t−s)

s − t
. (2.15)

This is the correlation kernel for the eigenvalues of 1
nm Y ∗

mYm. Using this normalization, it has
been shown [27, Theorem 3.2] that the zero counting measures of the average characteristic
polynomials converge (in the weak-∗ sense) to the Fuss-Catalan distribution [31]. We may
apply Theorem 1.1, and this implies that the counting measures of the average characteristic
polynomials of the perturbed random matrix 1

nm Y ∗
mYm + ǫH converges to the free additive

convolution of the Fuss-Catalan distribution with the semi-circle law λǫ for any ǫ > 0.
The microscopic behaviour of the eigenvalues near the origin is described by the following

scaling limit: we have [24]

lim
n→+∞

1

nm+1
K̃n

(
x

nm+1
,

y

nm+1

)
= K

G
ν (x, y), (2.16)

10



for x, y > 0, where

K
G
ν (x, y) =

1

(2πi)2

∫

− 1

2
+iR

ds
∫

Σ
dt

m∏

j=0

Γ(s + νj + 1)

Γ(t + νj + 1)

sin πs

sin πt

xty−s−1

s − t
. (2.17)

The contour Σ comes from +∞ in the upper half plane, encircles the positive real axis and
goes back to +∞ in the lower half plane, in such a way that Re t > −1

2
for t ∈ Σ. The kernel

KG
ν can also be expressed in terms of Meijer G-functions. Recently, sine and Airy kernel limits

were confirmed rigorously in the bulk and at the right edge [25].
Using Lemma 1.2, we will prove the following result in Section 5.3.

Theorem 2.2. Let Ym = XmXm−1...X1, with the Xj’s independent (n+νj)×(n+νj−1) complex
Ginibre matrices, ν0 = 0, and let H be an n × n GUE matrix independent of Ym. Write KS

n

for the eigenvalue correlation kernel of S = 1
nm Y ∗

mYm + ǫnH.

(i) (Sub-critical perturbation) If limn→+∞ ǫnnm+ 1

2 = 0, then for x, y > 0, we have

lim
n→+∞

1

nm+1
KS

n

(
x

nm+1
,

y

nm+1

)
= K

G
ν (x, y). (2.18)

(ii) (Critical perturbation) If limn→+∞ ǫnnm+ 1

2 = σ > 0, then for x, y ∈ C, we have

lim
n→+∞

1

nm+1
KS

n

(
x

nm+1
,

y

nm+1

)
=

1

2πiσ2

∫

iR

∫

R+

K
G
ν (s, t)e

1

2σ2 ((s−x)2−(t−y)2)dtds. (2.19)

Remark 5. In the super-critical regime, one expects Airy behaviour just like in the LUE case.
To prove this, one could try to follow the same steps as for the LUE, but this will become
considerably harder because the kernel Kn is now expressed in terms of multiple orthogonal
polynomials instead of (generalized) Laguerre polynomials. We will come back to this issue
later on in Remark 10.

Remark 6. The limiting kernel (2.17), in the case m = 2, appears also at the hard edge
of a matrix from the Cauchy-Laguerre two-matrix model [7]. This is the space of pairs of
positive-definite Hermitian n × n matrices with probability measure

1

Zn

det(M1)a det(M2)
be−Tr(c1M1+c2M2)

det(M1 + M2)n
dM1dM2, (2.20)

with a, b > −1, a + b > −1 and c1, c2 > 0. The correlation kernel for the eigenvalues of one of
the matrices is given as a double contour integral similar to (2.14), and we expect that Lemma
1.2 can be applied to this case as well.

Remark 7. A different type of (deterministic) perturbation of products of Ginibre matrices
has been studied in [18].
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Figure 4: Numerical distribution of the eigenvalues of Y ∗
3 Y3 + ǫH , for H a 2000 × 2000 GUE

matrix and Y3 is the product of three 2000 × 2000 truncations of three 4005 × 4005 Haar
matrices. The chosen values for ǫ are 1, 1/10, 1/30 and 0. The eigenvalues are represented in
a histogram of 200 intervals. The first column for the ǫ = 0 case has been truncated to 200,
the actual value being around 550.

2.3 Perturbed products of truncated unitary matrices

Another example is given by the squared singular values of products of m > 0 truncated
unitary matrices. As for the previous case, we form Ym = Tm...T1, but now Tj is the upper left
(n + νj) × (n + νj−1) truncation of a unitary matrix of size ℓj × ℓj drawn randomly from the
unitary group U(ℓj) equipped with the Haar measure, as in [36]. We assume that ν0 = 0, that
ν1, ..., νm are non-negative integers, and that ℓj ≥ n + νj + 1 for j = 1, ..., m. See Figure 4 for
numerical realizations of this ensemble perturbed by additive Gaussian noise.

If ℓ1 ≥ 2n+ν1, it was shown in [22] that the joint probability density of the squared singular
values is a polynomial ensemble, whose kernel is given by

Kn(x, y) =
1

(2πi)2

∫

C
ds
∫

Σn

dt
m∏

j=0

Γ(s + 1 + νj)Γ(t + 1 + ℓj − n)

Γ(t + 1 + νj)Γ(s + 1 + ℓj − n)

xty−s−1

s − t
. (2.21)

The contour C leaves at −∞ in the lower half plane, encircles the semi axis (−∞, −1) and
returns to −∞ in the positive half plane, Σn being the same contour as in Section 2.2. Moreover,
the contours C and Σn are not allowed to intersect. In [12], (2.21) was proved under the weaker
assumption

∑m
j=1(ℓj − n − νj) ≥ n, instead of ℓ1 ≥ 2n + ν1.

This kernel also has a limiting kernel appearing near the hard edge. As n goes to infinity,
we also have to let ℓ1, ..., ℓm go to infinity. For each ℓj , we may choose either to let ℓj − n go
to infinity, or to keep ℓj − n fixed. For each of these choices, the scaling leads to a different
limiting kernel. We thus take J ⊆ {2, ..., m} a subset of indices. We then let ℓ1, ..., ℓm go to
infinity in such a way that

ℓk − n → +∞, if k /∈ J, (2.22)

ℓk − n = µk, if k = jk ∈ J. (2.23)

12



Define finally cn = n
∏

j /∈J(ℓj − n). The kernel (2.21) then has the following scaling limit [22,
Theorem 2.8] for x ∈ C, y > 0,

lim
n→+∞

1

cn
Kn

(
x

cn
,

y

cn

)
= K

T
ν,µ(x, y)

:=
1

(2πi)2

∫

− 1

2
+iR

ds
∫

Σ
dt

m∏

j=0

Γ(s + 1 + νj)

Γ(t + 1 + νj)

sin πs

sin πt

∏

k∈J

Γ(t + 1 + µk)

Γ(s + 1 + µk)

xty−s−1

s − t
. (2.24)

The contour Σ is the same as in Section 2.2. Note that if J is empty, the limiting kernel (2.24)
reduces to the kernel (2.17). As eigenvalues of a product of truncated unitary matrices, the
eigenvalues of M remain bounded as n → +∞. It can be verified, in a similar way as we will
do in the case of products of Ginibre matrices, that the eigenvalue correlation kernel for M
satisfies conditions similar to those of Lemma 1.2, if we replace cnγ by cn (see Remark 11).
This will allow us to prove the following.

Theorem 2.3. Let Ym be a product of truncations of unitary Haar distributed matrices as
described above, such that the eigenvalue correlation kernel of Y ∗

mYm is given by (2.21), and let
H be an n × n GUE matrix independent of Ym. Write KS

n for the eigenvalue correlation kernel
of S = Y ∗

mYm + ǫnH. Then, we have

(i) (Sub-critical perturbation) If limn→+∞ ǫncnn− 1

2 = 0, then for x, y > 0, we have

lim
n→+∞

1

cn

KS
n

(
x

cn

,
y

cn

)
= K

T
ν,µ(x, y). (2.25)

(ii) (Critical perturbation) If limn→+∞ ǫncnn− 1

2 = σ > 0, then for x, y ∈ C, we have

lim
n→+∞

1

cn

KS
n

(
x

cn

,
y

cn

)
=

1

2πiσ2

∫

iR

∫

R+

K
T
ν,µ(s, t)e

1

2σ2 ((s−x)2−(t−y)2)dtds. (2.26)

Remark 8. If m = 1, we have a single truncation of a unitary Haar matrix. Its squared
singular values are in the Jacobi Unitary Ensemble, and in this case the kernel KT

ν,µ reduces to
the Bessel kernel KBessel

ν .

2.4 Perturbed Muttalib-Borodin biorthogonal ensembles

The last example consists of random matrices for which the joint probability density of eigen-
values is the Muttalib-Borodin Laguerre ensemble [9, 26]

1

Zn

∏

j<k

(λk − λj)(λ
θ
k − λθ

j)
n∏

j=1

λα
j e−nλj , θ > 0, α > −1. (2.27)
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Figure 5: Numerical samples of eigenvalues of 1
1500

X∗X + ǫH , for H a GUE matrix and X a
1500 × 1500 matrix as described below (2.27), with θ = 3 and α = 1. Values for ǫ have been
taken as 2, 1/2, 1/10 and 0. The eigenvalues are represented in histograms with 100 intervals.

Such densities can be realized as eigenvalue densities of random matrices, see [1, 11, 19]. In [19],
the authors constructed a random matrix with this eigenvalue density in the following way, in
the case where θ is a positive integer and α a non-negative integer. Define αj , j = 1, ..., n by
αj = θ(j − 1) + α. Then, consider the matrix X of size m × n, with m ≥ n + (n − 1)θ + α,
whose (j, k) entry is 0 if j − k > αk, and following independent standard complex Gaussian
distributions otherwise. In other words, X is a complex Ginibre matrix, but with the entries
in a certain region in the lower left corner of the matrix replaced by zeros. The eigenvalues of
such matrices are shown for θ = 3 and α = 1 in Figure 5. The density of the eigenvalues of
1
n
X∗X is then given by (2.27). The eigenvalue correlation kernel of 1

n
X∗X can be expressed

as [19]

Kn(x, y) =
1

(2πi)2
en(x−y)

∫

C
ds
∫

Cα

dt
x−s−1yt

s − t
n−s+t Γ(s + 1)

Γ(t + 1)

n∏

k=1

s − αk

t − αk

, (2.28)

with Cα a contour enclosing α1, ..., αn and C starting at −∞ in the lower half plane, enclosing
Cα and going back to −∞ in the upper half plane. An alternative expression was given in [37]:

Kn(x, y) =
θ

(2πi)2

∫

c+iR
ds
∫

Σn

dt
x−θs−1yθt

s − t
n−θs+θt Γ(s + 1)Γ(α + 1 + θs)Γ(t − n + 1)

Γ(t + 1)Γ(α + 1 + θt)Γ(s − n + 1)
, (2.29)

with c = −1
2

+ 1
2

max{0, 1 − α+1
θ

}, and Σ a closed counter-clockwise contour going around
0, 1, . . . , n − 1 and for which Re t > c.

It admits the hard edge scaling limit [9, 19]

lim
n→+∞

1

n1+ 1

θ

Kn

(
x

n1+ 1

θ

,
y

n1+ 1

θ

)
= K

MB
α,θ (x, y), x ∈ C, y > 0, (2.30)

where the limiting kernel KMB
α,θ is given by

K
MB
α,θ (x, y) :=

θ

(2πi)2

(
y

x

)α ∫

Cδ
ds
∫

Σ
dt

x−θs−1yθt

s − t

Γ(θs + α + 1)

Γ(θt + α + 1)

Γ(s + 1)

Γ(t + 1)

sin πs

sin πt
, (2.31)
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with Σ starting from +∞ in the upper half plane, enclosing the positive real axis and going
back to +∞ in the lower half plane, and Cδ consisting of two rays starting from −1

2
and making

an angle 0 < δ < π
2

with the vertical axis, oriented upwards.
Similarly as in the previous cases, we have the following result.

Theorem 2.4. Let M be a random matrix with eigenvalue density (2.27) and correlation kernel
(2.28), and let H be an n × n GUE matrix independent of X. Write KS

n for the eigenvalue
correlation kernel of S = M + ǫnH.

(i) (Sub-critical perturbation) If limn→+∞ ǫnn
1

θ
+ 1

2 = 0, then for x, y > 0, we have

lim
n→+∞

1

n
1

θ
+1

KS
n

(
x

n
1

θ
+1

,
y

n
1

θ
+1

)
= K

MB
α,θ (x, y). (2.32)

(ii) (Critical perturbation) If limn→+∞ ǫnn
1

θ
+ 1

2 = σ > 0, then for x, y ∈ C, we have

lim
n→+∞

1

n
1

θ
+1

KS
n

(
x

n
1

θ
+1

,
y

n
1

θ
+1

)
=

1

2πiσ2

∫

iR

∫

R+

K
MB
α,θ (s, t)e

1

2σ2 ((s−x)2−(t−y)2)dtds. (2.33)

Remark 9. The hard edge scaling limit (2.30) was derived in [9] with a different expression
for the limiting kernel,

K
MB
α,θ (x, y) = θyα

∫ 1

0
J(α+1)/θ,1/θ(xu)Jα+1,θ(yu)θuαdu, (2.34)

where Ja,b is Wright’s generalization of Bessel functions given by

Ja,b(x) =
+∞∑

j=0

(−x)j

j!Γ(a + jb)
. (2.35)

If 1/θ ∈ N, this limiting kernel can be expressed in terms of the kernel KG
ν appearing for

products of Ginibre matrices, see [23, Section 5].

Yet another hard edge limiting kernel was obtained in [5, 35] in random matrix ensembles
with singularities of the form

1

Zn
e−nTr(M+tk/Mk)dM, k ∈ N, (2.36)

on the space of n × n positive-definite Hermitian matrices. A limiting kernel was obtained
which can be expressed in terms of the Painlevé III hierarchy, the corresponding value of γ in
(1.9) is γ = 2. We believe that Lemma 1.2 can also be applied to this ensemble, but a detailed
study would lead us too far.
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Outline

In Section 3, we prove Theorem 1.1 on the convergence of the zero counting measures of the
average characteristic polynomials. In Section 4, we prove the central auxiliary result of this
paper, Lemma 1.2. Parts (i) and (ii) of Theorem 2.1 on perturbed LUE matrices are proved in
Section 5.1, and part (iii) in Section 5.2. In Section 5.3, the proof of Theorem 2.2 on perturbed
Ginibre products is given. The proofs of Theorem 2.3 and Theorem 2.4 on perturbed products
of truncated unitary matrices and Muttalib-Borodin ensembles are similar to the Ginibre case,
as we explain in Remark 11 without giving details.

3 Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. We first need a general result about the zeros
of the average characteristic polynomial.

Lemma 3.1. In a polynomial ensemble of the form (1.3), the average characteristic polynomial

pn(z) = E

(∏n
j=1(z − xj)

)
has n simple real zeros.

Proof. The average characteristic polynomial has real coefficients and satisfies the orthogonal-
ity conditions ∫

R

pn(x)fj(x)dx = 0, j = 0, . . . , n − 1.

If pn would have a non-simple or non-real zero z0, we can write pn(z) = (z−z0)(z−z̄0)
(∑n−2

k=0 akzk
)

with an−2 = 1. By the orthogonality conditions, we have

n−2∑

k=0

ak

∫

R

xk
(
|x − z0|2fj(x)

)
dx = 0, j = 0, . . . , n − 1.

If this homogeneous linear system has a non-zero solution (a0, . . . , an−2), then the coefficient

matrix is of rank ≤ n − 2, so the extended n × n matrix
(∫ |x − z0|2xkfj(x)dx

)
j,k=0,...,n−1

is at

most of rank n − 1 and has zero determinant.
But on the other hand, by the Andreief identity, we have

det
(∫

R

|x − z0|2xkfj(x)dx
)

j,k=0,...,n−1
=

1

n!

∫

Rn
∆(x) det (fj−1(xk))j,k=1,...,n

n∏

j=1

|xj − z0|2dxj ,

which is strictly positive as it is equal to Zn

n!
E

(∏n
j=1 |xj − z0|2

)
. This is a contradiction, so pn

has only simple real zeros.

The proof of Theorem 1.1 now relies on the following two lemmas.
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Lemma 3.2. Under the conditions of Theorem 1.1, the sequence of functions

fn(z) :=
∫

log(1 − s/z)d(µn − µ)(s) (3.1)

converges to 0, uniformly for |z| > r, where r is such that r > max{|w| : w ∈ K}.

Proof. Point-wise convergence of fn to 0 follows from the weak-∗ convergence of µn to µ, since
log(1 − s/z) is continuous for |z| > r. To prove uniform convergence, we note first that fn(z)
is uniformly bounded: we have

|fn(z)| ≤
∫

| log(1 − s/z)|dµn(s) +
∫

| log(1 − s/z)|dµ(s) ≤ 2 max
|z|≥r,s∈K

| log(1 − s/z)|. (3.2)

If we define hn(z) = fn(1/z), hn(z) is a uniformly bounded sequence of analytic functions on
|z| < 1/r, which converges point-wise to 0. By Vitali’s theorem, it follows that hn converges
to 0 uniformly for |z| < 1/r, and hence fn(z) converges to 0 uniformly for |z| > r.

For any compactly supported probability measure µ on R, we define

gµ(z) =
∫

log(z − s)dµ(s), Gµ(z) = g′
µ(z) =

∫
1

z − s
dµ(s), (3.3)

where we choose the logarithm corresponding to arguments between −π and π.

Lemma 3.3. Under the conditions of Theorem 1.1, let Pn(z) be the average characteristic
polynomial of S. For |Re z| large enough, we have

lim
n→+∞

1

n
log Pn(z) = gµ(sc(z)) +

1

2ǫ2
(z − sc(z))2, (3.4)

where sc(z) is the solution in s of Gµ(s) + ǫ−2(s − z) = 0.

Proof. Writing pn for the average characteristic polynomial of M and µn for its zero counting
measure, we have the identity

pn(z) =
n∏

j=1

(z − z
(n)
j ) = engµn (z), (3.5)

where z
(n)
j , j = 1, . . . , n are the zeros of pn.

From the transformation formula (1.7) for Pn in terms of pn, we have

Pn(z) =

√
n√

2πiǫ

∫

iR
enFn(s;z)ds, Fn(s; z) := gµn(s) +

1

2ǫ2
(z − s)2. (3.6)

Since g′
µn

(s) = O(1/s) as s → ∞, uniformly for n large enough, the saddle point equation
F ′

n(s; z) = 0 has, for z sufficiently large, a unique solution sc(z) such that sc(z) ∼ z as z → ∞,
by the inverse function theorem.
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In order to obtain large n asymptotics for Pn(z), we deform the integration contour iR in
(3.6) to the steepest descent path γ = γn passing through sc(z) and on which the imaginary
part of Fn(s; z) is constant. For |Re z| large, γ makes a small angle with the vertical line trough
sc(z), and therefore it remains outside of the compact K. We have

Re F ′′
n (s; z) = Re g′′

µn
(s) + ǫ−2 = ǫ−2 + O

(
s−2

)
, s → ∞,

and this implies that Re Fn achieves its unique local maximum on γ at sc(z). We can use the
saddle point method to approximate the integral in (3.6) in the following way, for z sufficiently
large, as n → ∞.

We may choose an implicit parametrization γn(t) of the steepest descent path γn by im-
posing

Fn(γn(t); z) − Fn(sc(z); z) = −t2, t ∈ [−δ, δ], Im γ̇n(0) > 0,

for some sufficiently small δ > 0, and such that |γ̇n(t)| = 1 for |t| > δ. We can then write the
integral in (3.6) as

∫

γ
enFn(s;z)ds = enF (sc(z);z)

∫ δ

−δ
γ̇n(t)e−nt2

dt +
∫

R\[−δ,δ]
γ̇n(t)enFn(γn(t);z)dt. (3.7)

Since Re Fn(s; z) has its unique global maximum on γn at t = 0 and grows as t → ±∞, the

second term is O(en[Fn(sc(z))−η2]) as n → +∞. For the first term, note that γ̇n(0) = i
√

2
F ′′

n (sc(z);z)
.

Moreover, there is a constant C > 0 independent of n such that

|γ̇n(t) − γ̇n(0)| ≤ C|t|, t ∈ [−δ, δ].

From (3.7), we now get

∫

γ
enFn(s;z)ds = i

√
2

F ′′
n (sc(z); z)

enF (sc(z);z)
∫ δ

−δ
e−nt2

dt

+ O
(∫ δ

−δ
|t|e−nt2

dt

)
+ O

(
en[Fn(sc(z))−η2 ]

)
, (3.8)

as n → ∞. Evaluating the integrals as n → ∞ and substituting in (3.6), we finally obtain

Pn(z) ∼ 1

ǫ
F ′′

n (sc(z); z)− 1

2 enFn(sc(z);z), n → +∞, (3.9)

for |Re z| sufficiently large. It follows that

1

n
log Pn(z) = gµn(sc(z)) +

1

2ǫ2
(z − sc(z))2 + o(1), n → +∞.

Using the fact that

gµn(z) = gµ(z) + fn(z), with fn(z) =
∫

log(1 − s/z)d(µn − µ)(s) (3.10)

and Lemma 3.2, (3.4) now follows easily.
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Proof of Theorem 1.1. Using the general definition of the free convolution, it was noted in [8]
that the free convolution of a compactly supported probability measure µ with the semi-circle
λǫ satisfies the equation

Gµ⊞λǫ(s + ǫ2Gµ(s)) = Gµ(s), (3.11)

for s sufficiently large. In other words, if sc(z) is the solution of Gµ(s) + ǫ−2(s − z) = 0, we
have

Gµ⊞λǫ(z) = Gµ(sc(z)). (3.12)

This implies, after a straightforward calculation,

d

dz
gµ⊞λǫ(z) =

d

dz

(
gµ(sc(z)) +

1

2ǫ2
(z − sc(z))2

)
, (3.13)

and upon integrating, we obtain

gµ⊞λǫ(z) = gµ(sc(z)) +
1

2ǫ2
(z − sc(z))2, (3.14)

since both the left and the right hand side behave like log z + O(z−1) as z → ∞.
By Lemma 3.3, we have

lim
n→+∞

1

n
log Pn(z) = gµ⊞λǫ(z) (3.15)

for |Re z| sufficiently large. This implies that there exists an n-independent compact K̃ such
that Pn has no zeros outside K̃, for n sufficiently large. By Helly’s theorem, (νn)n, and every
subsequence of it, has a weak-∗ converging subsequence. We claim that every such converging
subsequence (νnk

)k converges to µ⊞λǫ. If so, it is easily seen by contraposition that the whole
sequence νn converges to µ ⊞ λǫ.

To prove the claim, we suppose that a subsequence (νnk
)k converges in weak-∗ sense to

some measure ν̃. We then have

lim
k→+∞

1

nk

log Pnk
(z) = lim

k→+∞

∫
log(z − s)dνnk

(s) = gν̃(z), (3.16)

for z outside K̃, and combining this with (3.15), it follows that gν̃ = gµ⊞λǫ. Since the supports
of ν̃ and µ ⊞ λǫ are both contained in R, gν̃ and gµ⊞λǫ are analytic in C \ R, and by analytic
continuation we have in particular that Re gν̃ = Re gµ⊞λǫ everywhere in C except possibly on a
set of 2-dimensional Lebesgue measure 0. We can then use the unicity theorem [32, Theorem
II.2.1] to conclude that ν̃ = µ ⊞ λǫ.
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4 Proof of Lemma 1.2

We will now give the proof of the central lemma of this paper. We assume that the conditions
(1.10) and (1.11) hold.

Replacing x and y by x
cnγ and y

cnγ in (1.6), and substituting s = u
cnγ and t = v

cnγ in the
integrals, we obtain the identity

1

cnγ
KS

n

(
x

cnγ
,

y

cnγ

)
=

n1−2γ

2πic2ǫ2
n

∫

iR

∫

R+

1

cnγ
Kn

(
u

cnγ
,

v

cnγ

)
e

n1−2γ

2c2ǫ2
n

((x−u)2−(y−v)2)
dvdu. (4.1)

By (1.11), we have ∣∣∣∣
1

cnγ
Kn

(
u

cnγ
,

v

cnγ

)∣∣∣∣ ≤ c1

c1−β
v−βe

c2
c

(|u|+|v|),

which implies that we can use the dominated convergence theorem in (4.1) if n → +∞, ǫn → 0

in such a way that limn→+∞ cǫnnγ− 1

2 = σ > 0. Using (1.10), we immediately obtain the limit
(1.13), point-wise for x, y ∈ C.

To see that the limit is uniform for (x, y) in compact sets and to treat the case where

limn→+∞ ǫnnγ− 1

2 = 0, we need the following technical estimates.

Lemma 4.1. Let Kn : C × R+ → C be a sequence of kernels satisfying condition (1.11).
Assume that |x|, |y| ≤ r and let ω > 0. Then, for n and R sufficiently large, the following
estimates hold:

∣∣∣∣∣

∫

iR\[−iR,iR]

∫ R

0

1

cnγ
Kn

(
s

cnγ
,

t

cnγ

)
e

1

2ω2
((x−s)2−(y−t)2)dtds

∣∣∣∣∣

≤ 2c1

c1−β

R1−β

1 − β

e2 Rr

ω2
+ r2

ω2
+2

c2
c

R

R − r − c2

c
ω2

ω2e− R2

2ω2 ; (4.2)

∣∣∣∣∣

∫ iR

−iR

∫ +∞

R

1

cnγ
Kn

(
s

cnγ
,

t

cnγ

)
e

1

2ω2
((x−s)2−(y−t)2)dtds

∣∣∣∣∣ ≤ c1

√
2π

c1−β

e
r2

ω2
+2 Rr

ω2
+2

c2
c

R

R − r − c2

c
ω2

ω2e− R2

2ω2 ; (4.3)

∣∣∣∣∣

∫

iR\[−iR,iR]

∫ +∞

R

1

cnγ
Kn

(
s

cnγ
,

t

cnγ

)
e

1

2ω2
((x−s)2−(y−t)2)dtds

∣∣∣∣∣ ≤ 2c1

c1−β

e2
c2
c

R+2 Rr

ω2
− R2

ω2

(
R − r − c2

c
ω2
)2 ω2. (4.4)

Proof. To prove inequality (4.2), we first use condition (1.11) to get

∣∣∣∣∣

∫

iR\[−iR,iR]

∫ R

0

1

cnγ
Kn

(
s

cnγ
,

t

cnγ

)
e

1

2ω2
((x−s)2−(y−t)2)dtds

∣∣∣∣∣

≤ c1

c1−β

∫

R\[−R,R]
e

c2
c

|s|
∣∣∣e

1

2ω2
(x−is)2

∣∣∣ ds
∫ R

0
t−βe

c2
c

te− 1

2ω2
(y−t)2

dt. (4.5)
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The choices of R and r then allow us to estimate
∣∣∣e

1

2ω2
(x−is)2

∣∣∣ ≤ e
r2

2ω2 e
|s|r

ω2 e− s2

2ω2 and e− 1

2ω2
(y−t)2 ≤ e

r2

2ω2 e
Rr

ω2 e− t2

2ω2 . (4.6)

Using these two things, and the symmetry along the imaginary axis, we have
∣∣∣∣∣

∫

iR\[−iR,iR]

∫ R

0

1

cnγ
Kn

(
s

cnγ
,

t

cnγ

)
e

1

2ω2
((x−s)2−(y−t)2)dtds

∣∣∣∣∣

≤ 2c1

c1−β

R1−β

1 − β
e

r2

ω2 e
Rr

ω2 e
c2
c

R
∫ +∞

R
e

c2
c

se
1

2ω2
(2sr−s2)ds. (4.7)

We may integrate by parts the integral at the right and doing so, we obtain

∫ +∞

R
e

c2
c

se
1

2ω2
(2sr−s2)ds =

ω2e
c2
c

R+ Rr

ω2 − R2

2ω2

R − r − c2

c
ω2

−
∫ +∞

R

ω4

(
s − r − c2

c
ω2
)2 e

c2
c

s+ sr

ω2
− s2

2ω2 ds

≤ ω2e
c2
c

R+ Rr

ω2 − R2

2ω2

R − r − c2

c
ω2

, (4.8)

which yields (4.2).

The proofs for inequalities (4.3) and (4.4) are very similar. For (4.3), the only thing that
changes is that the roles of s and t are interchanged. For (4.4), we need to use inequality (4.8)
twice.

We now proceed with the proof of Lemma 1.2. To see that the limit (1.13) is uniform for
x, y in compact sets, we assume that |x|, |y| < r and choose R > r, as in Lemma 4.1. Define
the three ensembles

U1 := [−iR, iR] × [R, +∞), U2 := (iR\[−iR, iR]) × [0, R] and U3 := (iR\[−iR, iR]) × [R, +∞),

and write ǫ̃n := cǫnnγ− 1

2 . By (4.1), we have
∣∣∣∣

1

cnγ
KS

n

(
x

cnγ
,

y

cnγ

)
− 1

2πiσ2

∫

iR

∫

R+

K(s, t)e
1

2σ2
((x−s)2−(y−t)2)dtds

∣∣∣∣

≤
∣∣∣∣∣

1

2πiǫ̃2
n

∫ iR

−iR

∫ R

0

(
vβ 1

cnγ
Kn

(
s

cnγ
,

t

cnγ

)
− vβ

K(s, t)
)

v−βe
1

2ǫ̃2
n

((x−s)2−(y−t)2)
dtds

∣∣∣∣∣

+

∣∣∣∣∣

∫ iR

−iR

∫ R

0
K(s, t)

(
1

2πiǫ̃2
n

e
1

2ǫ̃2
n

((x−s)2−(y−t)2) − 1

2πiσ2
e

1

2σ2 ((x−s)2−(y−t)2)

)
dtds

∣∣∣∣∣

+
1

2πǫ̃2
n

3∑

j=1

∣∣∣∣∣
1

cnγ

∫∫

Uj

Kn

(
s

cnγ
,

t

cnγ

)
e

1

2ǫ̃2
n

((x−s)2−(y−t)2)
dsdt)

∣∣∣∣∣

+
1

2πσ2

3∑

j=1

∣∣∣∣∣

∫∫

Uj

K(s, t)e
1

2σ2
((x−s)2−(y−t)2)dsdt

∣∣∣∣∣ . (4.9)
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In the limit where n → +∞ and ǫ̃n = cǫnnγ−1/2 → σ > 0, the first term at the right hand side
of the above expression tends to 0 uniformly for |x|, |y| < r because of (1.10). The second term
at the right tends to 0 as n → ∞ by the dominated convergence theorem. The remaining terms
at the right can be estimated using Lemma 4.1 with ω = ǫ̃n and become small (uniformly in x
and y) as R gets large. Since the left hand side does not depend on R, we can take R as large
as we want, and this implies that we have (1.13) uniformly for |x| and |y| smaller than r.

We now deal with the case where ǫ̃n → 0 as n → +∞. By (4.1), we have

1

cnγ
KS

n (
x

cnγ
,

y

cnγ
)

=
1

2πiǫ̃2
n

∫

[−iR,iR]

∫

[0,R]

1

cnγ
Kn

(
u

cnγ
,

v

cnγ

)
e

1

2ǫ̃2
n
((x−u)2−(y−v)2)

dvdu

+
3∑

j=1

1

2πiǫ̃2
n

∫∫

Uj

1

cnγ
Kn

(
u

cnγ
,

v

cnγ

)
e

1

2ǫ̃2
n
((x−u)2−(y−v)2)

dvdu, (4.10)

where we have cut the integral in the same 4 parts as before. We may use Lemma 4.1 with
ω = ǫ̃n and we get that the three terms in the sum on the last line tend to 0 as n → +∞,
provided R is sufficiently large. In the first term, we can deform the integration contour for u
to ⊐:= [−iR, x − iR] ∪ [x − iR, x + iR] ∪ [x + iR, iR]. This does not change the integral since
Kn is analytic in u. We use the convergence in (1.10), which is uniform for u and v on their
respective integration contours, and obtain

1

2πiǫ̃2
n

∫

[−iR,iR]

∫

[0,R]

1

cnγ
Kn

(
u

cnγ
,

v

cnγ

)
e

1

2ǫ̃2
n
((x−u)2−(y−v)2)

dvdu =

1

2πiǫ̃2
n

∫

⊐

∫

[0,R]

(
K(u, v) + o(1)v−β

)
e

1

2ǫ̃2
n
((x−u)2−(y−v)2)

dvdu, as n → +∞. (4.11)

Since R is arbitrary, we can take it large enough so that the contribution to the integral on
the paths [−iR, x − iR] and [x + iR, iR] is small in n. Then, the contours [x − iR, x + iR]
and [0, R] are the steepest descent contours of the u- and v-phase functions, respectively. This
allows us to apply the usual saddle point method to the integral, which gives

1

2πiǫ̃2
n

∫

[x−iR,x+iR]

∫

[0,R]

(
K(u, v) + o(1)v−β

)
e

1

2ǫ̃2
n
((x−u)2−(y−v)2)

dvdu = K(x, y)+o(1), as n → +∞,

(4.12)
for x, y > 0 fixed. Note that the error term is not uniform as y → 0. This completes the proof
of Lemma 1.2.
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5 Proofs of applications

5.1 Proof of Theorem 2.1: sub-critical and critical cases

For the proof of parts (i) and (ii) of Theorem 2.1, we only need to verify that the conditions of
Lemma 1.2, namely (1.10)-(1.11), are satisfied. It should be noted that it is important to have
uniformity of (1.10) for u in any compact subset of C and v in any compact subset of [0, +∞),
and therefore (1.10) is not a direct consequence of (2.6).

Define pn, n = 0, 1, ... to be the normalized orthogonal polynomials with respect to the
generalized Laguerre weight w(x) = xαe−nxk

. Let Yn be the matrix-valued function

Yn(z) =

(
1

κn
pn(z) 1

κn
C(pnw)(z)

−2πiκn−1pn−1(z) −2πiκn−1C(pn−1w)(z)

)
, (5.1)

where κj > 0 is the leading coefficient of pj and Cf is the Cauchy transform

Cf(z) =
1

2πi

∫ +∞

0

f(s)

s − z
ds, for z /∈ [0, +∞). (5.2)

The matrix Yn is the solution to the usual Fokas-Its-Kitaev Riemann-Hilbert problem for
orthogonal polynomials [15]. The eigenvalue correlation kernel Kn for a (generalized) LUE
matrix is expressed in terms of Yn as

Kn(x, y) = w(y)
1

2πi(x − y)

(
0 1

)
Y −1

n (y)Yn(x)

(
1
0

)
, (5.3)

which is easily verified by the Christoffel-Darboux formula and the fact that det Yn = 1.

Define the re-scaled matrix

Un(z) =
(

2

kAk

) 1

k (−n− α
2 )σ3

Yn

((
2

kAk

) 1

k

z

)(
2

kAk

) 1

k
α
2

σ3

, Ak =
k∏

j=1

2j − 1

2j
, (5.4)

where σ3 =

(
1 0
0 −1

)
. The rescaled kernel K̃n defined by

K̃n(x, y) =
(

2

kAk

)α
k

yαe
− 2n

kAk
yk 1

2πi(x − y)

(
0 1

)
U−1

n (y)Un(x)

(
1
0

)
, (5.5)

corresponds to a re-scaled LUE in which the limiting mean eigenvalue distribution is supported
on [0, 1], and given by [34]

dµ̃(x) =
1

2π

√
1 − x

x
h̃(x)dx, h̃(x) = 2

k−1∑

j=0

Ak−1−j

Ak

xj , x ∈ (0, 1). (5.6)
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Figure 6: The four regions in which the asymptotics of Un are expressed differently.

We have

K̃n(x, y) =
(

2

kAk

)α+1

k

Kn

((
2

kAk

) 1

k

x,
(

2

kAk

) 1

k

y

)
. (5.7)

We now describe the asymptotics for Un(z), which were obtained in [34]. Let δ > 0 be
sufficiently small and consider the following four regions, as illustrated in Figure 6:

Dδ = {z ∈ C : |z| < δ}, Cδ = {z ∈ C : |z − 1| < δ}, (5.8)

Bδ = {z ∈ C : 0 < Re z < 1, |ℑ(z)| < δ, z /∈ Dδ ∪ Cδ}, Aδ = C\(Bδ ∪ Cδ ∪ Dδ). (5.9)

The nature of the asymptotics for Un(z) is different in each of those regions.
For z ∈ Aδ, we have

Un(z)

(
1
0

)
=

z− α
2

2z
1

4 (z − 1)
1

4

e
ng

µ̃
(z)

(
2−αϕ(z)

1

2
(α+1)(1 + O(1/n))

−ie−nℓ2αϕ(z)
1

2
(α−1)(1 + O(1/n))

)
, (5.10)

as n → ∞, where ℓ = − 2
k

− 4 log 2,

gµ̃(z) =
∫

log(z − s)dµ̃(s) ∼ log z, as z → ∞, (5.11)

and
ϕ(z) = 2(z − 1/2) + 2z1/2(z − 1)1/2, (5.12)

with the square roots defined such that ϕ is analytic except on [0, 1]. It follows that there
exists a constant c1 such that

∥∥∥∥∥Un(z)

(
1
0

)∥∥∥∥∥ ≤ ec1n|z|, z ∈ Aδ, (5.13)

for n sufficiently large. This is a very rough estimate but it will be enough for our purposes.
For z ∈ Bδ, we have

Un(z)

(
1
0

)
=

z− α
2

z
1

4 (z − 1)
1

4

e
n zk

kAk


e

1

2
nℓ2−α cos

(
η1(z) − inξ(z) − π

4

)
(1 + O(1/n))

e− 1

2
nℓ2α cos

(
η2(z) − inξ(z) − π

4

)
(1 + O(1/n))


 , (5.14)
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as n → ∞, for some continuous functions η1, η2 independent of n, and with

ξ(z) = −πi
∫ z

1

1

2πi

(s − 1)1/2

s1/2
h̃(s)ds, (5.15)

with the square roots such that ξ is analytic in C \ [0, 1]. It follows that there exists a constant
c2 such that ∥∥∥∥∥Un(z)

(
1
0

)∥∥∥∥∥ ≤ ec2n|z|, z ∈ Bδ, (5.16)

for n sufficiently large.
For z ∈ Cδ,

Un(z)

(
1
0

)
=

√
πz− α

2

z1/4(z − 1)1/4
e

n zk

kAk

×

 e

1

2
nℓ2−α

(
cos(η1(z))fn(z)1/4Ai(fn(z)) − i sin(η1(z))fn(z)−1/4Ai′(fn(z))

)
(1 + O(1/n))

e− 1

2
nℓ2α

(
−i cos(η2(z))fn(z)1/4Ai(fn(z)) − sin(η2(z))fn(z)−1/4Ai′(fn(z))

)
(1 + O(1/n))


 ,

as n → ∞, with Ai the Airy function, and fn a conformal map defined in a neighborhood of
1, satisfying fn(1) = 0, f ′

n(1) > 0 and

2

3
fn(z)

3

2 = nξ(z). (5.17)

Using the asymptotics for the Airy function at large arguments and the fact that |fn(z)| ≤
Cn2/3|z − 1| for some constant C > 0 independent of n, for z sufficiently close to 1, it follows
again that there exists a constant c3 such that

∥∥∥∥∥Un(z)

(
1
0

)∥∥∥∥∥ ≤ ec3n|z|, z ∈ Cδ, (5.18)

for n sufficiently large.
Finally, we have for z ∈ Dδ,

Un(z)

(
1
0

)
=

(−1)n
√

π(−f̃n(z))1/4z− α
2

z1/4(1 − z)1/4
e

n zk

kAk

×

 e

1

2
nℓ2−α

(
sin(ζ1(z))Jα(2(−f̃n(z))1/2) + cos(ζ1(z))J ′

α(2(−f̃n(z))1/2)
)

(1 + O(1/n))

−ie− 1

2
nℓ2α

(
sin(ζ2(z))Jα(2(−f̃n(z))1/2) + cos(ζ2(z))J ′

α(2(−f̃n(z))1/2)
)

(1 + O(1/n))


 ,

(5.19)

as n → ∞, with f̃n a conformal map defined in a neighbourhood of 0 and satisfying

2f̃n(z)
1

2 = nξ(z), f̃n(0) = 0, f̃ ′
n(0) < 0. (5.20)
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The functions ζ1 and ζ2 are independent of n and such that ζ1(0) = −ζ2(0) = ±π
2
. We have

|f̃n(z)| ≤ Cn2|z| for some positive n-independent constant C, if z is sufficiently close to 0.
The asymptotics [29, Formula 10.7.8] of the Bessel function Jα and the fact that z−αJα(z) is
bounded allow us to conclude that there exist constants c4, C > 0 such that

∥∥∥∥∥e
− n

2
ℓσ3Un(z)

(
1
0

)∥∥∥∥∥ ≤ Cec4n|z|, z ∈ Dδ. (5.21)

for n sufficiently large.

Proof of Theorem 2.1, parts (i) and (ii). The hard edge scaling limit (2.6) was proved in [34]
(using (5.19)) to hold point-wise for u, v > 0. From the proof, or from (5.19), it is however
readily seen that it holds point-wise for any u ∈ C. For α ≥ 0, the Bessel function Jα is
bounded near 0, and then it is straightforward to show, again using (5.19), that (1.10) with
β = 0 is uniform for u in any compact in C and for v in any compact in [0, +∞). If −1 < α < 0,
Jα(z) blows up as z → 0, but we have that z−αJα(z) is analytic at 0, and this can be used
to show that (1.10) with β = −α holds uniformly for u in any compact in C and for v in any
compact in [0, +∞).

To verify condition (1.11) for (u, v) ∈ iR × R+, we have to consider eight different regions
for (u, v): Aδ × Aδ, Aδ × Bδ, Aδ × Cδ, Aδ × Dδ, Dδ × Aδ, Dδ × Bδ, Dδ × Cδ, and Dδ × Dδ.
In each of these cases, we can bound the kernel K̃n defined in (5.5) using the estimates (5.13),
(5.16), (5.18), and (5.21) corresponding to the different regions. Substituting them in (5.7),
we obtain the desired estimate (1.11) in each of the regions.

The results now follow directly from Lemma 1.2.

5.2 Proof of Theorem 2.1: super-critical case

For part (iii) of Theorem 2.1, we will use saddle point methods and a modified version of the
integral representation (1.6) for the correlation kernel KS

n . We first need some technical results.

Lemma 5.1. Let µ be the limiting mean eigenvalue distribution given by (2.3), and let λǫ

be the rescaled semicircle law (1.8). The free additive convolution µ ⊞ λǫ is supported on an
interval [aǫ, bǫ], and aǫ is given by

aǫ = uǫ − ǫ2
∫

dµ(x)

x − uǫ

, (5.22)

where uǫ is the unique negative solution of the equation
∫

dµ(x)

(x − uǫ)2
=

1

ǫ2
. (5.23)

Moreover, for some κ, κ̂ > 0,

uǫ = −κǫ4/3(1 + o(1)), aǫ = −κ̂ǫ4/3(1 + o(1)), ǫ → 0. (5.24)
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Proof. It follows from the general results in [8] on the free additive convolution of a measure
with a semi-circle law that the left endpoint aǫ is given by (5.22), with uǫ solving (5.23),
provided that such a solution uǫ exists. For general µ and ǫ > 0, it is not always true that
(5.23) has a unique solution. However, with µ given by (2.3), the left hand side of (5.23) tends
to 0 as uǫ → −∞, is increasing, and tends to +∞ as uǫ → 0. This implies that (5.23) has
indeed a unique solution for any ǫ > 0. Small ǫ asymptotics for uǫ and aǫ can be obtained from
(5.23) and (5.22) using residue arguments. This leads to (5.24).

The following result provides us with suitable paths in the complex plane where the real part
of a certain phase function Ψǫ, to be used in the saddle point analysis later on, is monotone.

Lemma 5.2. Let µ be given by (2.3), let ǫ > 0, and let aǫ and uǫ be as in Lemma 5.1. Define

Ψǫ(z) =
1

2ǫ2
(z − aǫ)

2 +
∫

log(z − x)dµ(x), z ∈ C \ (−∞, b], (5.25)

and define two paths γ1 and γ2 by

γ1(t) = uǫ + e
πi
3 |uǫ| + t, γ2(t) = uǫ + e

2πi
3 |uǫ| + it, t > 0. (5.26)

Then, for ǫ > 0 sufficiently small, the functions

t ∈ R
+ 7→ Re (Ψǫ(γ1(t))) and t ∈ R

+ 7→ Re (Ψǫ(γ̄1(t)))

are increasing and the functions

t ∈ R
+ 7→ Re (Ψǫ(γ2(t))) and t ∈ R

+ 7→ Re (Ψǫ(γ̄2(t)))

are decreasing.

Proof. Because of conjugational symmetry, it suffices to check that

d

dt
Re (Ψǫ(γ1(t))) > 0 and

d

dt
Re (Ψǫ(γ2(t))) < 0, for t > 0.

On γ2, we have after a straightforward computation,

d

dt
Re (Ψǫ(γ2(t))) =

(
t +

√
3

2
|uǫ|

)


−1

ǫ2
+
∫

dµ(s)
(

3
2
uǫ − s

)2
+
(
t +

√
3

2
|uǫ|

)2


 . (5.27)

For t ≥ 0, we have

0 ≤
∫

dµ(s)
(

3
2
uǫ − s

)2
+
(
t +

√
3

2
|uǫ|

)2 ≤
∫

dµ(s)
(

3
2
uǫ − s

)2
+ 3

4
u2

ǫ

. (5.28)
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The integral at the right is easily computable using the residue theorem, and by (5.24), it is
readily seen that it is of order ǫ−4/3 as ǫ → 0. Hence, by (5.27), for ǫ small enough,

d

dt
Re (Ψǫ(γ2(t))) < 0, for all t ≥ 0. (5.29)

On γ1, we have

d

dt
Re (Ψǫ(γ1(t))) =

1

ǫ2

(
uǫ

2
+ t − aǫ

)
+ Re

(∫ dµ(x)

uǫ + e
πi
3 |uǫ| + t − x

)
. (5.30)

By Lemma 5.1, we can replace aǫ by its expression in terms of uǫ given in (5.22), and we get

d

dt
Re (Ψǫ(γ1(t))) =

1

ǫ2

(
−uǫ

2
+ t

)
+
∫

dµ(x)

x − uǫ
+ Re

(∫
dµ(x)

uǫ + e
πi
3 |uǫ| + t − x

)
. (5.31)

This is easily seen to be positive if t ≥ b − uǫ

2
. For t smaller, we need to be more careful and

exploit the fact that ǫ is small. The Stieltjes transform can be computed explicitly by (5.6)
and a residue calculus (or alternatively by observing that µ is an equilibrium measure which
satisfies Euler-Lagrange variational conditions): for z ∈ C\[0, b],

∫ dµ(x)

z − x
=

k

2
zk−1 − h(z)

2

√
z − b√

z
, (5.32)

with principal branches of the square roots. Evaluating at z = uǫ and at z = t + uǫ + e
πi
3 |uǫ|,

and substituting in (5.31), we obtain

d

dt
Re (Ψǫ(γ1(t))) =

1

ǫ2

(
−uǫ

2
+ t

)
+

h(0)

2

√
b

|uǫ|

− Re


h(t)

2

√
t + uǫ + e

πi
3 |uǫ| − b

√
t + uǫ + e

πi
3 |uǫ|


+ O(1), as ǫ → 0. (5.33)

For t ≫ ǫ4/3, the leading order term in this expansion is t
ǫ2 , and it then follows that d

dt
Re (Ψǫ(γ1(t))) >

0 for ǫ sufficiently small.
Writing t = T |uǫ| ∼ κTǫ4/3 as ǫ → 0, we have

d

dt
Re (Ψǫ(γ1(t))) = ǫ−2/3




κ

2
+ Tκ +

h(0)
√

b

2
√

κ


1 − Re

i
√

T − 1 + e− πi
3

|T − 1 + e
πi
3 |







+ o(ǫ−2/3), as ǫ → 0. (5.34)

It is straightforward to check by a trigonometric argument that Re i

√
T −1+e− πi

3

|T −1+e
πi
3 |

< 1 for T > 0,

and this implies by (5.34) that d
dt

Re (Ψǫ(γ1(t))) > 0 for t > 0.
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Figure 7: Local contours around the saddle point of the phase function Ψǫ.

We can now prove part (iii) of Theorem 2.1. The general strategy of the proof is similar to
the one of [25, Theorem 1.2].

Proof of Theorem 2.1, part (iii). We use an alternative expression for KS
n given by [12, For-

mula (3.23)]

KS
n (x, y) =

n

(2πi)2ǫ2

∫

C
ds
∫

Σ
dζ

1

s − ζ

(
0 1

)
Y −1

n (s)Yn(ζ)

(
0
1

)
e

n

2ǫ2 ((x−s)2−(y−ζ)2), (5.35)

where Yn is defined in (5.1). Here, Σ is a contour leaving from +∞ in the upper half plane,
encircling the positive real axis and going back to +∞ in the lower half plane, as in Section
2.2. The second contour C does not intersect with Σ but can otherwise be any path going
from c1 − i∞ to c2 + i∞. The fact that the two contours do not intersect, explains why the
first term of [12, Formula (3.23)] cancels out here. We will choose the contours C and Σ such
that they are suitable for a saddle point analysis of the integral in (5.35).

We let Ψǫ, which will serve as a phase function in the saddle point analysis, be defined
as in (5.25), and we let uǫ < 0 be as in Lemma 5.1. By (5.23) and (5.22), we have that
Ψ′

ǫ(uǫ) = Ψ′′
ǫ (uǫ) = 0 and since uǫ < 0, Ψ′′′

ǫ (uǫ) = G′′
µ(uǫ) < 0. Thus the steepest descent paths

for Ψǫ emanating from uǫ make angles respectively 0, 2π
3

and −2π
3

. By (5.24) and (5.32), we
have

Ψ(j)
ǫ (uǫ) = −κjǫ

− 2

3
(2j−1)(1 + o(1)), as ǫ → 0, (5.36)

for j ≥ 3, where κ3, κ4, . . . are positive constants independent of ǫ.

For the rest of the proof, we set qǫ =
∣∣∣G

′′
µ(uǫ)

6

∣∣∣ and we define the two contours Σin,n and Cin,n

as in Figure 7 by

Σin,n =



uǫ +

1

4
√

3n
1

3 q
1

3
ǫ

+ it : t ∈

− 1

4n
1

3 q
1

3
ǫ

,
1

4n
1

3 q
1

3
ǫ







⋃


uǫ + teiπ/3 : t ∈


 1

2
√

3n
1

3 q
1

3
ǫ

, |uǫ|





⋃


uǫ + te−iπ/3 : t ∈


 1

2
√

3n
1

3 q
1

3
ǫ

, |uǫ|




 , (5.37)
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Cin,n being the mirror image of Σin,n with respect to the vertical line passing through uǫ. Note

that the condition ǫn
3

2 → +∞ as n → +∞ is needed for the path Σin,n not to cross the positive
real axis.

We will show that the leading behaviour of KS
n in (5.35) as n → +∞ comes from the

integration over these two local paths, and that it converges to the Airy kernel.

Define

K in
n (x, y) = − n

(2πi)2ǫ2

∫

Cin,n

ds
∫

Σin,n

dζ
1

s − ζ

(
0 1

)
Y −1

n (s)Yn(ζ)

(
0
1

)
e

n

2ǫ2 ((x−s)2−(y−ζ)2).

(5.38)
We first note that the asymptotic expansion (5.10) holds in fact not only in the outer region
Aδ, but also when z approaches 0 at a sufficiently slow rate as n → +∞. If n → +∞ and
z → 0 in such a way that n2z → ∞, (5.10) remains valid, but with a weaker error term o(1)
instead of O(1/n). This follows after a comparison of (5.10) and (5.19), by the asymptotic

behaviour of the Bessel function Jα(z) as z → ∞. Since ǫn
3

2 → +∞ as n → +∞, this means
that we can use (5.10), with weaker error term, for all points of the contour Cin,n × Σin,n. We
obtain

K in
n (x, y) = − n

(2πi)2ǫ2

∫

Cin,n

ds
∫

Σin,n

dζe
n

2ǫ2 ((x−s)2−(y−ζ)2)en(gµ(s)−gµ(ζ))f(s, ζ) (1 + o(1)) ,

as n → +∞. Here f is a certain function independent of n which can be expressed in terms of
ϕ, which satisfies f(z, z) = 1 since det Yn = 1, but whose precise form is not important for us.
We define

cǫ = ǫ−2q
− 1

3
ǫ , ϕǫ,n(z) =

n1/3z

cǫǫ2
(uǫ − aǫ). (5.39)

We now let x and y approach the left edge aǫ at an appropriate speed and we get

1

cǫn
2

3

K in
n

(
aǫ − x

cǫn
2

3

, aǫ − y

cǫn
2

3

)
= − n

1

3

cǫ(2πi)2ǫ2
eϕǫ,n(x)−ϕǫ,n(y)

×
∫

Cin,n

ds
∫

Σin,n

dζ
e

nΨǫ(s)+ xn
1
3

ǫ2cǫ
(s−uǫ)

e
nΨǫ(ζ)+ yn

1
3

ǫ2cǫ
(ζ−uǫ)

1

s − ζ
f(s, ζ) (1 + o(1)) , n → +∞. (5.40)

Using the asymptotics for the derivatives (5.36) and the fact that f(z, z) = 1, we may expand
the phase functions and f around uǫ to get

1

cǫn
2

3

K in
n

(
aǫ − x

cǫn
2

3

, aǫ − y

cǫn
2

3

)
= − n

1

3

cǫ(2πi)2ǫ2
eϕǫ,n(x)−ϕǫ,n(y)

×
∫

Cin,n

ds
∫

Σin,n

dζ
e−nqǫ(s−uǫ)3+n

1
3 q

1
3
ǫ x(s−uǫ)+rn,ǫ

4
(s)

e−nqǫ(ζ−uǫ)3+n
1
3 q

1
3
ǫ y(ζ−uǫ)+rn,ǫ

4
(ζ)

1

s − ζ
(1 + o(1)) , (5.41)
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Figure 8: Choices for the contours C and Σ.

as n → +∞, since s − ζ → 0, where

rn,ǫ
4 (z) =

n

2ǫ2

+∞∑

j=4

Ψ(j)
ǫ (uǫ)

j!
(z − ue)

j . (5.42)

We now apply the changes of variables s 7→ u and ζ 7→ v defined implicitly by

− nqǫ(s − uǫ)
3 + rn,ǫ

4 (s) = −u3,

− nqǫ(ζ − uǫ)
3 + rn,ǫ

4 (ζ) = −v3,

such that u ∼ q1/3
ǫ n1/3(s − uǫ) and v ∼ q1/3

ǫ n1/3(ζ − uǫ) as n → +∞. We then get

e−ϕǫ,n(x)+ϕǫ,n(y) 1

cǫn
2

3

K in
n

(
aǫ − x

cǫn
2

3

, aǫ − y

cǫn
2

3

)
=

− 1

(2πi)2

∫

Cn

du
∫

Σn

dv
e−u3+xu

e−v3+yv

1

u − v
(1 + o(1)) = K

Ai(x, y) + o(1), as n → +∞, (5.43)

Cn and Γn being contours that grow to the contours of the Airy integral formula as n → +∞.

Let γ1 and γ2 be the contours as in Lemma 5.2. We take the contours C and Σ, depending
on n, to be C = γ̄2 ∪ Cin,n ∪ γ2 and Σ = γ̄1 ∪ Σin,n ∪ γ1 as pictured in Figure 8. We have
∣∣∣∣∣∣∣

∫

Cin,n

ds
∫

γ1

dζ
f(s, ζ)

s − ζ

enΨǫ(s)+n
1
3 q

1
3
ǫ x(s−uǫ)

enΨǫ(ζ)+n
1
3 q

1
3
ǫ y(ζ−uǫ)

∣∣∣∣∣∣∣
≤
∫

Cin,n

|ds|
∫

γ1

|dζ |
∣∣∣∣∣
f(s, ζ)

s − ζ

∣∣∣∣∣
enRe (Ψǫ(s))+n

1
3 q

1
3
ǫ Re (x(s−uǫ))

enRe (Ψǫ(ζ))+n
1
3 q

1
3
ǫ Re (y(ζ−uǫ))

.

(5.44)
In view of (5.36), we know that for n sufficiently large, the real part of the phase function is

increasing on Σin,n ∩{Im z > 0} and decreasing on Cin,n ∩{Im z > 0}. Moreover, n
1

3 q
1

3
ǫ becomes

small compared to nRe (Ψǫ(s)). The function Re (Ψǫ(γ1(t))) is increasing on (0, +∞) because
of Lemma 5.2, and moreover grows in such a way that Re (Ψǫ(γ1(t))) ∼ t2 as t → +∞, which
means that the integral over γ1 is exponentially small. In a similar way one shows that all
parts of the integration contour (C × Σ)\(Cin,n ×Σin,n) give exponentially small contributions.

The limit (2.10) now follows from (5.43).
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5.3 Proofs of Theorem 2.2, Theorem 2.3, and Theorem 2.4

To prove the results, once more we only need to verify that the conditions of Lemma 1.2 are
satisfied.

We start with the Ginibre case, Theorem 2.2. Let Kn be the correlation kernel for the
squared singular values of a product of Ginibre matrices, given by (2.14), and let K̃n be given
by (2.15).

We will first prove that there exists c1 > 0 independent of n such that
∣∣∣∣

1

nm+1
K̃n

(
x

nm+1
,

y

nm+1

)∣∣∣∣ ≤ c1y
−1/2e|x| on iR × R

+. (5.45)

This implies condition (1.11) with β = 1/2. Using the fact that

Γ(t − n + 1)

Γ(s − n + 1)
=

Γ(n − s)

Γ(n − t)

sin πs

sin πt
(5.46)

(which follows from the reflection formula of the Γ function), we obtain

1

nm+1
K̃n

(
x

nm+1
,

y

nm+1

)
=

1

(2πi)2

∫

− 1

2
+iR

ds
∫

Σn

dt
m∏

j=0

Γ(s + νj + 1)

Γ(t + νj + 1)

Γ(n − s)

Γ(n − t)

sin πs

sin πt

xty−s−1

s − t
ns−t.

(5.47)
We can compute the t-integral using the residue theorem. The only poles of the t-integrand
are the ones of 1/ sin πt since 1/Γ is entire, and the s- and t-contours do not intersect. We
obtain

1

nm+1
K̃n

(
x

nm+1
,

y

nm+1

)
=

1

2πi

n−1∑

k=0

(−1)k n−kxk

Γ(n − k)

m∏

j=0

1

Γ(k + νj + 1)

×
∫

− 1

2
+iR

m∏

j=0

Γ(s + νj + 1)Γ(n − s)(sin πs)y−s−1ns 1

s − k
ds. (5.48)

The integral is absolutely convergent since
∣∣∣sin π

(
1
2

+ it
)∣∣∣ ∼ eπ|t|

2
and [29, Formula 5.11.9]

∣∣∣∣Γ
(

1

2
+ νj + it

)∣∣∣∣ ∼
√

2π|t|νj e− π|t|
2 , (5.49)

as t → ±∞. For s on the integration contour, we have |y−s−1ns| = (ny)− 1

2 . Moreover, we have
[29, Inequality 5.6.6] |Γ(x + iy)| ≤ |Γ(x)| and thus

∣∣∣∣
1

nm+1
K̃n

(
x

nm+1
,

y

nm+1

)∣∣∣∣ ≤ 1

π
y− 1

2

∫

− 1

2
+iR

m∏

j=0

|Γ(s + νj + 1)|| sin πs||ds|

×
n−1∑

k=0

|x|k
k!

n−k− 1

2 Γ(n + 1/2)

Γ(k + 1)Γ(n − k)
. (5.50)
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It follows from Stirling’s Inequality [29, Inequality 5.6.1] that there exists a constant C > 0
such that for n ∈ N, k = 0, ..., n − 1,

n−k− 1

2 Γ(n + 1/2)

Γ(k + 1)Γ(n − k)
≤ C. (5.51)

In |x|, we are left with a truncated exponential series. This implies (5.45).
To prove (1.10) with β = 1/2, we follow the proof in [24, Section 5.2], where (2.16) was

proved uniformly for x, y in compact subsets of (0, +∞). We need uniformity of (1.10) for u
in any compact subset of C and v in any compact subset of [0, +∞). Therefore, we fix R > 0

and assume that |u| < R and v ∈ [0, R]. Using the asymptotics Γ(n−s)
Γ(n−t)

= nt−s (1 + O(n−1)) as

n → ∞, we obtain from (5.47) that

v1/2

nm+1
K̃n

(
u

n + 1
,

v

n + 1

)

=
1

(2πi)2

∫

− 1

2
+iR

ds
∫

Σn

dt
m∏

j=0

Γ(s + νj + 1)

Γ(t + νj + 1)

sin πs

sin πt

utv−s− 1

2

s − t

(
1 + O(n−1)

)
, (5.52)

as n → ∞. Using Stirling’s formula and the fact that | sin πt| ≥ | sinh(πIm t)|, we can bound∣∣∣∣
ut

sin πt
∏m

j=0
Γ(t+νj+1)

∣∣∣∣ by a function independent of u which decays rapidly as t → +∞. It follows

that we can deform the integration contour Σn to Σ, provided Σ lies not too close to the
real line. For the s-integrand, we can use (5.49) and the fact that |v−s− 1

2 | = 1 to bound it
uniformly. By the dominated convergence theorem, we can take (1 + O(n−1)) (with error term
independent of u and v) out of the integral, and we obtain (1.10) uniformly in u and v.

Remark 10. Although the kernel for the squared singular values of products of Ginibre matri-
ces cannot be expressed in terms of orthogonal polynomials, it can be expressed in terms of the
solution to a Riemann-Hilbert problem for multiple orthogonal polynomials [24, Section 2.2],
and it has a Christoffel-Darboux type formula. If large n asymptotics for this Riemann-Hilbert
problem were available, one could be optimistic that similar techniques as in Section 5.2 can
be used in the super-critical case to prove convergence to the Airy kernel.

Remark 11. The proofs of Theorem 2.3 and Theorem 2.4 are very similar to the proof of
Theorem 2.2. For Theorem 2.3, one has to start with the expression (2.21) for the kernel Kn

instead of (2.14). Then one shows in a similar way as in the Ginibre case that

lim
n→+∞

v1/2 1

cn

Kn

(
u

cn

,
v

cn

)
= v1/2

K
T
ν,µ(u, v), (5.53)

uniformly for u in any compact subset of C and v in any compact subset of [0, +∞), and that
there are constants C1, C2 such that

|Kn(u, v)| ≤ C1v
−1/2c1/2

n eC2cn(|u|+|v|), (5.54)
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for every (u, v) ∈ iR × [0, +∞) and n > n0. The two above conditions are almost the same
as the assumptions in Lemma 1.2, except for the fact that cn now plays the role of cnγ. From
the proof of Lemma 1.2, it is straightforward to check that conditions (5.53) and (5.54) imply
(1.12) and (1.13) with cnγ replaced by cn. This leads to the proof of Theorem 2.3 without
further complications

For Theorem 2.4, one has to use the expression (2.28) or (2.29) instead. The rest of the
proof is a straightforward adaptation of the proof of Theorem 2.2, and we do not give the
details here.
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