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Abstract

Using Cellular Automata, we simulate spin systems corresponding to 2d

Ising model with various kinds of boundary conditions (bcs). The ap-

pearance of spontaneous magnetization in the absence of magnetic field

is studied with a 64×64 square lattice with five different bcs, i.e., periodic,

adiabatic, reflexive, fixed (+1 or −1) bcs with three initial conditions (all

spins up, all spins down and random orientation of spins). In the context of

2d Ising model, we have calculated the magnetisation, energy, specific heat,

susceptibility and entropy with each of the bcs and observed that the phase

transition occurs around Tc = 2.269 as obtained by Onsager. We compare

the behaviour of magnetisation vs temperature for different types of bcs by

calculating the number of points close to the line of zero magnetisation after

T > Tc at various lattice sizes. We observe that the periodic, adiabatic and

reflexive bcs give closer approximation to the value of Tc than fixed +1 and

fixed -1 bcs with all three initial conditions for lattice size less than 70×70.

However, for lattice size between 70 × 70 and 100 × 100, fixed +1 bc and

fixed -1 bc give closer approximation to the Tc with initial conditions all

spin up configuration and all spin down configuration respectively.

http://arxiv.org/abs/1601.00518v1


1 Introduction

The phenomenon of magnetism belongs to one of the oldest observations in nature

which is yet to be understood at a fundamental level. One remarkable effect is the

appearance of spontaneous magnetization giving rise to ferromagnetism when certain

materials are cooled down below a critical temperature called Curie temperature in the

absence of any external applied magnetic field. The 2d Ising model is represented by

a square lattice of particles, each carrying one of the two spins states with magnetic

moments ±1. Each particle at a node is assigned a definite orientation. Spins of these

particles cause a magnetic field whose strength decreases with increase in distance in

the lattice. For simplification, we consider only the nearest neighbour interaction i.e.,

no other particle is located closer to one of them. In 2d Ising model, an ordinary

particle has four nearest neighbours at east, west, north and south direction of the

particle. These spin interactions contribute to the energy of the whole system. The

energy of a spin configuration s = {sij , sij ∈ {+1,−1}, i, j = 1, . . . , N}, with N as the

order of sqaure lattice is given by the Hamiltonian

H(s) = −
N
∑

i,j=1

Jijsij(sij−1 + sij+1 + si−1j + si+1j)− µ
∑

kl

Hklskl (1.1)

Where Jij is the exchange interaction among sij with their four neigbours, µ is the

magnetic moment and Hkl is the external magnetic field at (kl)th spin. For simulation

purpose, we have to define a finite system with N2 < ∞. We study different bcs under

which the interaction energy will be maximum. In a periodic bc, the matrix Jij defines

a nearest neighbourhood topology of a loop and for other bcs nearest neighborhood

topology is a square of a square lattice. A 2d Ising model with N2 particles has 2N
2

spin configurations.

The partition function in Boltzmann statistics is given by

Zβ =
∑

s

e−βH(s) (1.2)

where β = 1
kBT

. If we consider a 8×8 lattice, the space of states s has 264 elements and it

is a daunting task to compute Zβ. To find a concise formula for Zβ, the thermodynamic

limit N → ∞ is considered in analytical calculation. Basing on the tranfer matrix

method with pbc, Onsager has solved the 2d Ising model [1]. Kotecky et. al [2] have

studied magnetization of the Ising model under minus fixed bc. Still the 2d Ising model

with other bcs are yet to be solved. So, here we consider five bcs to simulate 2d Ising

model.
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Explicit formulation of the spontaneous magnetization of the 2d Ising model with

pbc for N → ∞ was carried out in reference [3] and the magnetization mβ in terms β

is found to be,

mβ =

{

(1− (sinh(2Jβ))−4)1/8, β > βc

0, β ≤ βc

where

βc =
log(1 +

√
2)

2J
⇒ Tc = 2.269.

where kB = 1 and J = 1 for a ferromagnetic substance.

Magnetisation in terms of T and Tc is given by,

m =

{

(1− (sinh(log(1 +
√
2)Tc

T
)−4)1/8, T < Tc

0, T ≥ Tc

(1.3)

From equation 3, it is seen that magnetisation has at least two different possible

directions and the average magnetization is zero in the absence of external magnetic

field at T > Tc. We consider the above theory to compare among different bcs.

Cellular Automaton is a mathematical model in which the state of a cell interact

with neighbours and then updates the state according to a specific rule in 2d CA [4].

This transition rule depends on the problem on which one is interested. While dealing

with different dimensions, CA models are categorised as 1d, 2d, 3d CA etc. In 2d CA,

cells may be square, trianglular, hexagonal, polygon type. State of the cell is given in

terms of any finite number. The number of neighbours depend on the dimesion and the

specific approach to the problem. To simulate the Ising model, we can create a 2 state

CA, for spin up state (+1) and spin down state (−1). For 1d model, we can consider

two or four neighborhoods, for 2d we can consider four, six or eight neighborhoods and

for 3d we can consider six or twenty six neighborhoods [4]. Both the CA model and

the Ising model have similar characteristics. However, in Ising model case, before Tc

states of the cells are either all in up state or all in down state and after Tc, the net

magnetisation becomes zero and the pattern become random (half of +1 and half of

−1 spins). So, it is a big challenge to find a specific rule in CA that satisfies the above

behaviour of the Ising model.

Numerical methods like Markov chain, Metropolis [5], Spin-Flipping, Wolff algo-

rithm [6] take a lot of time to simulate the Ising model. Monte Carlo is one of the

simulation methods which has been widely used for studying Ising models [7]. Lot of

work has been done for mapping Ising models using CA. A deterministic CA (DCA)

is mostly used for this purpose. Domany and Kinzel [8] modelled a DCA in triangular

lattice with conditional probabilities as the transition rule to map Ising problems in
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two dimensions with representation of directed percolation. The so called Q2R CA

[9] is a deterministic, reversible, nonergodic and fast method that is used for the mi-

crocanonical Ising model. Many authors have produced results based on this model

[10, 11, 12]. The Creutz CA [13] has simulated the 2d Ising model successfully near the

critical region under periodic bc and using this Creutz CA, the Ising model simulations

in higher dimensions e.g., in 3d [14], 4d [15], 8d [16] have been done. Although the Q2R

and Creutz CA models are deterministic and fast, it has been demonstrated that the

probabilistic model of the CA like Metropolis algorithm is more realistic for description

of the Ising model even though the random number generation makes it slower. Prob-

abilistic CA model under periodic bc is applied to anisotropic-layer Ising and Potts

models to find the critical point and shift exponent in ref. [17]. Implementation of the

Ising model using two dimensional CA under different bcs other than period has not

yet been studied.

The paper organised as follows: in section 2, we discuss the basic theory to treat

a 2d CA and in section 3, we discuss how to implement it in the Ising model. The

simulation result and discussions are given in section 4. The comparision of the five

bcs with three different initial conditions are discussed in section 5. Our conclusion

and future perspective are discussed in section 6.

2 Two dimensional CA

Two dimensional CA is described by finite states of cells (s), neighborhood cells (n) and

its distance among neighbourhood (r), boundary conditions and transition functions

or rules (f). In our 2D CA model, s = {sij , sij ∈ −1/ + 1}, number of neighbours

n = 9 (the central cell and its eight neigbours), r = 1 and we consider all five bcs.

We can construct 22
9
total number of updating rules. All these rules can be derived

from nine basic rules Rule1, Rule2, Rule4, Rule8, Rule16, Rule32, Rule64, Rule128 and

Rule256 [18] as shown in the following table.

Table 1: Nine basic rules and their positions in the lattice.

26 27 28

(i− 1, j − 1) (i− 1, j) (i− 1, j + 1)

25 20 21

(i, j − 1) (i, j) (i, j + 1)

24 23 22

(i+ 1, j − 1) (i+ 1, j) (i+ 1, j + 1)

Neighbourhoods of extreme cells are taken care of by bc. In fixed bc, the extreme

3



cells are connected to −1 or +1 state. If it is connected to +1 state, it is called fixed

+1 bc (f1bc) and if it is connected to −1 state, then it is called fixed -1 bc (f-1bc).

If the extreme cells are adjacent to each other then it is called periodic bc (pbc). In

adiabatic bc (abc), the extreme cells replicate its state and in reflexive bc (rbc), mirror

states replace the extreme cells.

Below we show how a composite rule like Rule170 can be calculated by using the

basic rules (Example 1 ) and in next example, we show how Rule2 is applied to a matrix

of dimension 3× 3 with rbc Example 2 [18].

Example 1 Rule170 can be uniquely expressed in terms of the basic rule matrices as

follows:

170 can be expressed as

170 = 21 + 23 + 25 + 27.

Rule170 = Rule2 + Rule8 + Rule32 + Rule128.

Example 2 Transformation of a particular 3×3 matrix by applying Rule2 with rbc is

given as:






−1 1 −1

1 −1 1

−1 −1 1






−→







1 −1 1

−1 1 −1

−1 1 −1







If the same rule is applied to all the elements of the matrix, then it is called

uniform CA and if different rules are applied to all the elements of the matrix or block

of elements then it is called nonuniform CA. At different time intervals, if different

rules are applied to the matrix then it is called varying CA e.g., probabilistic CA. With

the application of these rules, elements (states) of the matrix changes at successive

intervals as shown in the following equation.

st+1
N×N = f(stN×N , t) (2.1)

st+1
N×N = f t

N×N♦stN×N

where f is a time varying rule and ♦ represents a binary operation.

3 Implemetation of isotropic 2d Ising model

Consider a square lattice (s) with N rows and N columns. Lattice has then N2 sites.

Each of the site sij, i, j = 1, . . . , N has one of the ±1 spin, which are two states in CA.

So, there are 2N
2
spin configurations. We consider the nearest neighbor interactions,

so the number of neighbor is 4. We include the five different bcs as
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1. pbc : sij+N = sij and si+Nj = sij.

2. abc : sij+N = sij+N−1 and si+Nj = si+N−1j.

3. rbc : sij+N = sij+N−2 and si+Nj = si+N−2j.

4. f1bc : sij+N = +1 and si+Nj = +1.

5. f-1bc : sij+N = −1 and si+Nj = −1.

Average magnetization for the configuration is defined as,

〈M〉 =
N
∑

i,j=1

sij (3.1)

and the average magnetization per spin is given by,

〈m〉 = 〈M〉
N2

(3.2)

Energy for the configuration s is defined as,

E(s) = −J

2

N
∑

i,j=1

sijRule170(sij) (3.3)

Here, Rule170(sij) is a four neighbourhood matrix that interacts with sij . The factor

of 1/2 has been put to remove the double counting of energy otherwise the interacting

energy will be computed twice. Jij = J (isotropic) for 4 neighbours, or else, Jij = 0.

The configuration energy per spin is

〈e〉 = E(s)

N2
(3.4)

For updating the lattice in next iterartion, we use the probabilistic approach by

constructing a probalistic CA. We use following procedure.

First we calculate the change in energy, ∆E(st) = E(st)− E(st−1) i.e., the energy

difference at successive time intervals. We do not consider the case when ∆E < 0,

because it is obvious that after a finite time, system falls to ground state, and there can

not be a state with lower energy. In our approach, we consider always E(st) ≥ E(st−1).

Next we calculate the probability of each spin of the spin configuration s at time t

(which is the number of iteration) of each of the site by using the Boltzmann factor

pt =
p(E(st))

p(E(st−1))
= e

−
∆E(st)
kBT (3.5)

With the above probability for each site, we construct a probability weighted matrix.

This matrix leads to our probabilistic CA matrix (PCAt) by comparing with a random

matrix and multiplying by a probability factor 0.1 to normalise the rule.
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Successive spin configurations are obtained from

[st+1
ij ]N×N = [PCAt

ij]N×N [s
t
ij]N×N (3.6)

After a finite iterartion we calculate the enegry of the system (e), magnetisation,

susceptibility (χ), specific heat (Cv) and entropy (S), where,

χ =
N2

kBT
(
〈

M2
〉

− 〈M〉2) (3.7)

Cv =
N2

kBT 2
(
〈

E2
〉

− 〈E〉2) (3.8)

S = −kB(r1P1 log2 P1 − r2P2 log2 P2) (3.9)

Where r1 is the total number of spin up states, r2 is the total number of spin down

states, P1 is the probability of spin up states and P2 is the probability of spin down

states in the lattice s. Our probabilistic CA matrix updates in successive time and

every spin that is updated in the direction of higher energy will be unflipped in the

next iteration. This algorithm checks the time complexity better than the Metropolis

algorithm [5] that transits one spin at a time.

4 Simulation results and discussions

In this work, we have considered square lattice of different sizes with J = 1 and kB = 1.

We do not consider external magnetic field H . Here, temperature T ranges from 0.1

to 5.0. We have carried the simulation with all the three initial conditions and with all

five bcs. The optimal lattice size and maximum iteration are decided by the simulation

result, which is relevant to study the phase transition.

4.1 Simulation to find maximum iteration

In this simulation, we have found the maximum iteration time (tmax) by applying our

transition rule to compare between different bcs and for claculation of magnetisation

per site m, enegry per site e, χ, Cv and S. For our initial guess of tmax = 214, we have

considered lattice sizes 4 × 4, 8 × 8, 16 × 16, 32 × 32, 64 × 64 and 128 × 128 with all

three initial conditions and all the five bcs. In figure 1, with abc, 64×64 and 128×128

lattice sizes show m = 0 after T > Tc i.e., magnetisation curves fluctuate around zero

line. After several runs on different bcs with all three initial conditions, we have found

tmax, by taking lattice sizes 64×64 and 128×128. Here, we have chosen 64×64 lattice

size for less computation.
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Figure 1: Comparison among lattice sizes with randomly oriented spin configuration

as initial condition. Magenta line represents a parallel line to magnetisation per site

at T = Tc.

Similar simulation procedure has been applied to find the optimal tmax with lattice

size is 64× 64 at different iteration tmax i.e., 211, 212, 213, 214, 215 and 216. One of the

simulation result given in figure 2 shows that tmax = 215 is the best.
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Figure 2: Comparison among different tmax with all down spin configuration as initial

condition.
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4.2 Phase transition with pbc, abc, rbc, f1bc and f-1bc

In this simulation, we have considered 64 × 64 lattice size and tmax = 215 with all bcs

and the temperature ranging from 0.1 to 5.0 with increment of 0.1 unit. In figure 3,

we have plotted e vs T , m vs T , m vs e, χ vs T , Cv vs T and S vs T with initial

condition all up with all bcs. Figures 4 and 5 show similar plots with initial condition

all down and random spin configuration respectively. We compare, the simulation

result of magnetisation with all five bcs with all three initial conditions with the exact

solution given by Onsager which are shown in m vs T graphs in figures 3(a), 4(a) and

5(a). Between temperature T = 2 and T = 2.5, one finds that the enegry gradually

increases, magnetisation gradually decreases to zero. The susceptibility and specific

heat also change, initially they increase upto to Tc and then start decreasing as shown

in figures 3(d), 4(d), 5(d) and 3(e), 4(e), 5(e) respectively. Entropy gradually increases

between tempearture T = 2 and T = 2.5 and the stays at maximum which are shown

in figures 3(f), 4(f) and 5(f). So, a phase transition is clearly visible in between T = 2

and T = 2.5 with all three initial conditions with all five bcs. In m vs e graphs

shown in figures 3(c), 4(c) and 5(c), the higher density states indicate four states.

We find two low temperature ground states around (M = ±1, E = 4) with all three

initial conditions and all five bcs. The high temperature phase is centered at (M = 0,

E = 1) with all three initial conditions with all five bcs. Then the other state is around

(M = 0, E = 3.5), which is a low-temperature metastable states with all five bcs and

this happens only in case of random initial condition. With initial condition all up

spins and f-1bc, one can find ground state at (M = −1, E = 4) and for other bcs at

(M = +1, E = 4) and with initial condition all down spins and f1bc, one can find

ground state at (M = +1, E = 4) and for other bcs at (M = −1, E = 4).

5 Comparison among boundary conditions

Starting with three different initial conditions, from figure 2, one finds that the magneti-

sation meet the zero line after T > Tc differently in all bcs. In each bc, the simulation

with different initial conditions, meet the zero line after T > Tc differently which is

close to exact solution Tc.

With one simulation for all bcs, it is not possible to predict which bc is closer to

Tc. So, we analyse the points for magnetisation in the range −0.1 ≤ m ≤ 0.1 and

−0.2 ≤ m ≤ 0.2 which are close to the zero line of magnetisation (where magnetisation

is zero) after T > Tc. We call such points as converging points.

For the above purpose, we have taken different lattice sizes ranging from 5 × 5

to 60 × 60 with increment of 5; from 60 × 60 to 100 × 100 with increment of 10 and

temperature ranging from 0.1 to 5.0 with small increment of 0.05 units. Figure 6 shows
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Figure 3: Initial condition with all up spin configuration for all five bcs.
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Figure 4: Initial condition with all down spin configuration for all five bcs.
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Figure 5: Initial condition with random spin configuration for all five bcs.
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converging points in the above mentioned range of m. We have counted the number

of coverging points as defined above. Their average percentage are shown in table 2,

table 3 and table 4 by taking average of ten simulation result of each bc with three

different initial conditions.
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Figure 6: Converging points of bcs for 20 × 20 lattice size after T > Tc. Red lines

are for magnetisation m = +0.2 and m = −0.2 and blue lines are for magnetisation

m = +0.1 and m = −0.1 with the initial condition of random spin configuration.

Lattice size ≤ 30× 30 with pbc, abc and rbc, one finds more convergent points in

both cases −0.1 ≤ m ≤ 0.1 and −0.2 ≤ m ≤ 0.2 than f1bc and f-1bc but among the

three with rbc shows more converging points in all three initial conditions. With lattice

size between 30× 30 and 70× 70 with pbc, abc, rbc, one finds more convergent points

in both the cases −0.1 ≤ m ≤ 0.1 and −0.2 ≤ m ≤ 0.2 in comparison to f1bc and

f-1bc with random initial case. For all initial cases with −0.1 ≤ m ≤ 0.1, the result is

better for pbc, abc and rbc. For −0.2 ≤ m ≤ 0.2, the results are better for f1bc with

initial condition all down spins and f-1bc with initial condition all up spins. For lattice

size greater than 70× 70 and less than equal to 100× 100 with initial conditions of all

up spins and f-1bc and initial condition of all down spins and f1bc, one observe more

converging points in both cases −0.1 ≤ m ≤ 0.1 and −0.2 ≤ m ≤ 0.2. For random

initial condition with pbc, rbc and abc, one finds more converging points in both the

range of magnetisation per site.

6 Conclusion

We have observed a phase transition with all the bcs with all initial conditions around

the critical temperature Tc. We have thus observed that with different initial conditions
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on different lattice sizes (≤ 30× 30), one can take care of boundary spins by not only

pbc but also by abc and rbc. Further in our analysis, rbc shows best result among them

in the average case of lattice size ≤ 30 × 30. And for lattice size greater than 70× 70

with f1bc and f-1bc are best to use than other bcs in case of initial spin configuration

with all up or all down spins. In case of random initial spin configuration, it is better to

use either pbc, abc or rbc when the lattice size less than equal to 100×100. Further one

can study the behaviour of all five bcs for lattice size > 1002 with all initial conditions.

From the simulation point of view, our method takes lesser time than the Metropolis

algorithm [5]. This observation is expected to find the approximate values of critical

exponents more accurately which we plan to study next. We can check the simulation

time by generating random numbers through CA and also we can find a deterministic

CA for this purpose.
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Table 2: Percentage of converging points among bcs for initial condition all spins up

Lattice size m pbc abc rbc f1bc f-1bc

5× 5 ±0.1 22.2 26.4 23.8 13 14.6

±0.2 21 22 28.4 14 14.2

10× 10 ±0.1 25.8 25 26.2 11 11.8

±0.2 21.6 25 24.8 14.4 12.8

15× 15 ±0.1 26.4 27.6 25.2 11 10

±0.2 23.2 23.2 23.8 14 15.2

20× 20 ±0.1 23.6 24.6 26.4 13.2 11.8

±0.2 22.4 22.4 23 16 16.2

25× 25 ±0.1 24 23.8 22.8 14.6 14.6

±0.2 21.8 21.4 21.4 17 18.2

30× 30 ±0.1 22.2 24 22.6 14.6 16.8

±0.2 20.8 21 21 16.8 20.4

35× 35 ±0.1 22.4 22.6 22.2 14.8 17.8

±0.2 19.8 20.2 20.8 18 21.6

40× 40 ±0.1 22.4 21.8 21.2 16.2 19.2

±0.2 20.4 20 20.2 17.8 22.2

45× 45 ±0.1 21.8 21.6 21.8 16.8 18.6

±0.2 20.4 20 20 18 22

50× 50 ±0.1 20.8 21.2 20.6 16.8 20

±0.2 20 20 20 18.4 22

55× 55 ±0.1 20.4 21.2 21.4 17.4 19.4

±0.2 19.8 19.8 19.8 18.8 21.6

60× 60 ±0.1 20.8 20.8 20.8 17.8 19.6

±0.2 20 19.8 19.8 18.8 21.6

70× 70 ±0.1 20.4 20.2 20.2 18.4 20.4

±0.2 20 20 19.8 19 21.6

80× 80 ±0.1 20.4 19.8 20.2 18.4 21.2

±0.2 19.8 19.8 19.8 19.2 21

90× 90 ±0.1 20 20 20.2 18.8 21.2

±0.2 20.2 19.8 20 19 21.2

100× 100 ±0.1 20.4 20 19.8 18.4 21.2

±0.2 20 19.8 20.4 19 21
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Table 3: Percentage of converging points among bcs for initial condition all spins down

Lattice size m pbc abc rbc f1bc f-1bc

5× 5 ±0.1 30.8 26.5 16.4 12.6 14

±0.2 25.2 24.4 20.6 14.4 15.4

10× 10 ±0.1 21 25 29.8 11.6 12.6

±0.2 22 25.6 25.6 13.6 13.4

15× 15 ±0.1 22 26 25.6 15.6 11

±0.2 22.8 23 24 15.6 14

20× 20 ±0.1 24.4 25.2 26.2 12.4 11.6

±0.2 22 23 23.2 16.8 15

25× 25 ±0.1 23.6 23.4 25.8 15.6 12

±0.2 21.6 20.8 22.2 18.6 16.6

30× 30 ±0.1 23.6 22.2 22.8 16 15.6

±0.2 20.8 20.4 21.2 20.6 17.4

35× 35 ±0.1 22.6 21.4 22.6 17 16

±0.2 20.6 20 20.6 21.6 17.6

40× 40 ±0.1 21.2 21.6 22.6 19 15.8

±0.2 19.8 20 20.4 21.6 18.2

45× 45 ±0.1 22.2 21.6 21.4 18.8 15.6

±0.2 20 20 20.4 21.8 18

50× 50 ±0.1 21.2 21.2 21.4 19.8 16.4

±0.2 19.6 20.2 20.2 21.8 18.6

55× 55 ±0.1 21.2 21.2 21 20 16.6

±0.2 19.8 19.8 19.8 22 18.8

60× 60 ±0.1 21 20.8 20.4 20.6 17.2

±0.2 19.6 20 20 21.6 18.8

70× 70 ±0.1 20.4 20.2 20.4 21 18.4

±0.2 20 20 19.8 21.4 19

80× 80 ±0.1 19.4 20 20.2 21.6 18.8

±0.2 20 20 19.6 21 19.2

90× 90 ±0.1 20.2 19.8 20 21.4 18.6

±0.2 20 20 19.8 21 19

100× 100 ±0.1 20.2 20 20.2 21.4 18.2

±0.2 20 19.8 20 21 19.2
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Table 4: Percentage of converging points among bcs for initial condition all spins

random

Lattice size m pbc abc rbc f1bc f-1bc

5× 5 ±0.1 20.2 24.2 34 8.8 12.8

±0.2 21.6 20 31.6 12.4 14.4

10× 10 ±0.1 26.4 25.4 27 12.6 8.8

±0.2 23.6 24.6 25.6 13.6 12.8

15× 15 ±0.1 25.6 24 26 12.4 12.4

±0.2 24.4 23.6 24.2 12.8 14.8

20× 20 ±0.1 25.2 24 25.6 12.6 12.8

±0.2 23.6 22.6 23.2 15.8 14.6

25× 25 ±0.1 24 25.4 23.6 13 14.6

±0.2 21.2 22.8 22.4 15.8 18

30× 30 ±0.1 24.2 24.2 23 14.6 14.4

±0.2 21 21.6 21.6 18 17.8

35× 35 ±0.1 23.8 22.2 24.6 14.6 14.2

±0.2 21.2 21.6 22 17.4 17.6

40× 40 ±0.1 23 22.4 23.8 14.8 15.4

±0.2 21.4 20.6 21.6 18.2 18.2

45× 45 ±0.1 23.2 22.4 23.2 16.6 15.2

±0.2 21.4 21 21.8 18.2 18

50× 50 ±0.1 22.2 23 23 16 16

±0.2 20.6 20.8 20.8 18.6 18.8

55× 55 ±0.1 22.8 22.6 23 16.2 15.8

±0.2 20.8 20.8 21 18.8 18.4

60× 60 ±0.1 22 22 21.4 17.6 16.8

±0.2 20.8 20.8 20.8 19.2 18.4

70× 70 ±0.1 21.2 21.4 22 17.6 18

±0.2 20.6 20.6 20.8 19.4 19.2

80× 80 ±0.1 21.4 21.2 21.4 18.4 17.6

±0.2 20.2 20 20.2 19.6 19.6

90× 90 ±0.1 21.2 21.2 21.2 18.2 18

±0.2 20.2 20.2 20 19.6 19.2

100× 100 ±0.1 20.8 20.8 20.8 18.8 18.8

±0.2 20 20 20 19.8 19.6
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