
❚❡❧❡❝�✁✁✂♥✄❝☎t✄�♥

◆❡t✆�♦✝✞ ✟♦�✂✉

Technische Universität Berlin

Telecommunication Networks Group

ResFi: A Secure Framework for Self
Organized Radio Resource

Management in Residential WiFi
Networks

Sven Zehl, Anatolij Zubow, Adam Wolisz and Michael

Döring

{zehl, zubow, wolisz, doering}@tkn.tu-berlin.de

Berlin, Dezember 2015

TKN Technical Report TKN-15-0005

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

ar
X

iv
:1

60
1.

00
51

7v
1

 [
cs

.N
I]

 4
 J

an
 2

01
6

Abstract

In dense deployments of residential WiFi networks individual users suffer performance degradation
due to both contention and interference. While Radio Resource Management (RRM) is known to
mitigate this effects its application in residential WiFi networks being by nature unplanned and indi-
vidually managed creates a big challenge.

We propose ResFi - a framework supporting creation of RRM functionality in legacy deployments.
The radio interfaces are used for efficient discovery of adjacent APs and as a side-channel to estab-
lish a secure communication among the individual Access Point Management Applications within a
neighborhood over the wired Internet backbone.

We have implemented a prototype of ResFi and studied its performance in our testbed. As a show-
case we have implemented various RRM applications among others a distributed channel assignment
algorithm using ResFi. ResFi is provided to the community as open source.

TU BERLIN

Contents

1 Introduction 5

2 Related Work 7

3 IEEE 802.11 Primer 9
3.1 AP Discovery (i.e. scanning) . 9

3.1.1 Passive Scanning . 9
3.1.2 Active Scanning . 9

3.2 Information Elements . 9

4 ResFi Design Principles 10
4.1 System Model . 10
4.2 Principles of the ResFi Framework . 10
4.3 ResFi Security Model . 12

4.3.1 Thread: Eavesdropping or man in the middle attack on the wired control channel 12
4.3.2 Thread: Rogue Attack . 12
4.3.3 Authenticity of the transmitting party . 12
4.3.4 Thread: Replay Attack . 13

5 ResFi – Detailed Specification 14
5.1 Bootstrapping . 14

5.1.1 Standard Mode of Operation . 14
5.1.2 Transient Group Encryption Key . 15
5.1.3 IP Address Change . 16
5.1.4 Radio Channel Change . 16

5.2 North-bound API . 16
5.3 South-bound API . 16

6 ResFi – Implementation Details 18
6.1 ResFi Agent . 18
6.2 Hostapd and Hostapd CLI . 18
6.3 IW Tool . 19

7 ResFi Mininet Emulation 21

8 ResFi Application Examples 22
8.1 Network Clustering . 22
8.2 End-to-End Security for N-Hop Neighbors . 22
8.3 Dynamic Channel Selection . 22

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 3

TU BERLIN

8.4 Interference Management . 23
8.5 Virtual Access Points (VAP) . 23
8.6 Client STA Handover for Load Balancing and Mobility Support 24

9 Evaluation 25
9.1 Active vs. passive Scanning . 25

9.1.1 Methodology . 25
9.1.2 Results . 25

9.2 Reconfiguration Overhead . 26
9.2.1 Methodology . 26

RxIP++ . 27
ResFi . 28

9.2.2 Results . 28
9.3 Reconfiguration Latency . 29

9.3.1 Methodology . 29
9.3.2 Results . 29

10 Conclusions and Areas for further research 31

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 4

TU BERLIN

Chapter 1

Introduction

In recent years we have seen a rapid growth in the use of wireless devices such as laptops, tablets and
smart phones in all environments e.g., enterprise and homes. Especially, the IEEE 802.11 (WiFi) wire-
less technology gained lot of popularity as a comfortable way to connect a multitude of devices. As
applications like mobile HD video & cloud storage require high QoS, dense deployments of wireless
technologies observed nowadays cause performance issues due to high contention and interference
within the limited set of radio frequencies. In enterprise networks remaining within a single adminis-
trative domain this issue is commonly solved by installing a centralized controller which manages the
usage radio resources by all APs [18, 28]. The performance of this controller depends on the scope
of information used – this is at least the sum of the traffic and channel usage observations by all the
APs but gradually a trend to use also information provided by the end systems (using e.g. 802.11k)
becomes also visible. It has been widely demonstrated that the coordinated usage of radio resources
has led to very significant improvement of the QoS, and in fact it is a fundamental condition to achieve
satisfactory QoS in dense, heavily used environments. In contrast apartment house deployments usu-
ally consist of multiple autonomous APs remaining under administration of individual users. Indeed,
each AP is usually installed by a resident who due to lack of technical skills attempts to minimize
the configuration effort. While in the past this led to the well known phenomenon of using mostly
the single, pre-set channel, manufacturers started increasing the scope of self-configuration functions
provided. The scope of this self-configuration is, however, still limited to functions depending ex-
clusively on local observations within this AP and local controls. In the residential deployment the
individual APs - even located in close proximity do not have a direct way to enter an organized in-
formation exchange and negotiations. In addition the usual consumer electronic devices expected in
an apartment usually do not support management features like those provided by 802.11k, so that no
additional information from them can be obtained.

In this paper we present ResFi - a set of basic self configuration functionalities enabling radio
resource management in residential WiFi. ResFi offers the following functionalities:

1. Discovery of the immediate neighborhood – any active APs within the radio coverage.

2. Setting up secured point-to-point control channels between any pair of immediate neighbors
over the wired Internet backbone.

3. Exchange of N-hop neighborhood information and continuous monitoring of the neighborhood
using the above channels.

ResFi is specified and implemented in form of platform independent source code which can be used on
top of the legacy APs. Up to our best knowledge this is a first attempt to suggest such a platform. We
believe that this set of basic function creates a good foundation to develop management application

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 5

TU BERLIN

algorithms which itself is explicitly a NON goal of this paper. As a proof of concept we provide
however

• A description, implementation and evaluation of a simple distributed AP channel assignment
algorithm.

• A description, implementation and evaluation of a simple distributed clustering algorithm to
show how one could select a group of access point subjects to joint RRM.

The performance of the proposed approach is evaluated by means of experiments in a real testbed.
Moreover, we provide an emulation in Mininet [16] which gives the developer an easy way to test
own algorithms before deploying them in a real testbed. Finally ResFi is provided to the community
as open source under GPL license on Github https://github.com/resfi.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 6

https://github.com/resfi

TU BERLIN

Chapter 2

Related Work

WiFi enterprise networks are already widely deployed in companies, universities and public spaces
like airports and fairgrounds. Commercial enterprise WiFi solutions mostly feature a centralized
controller which performs RRM for all attached APs. For example the widespread CISCO solution [5]
works as follows: each of the APs sends periodically on all the radio channels ”neighbor search”
messages including the Internet protocol address of their responsible controller and the identifier of
the group they belong to within this controller. Neighboring APs forward the received ”neighbor
search” message including their own AP identifier to their responsible controller (frequently via the
wired control connection). This enables the controller to build a hearing map, group APs in RRM
groups or to elect a leader controller for the RRM process. Distributed approaches are less frequent
- e.g. Aerohive [20] uses a classical distributed leader election algorithm for RF channel assignment.
If a newly started AP discovers other APs on his RF channel, it advertises its neighbor count via
the wireless channel while listening for the advertisment of the other APs. Finally the AP with the
most neighbors wins the right to use the channel. All others switch to the next RF channel and the
aforementioned procedure repeats.

Different options to optimize the RRM in enterprise WiFi networks have been addressed in research
papers. Again the use of a central controller using wireless propagation data, collected from all
deployed APs [18, 19, 23, 27, 28] dominate the field. The centralized view is then used to make
global decisions in terms of e.g. channel assignment. In addition, more advanced approaches also
provide the possibility of load balancing and handover operations [18, 27, 28] or transmit power and
rate adaption control [19].

A typical residential WiFi deployment usually consists of statically deployed APs and mobile client
STAs. As the APs are not administered by a single authority but rather as each AP is independently
managed by another unexperienced user, residential WiFi deployments can be assumed as chaotic [1].
The density of APs is highly correlated with the residential density and large-scale measurements [4]
showed that the number of neighboring APs is relatively high in urban environments, i.e. each AP has
on average around 16.8 neighboring APs in the 2.4 GHz band. In this chaotic deployment there does
NOT exist a natural way to establish the information exchange between each of them. There does
not exist a dedicated controller, and the skills of the “human administrator” are usually limited. Patro
et al. [21] have postulated the use of a cloud-based controller for channel assignment and airtime
management. They propose to run one controller per building either funded by an Internet service
provider (ISP) or the building manager. Further, the interaction between the residential APs and
the controller is enabled by an extended version of the OpenFlow protocol. This approach seems
promising for single administered apartment houses (single ISP or single building manager) but due
to the lack of an auto configuration possibility it has its difficulties for all other deployment scenarios.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 7

TU BERLIN

Besides, the funding of the centralized controller and the payment of its operational costs is not easy
to clarify. A controller-less solution would be favorable.

In RxIP [13] a novel approach: direct communication between neighboring APs is introduced for
the first time. Each home AP transmits a globally-routable IP address through additional information
embedded within the periodically broadcasted beacon frames. This allows passively listening neigh-
bor APs to communicate with the transmitter over the wired Internet, thus featuring a P2P fashion
of interaction. RxIP does not aim RRM in general but rather targets the specific use-case of hid-
den terminal discovery and mitigation of its effect. In dialog with its neighbors, each AP collects
independently the information about potential hidden terminals related to him. Therefore the RxIP
approach is by definition restricted to discovery of only those neighboring APs which use the same
RF channel. Nevertheless a more global view seems to be desirable. Using large-scale measurement
data from several cities Akella et al. [1] showed that end-client experience in home WiFi networks
could be significantly improved by managing the transmit power in such chaotic wireless networks.
Using their proposed load-sensitive rate fallback implementation (LPERF) in which transmitters re-
duce their transmit power even if it reduces their transmission rate, they were able to show significant
throughput enhancement through interference reduction among neighboring APs in dense deploy-
ments by incorporating among others the traffic demands of neighboring APs. They did, however not
provide suggestions how the relevant stations are to be selected and how should they exchange the
necessary coordination information.

Finally numerous papers have addressed distributed radio resource management. For example
in [8] power assignment in arbitrary wireless topologies has been assigned in a distributed way.
Nevertheless none of these papers investigates specifically HOW to assure connectivity needed for
information exchange among the involved nodes.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 8

TU BERLIN

Chapter 3

IEEE 802.11 Primer

This section gives a brief overview of the relevant aspects of the IEEE 802.11 standard.

3.1 AP Discovery (i.e. scanning)

Two approaches are possible.

3.1.1 Passive Scanning

All IEEE 802.11 APs are broadcasting beacon frames in a fixed time interval to announce the exis-
tence of the 802.11 network. This includes advertising the Service Set Identifier (SSID) as well as
all parameters needed for STAs to identify whether a connection to the network is possible. Upon
activation/arrival, client STAs move to each available RF channel, listen for beacon frames, buffer the
embedded information and create a map of available APs (obviously an AP can passively scan the
environment in the same way). Passive scanning requires spending quite a significant time while lis-
tening to each channel! Due to security consideration APs may, however, suppress the announcement
of the SSID, therefore passive scanning does NOT assure discovery of ALL available networks.

3.1.2 Active Scanning

STAs searching for 802.11 networks can send out probe request frames. If an AP receives a probe
request with a matching SSID and suggested data rates within the scope supported by this AP, it
replies with a probe response including all parameters of the normal beacon frame. Interestingly, an
STA (or AP interested in his neighborhood) can use in the request frame a broadcast SSID which
triggers an response from all networks which have been able to receive this request.

3.2 Information Elements

Beacon, probe request and probe response frames are defined as management frames. The frame body
of a management frame is built up of fixed length fields and variable length fields which are called
information elements (IE). In addition to the standard IE(s) which are used e.g. to transport the SSID
or the supported data rates, the standard describes a specific one called vendor specific information
and allowing to transport up to 255 bytes of custom data. We will denote this specific IE(s) as IEV.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 9

TU BERLIN

Chapter 4

ResFi Design Principles

4.1 System Model

Our view of the “chaotically deployed” WiFis is presented in Fig. 4.1.
Each static AP is assumed to have two network interfaces, namely, an WiFi compliant air inter-

face used for wireless communication towards STAs and a wired broadband access interface with
a globally-routable IP address to connect to the Internet usually via DSL or cable modem. As we
assume DSL/cable as the wired access technology there is a significant last-mile latency on the wired
link to the first hop inside the ISP’s network [25].

We assume that the APs in a given neighborhood are deployed gradually (meaning they are switched
on for the first time one by one), Any AP might also be switched off at any time – temporarily or for
good.

We assume also that every AP is controlled by a AP management unit (APMU) which consists of
several functional blocks such as client access control and operational parameter setting (like beacon
interval setting). In classical deployment each AP has some - rather simplistic - local radio resource
management e.g. setting of a fixed transmission channel, or simple selection of the transmission
channel.

We postulate introducing in each AP a dedicated process called RRMU which is assumed to have
IP connectivity over the wired Internet backhaul. Moreover, the RRMU is assumed to have an API
(called southbound API) making it possible to access radio statistics and parameters within the AP.

4.2 Principles of the ResFi Framework

The goal of ResFi is to define a self organized creation of a secured connectivity among the RRMU
of all APs within a given neighborhood without:

• Violating the assumptions of keeping each of the participating APs under separate local man-
agement

• Any changes in the hardware and drivers of commercially available access points

The approach can be presented in a nutshell as follows: During the boot-up phase of any AP a
broadcast scan request including a ResFi specific IEV containing so called ”contact data” is triggered
sequentially on each of the supported channels. Any AP within the coverage of this scan request is
expected to answer with the respective ”contact data” of the responder. These contact data, embedded
in the IEV of both the active scan probe and response consists of the globally-routeable IP address

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 10

TU BERLIN

Public global
 IP Address

wired/
wireless
comm.

channel to
Internet

Internet

STA

Comm.
channel based

on 802.11

AP

AP AP
APMU

RRMU

APMU

RRMU

APMU

RRMU

Figure 4.1: A residential WiFi network consists of client Stations (STA) and
Access Points (AP). Each AP is connected via wired broadband
access to the Internet.

and port number of the AP’s RRMU (on the fixed internet) as well as of a transient 1-hop group
encryption key and a public cryptography key individual to this RRMU.

After having completed the scan and having received the answers, the RRMU of the newly booted
AP can establish a secure, point-to-point control channel to the RRMUs of all the ”discovered” APs
over the wired backbone Internet. Placing the control channel into the wired connectivity has several
advantages. Notably there is no additional load on the wireless interfaces, and there is obviously a
lower error rate. On the other hand longer message exchange delays have to be taken into account.
This does not seem to be really a big issue, as the radio resource management does not take place in
very short time scales.

Thus a coordination within one-hop neighborhood would be available at this point. It is, however,
well known that RRM (e.g. channel selection) can achieve better efficiency if performed over a
cluster of APs larger than one hop neighborhood. Therefore ResFi requires that each RRMU is able
to act as a forwarder enabling to extend secure connectivity towards up to N hops (N can be set
individually for every message sent via ResFi’s northbound framework API). ResFi does not define
the precise policy to create an RRM cluster within the scope of the connectivity borders mentioned
above, neither does it feature a specific RRM approach. Both of these decisions are delegated to an
RRM APPLICATION which is not a part of the platform itself. We will provide in Section 8 some
examples of such applications.

The security of the control channel is not constrained to the establishment with the use of proper
cryptographic keys, in addition the keys are occasionally exchanged (see the following part).

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 11

TU BERLIN

4.3 ResFi Security Model

Why do we care about the security of the control channel for cooperative RRM? The reason is very
simple. Divisive action might severely harm the wireless access of some users, and lead to an unfair
advantage of some AP owners. While ”unfair cheating” behaviors can not be completely eliminated
(e.g some AP might claim that there are numerous APs in his vicinity thus luring neighbors to leave a
channel for him alone) we offer within our framework a set of measures leading to clear identification
of the source and destination of any information as well assuring the integrity of any information
exchanged via the control channel. By the set of this means we can at least be sure, that the pos-
sible malicious behavior of any of the participants might be - after detection - uniquely traced back
to this participant. And there will be no way this participant might claim his innocence. We will
discuss below the threats we are considering - i.e the security model - adding a ”rough outline” of the
countermeasures.

The primary exchange of security material for establishing a secure control channel takes place
over the wireless channel within the exchange of the IEV in the probe request and probe reply frames.
Therefore the possibility to get the security material is very constrained in space to the local observers.

4.3.1 Thread: Eavesdropping or man in the middle attack on the wired control
channel

• An attacker may be able to sniff the whole control traffic of multiple RRMUs which would
allow him to get inside views of future behavior or configuration of the APs.

• Countermeasure: The communication over the control channel is encrypted by utilizing a 1-
hop cryptography key. Every RRMU embeds its currently used symmetric group key within
its probe request and response frames and uses this key for all outgoing traffic. Enhanced
security between distinct peers is achieved by encrypting unicast messages using the public
keys exchanged during the discovery phase.

4.3.2 Thread: Rogue Attack

• A malicious user may be able to drive through an area and collect the credentials to build up
the wired control channel to multiple local RRMUs which would allow him to influence their
behavior in a malicious way.

• Countermeasure: ResFi RRMUs periodically change the utilized group encryption session keys
in irregular time intervals via the local wireless channel. The interceptor would have to place a
local ”spy device” remaining in a continuous connection with him. Nevertheless, on the other
hand if he will try to act as his fixed IP address could be checked in any case of doubt (irregular
or suspicious behavior).

4.3.3 Authenticity of the transmitting party

• Again, even ”drive-through” interception of the primary security material will not help. ResFi
provides authenticity by the requirement that all outgoing ResFi messages sent via the wired
backhaul have to be signed with the private key of the sender which allows the receiver to
validate the signature with the corresponding public key exchanged during the discovery phase.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 12

TU BERLIN

4.3.4 Thread: Replay Attack

• If an attacker may be able to sniff control packets and send them unaltered but delayed to the
original receivers this could result in confusion or misbehavior of the receiver APs RRMUs.

• Countermeasure: All sent ResFi messages are equipped with a unique sequence number

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 13

TU BERLIN

Chapter 5

ResFi – Detailed Specification

5.1 Bootstrapping

After an ResFi enabled residential WiFi AP has booted up, the ResFi agent is started, the first sym-
metric group key and the RSA key pairs are generated and the discovery process is initiated. For each
detected adjacent AP a mutual key and public IP exchange is performed over the wireless channel.
This process is also depicted in Fig. 5.1.
In a first step the ResFi agent of the newly booted up AP (AP0) performs a full active scan on all
available IEEE 802.11 RF channels. This step includes the sending of a probe request1 including
AP0’s ResFi credentials (public IP of the RRM unit, currently used encryption key and public RSA
key, embedded in an IE within the probe request) on each available RF channel which in turn triggers
all ResFi APs in vicinity (AP1..n) to send out their ResFi credentials embedded in an IE within a probe
response1 back to AP0, cf. Fig. 5.1 tag 1. AP0 subscribes itself to the publish (Pub) sockets of AP1..n
using the public IP provided by the Probe Responses and AP1..n subscribe themselves to the publish
(Pub) socket of AP0 using the public IP provided by the Probe Request. Now AP0 is able to success-
fully receive, validate and decrypt all messages sent via the wired backhaul by AP1..n and AP1..n are
able to successfully receive, validate and decrypt all messages sent via the wired backhaul by AP0.

The formation of the secure bidirectional control channel is completed. Broadcast messages to all
neighbors are encrypted using the transient symmetric group key, cf. Fig. 5.1, tag 2 while unicast
messages are in advance encrypted using the public RSA key of the corresponding receiver, cf. Fig.
5.1, tag 3. Moreover, all sent messages are signed using the private RSA key of the corresponding
sender. This process is also described in Fig. 6.2 as UML state machine.

5.1.1 Standard Mode of Operation

In the standard mode of operation the secure bidirectional control channel was already successfully
established. All participating ResFi AP RRMUs are able to broadcast messages encrypted with their
own group session key and signed with their own private RSA key to all of its one-hop ResFi neighbor
RRMUs via the backhaul overlay network. All participating ResFi neighbor RRMUs are able to
decrypt these messages, verify their integrity and the authenticity of the sender AP as a result of the
mutual configuration data exchange in the bootstrapping phase. In addition to the standard operation
of encrypting and signing outgoing messages and decrypting and verifying incoming messages, ResFi
APs enable to broadcast messages to N-hop neighbors by performing TTL based forwarding. Unicast

1≈ 212 octets standard probe response size or ≈ 64 octets standard probe request (depends on number of capabilities
broadcasted in general by AP), plus each time the size of the vendor specific big ResFi IE (IE header 6 octets + transient
group encryption key and IV 32 octets + 15 octets IP address + 162 octets DER encoded RSA public key)

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 14

TU BERLIN

AP1
SSID=AliceWiFi
Channel 44

Internet

AP2
SSID=BobWiFi
Channel 36

Internet

Broadcast to
1-hop neighbors

Probe Request including
public key and public IP

+ current 1-hop group key of AP1

Probe Response including
public key and public IP

+ current 1-hop group key of AP2

Encr. with sym Key AP2Encr. with sym. Key AP1

1

2Signed with private Key AP1 Signed with private Key AP2

Unicast to
1-hop neighbor

Inner encr. with public Key AP1 and
Outer encr. 1-hop group key of AP2

Inner encr. with public Key AP2 and
Outer encr. 1-hop group key of AP1

3Signed with private Key AP1 Signed with private Key AP2

Figure 5.1: Overview of the system architecture of ResFi: the wireless channel is used for exchange
of configuration parameters (global IP of RRM unit, transient group encryption key and
public RSA key) which are afterwards used for setting up the secure P2P out-of-band
control channels over the Internet.

messages which are in addition encrypted with the public RSA key of the corresponding receiver
can only be sent within the one-hop neighbor group. If needed, multi hop unicast messaging with
end-to-end encryption can be implemented on application level, cf. Sec. 8.1.

5.1.2 Transient Group Encryption Key

During the standard mode of operation no specific control messages except the key change messages
(KCM) have to be exchanged to enable the work of the distributed network. The object of the random
periodic KCM and therefore of the group encryption key change is twofold, first it provides confi-
dentiality on the wired backhaul channel and second it ensures that every group participant is a real
physical neighbor located in wireless transmission range.
All ResFi agents have the obligation to periodically change their group encryption key and inform
the other group members by sending a KCM as broadcast via the wired backhaul channel. The key
change interval is bounded to KCMI plus an randomly generated jitter. If a participating ResFi AP
has not sent a KCM during 2 ·KCMI all other group members are removing the subscription to its
publish socket. A KCM always includes the current radio channel and the SSID of the sender to
allow the other group members to use a single active frequency scan to obtain the new group session
encryption key. For the KCM always the old group key is used, while all messages sent after the
KCM are encrypted using the new group key. In advance the new group key is set within the probe
response and probe request ResFi IEs for all new probe response and probe request messages.
ResFi APs that receive a KCM perform a single frequency active scan for the given RF channel and

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 15

TU BERLIN

the given SSID which results in the reception of the new group key as described in the bootstrapping
section. For the single frequency scans during runtime a empty probe request is used to trigger the
KCM sender to reply with a probe response including the new group session key2. As ResFi relies
on FIFO sockets and the scan procedure is blocking, all messages following the KCM, encrypted
with the new group key, can always be decrypted successfully. Using the KCM scheme and single
frequency / SSID scans performed by neighbor APs, the necessity of performing a new full active
scan by the key changing AP is avoided. This prevents long deafness times due to active scanning on
other RF channels.

5.1.3 IP Address Change

If the public IP address of a ResFi agent changes, the connectivity to all neighboring ResFi APs is
broken. To overcome the connectivity loss, the affected ResFi agent repeats the bootstrap procedure
described in Section 5.1.

5.1.4 Radio Channel Change

As the wireless channel after the boot-up phase is only used to obtain the symmetric group encryption
key updates whose retrieval is always triggered by a KCM, which always includes the currently used
radio channel, radio channel changing does not interfere the standard mode of operation of ResFi.

5.2 North-bound API

The northbound algorithm/application API provided by ResFi is shown in Table 5.1. The API is quite
simple. Using the API any application is able to disseminate JSON messages to either APs in direct
wireless communication range or to perform a general N-Hop TTL based flooding operation. Further-
more, unicast communication to direct peers is also available. If a new message via the framework
is received the message processing can be controlled by registering a callback. ResFi determines the
wireless context transparently for the user.

5.3 South-bound API

The ResFi framework can be easily integrated in existing AP solutions by connecting the existing
platform to the ResFi southbound framework API listed in Table 5.2. While the framework south-
bound API is mandatory, the southbound API for the RRM is only a suggestion and can be extended
to meet further application or algorithm needs. For this reason Table 5.2 only provides a subset of
possible functions, in particular the RRM related part of the northbound API shows the required func-
tions needed for the example applications in Section 8.

2small ResFi IE (IE header 6 octets + transient group encryption key and IV 32 octets)

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 16

TU BERLIN

Table 5.1: ResFi north-bound API description
North-bound general framework API Description
getNeighbors() returns list of current neighbor IDs.
sendToNeighbor(nodeID, json msg) sends a JSON message to particular neighboring AP additionally en-

crypted using the public key of the receiver.
sendToNeighbors(json msg, TTL) sends JSON broadcast message to each direct neighboring AP, if TTL

is used, flooding to N-Hop neighbors is performed.
regCallbacks(rxCb. newLinkCb, linkFail-
ureCb)

register callback functions used to deliver data to application (rxCall-
back → new message for application was received, newLinkCallback
→ a new neighbor detected, linkFailureCallback→ neighbor was dis-
connected).

registerNewApplication(naming pattern) To handle parallel ResFi applications, name space separation for mes-
sage handling is used.

getResFiCredentials(param) if param == 1 returns public IP of RRMU, if param == 2 returns public
RSA key

usePrivateRSAKey(data, mode) enables to utilize the private key of the RRMU. If mode == 1, returns
signature computed over data, if mode == 2, function decrypts data and
returns plaintext.

North-bound RRM API (suggestion) Description
getNetworkLoad(type) returns current network load: 1=number of served STAs, 2=total TX

Bytes in DL, etc.
getChannels() returns available RF channels.
setChannel(chan) set (primary) RF channel to be used
setTxPower(mac addr, dbm) set transmit power towards STA with mac addr
setChannelWidth(mac addr, value) set channel BW for transmission to STA mac addr, e.g. 20, 40, 80, 160

MHz in 802.11ac
injectFrame(data) inject raw 802.11 frame
enableRTSCTS(mac addr, bool) enable usage of RTS/CTS towards STA with mac addr
startVAP(ssid, rxcb) start virtual AP with SSID, rxcb callback delivers received raw 802.11

frames.
deauthenticateSTA(mac) deauthenticate currently associated STA

Table 5.2: ResFi south-bound API description
South-bound framework API Description
getWiredInterface() enables ResFi to get the wired interface with IP access to backhaul In-

ternet.
subscribeToProbeRequests() enables ResFi to retrieve the probe request payload from incoming

probe requests.
addIEtoProbeResponses() enables ResFi to add/modify additional IE(s) to probe responses
performActiveScan() enables ResFi to start full/single active scan, takes add. IE which is

added to probe req.
South-bound RRM API (suggestion) Description
{set|get}RfChannel() get/set currently used RF channel
{set|get}txPower(mac addr) get/set transmission power to be used to STA mac addr
{set|get}channelWidth(mac addr) get/set channel bandwidth to be used towards STA mac addr
{set|get}ClientInfo() get information about associated STAs (e.g. MAC, capabilities, RSSI,

RX/TX count, rate statistics) or modify settings (e.g. set fixed rate,
disconnect, priority, RTS/CTS usage, disassociate STA, associate STA,
blacklist/whitelist STA)

{getRx|getTx}Stats(mac addr) get information about sent/received packets and bytes towards STA
mac addr

injectRawFrame(data) inject raw 802.11 frame into wireless interface
startVAP(ssid, buffer) start new virtual AP with given SSID, all incoming data is saved in

buffer.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 17

TU BERLIN

Chapter 6

ResFi – Implementation Details

The ResFi implementation consists of the three components shown in Fig. 6.1. The ResFi framework
agent is connected via the framework southbound API to a modified version of the software AP imple-
mentation Hostapd [12] via the also modified interface Hostapd CLI which enables the embedding
of additional IE(s) within probe responses, and the IW tool which is used as an interface to trigger a
new WiFi scan and to retrieve its results. Further the retrieval of the probe request payloads is realized
using inter process communication (IPC) between hostapd and the ResFi agent. For our prototype we
utilized standard x86 machines running Ubuntu 14.04 LTS. As the ResFi agent is programmed using
platform independent Python code, it can be easily ported to various platforms. As the southbound
API prototype realization is Linux specific it can be easily installed on all Linux based systems e.g.
OpenWRT based APs or mobile AP solutions like Android smart-phones in tethering mode. The
following sections describe the single prototype parts in more detail.

6.1 ResFi Agent

The ResFi Agent is implemented in Python and runs in user-space. The publish/subscribe (Pub/Sub)
sockets for the back-haul wired overlay network are implemented using the Python ØMQ library [7].
On top of ØMQ the JavaScript Object Notation (JSON) is used to serialize the data. Detection of IP
address changes is implemented via a Netlink event callback. To provide authenticity, integrity and
unicast confidentiality, 1024 bit RSA key pairs are used and for group communication confidentiality,
symmetric session encryption is performed using the Advanced Encryption Standard (AES) in Cipher
Feedback Mode (CFB) with 128 bit key size. All security related functionality has been implemented
by utilizing the PyCrypto Library [11] and can be easily adapted to the needed purpose (e.g. different
key-size, cipher mode or algorithm).

6.2 Hostapd and Hostapd CLI

Hostapd is responsible for performing all the AP management functionality on Linux based platforms.
This includes the handling of probe requests and sending the probe responses. We modified hostapd
in version 2.1 and the runtime interface hostapd cli to enable first, the embedding of additional IE(s)
to all probe responses and second, the retrieval of the IE(s) from all received probe requests. Besides
also the retrieval of the current AP parameters is enabled. The ResFi Agent calls hostapd cli to embed
the public IP and the security keys into the probe response frames and to read the AP parameters. The
probe request payload is retrieved using an additional ØMQ Pub/Sub socket to allow IPC between
hostapd and the ResFi agent. The UML state diagram in Fig. 6.2 describes this inter-working in more
detail.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 18

TU BERLIN

AP1
SSID=AliceWiFi
Channel 44

Internet

Kernel-space

User-space

Hostapd

Hapd_CLI

IW
tool

WiFi
Driver

Ethernet
Driver

NETLINK

ResFi
Agent

(Python)
Probe Req. Stuffing

Probe Resp. Reception

Probe Resp. Stuffing

Encrypted
Control Channel

Probe Req. Reception

Figure 6.1: Overview of components in the ResFi prototype.

6.3 IW Tool

The Linux wireless WiFi configuration utility (IW) tool [3] can be used to configure the WiFi driver in
kernel-space from user-space. IW internally uses Netlink communication and the nl80211 library to
enable user-space / kernel-space communication. We utilized the IW tool in version 4.3. The ResFi
Agent calls IW to start and retrieve the results of a active WiFi scan on a single or over multiple
channels and for a specific or unspecific SSID. Moreover, the IW tool is used to embed the additional
ResFi IE(s) within the probe request messages used during the boot process.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 19

TU BERLIN

[]

Ready

[event: own session
key changed]

[handle user
API calls]

[AP channel
switching]

New session key

Probe replies received

[full active scan -
configuration credentials

embedded in Probe Requests]

[handle user
API calls]

[for each AP_n:
subscribe to wired socket]

Session key of AP_n changed

Probe reply received from AP_n

[receive Key Change
Messages (KCM) from

AP_n]

[send single channel
probe request (no IE)]

[1: reprogram probe reply payload,

2: send KCM over wired channel]

[receive probe req /
subscribe to wired
socket of source AP]

[update session

key of AP_N]

Bootstrapping

Session Key Update

Figure 6.2: UML state machines describing the behaviour of the ResFi agent.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 20

TU BERLIN

Chapter 7

ResFi Mininet Emulation

In order to offer the application developer an easy way to test own RRM algorithms, before deploying
them in a real testbed, the ResFi framework allows the emulation of typical residential networks
taking both the wireless access as well as the wired backbone network into account. This is achieved
by running ResFi in Mininet [16], a container-based emulation which is able to emulate large network
topologies on a single computer. Specifically, we emulate the wired Internet backhaul using the
reported last-mile latencies and throughput values from [25]. Moreover, the wireless channel which is
used by ResFi for exchanging wireless management frames is also emulated. This is achieved using
the following model: all APs in mutual wireless reception range are connected via a bidirectional
link with fixed bandwidth (6 Mbps in case of 802.11g/a), delay (depending on distance) and loss
characteristics (configurable parameter) to the same switch. Finally, the AP density which defines the
wireless topology is a configurable parameter.

Note, any application code which was tested in the emulation environment can be used afterwards
to be deployed on real hardware without any modifications. The ResFi Mininet Emulation is part of
the ResFi framework which is provided as open-source under https://github.com/resfi.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 21

https://github.com/resfi

TU BERLIN

Chapter 8

ResFi Application Examples

Next we present examples for applications supported by ResFi as a showcase.

8.1 Network Clustering

In order to reduce the information update overhead and to optimize the use of the network bandwidth
obtaining a hierarchical organization of the residential AP network is desired. This can be achived
by clustering algorithms that partition the AP nodes of network into clusters [2]. A clustering is
crucial for controlling the spatial reuse of the shared wireless channel (e.g., in terms of time division
or frequency division schemes).

As a proof of concept we implemented both the Distributed Clustering Algorithm (DCA) and the
Distributed Mobility-Adaptive Clustering (DMAC) proposed by Basagni [2] as applications in ResFi.

8.2 End-to-End Security for N-Hop Neighbors

Basically, ResFi provides one-hop encryption by utilizing a group encryption key between all one-hop
neighbors. In addition unicast messages to one-hop neighbors are encrypted using the public key of
the receiver. For N-hop messages, all intermediate hops decrypt the forwarding message locally with
the last hop group encryption key and forward it encrypted with their own group encryption key. If
end-to-end security is needed between N-hop neighbors, this functionality can be easily implemented
as ResFi application. E.g. to enable encrypted communication in a established cluster, cf. Sec. 8.1,
the cluster head can utilize the getResFiCredentials() function to obtain its public key and propagate
it to all cluster nodes and vice versa. As now all participants know the public key of each other end-
to-end signing and en/decrypting of messages is possible using the function usePrivateRSAkey(), see
Table 5.1.

8.3 Dynamic Channel Selection

The ResFi framework allows an easy implementation of distributed dynamic channel selection schemes
for WiFi APs. According to the approach proposed by Mishra et al. [17] each AP may periodically
inform its direct neighbor APs about its network load (e.g., number of served clients or flows), recent
airtime utilization on different channels, the presence of WiFi and non-WiFi networks and its own
radio channel. Such information can be combined at each AP to select the least congested channel.
As a proof-of-concept we implemented the aforementioned algorithm (Lst. 8.1).

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 22

TU BERLIN

Listing 8.1: Distributed channel assignment implemented using ResFi.
def channelSelection():

agent = ResFiAgent() # init ResFi agent
agent.regCallbacks(rx_cb, Null, Null)
agent.registerNewApplication(de.tu-berlin.ch-assign)
apNode = agent.getResFiCredentials(1) # get node ID (IP)
channel = 0 # init with channel 0
load = getNetworkLoad() # get network load
chs = getChannels() # number of radio channels available
nbInfo = {} # neighbor info

while True:
msg = {’node’: apNode, ’ch’: channel, ’load’: load}
agent.sendToNeighbors(msg) # API call
time.sleep(random.uniform(0, jitter/2)) # backoff

def rx_cb(json_msg): # receive callback function
sender = json_msg[’node’], nb_channel = json_msg[’ch’]
nb_load = json_msg[’load’]
nbInfo[sender] = {’load’: nb_load, ’ch’: nb_channel}

calc Hc according to Hminmax algorithm:
Hc = {}
for c in range(chs): # for each channel

Hc[c] = 0 # reset to zero
for entry in nbInfo: # for each neighbor

tmpCh = nbInfo[entry][’ch’]
if tmpCh == c: # same channel

select the max() weight; here load
Hc[c] = max(Hc[c], load + nbInfo[entry][’load’])

choose channel with minimum Hc
channel = getChannelWithMinConflictWeight(Hc)
agent.setChannel(channel)

8.4 Interference Management

The well-known hidden terminal problem [24] causes severe co-channel interference (and thus packet
loss) in dense WiFi networks with multiple APs operating on the same radio channel. While the use of
virtual channel reservation has a potential to reduce the number of hidden nodes it creates significant
overhead by exchange of IEEE 802.11 RTS/CTS packets. Therefore, an adaptive RTS/CTS scheme
activated only on wirleess links suffering from hidden terminal problem would be favorable. This
can be easily achieved using our ResFi platform. For this purpose each AP could perform passive
hidden terminal detection as proposed in [10] and inform its neighboring APs about links potentially
affected by hidden terminals for which the RTC/CTS handshake would be enabled, see function
enableRTSCTS() in Table 5.1.

8.5 Virtual Access Points (VAP)

The spatial area covered by a single WiFi AP is limited especially when using the 5 GHz ISM band
with unfavorable propagation characteristics. In dense residential areas there is a high probability
that a significant parts of a residential apartment is in excellent coverage of neighbor’s AP rather
than within the range of its own home AP [22]. A way to utilize the neighboring AP is to deploy

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 23

TU BERLIN

on-demand a virtual AP on the neighboring AP and to tunnel all encrypted WiFi traffic to the home
AP [26]. This allows the client devices to always authenticate against the home AP using the WPA
passphrase already stored in the device. There is no registration process; no software to install on the
device; not even any settings to change.

The on-demand deployment of VAPs can be easily achieved using the ResFi framework. Specif-
ically, each AP has to disseminate information about the configured SSIDs in its home AP to the
neighboring AP where dynamically a VAP is configured, see function startVAP() in Table 5.1.

8.6 Client STA Handover for Load Balancing and Mobility Support

The BIGAP approach [28] which enables soft handover operations in centralized enterprise WiFi
networks, can also be implemented as ResFi application. If combined with the VAP application
(cf. Sec. 8.5), soft handover between the home AP and the neighboring AP to enable mobility and
load-balancing support without network outage, can be realized. If the client STA supports dynamic
frequency selection (DFS) and both, the current AP and the target AP are operating on different RF
channels, soft handover operations are possible by injecting an additional beacon frame including a
channel switch announcement IE with the RF channel of the target AP via the function injectFrame()
executed on the current AP. If no DFS support on the client STA is available, hard-handover using
the function deauthenticateSTA() on current AP enables a controlled handover. All aforementioned
functions are part of ResFi’s NB API, see Table 5.1.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 24

TU BERLIN

Chapter 9

Evaluation

Our proposed framework is analyzed and evaluated by means of experiments in a WiFi testbed. More-
over, the expected control overhead in the wireless channel is analyzed analytically. An overview in
which the overhead generated by the ResFi framework in its different mode of operation caused by
channel switching and sending messages either via the wired backhaul or via the wireless channel is
given in Table 9.1. The evaluation results of our proposed ResFi approach are further compared with
the approach proposed by Manweiler [13] extended to multi-channel environments to which refer as
RxIP++.

9.1 Active vs. passive Scanning

As described in Section 5, ResFi uses different modes of scanning depending on its operation state.
In the boot-up phase in which the deafness of the AP is not as important as during the standard mode
of operation, a full scan is used. After the boot-up is completed, a single frequency scan for a single
SSID is utilized to keep the AP deafness as short as possible. To enable the analysis of the overhead
of this approach we measured the timing of different active and passive scanning procedures (cf. Sec.
3) using diverse WiFi hardware. The results of this experiment are later used in Sec. 9.2 to calculate
the overhead due to our frequent symmetric group encryption key change via the wireless channel.

9.1.1 Methodology

In this experiment we used different commercial off-the-shelf (COTS) WiFi hardware two connected
via PCI and two connected via USB. The utilized WiFi chips are listed in Fig. 9.1 and 9.2. The
experiments were executed on x86 machines with Ubuntu 14.04 LTS. The scanning calls were started
using the command-line tool iw (cf. Sec. 6.3).

9.1.2 Results

The timing results of full WiFi scans are shown in Fig. 9.1. We see that independent of the scanning
mode, the scanning durations strongly vary between different WiFi chips and connection technology.
in general, chipsets connected via PCI show shorter scanning durations while USB connected chips
are slower. However, when the two different scanning modes (passive or active) are evaluated it is
obvious that active scanning is always superior to passive scanning w.r.t. to the scanning latency.

The results of the latency experiment of single frequency scans is depicted in Fig. 9.2, interestingly
the connection type whether USB or PCI does not effect the scanning latency. Nevertheless, for single
frequency scans active scanning is also always faster than passive scanning.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 25

TU BERLIN

0

2000

4000

6000

8000

AR91
70

 (U
SB)

In
te

l53
00

 (P
CI)

AR92
8X

 (P
CI)

RT35
72

 (U
SB)

Duration of a full scan

S
ca

nn
in

g
tim

e
[m

s]

active
passive

Figure 9.1: Scanning duration of a full scan (performed over all available WiFi channels, errorbar
shows the standard deviation).

0

50

100

150

200

AR91
70

 (U
SB)

In
te

l53
00

 (P
CI)

AR92
8X

 (P
CI)

RT35
72

 (U
SB)

Scanning duration on single channel

S
ca

nn
in

g
tim

e
[m

s]

active
passive

Figure 9.2: Scanning duration on single channel (errorbar shows the standard deviation).

Takeaways: Single frequency scans always provide the shortest latency in comparison to full scans
(e.g. 30ms vs. 6300ms for AR9170). Active scanning is always faster than passive scanning.

9.2 Reconfiguration Overhead

In the following we are analyzing the overhead in the wireless channel due to frequently changing the
transient symmetric group encryption key.

9.2.1 Methodology

The overhead in the wireless channel is due to the transmission of probe request and reply packets
which are sent on a basic bitrate (e.g. 6 Mbps in 802.11a/g). Moreover, during a scanning operation
for neighboring nodes the AP is deaf and cannot handle data transmissions of its associated client
stations and hence is wasting valuable airtime. Moreover, an associated station may disassociate if it
misses too many beacon frames. As shown in Section 9.1, the duration of a single active WiFi scan

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 26

TU BERLIN

Table 9.1: Overhead analysis.
Operation Radio (IEEE 802.11) Backhaul

Standard mode

change own group key
for-each neighboring AP: send
probe response + small ResFi IE

for-each neighboring AP: send
Key Change Message (KCM)

rec. KCM
channel switch & send probe req.
(no ResFi IE)

zero

rec. probe req. + big
ResFi IE

send probe response + big ResFi IE zero

rec. probe req. (no
ResFi IE)

send probe response + small ResFi IE zero

Bootstrapping
for-each available Rf channel: chan-
nel switch & send probe request +
big ResFi IE

zero

for a given SSID on a particular radio channel takes depending on the hardware between 30ms and
100ms. Hence, there is a tradeoff between the rate at which the reconfiguration takes place and the
available airtime in the wireless channel for data communication.

Because in ResFi a reconfiguration at a single AP triggers the scanning operation of each neighbor-
ing AP the expected AP density plays a major role. For our analysis we analyzed the data provided
bv the large-scale measurement campaign of Biswas et al. [4, 14] whereas the number of neighboring
APs in the 2.4 and 5 GHz band is on average 16.8 and 5.1 respectively. To pay attention to virtual
WiFi networks in which one physical AP broadcasts multiple SSID and BSSIDs, we only included
BSSIDs into the results in which the RSSI, the OUI and the WiFi capabilities are different. Note, the
overhead in 2.4 Ghz is also larger because the management frames (here probe requests and replies)
are sent on a lower PHY bitrate, i.e. 1 vs. 6 Mbps.

Next, we give a detailed description of the overhead analysis for both the beacon stuffing approach
used in RxIP++ which serves as baseline and the ResFi approach using probe request and reply
management frames.

RxIP++

When using the approach from RxIP for dissemination of configuration data the overhead is due
to the transmission of additional IEs in the beacon frames and the required scanning overhead in
multi-channel environments. The overhead depends on the AP density as each AP performs a re-
configuration, i.e. the larger it is the more wireless frames need to be exchanged and more scanning
operations need to be performed. For a network of N co-located, i.e. in communication range, APs
the relative overhead for each AP can be computed as follows:

ORxIP++ =
1
C
×N×TBeacon−IE×RBeacon +(N−1)Tscan (9.1)

where C is the total number of channels available, N is the number of neighboring APs, TBeacon−IE
and RBeacon are the additional beacon overhead and beacon interval (10 Hz) respectively. The first
term represents the overhead due to the additional transmission of IE in beacon frames. Note, that
due to multi-channel environment the APs are operating on different radio channels, hence to get the
per channel overhead we have to divide by the number of channels. The second term represents the
overhead due to scanning deafness.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 27

TU BERLIN

0 5 10 15 20 25 30 35 40
0.9

0.92

0.94

0.96

0.98

1

Number of neighboring APs

A
va

ila
bl

e
ai

rt
im

e
fo

r
da

ta
 c

ha
nn

el
 [%

] Overhead due to periodic encryption key change (Δ=60s)

ResFi (5 GHz)
ResFi (2.4 GHz)
RxIP++ (5 GHz)
RxIP++ (2.4 GHz)

ResFi

RxIP++

Figure 9.3: Impact of periodic group encryption key change (∆ = 60s) on the available
airtime in the data channel.

ResFi

Next, we analyze the overhead of the ResFi approach:

OResFi = (N−1)(TPReq +TPRep)+(N−1)Tscan

+
1
C
× (N−1)× (N−2)× (TPReq +TPRep) (9.2)

where the first and third term represent the overhead due to transmission of probe request and reply
messages and the second term accounts for deafness due to scanning procedure.

9.2.2 Results

Using equations 9.1 and 9.2 we are able to calculate the overhead for different AP densities, i.e.
number of neighboring APs. Here we assume that each AP performs a single group encryption key
update. Fig. 9.3 shows the relative available airtime in the wireless data channel with a update interval
of 60s, i.e. 1−Oproposed and 1−OBeacon respectively.

The results can be summarized as follows. In the 2.4 Ghz and the 5 Ghz band the overhead for
a single reconfiguration is highest with RxIP++, whereas using the proposed ResFi approach which
relies on probe request and probe response frames is superior in both bands for a reconfiguration
period of 60s and AP densities between 0 and 40.

Next, we analyze the impact of the reconfiguration rate on the available airtime in the wireless data
channel. The results are shown in Fig. 9.4. From a practical point of view a maximum overhead of
1% is tolerable. Hence the maximum reconfiguration rate is pretty low, i.e. update every 60 and 20 s
for the 2.4 and the 5 GHz band respectively. However, for the envisioned residential AP szenario it is
still sufficient as we suggest to change the group encryption key every minute. Again the proposed
ResFi approach is superior in both bands.

Takeaways: There is a clear tradeoff between reconfiguration rate and overhead in the wireless
channel. The beacon-stuffing approach (RxIP++) is not feasible in real residential deployments with
high AP densities.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 28

TU BERLIN

10 30 60 120 300
0.9

0.92

0.94

0.96

0.98

1

Encryption key change interval, Δ [s]

A
va

ila
bl

e
ai

rt
im

e
in

 d
at

a
ch

an
ne

l [
%

] Overhead due to periodic encryption key change

ResFi (5 GHz, N=5.1)
RxIP++ (5 GHz, N=5.1)
ResFi (2.4 GHz, N=16.8)
RxIP++ (2.4 GHz, N=16.8)

ResFi

RxIP++

Figure 9.4: Tradeoff between encryption key change interval and available air-
time in the data channel (N represents the number of neighbors each
AP has).

9.3 Reconfiguration Latency

9.3.1 Methodology

In this experiment we analyze reconfiguration latency in ResFi due to changing configuration data,
e.g. group encryption session key. The reconfiguration latency is composed of the delay due to
transmission of the key change message (KCM) over the wired out-of-band control channel as well
as the scanning delay due to active scanning on a particular channel and given SSID.

We considered two different wired backhaul technologies. First, Gigabit Ethernet as a very low
latency backhaul which we use in our testbed. It serves as a baseline. Second, the typically used
backhaul technology in residential WiFi deployment, i.e. cable/DSL. For the latter we used the traffic
control tool [6] to emulate the last-mile latency in residential WiFi deployments as reported by [25].
Note, the last-mile latency is the latency to the first hop inside the ISP’s network and hence captures
the latency of the access link (DSL/cable). According to [25] most users of cable ISPs are in the 0–10
ms interval whereas a significant proportion of DSL users have last-mile latencies of more than 20
ms, with some users seeing last-mile latencies up to 60 ms.

For the experiments we used x86 machines with Ubuntu 14.04 LTS and Linksys AE1000 WiFi
USB sticks using Ralink rt2800 chipsets as APs.

9.3.2 Results

The results are shown in Fig. 9.5. We see that in the worst case, i.e. DSL, the reconfiguration latency
is around 165 ms which is 58 % higher as compared to Gigabit LAN.

Takeaways: Due to the reconfiguration latency configuration data like the used group encryption
session key exchanged on the wireless channel can be changed at most 6× per second when assuming
the scenario with worst-case DSL backhaul access. This is more than sufficient to achieve a high level
of security.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 29

TU BERLIN

Gigabit−LAN Cable/DSL baseline DSL worst−case
0

20

40

60

80

100
Encryption key update latency

La
te

nc
y

[m
s]

Backhaul technology

Figure 9.5: Reconfiguration latency due to changing encryption key (Confidence
≥ 95%).

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 30

TU BERLIN

Chapter 10

Conclusions and Areas for further research

Up to our knowledge we have presented the first proposal of a holistic platform supporting automatic
establishment of secure connectivity within a definable scope of neighborhood and set of resource
management supporting functions for residential WiFi networks. Our proposal allows usage of legacy
hardware and avoids violation of the existing management borders following out of the fragmented
ownership structure. ResFi was prototypically implemented and the source code is provided to the
community as open source. We believe that there is a clear need for such a solution.

On our side the following further areas of work on this framework have been already identified:

1. Many RRM require rather tight time synchronization among the nodes. So far ResFi relies
on Network Time Protocol (NTP [15]) to time synchronize over the Internet backhaul which
achieves only an accuracy of 10s of ms in WAN networks. We intend to extend ResFi to
provide over-the-air time synchronization using either 802.11 beacons [13] or using 802.11
management frames for exchanging IEEE 1588 Precision Time Protocol (PTP) frames [9].

2. The semantics of the network load - a notion introduced in our API - is not unique. Different
function of the air time utilization, number of neighbors etc. have been used in the past in this
context. While in the actual version we consider the air time utilization on the actually used
channel as the metric of the network load, we consider offering a possibility to introduce in a
flexible way a definition of this parameter.

3. The notion of one-hop neighborhood is not unique, either. At this moment we include in the
one-hop neighborhood any AP which provides a decodable probe response to a probe request
broadcasted with the lowest bit rate. This notion might be generalized by attributing to the
probe exchange some constraints on power with which this exchange is performed.

While we believe to have covered a reasonable set of requirements while keeping the solution
relatively simple, we have so far verified its merits only using a few very simple case studied. We
hope that usage of this framework (enhanced by the open source approach) for more complex RRM
functions might lead to its further improvement.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 31

TU BERLIN

Bibliography

[1] Aditya Akella, Glenn Judd, Srinivasan Seshan, and Peter Steenkiste. Self-management in
chaotic wireless deployments. In Proceedings of the 11th Annual International Conference
on Mobile Computing and Networking, MobiCom ’05, pages 185–199, New York, NY, USA,
2005. ACM.

[2] Stefano Basagni. Distributed clustering for ad hoc networks. In Parallel Architectures, Al-
gorithms, and Networks, 1999.(I-SPAN’99) Proceedings. Fourth InternationalSymposium on,
pages 310–315. IEEE, 1999.

[3] Johannes Martin Berg. Iw - wireless configuration tool. http://git.kernel.org/cgit/linux/kernel/-
git/jberg/iw.git, October 2015. Accessed: 2015-10-28.

[4] Sanjit Biswas, John Bicket, Edmund Wong, Raluca Musaloiu-E, Apurv Bhartia, and Dan
Aguayo. Large-scale measurements of wireless network behavior. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication, pages 153–165. ACM,
2015.

[5] Cisco. Radio Resource Management under Unified Wireless Networks. Technical Report 71113,
May 2010.

[6] Bert Hubert. tc - show / manipulate traffic control settings. http://lartc.org/manpages/tc.txt,
December 2001. Accessed: 2015-12-16.

[7] iMatix Corporation. Zmq - code connected. http://zeromq.org/, January 2014. Accessed: 2015-
10-28.

[8] M. Kubisch, H. Karl, A. Wolisz, L.C. Zhong, and J. Rabaey. Distributed algorithms for transmis-
sion power control in wireless sensor networks. In Wireless Communications and Networking,
2003. WCNC 2003. 2003 IEEE, volume 1, pages 558–563 vol.1, March 2003.

[9] K Lee, John C Eidson, Hans Weibel, and Dirk Mohl. Ieee 1588-standard for a precision clock
synchronization protocol for networked measurement and control systems. In Conference on
IEEE, volume 1588, page 2, 2005.

[10] Frank Y Li, Arild Kristensen, and Paal Engelstad. Passive and active hidden terminal detection
in 802.11-based ad hoc networks. In Proceedings of IEEE international conference on computer
communications, 2006.

[11] Dwayne Litzenberger. Pycrypto - the python cryptography toolkit. https://www.dlitz.net/soft-
ware/pycrypto/t, October 2015. Accessed: 2015-10-29.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 32

TU BERLIN

[12] Jouni Malinen. hostapd: Ieee 802.11 ap, ieee 802.1x/wpa/wpa2/eap/radius authenticator.
https://w1.fi/hostapd/, January 2013. Accessed: 2015-10-28.

[13] Justin Manweiler, Peter Franklin, and Romit Roy Choudhury. RxIP: Monitoring the health of
home wireless networks. In INFOCOM, 2012 Proceedings IEEE, pages 558–566. IEEE, 2012.

[14] Meraki. sigcomm-2015 - interfering-networks. http://dl.meraki.net/sigcomm-2015/inter-
fering networks/, June 2015. Accessed: 2015-11-02.

[15] David Mills, Jim Martin, Jack Burbank, and William Kasch. Network time protocol version 4:
Protocol and algorithms specification. Technical report, 2010.

[16] mininet.org. Mininet - an instant virtual network on your laptop (or other pc). http://mininet.org/,
2015. Accessed: 2015-12-16.

[17] Arunesh Mishra, Suman Banerjee, and William Arbaugh. Weighted coloring based channel
assignment for WLANs. ACM SIGMOBILE Mobile Computing and Communications Review,
9(3):19–31, 2005.

[18] Rohan Murty, Jitendra Padhye, Ranveer Chandra, Alec Wolman, and Brian Zill. Designing High
Performance Enterprise Wi-Fi Networks. In NSDI, volume 8, pages 73–88, 2008.

[19] Rohan Narayana Murty, Jitendra Padhye, Alec Wolman, and Matt Welsh. An Architecture for
Extensible Wireless LANs. In HotNets, pages 79–84, 2008.

[20] Aerohive Networks. Radio Resource Management in HiveOS. Technical report, 2011.

[21] Ashish Patro and Suman Banerjee. COAP: A Software-Defined Approach for Home WLAN
Management Through an Open API. SIGMOBILE Mob. Comput. Commun. Rev., 18(3):32–40,
January 2015.

[22] Jinghao Shi, Liwen Gui, Dimitrios Koutsonikolas, Chunming Qiao, and Geoffrey Challen. A
little sharing goes a long way: The case for reciprocal wifi sharing. In Proceedings of the 2Nd
International Workshop on Hot Topics in Wireless, HotWireless ’15, pages 6–10, New York,
NY, USA, 2015. ACM.

[23] Vivek Shrivastava, Nabeel Ahmed, Shravan Rayanchu, Suman Banerjee, Srinivasan Keshav,
Konstantina Papagiannaki, and Arunesh Mishra. Centaur: realizing the full potential of cen-
tralized wlans through a hybrid data path. In Proceedings of the 15th annual international
conference on Mobile computing and networking, pages 297–308. ACM, 2009.

[24] Vivek Shrivastava, Nabeel Ahmed, Shravan Rayanchu, Suman Banerjee, Srinivasan Keshav,
Konstantina Papagiannaki, and Arunesh Mishra. CENTAUR: realizing the full potential of
centralized wlans through a hybrid data path. In Proceedings of the 15th annual international
conference on Mobile computing and networking, pages 297–308. ACM, 2009.

[25] Srikanth Sundaresan, Walter De Donato, Nick Feamster, Renata Teixeira, Sam Crawford, and
Antonio Pescapè. Broadband internet performance: a view from the gateway. In ACM SIG-
COMM computer communication review, volume 41, pages 134–145. ACM, 2011.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 33

TU BERLIN

[26] Jonathan Vestin, Peter Dely, Andreas Kassler, Nico Bayer, Hans Einsiedler, and Christoph
Peylo. CloudMAC: towards software defined WLANs. ACM SIGMOBILE Mobile Comput-
ing and Communications Review, 16(4):42–45, 2013.

[27] Yiannis Yiakoumis, Manu Bansal, Adam Covington, Johan van Reijendam, Sachin Katti, and
Nick McKeown. Behop: a testbed for dense wifi networks. In Proceedings of the 9th ACM inter-
national workshop on Wireless network testbeds, experimental evaluation and characterization,
pages 1–8. ACM, 2014.

[28] Anatolij Zubow, Sven Zehl, and Adam Wolisz. BIGAP-Seamless Handover in High Perfor-
mance Enterprise IEEE 802.11 Networks. Technical Report TKN-15-004, Telecommunication
Networks Group, Technische Universität Berlin, September 2015.

Copyright at Technische Universität Berlin.
All Rights Reserved. TKN-15-0005 Page 34

	1 Introduction
	2 Related Work
	3 IEEE 802.11 Primer
	3.1 AP Discovery (i.e. scanning)
	3.1.1 Passive Scanning
	3.1.2 Active Scanning

	3.2 Information Elements

	4 ResFi Design Principles
	4.1 System Model
	4.2 Principles of the ResFi Framework
	4.3 ResFi Security Model
	4.3.1 Thread: Eavesdropping or man in the middle attack on the wired control channel
	4.3.2 Thread: Rogue Attack
	4.3.3 Authenticity of the transmitting party
	4.3.4 Thread: Replay Attack

	5 ResFi – Detailed Specification
	5.1 Bootstrapping
	5.1.1 Standard Mode of Operation
	5.1.2 Transient Group Encryption Key
	5.1.3 IP Address Change
	5.1.4 Radio Channel Change

	5.2 North-bound API
	5.3 South-bound API

	6 ResFi – Implementation Details
	6.1 ResFi Agent
	6.2 Hostapd and Hostapd_CLI
	6.3 IW Tool

	7 ResFi Mininet Emulation
	8 ResFi Application Examples
	8.1 Network Clustering
	8.2 End-to-End Security for N-Hop Neighbors
	8.3 Dynamic Channel Selection
	8.4 Interference Management
	8.5 Virtual Access Points (VAP)
	8.6 Client STA Handover for Load Balancing and Mobility Support

	9 Evaluation
	9.1 Active vs. passive Scanning
	9.1.1 Methodology
	9.1.2 Results

	9.2 Reconfiguration Overhead
	9.2.1 Methodology
	RxIP++
	ResFi

	9.2.2 Results

	9.3 Reconfiguration Latency
	9.3.1 Methodology
	9.3.2 Results

	10 Conclusions and Areas for further research

