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Abstract

In this paper we show a central limit theorem for Lebesgue integrals of stationary BL(θ)-dependent
random fields as the integration domain grows in Van Hove-sense. Our method is to use the (known)
analogue result for discrete sums. As applications we obtain various multivariate versions of this
central limit theorem.

1 Introduction

Random fields are collections of random variables indexed by the Euclidean space R
d. They have appli-

cations in various branches of science, e.g. in medicine [1, 13], in geostatistics [5, 15] or in material science
[10, 14].

The aim of the present paper is to establish a central limit theorem for integrals
∫

Wn
X(t) dt, where

(Wn)n∈N is a sequence of compact subsets of Rd and (X(t))t∈Rd is a random field. The sequence (Wn)n∈N

of integration domains is assumed to grow in Van Hove-sense (VH-sense), i.e.

lim
n→∞

λd((bdWn) +Bd)/λd(Wn) = 0,

where λd denotes the Lebesgue measure, bdW is the boundary ofW ⊆ R
d, A+B := {a+b | a ∈ A, b ∈ B}

for two subsets A,B ⊆ R
d and Bd := {x ∈ R

d | ‖x‖ ≤ 1} is the closed Euclidean unit ball.
The main result of the present paper is the following (the notion of BL(θ)-dependence will be defined

in Subsection 2.1).

Theorem 1. Let θ = (θr)r∈N be a monotonically decreasing zero sequence. Let (X(t))t∈Rd be a measur-
able, stationary, BL(θ)-dependent R-valued random field such that

∫

Rd

|Cov
(

X(0), X(t)
)

| dt < ∞.

Let (Wn)n∈N be a VH-growing sequence of subsets of Rd. Then
∫

Wn
X(t) dt− EX(0)λd(Wn)

√

λd(Wn)
→ N (0, σ2), n → ∞,

in distribution, where

σ2 :=

∫

Rd

Cov
(

X(0), X(t)
)

dt.

There is a wide literature on similar results, where mixing conditions are assumed instead of BL(θ)-
dependence, see e.g. [4, 7, 8, 9]. For BL(θ)-dependent random fields there are no central limit theorems
for Lebesgue integrals up to now. However, there are such results for discrete sums [2] and for Lebesgue
measures of excursion sets [3]. In the latter paper the random field is in fact assumed to be quasi-
associated, which is a slightly stronger assumption than BL(θ)- dependence.

This paper is organized as follows: In Section 2 we collect preliminaries about associated random
variables, random fields and functions of bounded variation. Section 3 is devoted to the proof of the main
theorem. In Section 4 we present several examples how the main result can be extended to a multivariate
central limit theorem. The case that the random field is of the form (f(X(t)))t∈Rd for some deterministic
function f : R → R

s and some random R-valued field (X(t))t∈Rd will be of particular interest.
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2 Preliminaries

2.1 Association concepts

In this subsection we introduce different association concepts and discuss their relations.
We start with the broadest appearing in this paper, namely BL(θ)-dependence.
For finite subsets I, J ⊆ R

d we put dist(I, J) := min{‖x − y‖1 : x ∈ I, y ∈ J}, where ‖ · ‖1 is the
ℓ1-norm. For two Lipschitz functions f : Rn1 → R and g : Rn2 → R we put

Ψ(n1, n2, f, g) = min{n1, n2}Lip(f) Lip(g),

where

Lip(f) := sup
{ |f(x)− f(y)|

‖x− y‖1
| x, y ∈ R

n, x 6= y
}

denotes the (optimal) Lipschitz constant of a Lipschitz function f : Rn → R.
For a random field (X(t))t∈Rd , a finite subset I = {t1, . . . , tn} ⊆ R

d with n elements and a function f
on R

n we abbreviate f(XI) := f(X(t1), . . . , X(tn)). If such an abbreviation XI appears more than once
within one formula, then always the same enumeration of the elements of I has to be used.

For a set M let #M denote the number of elements of M .
Furthermore, for ∆ > 0 we put

T (∆) := {(j1/∆, . . . , jd/∆) | (j1, . . . , jd) ∈ Z
d}.

Def. 2. Let θ = (θr)r∈N be a monotonically decreasing sequence with limr→∞ θr = 0.

(i) An R
s-valued random field (X(t))t∈Rd is called BL(θ)-dependent if for any ∆ > 1 and any disjoint,

finite sets I, J ⊆ T (∆) with dist(I, J) ≥ r and all bounded Lipschitz functions f : Rs·#I → R and
g : Rs·#J → R we have

Cov(f(XI), g(XJ)) ≤ Ψ(#I,#J, f, g)∆dθr.

(ii) An R
s-valued random field (X(t))t∈Zd is called BL(θ)-dependent if for any disjoint, finite sets

I, J ⊆ Z
d with dist(I, J) ≥ r and all bounded Lipschitz functions f : Rs·#I → R and g : Rs·#J → R

we have
Cov(f(XI), g(XJ)) ≤ Ψ(#I,#J, f, g)θr.

Lemma 3. Let θ = (θr)r∈N be a monotonically decreasing sequence with limr→∞ θr = 0. For T = Z
d

or T = R
d, let (X(n)(t))t∈T , n ∈ N, be a sequence of BL(θ)-dependent random fields such that the finite-

dimensional distributions converge to those of a field (X(t))t∈T . Then (X(t))t∈T is also BL(θ)-dependent.

Proof: By the definition of convergence in probability we get limn→∞ E f(X
(n)
I )g(X

(n)
J ) = E f(XI)g(XJ),

limn→∞ E f(X
(n)
I ) = E f(XI) and limn→∞ E g(X

(n)
J ) = E g(XJ) for any finite sets I, J ⊆ T and bounded

Lipschitz continuous functions f : R#I → R and g : R#J → R, which yields the assertion.

Lemma 4. Let θ = (θr)r∈N be a monotonically decreasing sequence with limr→∞ θr = 0. Let (X(t))t∈T

be a BL(θ)-dependent random field and let f : R
s → R

s′ be a Lipschitz function. Then there is a
monotonically decreasing sequence θ′ = (θ′r)r∈N with limr→∞ θ′r = 0 such that (f(X(t)))t∈T is BL(θ′)-
dependent.

Proof: For a function f : V → W and a finite set I let fI denote the function V #I → W#I ,
(x1, . . . , x#I) 7→ (f(x1), . . . , f(x#I)). We put θ′r := Lip(f)2 · θr. Let I, J be two disjoint finite sets

with dist(I, J) ≥ r and let f̃ : Rs′·#I → R and g : Rs′·#J → R be two Lipschitz functions. Then

Cov(f̃(fI(XI)), g(fJ(XJ ))) ≤ min{#I,#J} · Lip(f̃ ◦ fI) · Lip(g ◦ fJ) ·∆d · θr
≤ min{#I,#J} · Lip(f̃) · Lip(g) ·∆d · θ′r.

An R
s-valued random field (X(t))t∈T is called positively associated (PA) if

Cov(f(XI), g(XJ )) ≥ 0
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for any finite sets I, J ⊆ T and functions f : Rs·#I → R and g : Rs·#J → R which are bounded and
monotonically increasing in every coordinate.

For a Lipschitz function f : Rn → R we define coordinate-wise Lipschitz constants by

Lipk(f) = sup
{ |f(x1, . . . , xk−1, yk, xk+1, . . . , xn)− f(x1, . . . , xk−1, zk, xk+1, . . . , xn)|

|yk − zk|
|

x1, . . . , xk−1, xk+1, . . . , xn, yk, zk ∈ R, yk 6= zk

}

, k ∈ {1, . . . , n}.

An R
s-valued random field (X(t))t∈T with E[Xk(t)

2] < ∞, t ∈ T, k = 1, . . . , s, is called quasi-associated
(QA) if

|Cov(f(XI), g(XJ))| ≤
∑

t∈I

s
∑

k=1

∑

u∈J

s
∑

l=1

Lipt,k(f) · Lipu,l(g)|Cov(Xk(t), Xl(u))|

for any finite sets I, J ⊆ T and Lipschitz continuous functions f : Rs·#I → R and g : Rs·#J → R.
It is well known that every PA random field is also QA, see e.g. Theorem 5.3 in [2, p. 89] (this theorem

is only formulated in the special case s = 1 and T = Z
d, but the proof holds in the present setting).

Lemma 5. Let (X(t))t∈Rd be an R
s-valued QA random field. Assume that there are c > 0 and ǫ > 0

with
Cov(Xi(t1), Xj(t2)) ≤ c · ‖t1 − t2‖−d−ǫ

∞

for t1, t2 ∈ R
d and i, j = 1, . . . , s. Then (X(t))t∈Rd is BL(θ)-dependent for some monotonically decreasing

zero sequence θ.

Proof: Let r > 0, ∆ > 1 and let I, J ⊆ T (∆) be finite with dist(I, J) ≥ r, w.l.o.g. #I ≤ #J . Moreover,
let f : Rs·#I → R and g : Rs·#J → R be bounded and Lipschitz continuous. Then

Cov(f(XI), g(XJ)) ≤
∑

t∈I

s
∑

k=1

∑

u∈J

s
∑

l=1

Lipt,k(f) · Lipu,l(g)Cov(Xk(t), Xl(u))

≤ s2 ·#I · Lip(f) · Lip(g) ·max
t,k,l

∑

u∈J

Cov(Xk(t), Xl(u))

≤ s2 ·#I · Lip(f) · Lip(g) ·max
t∈I

∑

u∈J

c · ‖t− u‖−d−ǫ
∞ .

We have for fixed t ∈ I, if r > 1,

∑

u∈J

‖t− u‖−d−ǫ
∞ ≤

∞
∑

s=⌈r∆⌉

( s

∆

)−d−ǫ ·#{v ∈ T (∆) | ‖v‖∞ =
s

∆
}

=

∞
∑

s=⌈r∆⌉

( s

∆

)−d−ǫ ·
(

(2s+ 1)d − (2s− 1)d
)

= ∆d+ǫ

∞
∑

s=⌈r∆⌉

d−1
∑

ι=0

s−d−ǫ

(

d

ι

)

(1 + (−1)d−ι−1)(2s)ι

≤ ∆d+ǫ

∫ ∞

⌈r∆⌉−1

d−1
∑

ι=0

(

d

ι

)

(1 + (−1)d−ι−1)2ιs−d−ǫ+ι ds

≤ ∆d+ǫ

d−1
∑

ι=0

(

d

ι

)

(1 + (−1)d−ι−1)2ι
(r∆ −∆)−d−ǫ+ι+1

d+ ǫ− ι− 1

≤ ∆d

d−1
∑

ι=0

(

d

ι

)

(1 + (−1)d−ι−1)2ι
(r − 1)−d−ǫ+ι+1

d+ ǫ− ι− 1
.
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Putting

θr :=

{

c · s2 ∑d−1
ι=0

(

d
ι

)

(1 + (−1)d−ι−1)2ι (r−1)−d−ǫ+ι+1

d+ǫ−ι−1 for r > 1,
3d

∆d ·maxi=1,...,s Var(Xi(0)) + θ2 for r = 1,

we obtain
Cov(f(XI), g(XJ )) ≤ min{#I,#J} · Lip(f) · Lip(g) ·∆dθr.

2.2 Random fields

After having introduced the association concepts in subsection 2.1, we will now collect various other
preliminaries concerning random fields.

The following theorem (see [6, Ch. III, § 3] and [12, Prop. 3.1]) says that for stationary random fields
stochastic continuity and measurability are essentially equivalent.

Theorem 6. (i) Let (X(t))t∈Rd be a stochastically continuous random field. Then there is a measurable
modification of (X(t))t∈Rd .

(ii) Let (X(t))t∈Rd be a stationary and measurable random field. Then (X(t))t∈Rd is stochastically
continuous.

Lemma 7. Let (Xt)t∈Rd be a stationary, stochastically continuous random field with EX(0)j < ∞ for
j > 0. Then (Xt)t∈Rd is continuous in j-mean.

Proof: Let (tn)n∈N be a sequence of points in R
d converging to a point t ∈ R

d. Then

lim
n→∞

E |X(tn)−X(t)|j = lim
n→∞

∫ ∞

0

P(|X(tn)−X(t)|j ≥ x) dx =

∫ ∞

0

lim
n→∞

P(|X(tn)−X(t)| ≥ j
√
x) dx = 0.

We have been allowed to interchange limit and integral, since

P(|X(tn)−X(t)| ≥ j
√
x) ≤ P(|X(tn)| ≥

j
√
x

2 ) + P(|X(t)| ≥ j
√
x

2 ) = 2P(|X(t)| ≥ j
√
x

2 )

due to the stationarity and
∫ ∞

0

2P(|X(t)| ≥ j
√
x

2 ) dx =

∫ ∞

0

2P(|2 ·X(t)|j ≥ x) dx = 2j+1
E |X(0)|j < ∞.

Lemma 8. Let (X(t))t∈Rd and (Y (t))t∈Rd be two stochastically continuous and measurable random fields
having the same distribution. Let A1, . . . , Am ⊆ R

d be bounded Borel sets. Assume that
∫

Ai
X(t) dt is

defined a.s. for i = 1, . . . ,m, i.e. not both the positive part and the negative part of these integrals are
infinite. Then

∫

A1
Y (t) dt, . . . ,

∫

Am
Y (t) dt are defined a.s. as well and

(
∫

A1

X(t) dt, . . . ,

∫

Am

X(t) dt

)

d
=

(
∫

A1

Y (t) dt, . . . ,

∫

Am

Y (t) dt

)

.

Proof: By the Monotone Convergence Theorem, we may assume w.l.o.g. that there is some N ∈ N such
that X(t) ∈ [−N,N ] and Y (t) ∈ [−N,N ] for all t ∈ R

d.
We define processes (Xn(t))t∈Rd and (Y n(t))t∈Rd by putting

Xn(t1, . . . , td) := X
(z1
n
, . . . ,

zd
n

)

, for all t1 ∈
[z1
n
,
z1 + 1

n

)

, . . . , td ∈
[zd
n
,
zd + 1

n

)

, z1, . . . , zd ∈ Z.

We get
{

∫

Ai

Xn(t) dt
∣

∣

∣
i = 1, . . . ,m

}

(1)

=
{

∑

z1,...,zd∈Z

λd

(

Ai ∩
[z1
n
,
z1 + 1

n

)

× · · · ×
[zd
n
,
zd + 1

n

)

)

X
(z1
n
, . . . ,

zd
n

)

∣

∣

∣
i = 1, . . . ,m

}

d
=

{

∑

z1,...,zd∈Z

λd

(

Ai ∩
[z1
n
,
z1 + 1

n

)

× · · · ×
[zd
n
,
zd + 1

n

)

)

Y
(z1
n
, . . . ,

zd
n

)

∣

∣

∣
i = 1, . . . ,m

}

=
{

∫

Ai

Y n(t) dt
∣

∣

∣
i = 1, . . . ,m

}

. (2)
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For ǫ, δ > 0 we get

P

(

m
∑

i=1

∣

∣

∫

Ai

Xn(t) dt−
∫

Ai

X(t) dt
∣

∣ > ǫ
)

≤ P

(

m
∑

i=1

∫

Ai

|Xn(t)−X(t)| dt > ǫ
)

≤
E
∑m

i=1

∫

Ai
|Xn(t)−X(t)| dt
ǫ

=

∑m
i=1

∫

Ai
E |Xn(t)−X(t)| dt

ǫ

≤
∑m

i=1

∫

Ai

(

δ + P(|Xn(t)−X(t)| > δ) · 2N
)

dt

ǫ

n→∞−→
∑m

i=1

∫

Ai
δ dt

ǫ

=
δ ·∑m

i=1 λd(Ai)

ǫ
.

The limit relation holds by the Majorized Convergence Theorem, since the assumption that (X(t))t∈R is
stochastically continuous implies that Xn(t) converges to X(t). Since δ > 0 was arbitrary, we get

P

(

m
∑

i=1

∣

∣

∫

Ai

Xn(t) dt−
∫

Ai

X(t) dt
∣

∣ > ǫ
)

n→∞−→ 0

and the same way

P

(

m
∑

i=1

∣

∣

∫

Ai

Y n(t) dt−
∫

Ai

Y (t) dt
∣

∣ > ǫ
)

n→∞−→ 0.

Now (2) yields the assertion.

2.3 Functions of bounded variation

A function f : R → R is said to be of locally bounded variation if there is a monotonically increasing
function α : R → R and a monotonically decreasing function β : R → R such that f = α+ β. We denote
the set of such functions α and β by A resp. B. We put

f+(x) :=











inf{α(x) | α ∈ A, α(0) = f(0)} if x > 0

f(0) if x = 0

sup{α(x) | α ∈ A, α(0) = f(0)} if x < 0.

It is easy to see that f+ ∈ A and f− := f − f+ ∈ B. We put hf := f+ − f−.

Lemma 9. Let f : R → R be a function of locally bounded variation. Then f = g ◦ hf for a Lipschitz
continuous function g : R → R of Lipschitz constant 1.

Proof: For each x ∈ R, for which there is t ∈ R with hf(t) = x, define g(x) := f(t). Now g is well-defined,
since for t1, t2 ∈ R with hf(t1) = hf (t2), f is constant on [t1, t2] . Clearly, f = g◦hf . Moreover, g -defined
on a subset of R so far- is Lipschitz continuous with Lipschitz constant 1. Indeed, let x1, x2 ∈ R, x1 < x2,
be two points for which there are t1, t2 ∈ R with hf(t1) = x1 and hf (t2) = x2. Then

hf (t2)−hf (t1) = f+(t2)−f+(t1)−(f−(t2)−f−(t1)) ≥ |f+(t2)−f+(t1)+(f−(t2)−f−(t1))| = |f(t2)−f(t1)|.
Hence x2 − x1 ≥ |g(x2)− g(x1)|.

It remains to show that g has a Lipschitz continuous extension to the whole of R. The domain of g
is R minus the union of countable many, disjoint intervals. For a point x lying on the boundary of the
domain of g but not in the domain of g, choose a sequence (xn)n∈N such that g(xn) is defined for all
n ∈ N. Then (g(xn))n∈N is a Cauchy sequence, since g is Lipschitz continuous, and hence convergent.
Since (g(xn))n∈N is convergent for every such sequence (xn)n∈N, the limit is independent of the choice of
the sequence. So we can put g(x) := limn→∞ g(xn). It is easy to see that this extension still has Lipschitz
constant 1. Now all gaps in the domain of g are open intervals. So they can be filled by affine functions.
Clearly, the Lipschitz constant is preserved again.



3 THE UNIVARIATE CLT 6

3 The univariate CLT

In this section we will prove Theorem 1.
Proof: For j = (j1, . . . , jd) ∈ Z

d we put Qj = ×d
i=1[ji, ji + 1) and Z(j) :=

∫

Qj
X(t) dt − EX(0). We

will show that this random field (Z(j))j∈Zd fulfills the assumptions of Theorem 1.12 of [2, p. 178]. The
collection

Zn(j) :=
1

nd

n
∑

k1,...,kd=1

X(j1 +
k1

n
, . . . , jd +

kd

n
)− EX(0), j ∈ Z

d,

is BL(θ′)-dependent for any n ∈ N, where θ′r := θr−d. Indeed, let I, J ⊆ Z
d and let f : R#I → R and

g : R#J → R be bounded Lipschitz functions. Put Ĩ = I+{1/n, 2/n, . . . , 1}d, J̃ = J+{1/n, 2/n, . . . , 1}d,

f̃ : R#I·nd → R, (x1,1, . . . , x#I,nd) → f
( 1

nd

nd

∑

ℓ=1

x1,ℓ − EX(0), . . . ,
1

nd

nd

∑

ℓ=1

x#I,ℓ − EX(0)
)

and

g̃ : R#J·nd → R, (x1,1, . . . , x#J,nd) → g
( 1

nd

nd

∑

ℓ=1

x1,ℓ − EX(0), . . . ,
1

nd

nd

∑

ℓ=1

x#J,ℓ − EX(0)
)

.

Then we have f(Zn,I) = f̃(XĨ), g(Zn,J) = g̃(XJ̃ ), Lip(f̃) = Lip(f)/nd, Lip(g̃) = Lip(g)/nd and

dist(Ĩ , J̃) ≥ dist(I, J)− d. So

Cov(f(Zn,I), g(Zn,J)) = Cov(f̃(XĨ), g̃(XJ̃))

≤ min{#I · nd,#J · nd}Lip(f̃) Lip(g̃)ndθr−d

= min{#I,#J}Lip(f) Lip(g)θ′r.

By Lemma 3, the field (Z(j))j∈Zd is BL(θ′)-dependent if we can show that the finite-dimensional
distributions of (Zn(j))j∈Zd converge to those of (Z(j))j∈Zd . First we will show

lim
n→∞

E |Zn(j)− Z(j)| = 0, j ∈ Z
d. (3)

Let ǫ > 0. Due to Lemma 7, the field (X(t))t∈Rd is continuous in 1-mean and hence there is n such that

E |X(0)−X(t)| < ǫ for all t ∈ [0, 1
n
]d.

Since (Xt)t∈Rd is stationary, this implies

E |X(j1 +
k1

n
, . . . , jd +

kd

n
)−X(t)| < ǫ for all t ∈ [j1 +

k1−1
n

, j1 +
k1

n
]× · · · × [jd +

kd−1
n

, jd +
kd

n
].

Hence E |Zn(j)− Z(j)| < ǫ, which finishes the proof of (3).
Now let j(1), . . . , j(r) ∈ Z

d and let δ > 0. From Markov’s inequality we get

P

(

r
∑

l=1

|Zn(j
(l))− Z(j(l))| > δ

)

≤
∑r

l=1 E |Zn(j
(l))− Z(j(l))|
δ

→ 0, n → ∞.

So the finite-dimensional distributions of (Zn(j))j∈Zd converge to those of (Z(j))j∈Zd and hence (Z(j))j∈Zd

is BL(θ)-dependent.
By Lemma 8, the assumption that (X(t))t∈Rd is stationary implies that (Z(j))j∈Zd is stationary.

Moreover, (Z(j))j∈Zd is centered, since

EZ(0) = E

∫

[0,1)d
X(t) dt− EX(0) =

∫

[0,1)d
EX(t) dt− EX(0) = 0.
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Further,

∑

j∈Zd

Cov
(

Z(0), Z(j)
)

=
∑

j∈Zd

∫

[0,1)d

∫

j+[0,1)d
Cov

(

X(s), X(t)
)

dt ds

=

∫

[0,1)d

∫

Rd

Cov
(

X(0), X(t− s)
)

dt ds

=

∫

[0,1)d

∫

Rd

Cov
(

X(0), X(t)
)

dt ds

=

∫

Rd

Cov
(

X(0), X(t)
)

dt.

We put Qn := {j ∈ Z
d | j + [0, 1)d ⊆ Wn} and W−

n :=
⋃

j∈Qn

(

j + [0, 1)d
)

. As explained in the
proof of [3, Theorem 1.2], the assumption that (Wn)n∈N is VH-growing implies that (Qn)n∈N is regular
growing. Now Theorem 1.12 of [2, p. 178] implies that

∫

W
−

n
X(t) dt− λd(W

−
n )EX(0)

√

λd(W
−
n )

=

∑

j∈Qn
Z(j)

√
#Qn

→ N (0, σ2), n → ∞.

If we can show that
∫

Wn\W−

n
X(t) dt− λd(Wn \W−

n )EX(0)
√

λd(Wn)

P→ 0, n → ∞, (4)

then Slutzki’s theorem will imply the assertion, since, clearly,
√

λd(W
−
n )/

√

λd(Wn) → 1. We get

Var
(

∫

Wn\W−

n

X(t) dt
)

=

∫

Wn\W−

n

∫

Wn\W−

n

Cov(X(s), X(t)) dt ds

≤
∫

Wn\W−

n

∫

Rd

|Cov(X(s), X(t))| dt ds

= λd(Wn \W−
n )

∫

Rd

|Cov(X(0), X(t))| dt.

Since (Wn)n∈N is VH-growing, we get

Var

(

∫

Wn\W−

n
X(t) dt

√

λd(Wn)

)

=
Var

( ∫

Wn\W−

n
X(t) dt

)

λd(Wn)
→ 0, n → ∞.

By the Chebyshev inequality this implies (4).

4 The multivariate CLT

In this section we extend Theorem 1 in various ways to multivariate central limit theorems.

Theorem 10. Let θ = (θr)r∈N be a monotonically decreasing zero sequence. Let (X(t))t∈Rd be an R
s-

valued random field. Assume that (X(t))t∈Rd is stationary, measurable, BL(θ)-dependent and fulfills
∫

Rd

|Cov(Xi(0), Xj(t))| dt < ∞, i, j = 1, . . . , s.

Let (Wn)n∈N be a VH-growing sequence of subsets of Rd. Then

(

∫

Wn
X1(t) dt− EX1(0)λd(Wn)

√

λd(Wn)
, . . . ,

∫

Wn
Xs(t) dt− EXs(0)λd(Wn)

√

λd(Wn)

)

→ N (0,Σ), n → ∞,

in distribution, where Σ is the matrix with entries
∫

Rd

Cov(Xi(0), Xj(t)) dt, i, j = 1, . . . , s.
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Proof: Let u = (u1, . . . , us) ∈ R
s. Then (〈X(t), u〉)t∈Rd is BL(θ′)-dependent for a monotonically

decreasing sequence θ′ = (θ′r)r∈N with limr→∞ θ′r = 0 due to Lemma 4. Obviously, (〈X(t), u〉)t∈Rd is
stationary and measurable. We have

∫

Rd

Cov(〈X(0), u〉, 〈X(t), u〉) dt =
s

∑

i=1

s
∑

j=1

uiuj

∫

Rd

Cov(Xi(0), Xj(t)) dt = uTΣu.

In particular, the integral is defined. So Theorem 1 implies

〈(

∫

Wn
X1(t) dt− EX1(0)λd(Wn)

√

λd(Wn)
, . . . ,

∫

Wn
Xs(t) dt− EXs(0)λd(Wn)

√

λd(Wn)

)

, u
〉

=

∫

Wn
〈X(t), u〉 dt− E 〈X(0), u〉λd(Wn)

√

λd(Wn)
→ N (0, uTΣu), n → ∞.

Since 〈Y, u〉 ∼ N (0, uTΣu) for a random vector Y ∼ N (0,Σ), the Theorem of Cramér and Wold implies
the assertion.

Corollary 11. Let (X(t))t∈Rd be a stationary, measurable R-valued random field and let f1, . . . , fs :
R → R be functions. Let (Wn)n∈N be a VH-growing sequence of subsets of Rd. Assume that one of the
following conditions holds:

(i) The field (X(t))t∈Rd is BL(θ)-dependent for a monotonically decreasing zero sequence θ = (θr)r∈N,
the maps f1, . . . , fs are Lipschitz continuous and

∫

Rd

∣

∣Cov
(

fi(X(0)), fj(X(t))
)∣

∣ dt < ∞, i, j = 1, . . . , s.

(ii) The field (X(t))t∈Rd is QA and there are c > 0 and ǫ > 0 with

Cov(X(0), X(t)) ≤ c · ‖t‖−d−ǫ
∞ , t ∈ R

d. (5)

The maps f1, . . . , fs are Lipschitz continuous.

(iii) The field (X(t))t∈Rd is PA with EX(0)2 < ∞. The maps f1, . . . , fs are of locally bounded variation
with E[hfi(X(0))2] < ∞, i = 1, . . . , s, and there are c > 0 and ǫ > 0 with

Cov
(

hfi(X(0)), hfj (X(t))
)

≤ c · ‖t‖−d−ǫ
∞ , t ∈ R

d, i, j = 1, . . . , s. (6)

Then

(

∫

Wn
f1(X(t)) dt− E f1(X(0))λd(Wn)

√

λd(Wn)
, . . . ,

∫

Wn
fs(X(t)) dt− E fs(X(0))λd(Wn)

√

λd(Wn)

)

→ N (0,Σ),

as n → ∞ in distribution, where Σ is the matrix with entries

∫

Rd

Cov
(

fi(X(0)), fj(X(t))
)

dt, i, j = 1, . . . , s.

Part (i) of this corollary is an immediate consequence of Lemma 4 and Theorem 10.
Proof of Corollary 11(ii): The field (X(t))t∈Rd is BL(θ)-dependent by Lemma 5 and thus Lemma 4
implies that the field (f1(X(t)), . . . , fs(X(t)))t∈Rd is also BL(θ)-dependent.

In order to check the integrability assumptions from part (i), we put

f
(N)
j : x 7→











−N if fj(x) < −N

fj(x) if fj(x) ∈ [−N,N ]

N if fj(x) > N.
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Since (X(t))t∈Rd is QA, we get

|Cov
(

f
(N)
i (X(0)), f

(N)
j (X(t))

)

| ≤ Lip(f
(N)
i ) · Lip(f (N)

j ) · |Cov(X(0), X(t))|
≤ Lip(fi) · Lip(fj) · |Cov(X(0), X(t))|.

By the Monotone Convergence Theorem, applied to both summands of E[f
(N)
i (X(0))f

(N)
j (X(t))] −

E[f
(N)
i (X(0))] · E[f (N)

j (X(t))], this yields

|Cov
(

fi(X(0)), fj(X(t))
)

| ≤ Lip(fi) · Lip(fj) · |Cov(X(0), X(t))|.

Moreover, (5) implies
∫

Rd

∣

∣Cov
(

X(0), X(t)
)∣

∣ dt < ∞

and hence
∫

Rd

∣

∣Cov
(

fi(X(0)), fj(X(t))
)∣

∣ dt < ∞, i, j = 1, . . . , s.

So part (i) yields the assertion.

Proof of Corollary 11(iii): Since (X(t))t∈Rd is PA, the random field (hf1(X(t)), . . . , hfs(X(t)))t∈Rd

is also PA, see Theorem 1.8(d) of [2, p. 7], and therefore QA. By Lemma 5 it is BL(θ)-dependent for
some monotonically decreasing zero sequence θ. Hence (f1(X(t)), . . . , fs(X(t)))t∈Rd is BL(θ′)-dependent
for some monotonically decreasing zero sequence θ′ by Lemma 9 and Lemma 4.

Clearly, the field (f1(X(t)), . . . , fs(X(t)))t∈Rd is also stationary and measurable.
Moreover, (6) implies

∫

Rd

∣

∣Cov
(

hfi(X(0)), hfj (X(t))
)∣

∣ dt < ∞, i, j = 1, . . . , s.

Now Lemma 9 and the QA property of (hf1(X(t)), . . . , hfs(X(t)))t∈Rd give

∫

Rd

∣

∣Cov
(

fi(X(0)), fj(X(t))
)
∣

∣ dt ≤
∫

Rd

∣

∣Cov
(

hfi(X(0)), hfj (X(t))
)
∣

∣ dt < ∞, i, j = 1, . . . , s.

So Theorem 10 yields the assertion.
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