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Abstract. The verification systems Boogie and Why3 use their respective inter-
mediate languages to generate verification conditions from high-level programs.
Since the two systems support different back-end provers (such as Z3 and Alt-
Ergo) and are used to encode different high-level languages (such as C# and
Java), being able to translate between their intermediate languages would pro-
vide a way to reuse one system’s features to verify programs meant for the other.
This paper describes a translation of Boogie into WhyML (Why3’s intermediate
language) that preserves semantics, verifiability, and program structure to a large
degree. We implemented the translation as a tool and applied it to 194 Boogie-
verified programs of various sources and sizes; Why3 verified 84% of the trans-
lated programs with the same outcome as Boogie. These results indicate that the
translation is often effective and practically applicable.

1 Introduction

Intermediate verification languages (IVLs) are intermediate representations used in ver-
ification technology. Just like compiler design has benefited from decoupling front-end
and back-end, IVLs help write verifiers that are more modular: the front-end special-
izes in encoding the rich semantics of a high-level language (say, an object-oriented
language such as C#) as a program in the IVL; the back-end generates verification con-
ditions (VCs) from IVL programs in a form that caters to the peculiarities of a specific
theorem prover (such as an SMT solver).

Boogie [2] and WhyML [8] are prime examples of popular IVLs with different,
often complementary, features and supporting systems (respectively called Boogie and
Why?3). In this paper we describe a translation of Boogie programs into WhyML pro-
grams and its implementation as the tool b2w. As we illustrate with examples in[Sec. 3]
using b2w increases the versatility brought by IVLs: without having to design and im-
plement a direct encoding into WhyML or even being familiar with its peculiarities,
users can take advantage of the best features of Why3 when working with high-level
languages that translate to Boogie.

* Work done mainly while affiliated with ETH Zurich.



Boogie vs. WhyML. While the roles of Boogie and WhyML as IVLs are similar, the
two languages have different characteristics that reflect a focus on complementary chal-
lenges in automated verification. Boogie is the more popular language in terms of front-
ends that use it as IVL, which makes a translation from Boogie more practically use-
ful than one into it; it has a finely tuned integration with the Z3 prover that results
from the two tools having been developed by the same group (Microsoft Research’s
RiSE); it combines a simple imperative language with an expressive typed logic, which
is especially handy for encoding object-oriented or, more generally, heap-based imper-
ative languages. In contrast, WhyML has a more flexible support for multiple back-end
provers it translates to, including a variety of SMT solvers as well as interactive provers
such as Coq; it can split VCs into independent goals and dispatch them to different
provers; if offers limited imperative constructs within a functional language that be-
longs to the ML family, which brings the side benefit of being able to execute WhyML
programs—a feature quite useful to debug and validate verification attempts.

Goals and evaluation. The overall goal of this paper is devising a translation 7 from
Boogie to WhyML programs. The translation, described in should preserve cor-
rectness, verifiability, and readability as much as possible. Preserving correctness means
that, given a correct Boogie program p, its translation 7 (p) is a correct WhyML pro-
gram with the same semantics as p; if p is incorrect, 7 (p) should also be incorrect.
Preserving verifiability means that, given a Boogie program p that verifies in Boogie,
its translation 7 (p) is a WhyML program that verifies in Why3. Preserving readability
means that the translation should not introduce unnecessary changes in the structure of
programs.

The differences, outlined above, between Boogie and WhyML and their supporting
systems make achieving correctness, verifiability, and readability challenging. While
we devised T to cover the entire Boogie language, its current implementation b2w does
not fully support a limited number of features (branching, the most complex polymor-
phic features, and bitvectors) that make it hard to achieve verifiability in practice. In fact,
while replacing branching (goto) with looping is always possible [[L1], a general trans-
lation scheme does not produce verifiable loops since one should also infer invariants
(which are often cumbersome due to the transformation). Polymorphic maps are sup-
ported to the extent that their type parameters can be instantiated with concrete types;
this is necessary since WhyML’s parametric polymorphism cannot directly express all
usages in Boogie, but it may also introduce a combinatorial explosion in the transla-
tion; hence, b2w fails on the most complex instances that would be unmanageable in
Why3. Boogie’s bitvector support is much more flexible than what provided by Why3’s
libraries; hence b2w may render the semantics of bitvector operations incorrectly.

These current implementation limitations notwithstanding (see for details),
we experimentally demonstrate that b2w is applicable and useful in practice. As
discusses, we applied b2w to 194 Boogie programs of different size and sources; most of
the programs have not been written by us and exercise Boogie in a variety of different
ways. For 84% (162) of these programs, b2w produces a WhyML translation that Why3
can verify as well as Boogie can verify the original, thus showing the feasibility of
automating translation between IVLs.



Tool availability. The tool b2w is available as open source at:

https://bitbucket.org/michael_ameri/b2w/

2 Related Work

Translations and abstraction levels. Translation is a ubiquitous technique in computer
science; however, the most common translation schemes bridge different abstraction
levels, typically encoding a program written in a high-level language (such as Java)
into a lower-level representation that is suitable for execution (such as byte or machine
code). Reverse-engineering goes the opposite direction—from lower to higher level—
for example, to extract modular and structural information from C programs and encode
it using object-oriented constructs [[25]. This paper describes a translation between inter-
mediate languages—Boogie and Why3—which belong to similar abstraction levels. In
the context of model transformations [[19], so-called bidirectional transformations [24]
also target lossless transformations between notations at the same level of abstraction.

Intermediate verification languages. The Spec# project [3] introduced Boogie to add
flexibility to the translation between an object-oriented language (a dialect of C#) and
the verification conditionsin the logic fragments supported by SMT solvers. An in-
termediate verification language embodies the idea of intermediate representation—a
technique widespread in compiler construction—in the context of verification. Since
its introduction for Spec#, Boogie has been adopted as intermediate verification lan-
guage for numerous other front-ends such as Dafny [16], AutoProof [27], Viper [12],
and Joogie [1]; its popularity demonstrates the advantages of using intermediate verifi-
cation languages.

While Boogie retains some support for different back-end SMT solvers, Z3 [[7] re-
mains its fully supported primary target. By contrast, supporting multiple, different
back-ends is one of the main design goals behind the Why3 system [8]], which does
not merely generate verification conditions in different formats but offers techniques to
split them into independently verifiable units and to dispatch each unit to a different
prover. Why?3 also fully supports interactive proverﬁ which provides a powerful means
of discharging the most complex verification conditions that defy complete automation.

Another element that differentiates Boogie and Why3 is the support for execut-
ing programs; this is quite useful for debugging verification attempts and for applying
testing-like techniques to the realm of verification. Boogaloo [20] supports symbolic
execution of Boogie programs; Symbooglix is a more recent project with the same
goalE] Thanks to it being a member of the ML family, Why3 directly supports symbolic
execution as well as compilation of WhyML programs to OCaml.

In all, while the Boogie and WhyML languages belong to a similar abstraction level,
they are part of systems with complementary features, which motivates this paper’s
idea of translating one language into the other. Since Boogie is overall more popular, in

3 In comparison, Boogie’s support for HOL is restricted and not up-to-date [4]).
4 http://srg.doc.ic.ac.uk/projects/symbooglix/
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terms of tools that use it as a back-end, the translation from Boogie to WhyML is more
practically useful than the one in the opposite direction.

Other intermediate languages for verification are Pilar [23], used in the Sireum
framework for SPARK; Silver [12], an intermediate language with native support for
permissions in the style of separation logic; and a flavor of dynamic logic for object-
oriented languages [22] used in the KeY system. Another approach to generalizing
and reusing different translations uses notions from model transformations to provide
validated mappings for different high-level languages [3)]. Future work may consider
supporting some of these intermediate languages and approaches.

3 Motivating Examples

Verification technology has made great strides in the last decade or two, but a few
dark corners remain where automated reasoning shows its practical limitations.
provides three examples of simple Boogie programs that trigger incorrect or otherwise
unsatisfactory behavior, and argue that translating these programs to WhyML makes it
possible to verify them using a different, somewhat complementary verification tool;
overall, confidence in the results of verification is improved.

Procedure not_verify in has a contradictory postcondition (notice N < N,
N is a nonnegative constant, and the loop immediately terminates). Nonetheless, recent
versions of Boogie and Z3 successfully verify itE] More generally, unless the complete
toolchain has been formally verified (a monumental effort that has only been performed
in few case studies [[18l13l14]), there is the need to validate the successful runs of a
verifier. Translating Boogie to Why3 provides an effective validation, since Why3 has
been developed independent of Boogie and uses a variety of backend tools that Boogie
does not support. Procedure not_verify translated to Why3 does not verify as
it should.

Procedures lemma_yes and lemma_no in demonstrate Boogie’s support for
mathematical real numbers, which is limited in the way the power operator ** is han-
dled. Boogie vacuously verifies both properties 22 > 0 and 23 < 0, even though Z3
outputs some unfiltered errors that suggest the verification is spurious (the power oper-
ator *x is not properly supported); indeed, only the inequality encoded by lemma_yes is
correct. Why3 provides a more thorough support for real arithmetic, both by translating
to backends such as Alt-Ergo and by providing a more effective encoding in Z3; in fact,
it verifies the translated procedure lemma_yes but correctly fails to verity lemma_no.

The loop in procedure trivial_inv in includes an invariant asserting that
i takes only even values. Even if this is clearly true, Boogie fails to check it; pin-
ning down the precise cause of this shortcoming requires knowledge of Boogie’s (and
Z3’s) internals, although it likely is a manifestation of the “triggers” heuristics that han-
dle (generally undecidable) quantified expressions. Based on this knowledge, there are
specification patterns that try to work around such idiosyncrasies; in the example, one
could introduce a “witness” ghost variable k such that 1 = 2xk is an invariant. However,
if we insist on verifying the program in its original form, Why3 can dispatch verification

3 https://github.com/boogie-org/boogie/issues/25
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conditions to interactive provers, where the user provides the crucial proof steps. Cases
such as the loop invariant of trivial_inv where a proof is “obvious” to a human user
but it clashes against the default strategies to handle quantifiers are prime candidate to
exploit interactive provers. Thus, translating Boogie to Why3 provides another means
of exploiting the latter’s versatile support for interactive provers and multiple backends.

N: ; lemma_yes () trivial_inv()
o< N; 2.0%%3.0> 0.0; {
{ 1} i:
not_verify() i:=0;
(V k, 1: . lemma_no() (i< 10)
< kS 1<K N = N N); 2.0x%x3.0< 0.0; 0< i< 10;
{ {1}
X: ; [ERH ® i =2xj);
X i=—N; {i=1i+42;}
(x#x) {} }

Fig. 1. Three simple Boogie programs for which automated reasoning is limited.

4 Boogie-to-Why3 Translation

Intermediate languages for verification combine programming constructs and a logic
language. When used to encode programs written in a high-level language, the pro-
gramming constructs encode program behavior, and the logic constructs encode spec-
ifications, constrain the semantics to conform to the high-level language’s (typically
through axioms), and support other kinds of annotations (such as triggers).

Both Boogie and WhyML provide a typed first-order logic with arithmetic as logic
language. Boogie’s programming constructs are a simple imperative language with both
structured (while loops, procedures, and so on) and unstructured (jumps, global vari-
ables) statements. WhyML’s programming constructs combine an ML-like functional
language with a few structured imperative features such as mutable variables and loops.

Correspondingly, we define a translation 7 : Boogie — WhyML of Boogie to
WhyML as the composition £ o D of two translations: D: Boogie — Boogie is a
desugaring which rewrites away the Boogie constructs, such as call-forall, that have
no similar construct in WhyML by expressing them using other features of Boogie.
Then, £: Boogie — WhyML encodes Boogie programs simplified by D as WhyML
programs, while introducing constraints that ensure that the semantics in WhyML mir-
rors the one in Boogie. For simplicity, the presentation does not sharply separate the
two translations D and £ but defines either or both of them as needed to describe the
translation of arbitrary Boogie constructs.

A single feature of the Boogie language significantly compounds the complexity
of the translation: polymorphic maps, which correspond to mappings between domains
of generic type. Why3 does support polymorphic maps through a library, but its type



constant N: int val lemma_yes (): () val trivial_inv (): ()
axiom A@: 0@ < N; ensures

{ (pow 2.0 3.0) >. 0.0 } let trivial_inv_impl (): ()
val not_verify (): () =(

ensures { V k, 1: int . val lemma_no (): () let i = ref (any int) in
0<k<1T<N—=>NN?} ensures i.contents < 0;
{ (pow 2.0 3.0) <. 0.0 } while (i.contents < 10) do
let not_verify_impl(): () invariant
ensures { V k, l: int . let lemma_yes_impl (): () { 6 <i.contents <10 }
0<k<1T<N—=>NIN?} ensures invariant
=( { (pow 2.0 3.0) >. 0.0 } {3j: int .
let x = ref (any int) in =() i.contents = 2xj }
x.contents < -N; i.contents <— i.contents + 2;
while let lemma_no_impl (): () done;
(x.contents # x.contents) ensures )
do done; { (pow 2.0 3.0) <. 0.0 }
end ) =()

Fig. 2. The translation to WhyML of the three Boogie programs in (Boilerplate such as
general declarations, imports, and frame condition checking are omitted for clarity.)

system is more restrictive and does not allow the same degree of freedom as Boogie’s
in using variables of polymorphic map types. For clarity, the presentation of the trans-
lation initially ignores polymorphic maps. Then, discusses how the general
translation scheme can be extended to support them.

As running examples, [Fig. 2| shows how 7T translates the examples of

4.1 Types

Boogie types include primitive types, instantiated type constructors, and map types.

Primitive types are (mathematical integers), (mathematical reals), (Bool-
eans), and bvn (n-bit vectors). 7 translates primitive types into their Why3 analogues
as shown in Since Why3 offers primitive types and operations on them through
libraries, 7 also generates import statements for the libraries that provide the same
operations that are available in Boogie, such as integer to/from real conversion.

T T(T) Why?3 libraries
int int.Int, int.EuclideanDivision
real real.Reallnfix, real.FromInt, real.Truncate, real.PowerReal
bool bool.Bool

n  bv bv.BitVector with constant size =n

Table 1. Translation of primitive types, and Why?3 libraries supplying the necessary operations.

Type constructors. A Boogie type declaration using the type constructor syntaxlﬂintro-
duces a new parametric type Twith parameters a1, . . ., a,,. 7 translates it to an algebraic

6 T ignores the optional type modifier , since it does not seem fully supported in Boogie.



type with constructor T: 7 ( Taj...am) = type T ’aj... 'a, form > 0,
where ticks ' identify type parameters in WhyML.

Map types. A Boogie map type M declared as: M= [Ty,...T,] U defines the
type of a mapping from Ty X - -- X T, to U, for n > 1. Why3 supports maps through its
library map.Mapﬂhence, T(M)=type M = map (T (T1),....T(Tpn)) T(U), where an
n-tuple encapsulates the n-type domain of M.

4.2 Constants

The translation of constant declarations is generally straightforward, following the scheme:

T( c: T) = constant c: T(T)
Unique constants. All constants of a type T declared with the modifier have
values that are pairwise different. Thus, for m constants Ci,..vy Cm:T,

m

2) axiomsaxiom unique_C_1_]: Ci# Cj’

T encodes the uniqueness properties using (
forl1 <i#j<m.

Orders. Boogie provides the operator <: to express partial order over every type; T
introduces a polymorphic operator <: and axiomatizes its reflexive, antisymmetric, and
transitive properties:

predicate (<:) (x: 'a) (y: 'a)

axiom ReflexivePO: V x: ’a X <iX

axiom AntisymmetricPO: V x y: 'a X <Y AN y<ix - x=y
axiom TransitivePO: Vxyz:'a.x<:yANy<:iz—o>x<:z

Boogie supplies special syntax to describe a partial-order relations with a certain
structure, which corresponds to a DAG where any two nodes z and y are connected by
an edge * — y iff x <:y and y is a direct successor of x in the order. Let a, b, c, d,
e, f be uniquﬂ constants of the same type T. The Boogie syntax to specify ordering
between them is in D reconstructs the DAG of the order specification, and then
formalizes it in axiomatic form. For example, the specifications in determine the

DAG in which is axiomatized as in

4.3 Variables

Why3 supports mutable variables through the reference type ref from theory Ref. Boo-
gie global variable declarations become global value declarations of type ref; Boogie
local variable declarations become let bindings with local scope. Thus, if v is a global
variable and 1_v is a local variable in Boogie:

global variable 7 (var v: T) =val v: ref 7(T)
local variable T ( Lv: T)=1let Lv = ref (any 7(T)) in

The expression any T provides a nondeterministic value of type T.

7 Why3’s maps, like Boogie’s, do not satisfy extensionality (http://lists.gforge.inria.fr/
pipermail/why3-club/2013-February/000572.html).
® Uniqueness is not required but makes the order specification easier to present.
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BOOGIE SPECIFICATION SEMANTICS

c: T a, b; a and b are the only direct successors of ¢

a: T ; a has no (direct) successors

d: T C ;¢ has no direct predecessors other than d and any others
that are explicitly specified

e, f: T d; dis the only direct successor of both e and f, and the sub-

graphs that originate in e and f are disjoint

Fig. 3. Ordering specifications in Boogie (older versions of Boogie use <: instead of ).

Fig. 4. DAG corresponding to the ordering specification of Solid edges denote the succes-
sor relation; dotted edges denote allowed (but not specified) relations; the dashed line expresses
disjointness of the two sub-graphs.

4.4 Functions

Boogie function declarations become WhyML function declarations:

’T( f(x1: T, ooy Xt Tp) (U))
= function f (x:7(T1)) - (xp: T (Tp)):T(U) (1)

WhyML function definitions require, unlike Boogie’s, a variant to ensure that re-
cursion is well-formed. Therefore, Boogie function definitions are not translated into
WhyML function definitions but are axiomatized: if function f in (I)) has body B, D
replaces the body with the (V zy: T1, .oz Tpe (21, ...,2,) = B).

4.5 Expressions

The translation of Boogie expressions to WhyML expressions is mostly straightfor-
ward, given the translation of types described above. We describe the few cases that
deserve some detail.

Nondeterministic choice. The special value * represent a nondeterministic Boolean
choice (used in loop exit flags and conditionals); we define 7 (*) = any bool, which
provides a nondeterministic Boolean value.

(c<:aAN c<:bAVz:Tec<iz =—c=z Va<:z Vb<<:izx)
Va: Te—(a<:x))

d<:cAVz:Tex<:ic=—c=z Vz<:d)

(e<:dA Vzz:Tee<:x —e=zx Vd<:x)

(f<:dA Vax:Tef<:x =f=x Vd<:xz)

Vz:Texr <:e = —(z <:f))
Vz:Tex <:f = —(x <:e))

Fig. 5. Axiomatization of the ordering specification in[Fig. 3



Variables. Since a Boogie variable v of type T turns into a value v of type ref 7(T),
occurrences of v in an expression translate to v.contents, which represents the value
attached to reference v.

Map expressions. T translates map selection and update using functions get and set
from theory Map. If m is a map of type M defined in [Sec. 4.1| thenﬂ

E T(E)
selection ml[ey,..., e,] get 7(m) (T(e1),....T(en))
update mler,..., eu="Ff1 setT(m) (T(e1),....T(en)) T(f)

Lambda expressions. Boogie recently introduced lambda expressions as syntactic sugar
for maps. While WhyML has lambda abstractions, they are not allowed as first-order
values in programs [6]. Instead, the translation desugars lambda expression into con-
stantmaps: D(A x1: T1,...,Xp: Tpe e) = lmb, where mb : [Ty, ..., Tu]7(e)
is axiomatized by (V x1: T1, ..., Xp: Tpe lmb[xq, ...,x,] = e).

Old expression. Within a procedure’s postcondition or body, the expression (e)
refers to the value of e in the prestate. WhyML offers a more general construct to refer
to an expression’s value at any labeled point within a procedure’s body. Hence, every
WhyML procedure implementation translating a Boogie procedure implementation in-
cludes a label "begin", so that 7 (old(e)) is just old 7 (e) within postconditions, and
isat 7 (e) ' "begin" within bodies.

Bitvectors. Why3’s theory BitVectors does not provide all operations that are sup-
ported by Boogie. In particular, it does not support extraction expressions b[n:m] (drop
the m least significant bits and return the next n —m least significant bits) and concatena-
tion expressions b ++ c (the bit vector obtained by concatenating b and c). 7 introduces
functions extract (b: bv) (n: int) (m: int): bvandcat (b: bv) (c: bv): bv
and uses them to translate applications of these bit vector operators, but leaves them
uninterpreted in Why3. 7’s implementation currently supports only the bitvectors op-
erations available in Why3’s theory BitVectors.

4.6 Procedures

Boogie procedures have a declaration (signature and specification) and zero or more
implementations. The latter follow the general syntax of (left), where a procedure
p with input argument t and output argument u has one implementation with local
variable 1 and body B. For simplicity of presentation, p has one input argument, one
output argument, and one local variable, but generalizing the description to an arbitrary
number of variables is trivial.

The specification of procedure p consists of preconditions , frame spec-
ification , and postconditions . A precondition is an assertion that
callers of p must satisfy upon calling, and that every implementation of p can assume;

? Despite its name, set returns a new map rather than changing its argument’s value.



p(t: T Wt) val p (t : 7(T)): T(u)

(u: U Wu); requires { 7 (R) }
R; writes {M}
fR; returns { | u — T(E) }
M; returns { | u — T(fE) }
E; returns { | u — 7 (Wu) }
fE;
let p_impl0® (t: 7(T)): T (U)
p(t: T) requires { 7(R) } requires { 7 (fR) }
(u: V) returns { | u — T(E) }
{ =(
1: L wi; T( u: U; 1 L;)
B assume { 7 (Wg) }
} assume { 7 (Wt) }
assume { 7 (Wl) }
assume { 7 (Wu) }
try ( 7(B) )
with | Return — assume { true } end
T (u)

)

let p_implO_frame (t: 7(T)): T (V)
requires { 7 (R) } requires { 7 (fR) }
writes { M }

reads { G }

returns { | u — true }

. p_impl0O

T(m := m),form € M

assume { yes(g) },forg € G

T(u))

=(

Fig. 6. Translation of a Boogie procedure (left) into WhyML (right).

preconditions need not be satisfied by callers. A postcondition is an assertion that
every implementation of p must satisfy upon terminating, and that every caller of p can
assume; postconditions need not be satisfied by implementations. Every imple-
mentation of p may only modify the global variables listed in p’s frame specification.
T translates a generic procedure p as shown in (right). The declaration of p
determines val p, which defines the semantics of p for clients: the precondition
fR does not feature there because clients don’t have to satisfy it, whereas both and
non- postconditions are encoded as conditions. The implementation of p
determines let p_impl®, which triggers the verification of the implementation against
its specification: both and non- preconditions are encoded, whereas the
postcondition fE does not feature there because implementations don’t have to satisfy
it. The body introduces let bindings for the local variable 1 and for a new local variable
u which represents the returned value; these declarations are translated as discussed in
Then, a series of assume encode the semantics of Boogie’s clauses,
which constrain the nondeterministic values variables can take (Wg comes from any
global variables, which are visible everywhere); p’s body B is translated and wrapped
inside an exception-handling block try, which does not do anything other than allow-
ing abrupt termination of the body’s execution upon throwing a Return exception (see
for details). Regardless of whether the body terminates normally or excep-
tionally, the last computed value of u is returned in the last line, and checked against

10



the postcondition in returns. Another implementation let p_impl0_frame checks the
frame condition ( clause)mlt relies on the same full precondition as p_imp10
but has postcondition true since E has already been checked; it includes a writes clause
and a reads clause. Why3 checks that a global variable is in the writes clause if and
only if it is written by the implementation; since Boogie’s clause only ex-
presses variables that may be written, p_imp10_frame includes an assignment of every
variable in M to itself so that the requirement that every variable in M is written is vac-
uously satisfied. When a writes clause is present, Why3 also requires a reads clause
and checks that every variable in it is written, read, or both. The translation builds a
reads clause with all global variables GG, and vacuously reads all of them using func-
tion yes ’a: bool, which identically returns true for any input; this makes the reads
clause satisfied by any implementation.

4.7 Statements

Axioms and assertions. Boogie’s e, e, and e statements trans-
late to assert {7 (e) }, assume {7 (e)}, and axiom A: 7 (e) in WhyML.

Assignments. Assignments involve variables (global or local), which become mutable
references in WhyML: 7 (v := e) = v.contents < 7 (e). Boogie parallel assign-
ments become simple assignments using local variables of limited scope:

1 '= ye ey 'm= m i
T(Vl, oo V= €, ~~~,em) = { e;’?vi Zée'ié, 'eT(VnZ-(:ee')n:-; (2)

Havoc. An abstract function val havoc (): 'a provides a fresh, nondeterministi
value of any type ’a. It translates Boogie’s statements following the scheme

T( u, v) = T (u)+havoc();T (v)«havoc();assume {7 (Wu) };assume {7 (Wv)}

where Wu and Wv are the clauses of u’s and v’s declarations; the generalization to
an arbitrary number of variables is obvious. It is important that the assume statements
follow all the calls to havoc(): since Wv may involve u’s value, u, Vv is notin
general equivalent to u; v; the translation reflects this behavior.

Return. The behavior of Boogie’s statement, which determines the abrupt ter-
mination of a procedure’s execution, is translated to WhyML using exception handling.
An exception handling block wraps each procedure’s body, as illustrated in[Fig. 6] and
catches an exception Return; thus, 7 ( ) = raise Return.

19 The tool b2w does not currently implement frame condition checks.
1 http://lists.gforge.inria.fr/pipermail/why3-club/2013-April/000615.html
12 Alternatively, we could define 7 ( v) = any 7 (T), where T is v’s type.

11
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Jumps (branching). In addition to structured loops (discussed below), Boo-
gie provides jump statements of the form 11,...,,, which nondeterministically
jump to any of the locations labeled by 1j. The translation must remove jump state-
ments in a way that preserves verifiability; this rules out “global” approaches using a
program counter [11J26], since they would require new invariants about the counter.
Instead, we introduce simple heuristics that replace jumps with structured code; since
the usage of jumps in Boogie programs tend to follow well-defined patterns that can be
traced back to structured loops, the heuristics may be sufficient in practiceE]

: head : (b)
head: I; : I;
end - b; fI : . fI
E 1, : end: E 3
body, end;| {B}
: end;

body : b;

head;

Fig. 7. Transformation of loops from unstructured (left) to structured (right).

Consider the control-flow graph G of a procedure body; each node N of G is a
simple block: a linear piece of code with a label £, on the first statement, no labels
anywhere else in NV, and a as last statement or no statements at all; arrows
connect NV to the locations mentioned in N’s statement (if NV has no , we call
it a terminal node). We apply three kinds of transformations on G exhaustively.

Sequencing: if N — M is the only arrow out of N and the only arrow into M, and
M 4 N, replace N and M with the single block N ; M with the at the end
of N and label ¢, removed.

Choosing: if N — {My,..., M,} are the only arrows out of N and the only arrows
into each My, ..., M, and every My, for 1 < k < n, is a terminal node, replace
N, M, ..., M, with the single block:

N; () {M;} {if (%) {M2} {- {Mp3}}y---}

with the at the end of IV and all labels other than £ removedE]
Looping: replace the subgraph of (left) with the structured loop to its right.

Conditionals. The translation of conditionals is straightforward:

T(if (b) {BT} {BE}) = if T(b) then { T(BT)} else { 7(BE)}

13 75 implementation currently does not support this translation of statements.
!4 This is after Dafny’s calculational proof approach [17].
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Loops. [Fig. 8 shows the translation of a Boogie loop into a WhyML loop. An invariant
marked as can be assumed but need not be checked; correspondingly, the trans-
lation adds assumptions that ensure it holds at loop entrance and after every iteration.
The exception handling block surrounding the loop in WhyML emulates the semantics
of the control-flow breaking statement 2T ) = raise Break.

assume { 7(fI) }
try while 7(b) do
(b) invariant { 7(I) }
I; invariant { 7(fI) }
fI; T(B)
{B} assume { 7(fI) }
done;
with | Break — assume { 7(fI) } end

Fig. 8. Translation of a Boogie loop (left) into WhyML (right).

Procedure calls. The translation of procedure calls is straightforward; for Boogie pro-
cedure p in|Fig. 6} 7 ( r:=p(e)) = T(t) < p(7(e)).Since WhyML function
calls translating Boogie procedures use the val style of declaration rather than the recur-
sive function style (rec), the modular semantics of procedure calls (where the behavior
is entirely determined by the specification) is correctly preserved.

Call-forall. T translates call-forall statements (supported in older versions of Boo-
gie [15]) by axiomatizing their semantics:

D( Lemma(x)) = (V t: T o R(t)= E(t))

where Lemma is declared as Lemma(t: T) R(t); E(t).

4.8 Attributes
T translates triggers using WhyML’s syntax:
T(Vx:X @ {trig} E(x)) =V x:T(X) [T(trig)].T(E(x))
The translation discards other application-specific attributes, which have no equivalent
in Why3.
4.9 Identifiers and Visibility

Boogie is more liberal than WhyML in the range of characters that are allowed in iden-
tifier names; therefore, the translation defines an injective renaming of identifiers when
necessary.

13



Boogie allows local declarations to shadow global declarations of entities with the
same name. Since WhyML does not allow shadowing, the translation introduces fresh
names for local declarations when necessary to avoid name clashes with the shadowed
declarations.

While the order of declarations is immaterial in Boogie, in WhyML reference must
follow declaration. Thus, the translation reorders declarations to comply with WhyML’s
requirements; it also introduces a canonical order of declarations: types, global vari-
ables, functions, axioms, procedure declarations (val), procedure definitions (let),
other declarations.

4.10 Polymorphic Maps

We now consider polymorphic map types, declared in Boogie as:

M= (a) [Ty,...,T,1 U 3)
where « is a vector ay,...,a,, of m > 0 type parameters, and some of the types
Ti,...,Tn,U in pM’s definition depend on «. In the next paragraph, we explain why

polymorphic maps cannot be translated to WhyML directly. Instead, we replace them
with several monomorphic maps based on a global analysis of the types that are actually
used in the Boogie program being translated. The result of this rewrite is a Boogie
program without polymorphic maps, which we can translate to Why3 following the
rules we previously described.

Boogie vs. WhyML polymorphism. While WhyML also supports generic polymor-
phism, like every functional language in the ML family to which it belongs, its usage
is more restrictive than Boogie’s. The first difference is that mutable maps cannot be
polymorphic in WhyML; therefore, Boogie variables of polymorphic map type require
a special translation. The second difference is that, in some contexts, a variable of poly-
morphic map type in Boogie effectively corresponds to multiple maps, one for each
possible concrete type, and the different maps can be combined in the same expres-

sion. Consider, for example, a Mix = (o) [a]aof maps from generic type « to o
Boogie accepts formulas such as (V m: Mix e m[0] =1 A m[ 1) where
m acts as a map over in the first conjunct and as a map over in the secondcon-

junct. WhyML, in contrast, always makes the type parameters explicit; hence, a logic
variable of type map ’a ’a denotes a single map of a generic type that can only feature
in expressions that do not assume anything about the concrete type that will instantiate
'a. Note that Boogie even allows expressions that introduce inconsistencies, such as
YV (B) x: B, y: Mix e y[x] =3 A y[x] = (where the quantification is also
type-generic), which passes typechecking but allows one to derive false.

Besides type declarations and quantifications, polymorphic maps can appear within
polymorphic functions and procedures, declared as:

PF(a) (X1 T, ooy Xnt Ty) (V) 4)
PP(a) (Xy: Ti, oo Xp: Ty) (u: U) (5)
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Precisely, two kinds of polymorphic maps may feature within polymorphic functions
and procedures: polymorphic maps generic with respect to explicitly declared function
or procedure parameters are similar to Why3’s, and hence different from those generic
with respect to implicit type parameters declared outside the function or procedure. For
example, implementations of a procedure p{) (m: Mix, n: [5]13) can select elements
of any concrete type from m, but only elements of parametric type S from n.

Type analysis. We have seen that a Boogie polymorphic map may correspond to mul-
tiple monomorphic maps in certain contexts. The translation reifies this idea based on
global type analysis: for every item (constant, program or logic variable, or formal ar-
gument) pm of polymorphic map type pM as in (3), it determines the set types(pm) of all
actual types pm takes in expressions or assignments, as outlined in | This in turn
determines the set types(pM) as the union of all sets types(p) for p of type pM.

types(pm) includes [¢1, ..., t,, Ju such that:
read pm pm:: [t1, ... thlu
. select mie;, ..., e,l ep ity ..., en i ty,pmleq, ..., e,l it u
expressions update Sm[ei ..... e::: fl ep :: t1: . ’ en i t,IZE o 71 "
function reference f(it) it [ty, ..., tn 1u, where f(pm: pM)
copy pm:= it it [tg, ..., tnlu
assignment pmley, ..., e ] i ="Ff epiity,...,en ity fiuiu
statements havoc pm -
procedure call in p(it) it [ty, ..., tyn 1u, where p(pm: pM)
procedure call out it :==p() it [tg, ..., tyn lu, where p() (pm: pM)

Table 2. Each occurrence of an item pm of polymorphic map type pM determines the set types(pm)
of actual types. (x :: ¢ denotes that x has type ¢.)

The types in types(pM) include in general both concrete and parametric types. For
example, the program of (left) determines types(m) = {[intlint, [818},
types(n) = {I ] }, and types(M) = types(m) U types(n), where S is proce-
dure p’s type parameter (since p is not called anywhere, that’s the only known actual
type of x). Let conc(pM) denote the set of all concrete types in types(pM).

Desugaring polymorphic maps. To describe how the translation replaces polymorphic
maps by monomorphic maps, we introduce a pseudo-code notation that allows tuples (in
round brackets) of program elements where normally only a single element is allowed.
The semantics of this notation corresponds quite intuitively to multiple statements or

declarations. For example, a variable declaration (x, y): ( , ) is a short-
hand for declaring variables x: and y: ; a formula (x, y) = (3, )
is a shorthand for x = 3 A y; and a procedure declaration using the tuple notation
(p—int, p_bool)(x: (int, )) is a shorthand for declaring two pro-

cedures p_int(x: ) and p_bool(x: ).
We also use the following notation: given an n-vector @ = aq,...,a, and a type

expression 1" parametric with respect to o, Ty, denotes 1" with ay, substituted for oy, for

15 A parameter’s actual type is ambiguous if the parameter appears in the map type’s codomain
but not in its domain; in this case, Boogie defaults to type
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M= (o) [do (M_int, M_bool, M a) = ([intlint, [ 1 , lala);
m: M; (m_int, m_bool, m_a): (M_int, M_bool, M_a);

(Vn: Men[ 1); (V (n_int, n_bool, n_a): (M_int, M_bool, M_a) e
n_bool[ 1);
p(B) (x: B) (p_int, p_bool, p_a)(x: ( , , a))
(Vi em[i] =1i); (Vi: e m_int[i] =1);
m; (m_int, m_bool, m_a);
{ m[x] = x; } { (m_int, m_bool, m_a)[x] := x }

Fig. 9. An example of how polymorphic maps (left) turn into monomorphic maps (right).

k=1,...,n. If Tis a set of types obtained from the same type expression 7', such as
types(pM) with respect to pM’s definition, and id is an identifier, let (T) denote T as a
tuple, and (id_T') denote the tuple of identifiers id_t such that 7} is the corresponding
type in T. In the example of [Fig. 9] if T = [alathen T}, = [int]int, (types(m)) =
([intlint, [B18), and (j_types(m)) = (j_int, j_B3). Throughout, we also assume
that an uninterpreted type aj is available for K = 1,...,n, that M, denotes the type
expression [Ty, ...,T,] Uin with each «y, replaced by ay, and that conc™ (pM) =
conc(pM) U {M,}.

Declarations. Type declaration (3)) desugars to several type declarations:
(pM_conc™ (pM))) = (conc™(pM)) 6)

The declaration of an item pm: pM, where pm can be a constant, or a program or logic
variable, desugars to a declaration (pm_conc™t(pM))): (conc™ (pM)) of multiple items
of the same kind. The declaration of a procedure or function g with an (input or out-
put) argument x: pM desugars to a declaration of multiple procedures or functions
(g_conc™t(pM)) with argument declared as (x: (conc™(pM)); if g has multiple argu-
ments of this kind, the desugaring is applied recursively to each variant. (right)
shows how the polymorphic map type M and each of the items m and n of type M become
three monomorphic types and three items of these monomorphic types.

For every polymorphic function or procedure g with type parameters 3, also con-
sider any one of their arguments declared as x: X. If X is a type expression that

depends on 3, and there exists a map type [V7, ..., V,1Vp in types(pM) such that
X =V, for some k£ = 0,...,n, then g becomes (g_Vj) and x becomes x: (Vy),
where Vi, = {Vi | [Vi, ...,V 1Vo € conct(pM)} is the set of all concrete types that

instantiate the kth type component. This transformation enables assigning arguments
to polymorphic maps inside polymorphic functions or procedures that have become
monomorphic. (right) shows how argument x: 3 becomes three arguments of
concrete types s ,and a, since [B18 € types(M). Since procedure p does not use
B elsewhere, we drop it from the procedure’s signature.

Expressions. Every occurrence, in expressions, as 1-values of assignments, and as tar-

gets of statements of an item w of polymorphic type W whose declaration has
been modified to remove polymorphic map types is replaced by one or more of the
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newly introduced monomorphic types as follows. If w’s actual type within its context is
a concrete type C, then we replace w with w_c such that W. = C; otherwise, w’s actual
type is a parametric type, and we replace w with the tuple (w_X), including all variants
of w that have been introduced. In[Fig. 9] (right), n[ ] rewrites to just n_bool[ |
since the concrete type is ; the assignment in p’s body, whose actual type is para-
metric with respect to 3, becomes an assignment involving each of the three variants of
m corresponding to the three variants of p that have been introduced.

5 Implementation and Experiments

5.1 Implementation

We implemented the translation 7~ described in as a command-line tool b2w
implemented in Java 8. b2w works as a staged filter: 1) it parses and typechecks the
input Boogie program, and creates a Boogie AST (abstract syntax tree); 2) it desugars
the Boogie AST according to D; 3) it transforms the Boogie AST into a WhyML AST
according to &; 4) it outputs the WhyML AST in the form of code.

Stage 1) relies on Schif’s parsing and typechecking library Boogieam which
we modified to support access using the visitor pattern, AST in-place modifications,
and the latest syntax of Boogie (e.g., for integer vs. real divisio. Stages 2) and 3)
are implemented by multiple AST visitors, each taking care of a particular aspect of the
translation, in the style of [26]; the overhead of traversing the AST multiple times is
negligible and improves modularity: handling a new construct (for example, in future
versions of Boogie) or changing the translation of one feature only requires adding or
modifying one feature-specific visitor class.A similar technique is also advocated in
[21].

5.2 Experiments

The goal of the experiments is ascertaining that b2w can translate realistic Boogie pro-
grams producing WhyML programs that can be verified taking advantage of Why3’s
multiple back-end support. The experiments are limited to fully-automated verification,
and hence do not evaluate other possible practical benefits of translating programs to
WhyML such as support for interactive provers and executability for testing purposes.

Programs. The experiments target a total of 194 Boogie programs from three groups
according to their origin: group NAT (native) includes 29 programs that encode algorith-
mic verification problems directly in Boogie (as opposed as translating from a higher-
level language); group OBJ (object-oriented) includes 6 programs that are based on a
heap-based memory model; group TES (tests) includes 159 programs from Boogie’s
test suite. summarizes the sizes of the programs in each group.

The programs in NAT, which we developed in previous work [10L9]], include sev-
eral standard algorithms such as sorting and array rotation. The programs in OBJ in-
clude 2 simple examples in Java and 1 in Eiffel, encoded in Boogie by Joogie [1] and

16 https://github.com/martinschaef/boogieamp
7http://boogie.codeplex.com/discussions/397357
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LOC BOOGIE LOoC WHYML

GROUP # m pu M Y m pu M X

NAT 2920 73 253 2110]62 128 318 3716

0BJ 6|44 146 385 878|90 208 446 1245

TES 159 3 21 155 3272[36 64 290 10180

Total: 194 | 3 34 385 626036 106 446 15141
Table 3. A summary of the Boogie programs used in the experiments, and their translation to
WhyML using b2w. For each program GROUP, the table reports how many programs it includes
(#), the minimum m, mean p, maximum M, and total X' length in non-comment non-blank lines

of code (LOC) of those BOOGIE program and of their WHYML translation.

AutoProof [27] (we manually simplified AutoProof’s translation to avoid features b2w
doesn’t support), and 3 algorithmic examples adapted from NAT to use a global heap in
the style of object-oriented programs. Among the 515 programs that make up Boogie’s
test suite{zg] we retained in TES those that mainly exercise features supported by b2w. This
meant excluding several groups of tests that exercise special options (Houdini, asser-
tion inference, special Z3 encodings and directives, etc.), unsupported language features
(bitvectors, gotos, etc.), and the correctness of typechecking (b2w assumes well-formed
Boogie input). It also meant excluding 4 programs that triggered Boogie errors (a Boo-
gie error means here a problem with the input such as a typechecking or parsing error
due to a feature not activated; it is not a verification error, which just denotes a failed
verification attempt and is fair game for evaluating the translation); and another 35 pro-
grams that b2w failed to translate because of unsupported features that we identified a
posteriori.

Setup. Each experiment targets one Boogie program b: it runs Boogie with command
boogie b and a timeout of 180 seconds; it runs b2w to translate b to w in WhyML; for
each SMT solver p among Alt-Ergo, CVC3, and Z3 it runs Why3 with command
why3 prove -P p w, also with a timeout of 180 secondsEG] For each run we collected
the wall-clock running time, the total number of verification goals, and how many of
such goals the tool verified successfullyEr]

All the experiments ran on a Ubuntu 14.04 LTS GNU/Linux box with AMD A4-
5300 CPU at 3.4 GHz and 4 GB of RAM, with the following tools: Alt-Ergo 0.99.1,
CVC3 24.1, Z3 4.3.2, Mono 4.2.1, OCaml 4.01.0, Boogie 2.3.0.61016, and Why3
0.86.2. To account for noise, we repeated each verification twice and report the mean
of the running times.

Results. shows a summary of the results where we compare Why3’s perfor-
mance with the best SMT solver against Boogie’s. The most significant result is that

18 https://github.com/boogie-org/boogie/tree/master/Test

!9 We initially included CVC4 among the SMT solvers, but the version 1.5-prerelease that we
tried invariably crashed in our experimental setup.

20 The timeouts were enforced using the Unix command timeout. We also set had a 30-second
timeout per procedure (option /timeLimit in Boogie) or goal (option -T in Why3).

2! The number of verification goals of each program is the same in Boogie and Why3: the number
of procedure implementations.
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GROUP  # B=W B>W B<W 0=0 50=50 100=100 SPURIOUS

NAT 29 20 9 0 1 0 19 0
OBJ 6 5 0 1 1 2 2 0
TES 159 137 21 1 71 21 45 0
Total: 194 162 30 2 73 23 66 0

Table 4. A summary of how Boogie performs in comparison with Why3. For each program
GROUP, the table reports how many programs it includes (#), for how many of these Boogie
verifies as many goals (B = W), more goals (B > W), or fewer goals (B < W) than Why3 with any
of the SMT solvers; for how many of these Boogie and Why3 both verify none (0=0), some but
not all (50=50), or all (100=100) of the goals; the last column (SPURIOUS) demonstrates that
b2w’s translation never introduces spurious goals that are proved by Why3 (that is, if Boogie’s
input has zero goals, so does WhyML’s translation).

the WhyML translation produced by b2w behaves like the Boogie original in 85% (162,
B=W) of the experiments. This means that Boogie may fail to verify all goals (column
0=0), verify some goals and fail on others (column 50=50), or verify all goals (column
100=100); in each case, Why3 consistently verifies the same goals on b2w’s translation.
Indeed, many programs in TES are tests that are supposed to fail verification; hence, the
correct behavior of the translation is to fail as well. We also checked the failures of pro-
grams in NAT and OBJ to ascertain that b2w’s translation preserves correctness. While
does not show this piece of information, we also found one program in NAT
(inv_survey/bst) where Why3 proves all goals (like Boogie does)only by combining
the results of Alt-Ergo and Z3.

Boogie verifies more goals than Why3 in 15% (30, B > W) of the experiments,
where it is more effective because of better features (default triggers, invariant infer-
ence, SMT encoding) or simply because of some language features that is not fully
supported by b2w (examples are Z3-specific annotations, which b2w simply drops, and

, which b2w encodes as to guarantee correctness). In 1% (2, B < W)
of the experiments, Why3 even verifies more goals than Boogie. One program in OBJ
(rotation_by_copy) is a genuine example where Why3’s Z3 encoding is more effec-
tive than Boogie’s; the one program in TES (test2/Quantifiers) should instead be
considered spurious, as it deploys some trigger specifications that are Boogie-specific
(negated triggers) or interact in a different way with the default triggers. (Procedures
S, U0, and U1 use regular triggers whose translation to Why3 yields a different behav-
ior, probably because of the triggers generated by Why3 by default differ from those
generated by Boogie; procedures W and X2 use negated triggers that b2w ignore. As this
was the only program in our experiments that introduced spurious behavior, the ex-
periments provide convincing evidence that b2w’s translations preserve correctness and
verifiability to a large degree.

provides data about the experiments’ running times, and differentiates the
performance of each SMT solver with Why3. Z3 is the most effective SMT solver in
terms of programs it could completely verify (columns V), followed by Alt-Ergo. While
CV(C3 is generally the least effective, it has the advantage of returning very quickly
(only 0.2 seconds of average running time), even more quickly than Z3 in Boogie.
Boogie’s responsiveness remains excellent if balanced against its effectiveness; a better
time-effectiveness of Why3 with Alt-Ergo and Z3 could be achieved by setting tight per-

19



GROUP

73 BOOGIE ALT-ERGO WHY3 CVC3 WHY3 73 WHY3
OUTCOME TIME OUTCOME TIME OUTCOME TIME OUTCOME TIME

# pw vV A pu X oo p ¥V A p X oo pu ¥V A p X oo p VA p Y oo

NAT 29193 25 1| 07 21 Of/63 15 6304 882 1|(28 1 12(02 7 0|73 16 5|19.1 554 0
OBJ 652 2 2|11.0 66 0|46 1 2453 272 0]l46 1 2104 2 O0f/68 3 1|358 215 O
TES 159 (45 55 71| 0.7 104 01|37 45 85|37.7 5995 5|33 39 91|02 26 0|37 44 86|38.2 6067 5
Total: 194 |58 82 74| 1.6 191 0|54 61 93|333 7149 6|30 41 105|02 35 O|[68 63 92|225 6836 5

Table 5. For each program GROUP the table reports how many programs it includes (#) and, for
both Boogie and Why3 for each choice of SMT solver among ALT-ERGO, CVC3, and Z3: the
mean percentage of goals verified in each program (OUTCOME p), how many programs were
completely verified (OUTCOME V), and how many were not verified at all (OUTCOME A), the
mean g and total X' verification TIME in seconds (including time outs), and how many programs
timed out.

goal timeouts (in most cases, verification attempts that last longer than a few seconds
do not eventually succeed).

6 Discussion

The current implementation of the translation 7 has some limitations that somewhat
restrict its applicability. As we already mentioned in the paper, some features of the
Boogie language are not supported (bitvectors, gotos), or only partially supported (poly-
morphic mappings); and frame specifications are assumed. All of these are, however,
limitations of the current prototype implementation only, and we see no fundamental
hurdles to extending b2w along the lines of the definition of 7 in

Since b2w also takes great care to confine the effect of translating Boogie programs
that include unsupported features, and to fail when it cannot produce a correct trans-
lation, it still largely preserves correctness. For example, a statement is rendered
as ; therefore, the translated program verifies only if the is never
executed in the original program. On the other hand, our experiments also demonstrate
that the translation 7, as implemented by b2w, largely meets the other goal of preserv-
ing verifiability: even if the experimental subjects all are idiomatic Boogie programs
written independent of the translation effort, 84% of the translated programs behave in
Why3 as they do in Boogie.

In future work, we will address the features of Boogie that are still not satisfactorily
supported by b2w. We will also devise strategies to take advantage of Why3’s multi-
prover support. Other possible directions include formalizing the translation to prove
that it preserves correctness; and devising a reverse translation from WhyML to Boogie.
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BOOGIE WHY3
z3 ALT-ERGO CvC3 z3
NAME LoC % V. T LOC % V. T % V. T % V. T
inv_survey/array_partitioning_v1 42 100 0.7 | 100 100 1.8 50 0.2 50  30.7
inv_survey/array_partitioning_v2 53 100 0.7 | 125 100 0.6 50 0.2 100 0.3
inv_survey/array_stack_reversal 125 100 0.7 | 204 100 0.8 86 0.3 86  30.7
inv_survey/bst 153 100 0.7 | 258 50 612 50 04 75 30.7
inv_survey/bubble_sort_basic 49 100 0.7 | 113 100 0.3 50 02 100 0.2
inv_survey/bubble_sort_improved 53 100 0.7 | 118 100 1.6 50 0.2 100 0.2
inv_survey/comb_sort 56 100 0.7 | 124 100 0.4 50 0.3 100 0.2
inv_survey/dutch_flag 63 100 0.7 | 133 50  30.2 50 0.2 100 0.2
inv_survey/insertion_sort 47 100 1.1 | 100 0 30.1 0 02 100 0.4
inv_survey/knapsack 50 100 0.6 97 100 17.8 0 02 100 0.2
inv_survey/Levenshtein_distance 43 100 0.6 91 100 0.8 0 02 100 0.2
inv_survey/max_of_array_vl 20 100 0.8 66 100 0.2 0 02 100 0.2
inv_survey/max_of_array_v2 20 100 0.7 66 100 0.4 0 02 100 0.2
inv_survey/partition 63 100 0.7 | 137 100 1.7 50 0.2 100 0.3
inv_survey/plateau 43 100 0.7 84 0 30.1 0 02 0 30.6
inv_survey/reverse 68 100 0.6 | 131 100 0.6 0 02 100 0.2
inv_survey/selection_sort 72 100 0.8 | 160 100 10.8 33 03 100 0.3
inv_survey/sequential_search_v1l 28 100 0.7 72 0 30.1 0 02 0 305
inv_survey/sequential_search_v2 23 100 0.7 70 0 302 0 0.1 0 305
inv_survey/sum_of_array 21 100 0.6 62 100 0.1 100 0.1 100 0.2
inv_survey/welfare_crook 44 100 0.6 86 100 0.3 0 02 0 30.5
rotation/rotation_copy 57 100 0.7 | 128 33 602 33 02 67  30.6
rotation/rotation_copy_plain 41 100 0.6 80 0 30.1 0 02 100 0.3
rotation/rotation_reverse 201 90 0.8 | 318 40 180.0 10 0.7 80 613
rotation/rotation_swap-1_3 48 0 07 88 0 30.1 0 03 0 305
rotation/rotation_swap-2_3 175 60 0.7 | 201 20 1204 20 0.3 40 91.6
rotation/rotation_swap-3_3 47 100 0.6 96 67  30.2 67 0.2 100 0.2
rotation/rotation_swap_iterative-1.2 | 152 100 0.7 | 184 33 60.2 33 03 67 30.6
rotation/rotation_swap_iterative-2_2 | 253 60 0.7 | 224 20 120.3 20 0.5 40 914
oo/autoproof_account 385 0 09| 446 0 1204 0 038 0 1221
oo/binary_search 68 100 0.7 | 158 67 30.2 67 0.4 100 0.3
o0o/joogie_examples 187 60 0.7 | 277 60 60.3 60 04 60 61.1
0o/joogie_helloWorld 142 50 1.3 | 175 50 303 50 0.3 50  30.8
00/linked_list_max 44 100 0.7 90 100 02 100 0.2 100 0.2
oo/rotation_by_copy 52 0 620 99 0 301 0 02 100 0.4

Table 6. Results for the programs in groups NAT (above the horizontal line) and OBJ (below
it) in the experiments. For each program (NAME) the Boogie program length in non-comment
non-empty lines of code (LOC) and the length of its WHY3 translation; and, for both Boogie
and Why3, for each choice of SMT solver among ALT-ERGO, CVC3, and Z3: the percentage of
goals verified in each program (% V.) and the verification time (T) in seconds (with a timeout of

180 seconds).
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BOOGIE WHY3
z3 ALT-ERGO CVC3 Z3
NAME LOC %9 V. T LOC %V. T %V. T %V. T
doomed/doomdebug 36 00.7| 86 0 60.2 00.2 0 60.9
doomed/doomed 73 43 0.8| 185 43 1204 4304 431224
doomed/notdoomed 43 50 05| 107 50 60.2 5002 50 60.9
doomed/smoke0 61 67 0.6 148 67 603 6703 67 61.0
lock/Lock 86 100 0.6| 163 67 302 6703 67 30.6
lock/LockIncorrect 34 00.6| 64 0 30.1 00.1 0 305
smoke/smoke® 41 100 0.6( 108 100 0.2 100 0.2 100 0.2
snapshots/Snapshots0.v0 16 00.7] 72 0 120.3 00.2 0121.8
snapshots/Snapshots0.v1 16 5006 72 50 60.3 5002 50 61.0
snapshots/Snapshots0.v2 12 6706/ 60 67 302 6701 67 30.6
snapshots/Snapshotsl.v0 10 500.6] 48 50 30.2 5002 50 30.6
snapshots/Snapshotsl.vl 10 500.6] 48 50 30.2 5002 50 30.6
snapshots/Snapshotsl.v2 11 500.6] 50 50 30.2 5002 50 30.5
snapshots/Snapshots10.v0 14 100 0.7 48 100 0.1 100 0.1 100 0.1
snapshots/Snapshots10.v1 14 100 0.5 48 100 0.1 100 0.1 100 0.1
snapshots/Snapshotsll.ve 10 0 0.6 43 0 30.1 0 0.1 0 30.6
snapshots/Snapshotsll.vl 10 00.6] 43 0 30.1 0 0.1 0 305
snapshots/Snapshots12.v0 12 100 0.6] 41 100 0.1 100 0.1 100 0.1
snapshots/Snapshotsl2.vl 12 00.6| 41 0 30.1 00.1 0 305
snapshots/Snapshots13.v0 16 100 0.6| 43 100 0.1 100 0.1 100 0.1
snapshots/Snapshots13.v1l 12 0 0.6] 41 0 30.1 0 0.1 0 305
snapshots/Snapshots14.v0 16 100 0.6] 43 100 0.1 100 0.1 100 0.1
snapshots/Snapshotsl4.vl 16 00.6| 43 0 30.1 0 0.1 0 30.6
snapshots/Snapshots15.v0 11 100 0.5 42 100 0.1 100 0.1 100 0.1
snapshots/Snapshots15.v1 11 0 0.5 42 0 30.1 0 0.1 0 305
snapshots/Snapshots16.v0 11 100 0.6] 40 100 0.1 00.1 100 0.1
snapshots/Snapshots16.v1 11 00.6| 40 0 30.1 0 0.1 0 30.6
snapshots/Snapshots17.v0 22 100 0.6] 61 100 0.2 100 0.1 100 0.1
snapshots/Snapshotsl7.vl 22 0 0.6| 61 0 30.2 00.1 0 30.7
snapshots/Snapshots18.v0 18 100 0.6/ 53 100 0.1 100 0.1 100 0.1
snapshots/Snapshots18.v1 18 00.6| 53 0 30.1 0 0.1 0 30.6
snapshots/Snapshots19.v0 8 00.6| 39 0 30.1 0 0.1 0 305
snapshots/Snapshots19.v1 8 00.6| 39 0 30.1 00.1 0 305
snapshots/Snapshots2.ve 9 100 0.6/ 38 100 0.1 100 0.1 100 0.1
snapshots/Snapshots2.vl 9 100 0.6| 38 100 0.1 100 0.1 100 0.1
snapshots/Snapshots2.v2 10 100 0.6] 40 100 0.1 100 0.1 100 0.1
snapshots/Snapshots2.v3 10 100 0.7 40 100 0.1 100 0.1 100 0.1
snapshots/Snapshots2.v4 10 100 0.6] 40 100 0.1 100 0.1 100 0.1
snapshots/Snapshots2.v5 11 100 0.5 42 100 0.1 100 0.1 100 0.1
snapshots/Snapshots20.v0 16 0 0.6 44 0 30.1 0 0.1 0 30.6
snapshots/Snapshots20.v1 16 00.6] 44 0 30.1 0 0.1 0 305
snapshots/Snapshots21.v0 13 00.6| 41 0 30.1 0 0.1 0 30.6
snapshots/Snapshots21.vl 13 00.6| 41 0 30.1 00.1 0 305
snapshots/Snapshots22.v0 13 0 0.6] 41 0 30.1 0 0.1 0 305
snapshots/Snapshots22.v1l 13 100 0.5| 41 100 0.1 100 0.1 100 0.1
snapshots/Snapshots23.v0 17 500.7 52 50 30.2 500.1 50 30.5
snapshots/Snapshots23.v1 18 500.6] 53 50 302 5002 50 30.5
snapshots/Snapshots23.v2 17 5006| 52 50 302 500.1 50 305
snapshots/Snapshots24.v0 23 0 0.6] 51 0 30.1 0 0.1 0 305
snapshots/Snapshots24.v1 23 00.6| 51 0 30.1 0 0.1 0 30.6
snapshots/Snapshots25.v0 11 00.6| 47 0 30.1 0 0.1 0 305
snapshots/Snapshots25.v1 11 00.6| 47 0 30.1 0 0.1 0 30.5
snapshots/Snapshots26.v0 11 00.6| 47 0 30.1 0 0.1 0 305
snapshots/Snapshots26.v1 12 0 0.6/ 48 0 30.1 0 0.1 0 305
snapshots/Snapshots27.v0 11 00.6| 47 0 30.1 0 0.1 0 305
snapshots/Snapshots27.v1 13 00.6| 51 0 30.1 0 0.1 0 305
snapshots/Snapshots28.v0 11 100 0.5 48 100 0.1 100 0.1 100 0.2
snapshots/Snapshots28.v1 12 00.6| 48 0 30.1 0 0.1 0 305
snapshots/Snapshots29.v0 11 100 0.6| 47 0 30.1 0 0.1 0 30.6
snapshots/Snapshots29.v1 11 00.6| 47 0 30.1 0 0.1 0 305
snapshots/Snapshots3.v0 13 100 0.6] 41 100 0.1 100 0.1 100 0.1
snapshots/Snapshots3.vl 13 00.6| 41 0 30.1 00.1 0 30.5
snapshots/Snapshots30.v0 11 00.6] 42 0 30.1 0 0.1 0 305
snapshots/Snapshots30.v1 12 0 0.6[ 43 0 30.1 0 0.1 0 305
snapshots/Snapshots31.v0 12 100 0.5] 44 100 0.1 100 0.1 100 0.1
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BOOGIE WHY3
z3 ALT-ERGO CVC3 Z3
NAME LOC %9 V. T LOC %V. T %V. T %V. T
snapshots/Snapshots31.v1 11 00.7( 43 0 30.1 00.2 0 30.6
snapshots/Snapshots32.v0 12 100 0.6/ 44 100 0.2 100 0.1 100 0.1
snapshots/Snapshots32.v1 9 00.7] 41 0 30.1 0 0.1 0 305
snapshots/Snapshots33.v0 12 100 0.6] 44 100 0.1 100 0.1 100 0.2
snapshots/Snapshots33.v1 6 100 0.6 37 100 0.1 100 0.1 100 0.1
snapshots/Snapshots34.v0 6 100 0.5 38 100 0.1 100 0.1 100 0.1
snapshots/Snapshots34.v1 5 00.6] 36 0 30.1 0 0.1 0 30.6
snapshots/Snapshots35.v0 6 100 0.5 38 100 0.1 100 0.1 100 0.1
snapshots/Snapshots35.v1 5 00.7] 36 0 30.1 00.2 0 30.6
snapshots/Snapshots36.v0 11 100 0.6| 44 100 0.1 00.1 100 0.1
snapshots/Snapshots36.v1 11 0 0.6 44 0 30.1 0 0.1 0 305
snapshots/Snapshots37.v0 7 100 0.6] 42 100 0.1 00.1 100 0.2
snapshots/Snapshots37.v1 7 00.6] 42 0 30.1 0 0.1 0 30.6
snapshots/Snapshots38.v0 10 100 0.6] 43 100 0.1 100 0.1 100 0.1
snapshots/Snapshots38.v1 11 00.6| 44 0 30.1 0 0.1 0 305
snapshots/Snapshots38.v2 11 100 0.7| 44 100 0.1 100 0.1 100 0.1
snapshots/Snapshots39.v0 10 100 0.7| 43 100 0.1 100 0.1 100 0.1
snapshots/Snapshots39.v1 11 00.6] 44 0 30.1 0 0.1 0 305
snapshots/Snapshots39.v2 11 100 0.7| 44 100 0.1 00.1 100 0.1
snapshots/Snapshots4.v0 23 100 0.6/ 64 100 0.2 100 0.1 100 0.2
snapshots/Snapshots4.vl 27 5006 76 50 603 5002 50 61.0
snapshots/Snapshots40.v0 11 00.6| 44 0 30.1 0 0.1 0 305
snapshots/Snapshots40.v1 12 00.6| 45 0 30.1 0 0.1 0 305
snapshots/Snapshots40.v2 12 00.6| 45 0 30.1 00.1 0 30.5
snapshots/Snapshots41.v0 31 4006 99 40 903 4002 40 913
snapshots/Snapshots4l.vl 31 400.7/ 100 40 903 4003 40 914
snapshots/Snapshots5.v0 9 100 0.6 39 100 0.1 100 0.1 100 0.1
snapshots/Snapshots5.v1 9 00.6| 39 0 30.1 00.1 0 30.5
snapshots/Snapshots6.v0 12 100 0.6| 43 100 0.1 100 0.1 100 0.1
snapshots/Snapshots6.v1l 12 0 0.5 43 0 30.1 0 0.1 0 305
snapshots/Snapshots7.v0 14 100 0.5 45 100 0.1 100 0.1 100 0.1
snapshots/Snapshots7.v1 14 100 0.6] 45 100 0.1 100 0.1 100 0.2
snapshots/Snapshots8.v0 11 100 0.7 45 100 0.1 100 0.1 100 0.1
snapshots/Snapshots8.vl 11 100 0.6| 45 100 0.1 100 0.1 100 0.1
snapshots/Snapshots9.vo 13 100 0.7 47 100 0.1 100 0.1 100 0.1
snapshots/Snapshots9.v1 11 100 0.6] 45 100 0.1 100 0.1 100 0.2
testl3/ErrorTraceTestLoopInvViolationBPL| 19 00.6| 86 0 90.2 00.2 0 914
testl5/CaptureState 23 00.7] 62 0 30.2 00.2 0 305
testl5/InterpretedFunctionTests 15 0 0.6| 66 0 90.2 00.2 0 914
test15/IntInModel 3 0 0.6| 36 0 30.1 00.1 0 306
test15/ModelTest 10 0 0.6| 49 0 30.1 00.2 0 307
test15/NullInModel 5 00.6] 39 0 30.1 00.1 0 306
test16/LoopUnroll 63 00.6] 124 0 90.2 00.2 0 915
testl7/contractinfer 21 0 0.8 68 0 60.2 00.2 0 60.9
test2/AssertVerifiedUnder® 26 50 0.7] 100 0 180.0 00.3 0 180.0
test2/AssumeEnsures 53 5708|124 57 904 5703 57 918
test2/AssumptionVariables® 44 50 0.7] 137 0 180.0 003 0 180.0
test2/Axioms 24 6707 73 67 302 6702 67 30.7
test2/B 65 100 0.6] 112 0 120.3 002 0 122.0
test2/Call 49 40 0.7( 117 201203 20 0.3 20 122.0
test2/ContractEvaluationOrder 26 250.7[ 101 25 902 2502 25 917
test2/CutBackEdge 35 200.7| 96 0 150.3 002 01523
test2/Ensures 61 50 0.8| 168 50 150.5 50 0.5 50 152.5
test2/False 14 100 0.6| 54 100 0.2 100 0.2 100 0.2
test2/FormulaTerm2 36 500.7| 104 50 603 5002 50 61.1
test2/FreeCall 59 64 0.8| 185 27 180.0 27 03 27 180.0
test2/Implies 28 00.8| 97 0 150.3 003 0 152.6
test2/InvariantVerifiedUnder® 42 17 0.8] 146 0 180.0 002 0 180.0
test2/LoopInvAssume 15 00.7| 44 0 30.1 0 0.1 0 30.6
test2/Passification 155 64 0.7/290 18 180.0 18 0.5 18 180.0
test2/Quantifiers 122 5709|254 86 60.7 6405 93 31.0
test2/SelectiveChecking 31 250.6] 121 0 120.3 00.3 0 122.0
test2/sk_hack 17 100 0.6 44 0 30.1 0 0.1 0 30.6
test2/Timeouts® 71 0 3.4| 156 0 90.2 003 0 91.7
test2/TypeEncodingM 19 00.6| 60 0 30.1 00.2 0 30.6
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z3 ALT-ERGO CVC3 Z3
NAME LOC %9 V. T LOC %V. T %V. T %V. T
test21/BooleanQuantification2 9 0 0.6f 46 0 30.1 0 0.1 0 30.6
test21/Boxing 15 00.8| 49 0 30.1 00.1 0 306
test21/Casts 7 00.6| 48 0 30.1 00.1 0 306
test21/Colors 13 00.7| 62 0 60.2 002 0 61.2
test21/DisjointDomains 21 00.8| 81 0 90.2 00.3 0 91.6
test21/EmptySetBug 18 009 54 0 30.1 00.2 0 30.7
test21/FunAxioms 24 500.8| 81 50 302 5002 50 30.7
test21/FunAxioms2 13 00.7] 49 0 30.1 00.1 0 30.6
test21/InterestingExamples3 17 6707, 71 33 602 3302 33 612
test21/InterestingExamples5 9 100 0.7 45 100 0.1 00.1 100 0.2
test21/Keywords 5 100 0.7 38 100 0.1 100 0.1 100 0.1
test21/LargelLiterals® 12 00.7] 46 0 30.1 0 0.1 0 30.7
test21/LetSorting 11 100 0.6| 43 0 30.1 0 0.1 0 306
test21/Maps2 14 100 0.6/ 52 100 0.1 00.1 0 307
test21/0rderings 13 5007 59 0 60.2 00.2 0 61.0
test21/0rderings2 11 00.8] 49 0 30.1 0 0.1 0 30.6
test21/0rderings3 22 00.7] 78 0 60.2 00.2 0 612
test21/0rderings4 7 00.8| 47 0 30.1 0 0.1 0 30.7
test21/PolylList 35 00.8| 91 0 60.2 00.2 0 6l.1
test21/Triggers@ 34 5007 92 50 302 5002 50 30.7
test21/Triggersl 12 00.8] 50 0 30.1 0 0.1 0 30.6
test7/MultipleErrors 14 00.6| 42 0 30.1 0 0.1 0 306
test7/NestedVC 20 50 0.5| 61 0 60.2 002 0 61.0
test7/UnreachableBlocks 34 100 0.6/ 79 50 603 5002 50 61.2
textbook/Bubble 47 100 0.7| 110 0 302 003 0 307
textbook/DutchFlag 47 100 0.8 92 0 30.1 002 0 30.6
textbook/Find 27 100 0.8/ 72 50 302 5002 50 30.6
textbook/McCarthy-91 11 100 0.6] 47 100 0.2 100 0.1 100 0.1
textbook/TuringFactorial 27 100 0.7 81 0 30.1 00.2 0 30.6

Table 7: Results for the programs in group TES in the experiments. The measures are the same as in
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