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ABSTRACT

Aims. Within a cluster, gravitational effects can lead to the removal of stars from their parent galaxies and their subsequent dispersal
into the intracluster medium. Gas hydrodynamical effects can additionally strip gas and dust from galaxies; both gas and stars con-
tribute to intracluster light (hereafter ICL). The properties of the ICL can therefore help constrain the physical processes at work in
clusters by serving as a fossil record of the interaction history.
Methods. The present study is designed to characterise this ICL for the first time in a ∼1014M� and z∼0.53 cluster of galaxies from
imaging and spectroscopic points of view. By applying a wavelet-based method to CFHT Megacam and WIRCAM images, we detect
significant quantities of diffuse light and are able to constrain their spectral energy distributions. These sources were then spectroscop-
ically characterised with ESO Multi Unit Spectroscopic Explorer (MUSE) spectroscopic data. MUSE data were also used to compute
redshifts of 24 cluster galaxies and search for cluster substructures.
Results. An atypically large amount of ICL, equivalent in i’ to the emission from two brightest cluster galaxies, has been detected in
this cluster. Part of the detected diffuse light has a very weak optical stellar component and apparently consists mainly of gas emission,
while other diffuse light sources are clearly dominated by old stars. Furthermore, emission lines were detected in several places of
diffuse light. Our spectral analysis shows that this emission likely originates from low-excitation parameter gas. Globally, the stellar
contribution to the ICL is about 2.3×109 yrs old even though the ICL is not currently forming a large number of stars. On the other
hand, the contribution of the gas emission to the ICL in the optical is much greater than the stellar contribution in some regions,
but the gas density is likely too low to form stars. These observations favour ram pressure stripping, turbulent viscous stripping, or
supernovae winds as the origin of the large amount of intracluster light.
Since the cluster appears not to be in a major merging phase, we conclude that ram pressure stripping is the most plausible process
that generates the observed ICL sources.
Conclusions. This is one of the first times that we are able to spectroscopically study diffuse light in such a distant and massive
cluster, and it demonstrates the potential of MUSE observations for such studies.

Key words. galaxies: clusters

1. Introduction

The diffuse light within a galaxy cluster, often called intracluster
light (ICL), is a fossil record of the formation, accretion, and in-
teraction history of the cluster (e.g. Guennou et. al., 2012). It has
been known for some time that galaxies in clusters have different
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and Paranal Observatories under programmes ID 191.A-0268 and 60.A-
9302.

properties (morphology, star formation rate, colour, etc.) from
several galaxies of similar mass in the field (Dressler et al. 1980,
1997; Weinmann et al. 2006). Physical processes could drive
these differences, but luckily, as galaxies are accreted and orbit
within a cluster, each physical process may leave characteristic
low surface brightness signatures. Gravitational effects, includ-
ing mergers and low-energy interactions (Mihos 2004, 2005),
tidal stripping (Henriksen & Byrd, 1996), and high-speed ha-
rassment (Moore et al. 1998), will strip or eject stellar material
into the intracluster medium (ICM). This was recently statisti-
cally studied within the CLASH sample (Postman et al. 2012)
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by Burke et al. (2015), who concluded that the growth of stellar
mass in the ICL is larger than can be provided by the brightest
cluster galaxy (BCG hereafter) close companions, and that the
majority of the ICL mass must come from galaxies which fall
from outside of the core of the clusters. This would be in agree-
ment with De Maio et al. (2015) who used the same sample to
conclude that the ICL is built up by the stripping of galaxies
that are not too faint, and disfavoured significant contribution
to the ICL by dwarf disruption or major mergers with the BCG.
Alternatively, hydrodynamical effects such as ram pressure strip-
ping of cold disk gas and dust (Gunn & Gott 1972) can also pol-
lute the ICM with gas that may become the material of future
in situ star formation. We note, however, that studies such as
Melnick et al. (2012) clearly do not favour a very intense in situ
star formation. Excitation processes within this gas may lead to
detectable emission lines within the ICL.

Current observations of ICL have shown that there are large
stellar streams that provide one viable input mechanism to the
ICL (Rudick et al., 2009), but only a handful of such streams are
known (e.g. Coma, Centaurus, Virgo, Perseus, Norma) and the
total amount of ICL is almost always equivalent at maximum
to a few L? galaxies in massive clusters (e.g. Guennou et al.
2012). From a general point of view, the ICL contribution to the
cluster luminosity is less than a few dozen percentage points. For
example, using Type Ia supernovae, Sand et al. (2011) estimated
in a large cluster sample the intracluster (intergalactic) stellar
mass to be of the order of 16% of the total cluster stellar mass.
Gonzalez et al. (2007) found a value of 19% when expressed
with the similar conventions as in Sand et al. (2011).

Most of the literature studies of the ICL are based on imag-
ing surveys. There are, however, some noticeable exceptions, for
example in Melnick et al. (2012). These authors used a z=0.29
cluster of galaxies (RXJ0054.0-2823) and stacked several spec-
tra from four different places in the cluster; however, this study
was forced to use the ICL and the BCGs together and to rely
on the surface brightness profiles to delineate the boundaries be-
tween the two components. The ICL component was assumed to
be located at more than ∼50 kpc from the BCGs (but a signifi-
cant contamination by a BCG is still possible). They found that
the majority of the ICL stars in this cluster are old, but with high
metallicities probably related to the fact that the considered clus-
ter has three interacting giant elliptical galaxies. Interestingly,
they also found a 408±20 km/s velocity dispersion for the ICL
very close to the cluster velocity dispersion itself and signifi-
cantly larger than the BCG velocity dispersion. This also puts
the BCG-independent nature of the ICL on firmer ground. They
finally detected extremely weak [OII] and [OIII] emission lines
with intensity ratios that might be consistent with those of metal
rich HII regions.

The present paper is based on the detection in the XXL
Survey (Pierre et al. 2015, hereafter XXL paper I) of a clus-
ter, XLSSC 116, at z=0.534 with an exceptional amount of ICL
compared to other studied clusters in the literature; in this cluster
this is equivalent to almost two brightest cluster galaxies (BCG
hereafter) in the i’ band, which is nearly ten times larger than
normally observed. The existence of such a system is puzzling
in the common scenarios of ICL formation (e.g. Guennou et al.
2012). While ICL is expected to be efficiently formed in clus-
ters/groups, the amount observed in XLSSC 116 is exceptional
and likely indicates recent strong dynamical interactions within
the cluster. Such strong interactions may result from a high de-
gree of substructure merging within a young cluster containing
a low-temperature intracluster medium. Alternatively, such in-
teractions may take place in a merging system with a currently

shallow potential well, where the encounters are slower than nor-
mal owing to the lower characteristic velocity dispersion.

The present study is designed to characterise the ICL using
both imaging and spectroscopy for the first time in a massive and
distant cluster of galaxies. We will investigate the relative con-
tribution of old stars, presumably stripped from the interacting
galaxies, and the in situ intracluster star formation. While we
expect that the first contribution will be dominant, the second
seems to have been observed in Virgo (Verdugo et al. 2015).

We first describe the cluster from an X-ray point of view. In
Section 3 we discuss the optical broadband data and the subse-
quent detection/characterisation of the diffuse light. Sections 4
and 5 describe the Multi Unit Spectroscopic Explorer (MUSE)
measurements and the characterisation of the cluster ICL.
Finally, we conclude in Section 6.

We adopt the standard concordance cosmological model
(H0=72 km s−1 Mpc−1, ΩΛ = 0.74, ΩM = 0.26).

2. XLSSC 116 from an X-ray point of view

Our target is a cluster of galaxies detected in the XXL Survey
(XXL paper I) as a significant extended X-ray source. This is
not one of the most significant clusters (only C2 class, see XXL
paper I), and is not part of the 100 brightest XXL clusters (see
Pacaud et al. 2015, hereafter XXL paper II 1). However, it visu-
ally exhibits a very large amount of diffuse light (see below) and
so has probably experienced an unusual evolution. This source
is probably affected by non-thermal emission because the galaxy
dominating the cluster is detected as a radio source (potentially
coinciding with NVSS J021039-055637, later identified with
FIRST data at 02h10m39.7sec -05deg56′36.9′′ with a possible
extension of ∼1.5′′), and it was confirmed as a cluster at z∼0.53
(with the redshift of the BCG) in the course of the general XXL
follow-up (WHT observations; see Koulouridis et al. 2015, here-
after XXL paper XII, for details on observations and data reduc-
tion). It was previously detected as a candidate cluster in the op-
tical with a photometric redshift of 0.47 by Durret et al. (2011:
W1-0957).

2.1. X-ray morphology of the XLSSC 116 cluster

Figure 1 shows surface brightness contours of the galaxy clus-
ter in three X-ray bands: [0.3-0.5], [0.5-2] (usual soft energy
band encompassing most of the Bremstrahlung emission) and
[2-10] keV. Despite the limited number of X-ray counts in each
band and the size of the XMM point-spread function (PSF),
surface brightness contours may reveal a bimodality of the ex-
tended emission. Lower-temperature gas (more prominent in
[0.3-0.5] keV) is shifted with respect to the hotter phases. The
[0.5-2] keV contours are elongated and show an 11 ′′ offset be-
tween the surface brightness peak and the BCG (∼70 kpc at the
clusters redshift). In order to put error bars on the separation,
we randomly eliminate one thousand times 50% of the counts in
the 0.5-2 keV bandpass and recalculate the centroid each time.
The distribution of separations in these trials gives a measure of
the uncertainty. Assuming Poisson statistics, the 1σ uncertainty
using all counts is ∼5′′. This 11±5 ′′ shift is relatively impor-
tant (e.g. Adami & Ulmer 2000), potentially indicating that the
cluster has a complex formation history. The other considered
X-ray bands are also shifted with respect to the BCG position,

1 XXL 100 brightest cluster data are available in computer read-
able form via the XXL Master Catalogue browser http://cosmosdb.iasf-
milano.inaf.it/XXL
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but the shifts are smaller and not significant given the data avail-
able. Unless the X-ray emission is contaminated by a faint, unre-
solved, point-source, this peculiar morphology may support the
picture of different gas phases in the process of merging. We
note, however, that the typical intrinsic XMM PSF width where
the cluster is located is of the order of 8 ′′, resulting in a 9.4′′ total
uncertainty at this place. Higher resolution X-ray data (Chandra)
would therefore be necessary to more efficiently discriminate be-
tween the different regions presently considered.

Fig. 1. Upper figures: X-ray morphology of XLSSC 116 as a
function of energy band. The image is CFHT-LS i′ with X-ray
contours overlaid. Crosses indicate the position of the surface
brightness peak in each selected sub-band. The right panels show
three point-sources in the vicinity of XLSSC 116 with spatial
scales and contour levels matching those of the main image.
They illustrate the size of the XMM-Newton PSF at the location
of the cluster. We note the presence of a point-source in the [2-
10] keV band west of the cluster centre. This source is masked
out in the X-ray analyses. Lower figure: zoom on the same i′
image with Serna-Gerbal substructure 1 shown as red squares
and substructure 2 shown as blue squares (see below). Galaxy
redshifts are also shown.

2.2. X-ray spectral analysis of the XLSSC 116 cluster

The X-ray spectrum is extracted in a region of radius 90′′ around
the BCG position. This corresponds to slightly larger than r500
(see below), that includes the densest parts of the cluster. It con-
tains 806 net counts (thermal + non-thermal emission) in [0.3-
10] keV. We used XSpec (Arnaud 1996) to compute best-fit val-
ues and confidence intervals.

We first fit the spectrum with a single-temperature APEC
plasma model, fixing the metallicity abundance to 0.3 solar
(Grevesse & Sauval, 1998), and we obtain a best-fit tempera-
ture of 2.0+1.3

−0.5 keV. Since r500 ∼ 520kpc ≡ 83 ′′ at the cluster
redshift (from Sun et al. (2009) T − r500 relation, and assuming
T = 2 keV), this temperature measurement roughly corresponds
to T500.

If we perform a similar fit with the metallicity parameter
(abundance) left free, we find a best-fit at T = 2.1+1.3

−0.7 keV and
Ab = 0.3 (abundance in solar units), but we cannot assign error
bars to the metallicity parameter given the uncertainties in the fit
that are too large.

A double-component APEC model fit with different tem-
peratures and normalisations, both at fixed Ab = 0.3 solar,
gives a valley of minima for temperatures T1 ∼ 2 keV (resp.
T2 ∼ 2 keV), corresponding to the previous case where the nor-
malisation of component 2 (resp. component 1) is set to zero.
More interestingly, we find a best-fit solution at T1 = 0.3 and
T2 = 2.1 keV (the two black dots with error bars in figure 2).
Although the significance is low, this finding again supports the
case for a bimodal gas distribution, with one cooler substructure
merging into a hotter, 2 keV cluster. According to these spec-
tral models, the cooler component accounts for 10% of the total
system luminosity within a 90 ′′ (560 kpc) projected radius.

We measure a [0.5-2] keV count-rate of 0.0198 cts.s−1

(±23%) in this radius, which translates into a galactic absorbed
flux f[0.5−2] = 1.8 × 10−14 ergs/s/cm2 (±23%). This value corre-
sponds to a rest-frame [0.5-2] keV luminosity L[0.5−2]

500 = 2.0 ×
1043 ergs/s and a bolometric luminosity Lbol

500 = 4.7× 1043 ergs/s.
The position of the cluster in the luminosity-temperature plane is
fully compatible with recent findings from the literature (Fig. 2).

3. CFHTLS and WIRCAM broadband data: diffuse
light detection and spectral energy distribution
fitting

3.1. Optical imaging data

The cluster is located in the CFHTLS W1 field, providing u*,
g’, r’, i’, and z’ data. We refer the reader to Coupon et al.
(2009) for details. The limiting magnitude of these images is
u*AB=26.3, g’AB=26.0, r’AB=25.6, i’AB=25.4, z’AB=25.0, and the
the pixel scale is 0.187′′. In addition, we collected our own
CFHT/WIRCAM Ks data (subject of a future paper). Briefly,
they were obtained as 2×525 seconds pointings with each point-
ing consisting of 21 dithers with 25 seconds of exposure per
dither, for a total exposure time of 1050s. Data were reduced by
the standard TERAPIX pipeline and presented as 1 deg2 tiles
projected astrometrically onto CFHTLS optical images (same
pixel scale). The depth is close to Ks AB=22 (5σ level) in a Kron-
type aperture.

Fig. 3 shows the galaxy colour magnitude relation in a 5′
square around the XLSSC 116 cluster centre. We clearly see a
narrow red sequence. Only five galaxies that are spectroscopi-
cally classified as cluster members (see below) are bluer than this
red sequence. Of these, two are close to the BCG, well within
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Fig. 2. Position of XLSSC 116 in the soft-band luminosity ver-
sus temperature plane (red dot with error bars). Grey points are
measurements from the XXL 100 brightest cluster sample (Giles
et al. 2015, hereafter XXL paper III). The straight line represent
the scaling relation from XXL paper III fitted to the XXL 100
sample (forced to self-similar evolution). Black dots with error
bars correspond to the two-component APEC fit to the cluster
spectrum, possibly indicating the presence of two structures. The
low temperature point has no temperature error-bar because we
cannot constrain it owing to the small number of photons.

the diffuse light region. The BCG is the brightest cluster mem-
ber galaxy, but it is very different from a typical cD galaxy, as
we show later using the MUSE spectra.

3.2. Diffuse light detection

To detect the diffuse light, we applied the same tool as in Adami
et al. (2013) and Guennou et al. (2012). This is a wavelet-based
method (the OV WAV package, see e.g. Pereira 2003; Da Rocha
& Mendes de Oliveira 2005). OV WAV is a multiscale vision
model (e.g. Rué & Bijaoui 1997). We briefly outline the main
steps of the method. After applying a wavelet transform to an
observation, the tool identifies the statistically significant pixels
in the wavelet transform space (at the 5σ level in our case). To
define the objects, it groups pixels in connected fields for each
scale. After the construction of an inter-scale connectivity tree,
fields with connected pixels across three or more scales are iden-
tified and associated with the objects.

We detected small-scale objects (typically the galaxies) in
the sky image to produce our object image. We considered char-
acteristic scales between 1 and 512 pixels in wavelet space (the

Fig. 3. g’-r’ versus r’ for the CFHTLS objects in a 5′ square
(allowing a ∼1 Mpc radius at the cluster redshift) around the
XLSSC 116 cluster centre. Points are all the detected objects;
filled circles are the galaxies with a MUSE measured spectro-
scopic redshift (red: SG substructure1, blue: SG substructure2,
see Section 4.2). The large blue octagon is the sum of all the
diffuse light components in the cluster.

1024 pixel scale as in Guennou et al. 2012 did not provide any
additional detection). The object image was then subtracted from
the sky image to produce the residual image. This residual im-
age includes both hidden features that are typically too faint to
satisfy the wavelet first-pass thresholding conditions and the dif-
fuse light patches, which are too faint to be detected as objects.
We did not have to use a second iteration of this process as in
Guennou et al. (2012) as the data were of sufficient quality to
detect all objects of interest in the first pass.

In a second step we searched for what we call the significant
ICL sources, i.e. extended low surface-brightness features in the
residual image. These features were detected in this image by
considering the pixels where the signal is larger than 2.5σ with
respect to 20 empty areas of the residual image. These sources
were visually inspected to remove obvious numerical residuals
of bright saturated Galactic stars or defects due to image cos-
metics. These numerical residuals are described in Adami et al.
(2013); briefly, they can be modelled by Sinc functions, which
are negligible in intensity in the present case because the consid-
ered point sources are faint.

This exercise was done independently with the u*, g’, r’, i’,
z’, and Ks images. We show in Figs. 4 and 5 the results in the six
available bands. Essentially, we detect a complex source of ICL
in which several galaxies are embedded. This source (union of
all ellipses in figs. 4 and 5 and union of regions 1 and 2 in figs. 12
and 13) is ∼60×180 kpc in size, which is very large compared to
the typical ICL sources found by Guennou et al. (2012). Indeed,
it is even larger than the plume detected in the Coma cluster
by Gregg & West (1998) or the diffuse light regions in Norma
described in Fumagalli et al. (2014).

We measured the source total magnitudes in the several
available bands by integrating the flux of the residual images in
the pink ellipses in Figs. 4 and 5. The size of these ellipses were
adapted to the depth and quality of each band in order to best en-
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close the 2.5σ detection area. We note that the fluxes in the dif-
ferent bands were not measured in exactly the same regions be-
cause the different considered bands do not have the same depth
or quality. For example, the u* and Ks bands are much shallower
than other optical bands, so considering exactly the same areas
would lead to including significant noise in our flux estimates.
The magnitudes are compiled in Table 1, and clearly show an
extraordinary amount of ICL. We compared these magnitudes
to the magnitude of the BCG in each of five optical bands and
found that the ICL has more than 2 times the flux of the BCG in
g’, r’, i’, or z’.

To the best of our knowledge, this is the first time such a
system has been detected. Even the very high concentration of
ICL detected at z∼2.1 in the CL J1449+0856 cluster (Adami et
al. 2013) is far from being at the same level. Moreover, ICL in
the XLSSC 116 cluster is clearly visible up to 130 kpc from the
cluster centre, a feature that is also quite rare in clusters.

We will now fit spectral energy distribution (SED hereafter)
models on the diffuse light.

3.3. SED fitting

The next obvious step is to fit a SED to the measured ICL magni-
tudes. We assume that the ICL source is related to the cluster and
therefore has a redshift of 0.534 (confirmed in the following).
We used the LePhare SEDfitting tool (Arnouts et al. 1999, Ilbert
et al. 2006) and fixed the redshift to the known value. We used
the Cosmos survey templates (Ilbert et al. 2009) to estimate the
closest galaxy type, and the Bruzual & Charlot templates (2003)
to estimate the stellar population age, stellar mass, and the star
formation rate (SFR). We allowed discretised E(B-V) values be-
tween 0 and 1.0 with a 0.025 step. Uncertainty on E(B-V) was
incorporated into the uncertainties given in Table 2. We also re-
fer the reader to Ilbert et al. (2010: their Appendix D and section
4.1) for details on how the mass-to-light ratios were taken into
account in the method. For reference, we also give in Table 2 the
resulting stellar-mass-to-light ratios in the Ks band for the BCG
and the ICL. We note here that the ICL stellar-mass-to-light ra-
tio is only valid for the total amount of ICL and not for its sep-
arate components (see below). We also note that we would need
deeper Ks images in order to have a more precise value of the
Ks-band stellar-mass-to-light ratio for the ICL, given the very
low surface brightness of the ICL features (see e.g. fig. 5).

In Fig. 6 we show the best-fitting SED, and Table 2 gives
the characteristics of the ICL. We see that the ICL is well mod-
elled by an early-type elliptical galaxy SED. We note that this
does not conflict with having ICL emission lines in addition to
this elliptical galaxy SED because wideband photometry is only
weakly sensitive to narrowband emission lines.

The age of the ICL stellar population is 2.3 Gyr with an un-
certainty allowing ages between 1 and 6 Gyr. The SFR is poorly
constrained and is likely of the order of 5 M� / yr, but could be
as low as 0.07.

A common criticism of ICL searches is that it is often dif-
ficult to discriminate between the BCG halo and the ICL itself.
However, in the present case we note that given the ICL exten-
sion, there is no way to have such an extended BCG halo. Thus,
it is likely that the diffuse light is only mildly contaminated by
the BCG halo.

We have previously carried out several simulations (pre-
sented in Guennou et al. (2012) and Adami et al. (2013)) to be
reasonably sure that our data are not heavily polluted by the un-
derlying BCG. However, we perform an additional test in this
paper by analysing the BCG in the same way as the ICL (see

table 2 and Fig. 6). The flux from the BCG was considered in
its TERAPIX/CFHTLS ellipse: 3.5×1.4′′ (∼ 23×10 kpc) ellipse
and with a trigonometric orientation of 311.7 degrees. First, we
note that the BCG is not passive (best type: Sd, high SFR). This
is in good agreement with the galaxy being a radio source (prob-
able) or a UV source (possible): NVSS J021039-055637 and
GALEXASC J021039.47-055645.5 are close to its position (re-
spectively at ∼2′′ and 9′′). We also show the MUSE spectrum
(described below) of the BCG in Fig. 6. The spectrum clearly
shows strong emission lines. This object is clearly forming stars
very actively. We do not have access to the Hα line in the MUSE
spectra, so we cannot directly measure the SFR from this line.
However, using the Moustakas et al. (2010) Sd galaxies (to be
consistent with the best-fit type), we estimated an (Hα)/Hβ ra-
tio of 4.85±0.7. Measuring the flux under the Hβ line in Fig. 6,
translating it into an Hα flux, and using Kennicutt (1998), we
find a spectroscopically estimated SFR of 10.6±1.5 M�/yr. If we
use the [OII] flux, the SFR estimate is 32.3±0.75 M� / yr.

Given their different stellar population ages and SFRs, the
ICL and BCG clearly have different stellar populations. This is
illustrated in Fig. 7, where we have compared our SFR and stel-
lar mass estimates with known literature values from Puech et
al. (2010: emission line galaxies) and Liu et al. (2012: BCGs) at
similar redshifts. The ICL source has a stellar mass typical of the
emission line galaxy sample. The XLSSC 116 BCG has a stel-
lar mass closer to the literature BCGs. Our ICL source seems to
exhibit intermediate characteristics that are between an old and
passive elliptical galaxy and a younger and more active object.
The XLSSC 116 BCG does not seem to be a normal cD galaxy
with a relatively low stellar mass and a high star formation rate.

The estimates presented in this section are, however, only
based on model fitting. We now discuss the MUSE ICL spectra.

4. MUSE data analysis

4.1. MUSE optical spectroscopic data and redshift
measurement

We were awarded four hours of MUSE Science
Verification Time (# 60.A-9302) in order to observe
the cluster using integral-field spectroscopy. MUSE (see
http://www.eso.org/sci/facilities/develop/instruments/muse.html)
is a second generation instrument for the Very Large Telescope
(VLT) and is an integral-field spectrograph operating in the
visible wavelength range. We obtained the data in the wide-field
mode with adaptative-optic mode off, simultaneously covering
a 1×1 arcmin field from ∼480 to ∼930nm with a final spectral
resolution of 1.25Å per pixel. The spatial resolution was of
the order of 0.2′′ before convolution with the seeing, which
varied between 0.85 and 1.2′′ during the June run, and between
0.84 and 1.07′′ during the August run. The observations were
centred on the XLSSC 116 BCG and executed in service mode
during the nights of 25-26 June and 20-22 August 2014. We
obtained four one-hour observing blocks, each consisting of
four exposures separated by 90◦ rotation, to average out the
patterns of the slicers and channels seen by the detector. The
data were reduced following the recipes of the MUSE pipeline,
version 0.18.2. The June data were taken at a temperature
below 7◦, which caused problems with the correct identification
of the 10th slice of IFU no. 6. To obviate the problem, we
followed the workaround recommended in the MUSE cookbook
and used dedicated trace tables. The reduction steps for each
individual exposure included bias, flat-field, wavelength and
flux calibration, and correction for the telluric absorption lines
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Table 1. Magnitudes (not corrected for galactic extinction, which is lower than 0.1 magnitude in the less favourable case) of the
detected ICL source and of the BCG from u* to Ks wavelengths.

u* AB g’ AB r’ AB i’ AB z’ AB Ks AB
ICL 23.58 ± 0.16 21.51 ± 0.14 20.03 ± 0.09 19.40 ± 0.02 19.27 ± 0.03 18.66 ± 0.05

BCG 23.339 ± 0.033 22.429 ± 0.011 21.025 ± 0.006 20.160 ± 0.004 19.823 ± 0.006 17.94 ± 0.05

Table 2. Characteristics of the ICL and of the BCG (type, age, stellar mass, SFR, E(B-V) and stellar-mass-to-light ratios in the Ks
band). We give first the SED-estimated SFR, and then the spectroscopically estimated SFR.

Galaxy type Age log10(Stellar Mass) log (SFR) E(B-V) log M/L Ks
109Gyr M� M� / yr M� / L�

ICL Ell 2.3 [1.1; 5.9] 10.7 [10.5; 10.9] 0.7 [-1.2; 1.3] / 0.11 [0.04; 0.18] 0.10±0.03 0.69 [0.52; 1.10]
BCG Sd 9.3 [7.9; 9.8] 10.9 [10.4; 11.2] 1.9 [1.5; 2.7] / 1.03 [0.96; 1.08] 0.72±0.18 0.71 [0.25; 0.99]

Table 3. J2000 coordinates, redshifts, i’ band magnitude, Serna-
Gerbal substructure number of the CFHTLS objects with a suc-
cessful MUSE redshift measurement, and spectral quality flag
(see text).

RA (2000) DEC (2000) z i’ SG sub. flag
32.6571 -5.9526 0.5363 21.06 1 3
32.6556 -5.9416 0.5328 20.31 1 4
32.6578 -5.9413 0.5308 23.43 1 2
32.6580 -5.9434 0.5263 25.91 1 2
32.6647 -5.9380 0.5299 21.69 1 3
32.6703 -5.9394 0.5315 21.59 1 3
32.6726 -5.9492 0.5334 22.31 1 2
32.6623 -5.9414 0.5394 20.27 2 4
32.6607 -5.9449 0.5382 21.40 2 4
32.6628 -5.9498 0.5345 23.71 1 2
32.6636 -5.9490 0.5288 21.89 1 3
32.6677 -5.9495 0.5314 23.78 1 2
32.6657 -5.9481 0.5394 20.73 2 4
32.6670 -5.9477 0.5294 22.89 1 2
32.6677 -5.9465 0.5391 23.01 2 2
32.6647 -5.9454 0.5327 21.91 1 2
32.6643 -5.9447 0.5344 22.31 1 3
32.6655 -5.9433 0.5345 20.16 1 3
32.6668 -5.9416 0.5323 21.89 1 3
32.6681 -5.9432 0.5328 21.93 1 2
32.6677 -5.9424 0.5317 21.74 1 3
32.6697 -5.9426 0.5336 20.81 1 4
32.6707 -5.9424 0.5338 23.15 1 2

using standard stars and geometric correction. Dedicated sky
observations were taken in an area adjacent to the cluster and
were reduced following the same recipe and were subtracted
from the corresponding science data. The 16 final cubes were
combined using relative RA and DEC offsets, and keeping
the whole wavelength range. The spectra were extracted by
summing all the pixels in several elliptical regions of different
extensions using ds9 (see Table 3 for a list of successful
redshifts). Narrow- or broadband images can be obtained by
collapsing the final cube in the selected wavelength range.

The redshifts were obtained by using the EZ redshift mea-
surement code (Garilli et al. 2010) on the final 1D spectra, al-
lowing an additional smoothing of 3 pixels in order to find the
redshift value more easily when needed. The redshift measure-
ments were done in the same way as for the VIPERS survey (e.g.
Guzzo et al. 2014) and a redshift measurement quality flag was
assigned between 1 and 4. Flag 1 means that we have a 50%
chance of having the correct redshift estimate; flag 2, 75%; flag
3, 95%; and flag 4, more than 99%. We only considered objects

with flags 2, 3, and 4 as successful measurements. Statistically,
this means that we may have three objects with an incorrect red-
shift in Table 3.

A detailed study of the individual galaxy spectra, and their
comparison with other clusters detected in the XXL Survey, will
be undertaken in a future paper following the completion of the
survey spectroscopic follow-up. However, in fig. 8 we show the
mean and median spectra of all the galaxies (excluding the BCG)
spectroscopically measured and found to be inside the cluster.
Each spectrum was put in the rest frame based on the measured
redshift and we computed the mean and median spectrum. This
gives a mean and median view of the cluster galaxy population.
This spectrum is nearly elliptical, with prominent absorption
lines (e.g. H&K), a strong Balmer break, but without any sig-
nificant emission lines. We show later that the BCG has a very
different spectrum. The completeness level, in terms of the per-
centage of galaxies with a successful redshift measurement, is
90% down to i’∼20.5 and 80% down to i’∼22 in the MUSE field
of view.

4.2. Structure of the cluster

Given the number of available spectroscopic redshifts, we can
investigate the presence of possible substructures in the cluster.
To this end, we have applied the Serna-Gerbal (1996, hereafter
SG) hierarchical method already extensively described in several
papers (e.g. Guennou et al. 2014 and references therein). This
method is quite powerful for showing evidence of substructure;
the code also estimates the mass of the substructures. Masses are
computed through a basic version of the virial theorem (neglect-
ing electromagnetic fields and only using classical estimators for
the galaxy velocity dispersion). These estimates suffer from rela-
tively large uncertainties of the order of 4.6 1013 M�. This value
was statistically estimated from the data of Guennou et al. (2014)
by comparing the SG estimates and the masses deduced from
the Giodini et al. (2009) cluster scaling relation. Guennou et al.
(2014), however, also showed that for a given parent-cluster the
relative masses between substructures were still reliable.

More precisely, the SG hierarchical method calculates the
potential binding energy between pairs of galaxies and detects
substructures by taking positions, magnitudes, and redshifts into
account. We required at least four galaxies in a given sub-
structure. The SG method detects two such substructures in the
XLSSC 116 cluster (see table 4). The first substructure has 20
galaxies, an estimated mass of 3×1013 M�, and a velocity disper-
sion of 570 km/s. The second substructure is smaller: 4 galaxies,
and the estimated mass and velocity dispersion are 4×1012 M�
and 170 km/s. This second substructure probably corresponds
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Table 4. Characteristics of SG detected substructures. Mass es-
timates are statistically affected by 4.6 1013 M� uncertainties.

SG number Number of galaxies Vel. dispersion Mass
km/s 1013M�

1 20 570 3
2 4 170 0.4

to the low-temperature component detected in the X-ray data
(the brightest galaxy of this substructure is very close to the X-
ray peak of the low-temperature component; see figure 1) and is
at a greater distance (∼2000 km/s) (see blue solid histogram in
fig. 9).

Galaxies that are members of the two detected substructures
are also well mixed in the cluster red sequence (see fig. 3). We
note that a velocity dispersion of 570 km/s in a relaxed clus-
ter would suggest an X-ray temperature on the order of 2 keV
(Rosati et al., 2002), in good agreement with our X-ray mea-
surements.

5. Nature of the cluster diffuse light with MUSE data

The first question we want to answer concerning the diffuse light
in clusters is whether there is any indication of line emitting gas.
Does the old stellar population of diffuse light (as previously de-
tected) also give rise to intergalactic gas ionisation? Or perhaps
some collisional effects can ionise gas?

The first way to answer is to reconstruct narrowband images
with spectral data centred on major emission lines at the cluster
redshift. Given the available MUSE data, we built [OII] (5699-
5729 A), Hβ (7432-7471 A), and [OIII] (7655-7696 A) images
(lower and upper spectral bounds of these images were chosen
approximately as the mean line wavelength ±2 times the veloc-
ity dispersion of the main cluster structure detected below). This
gives evidence of a new diffuse light region completely invisi-
ble in any of the broadband images directly south of the BCG
and showing significant emission at several wavelengths. This
emission line diffuse light is denoted ELDL in the following.

5.1. ELDL source

The ELDL source (fig. 10) mainly appears at two wavelengths
(5713A and 7676A), exactly centred on [OII] and [OIII] red-
shifted to the cluster redshift of 0.534. We also find a much
weaker emission centred on Hβ. This is clearly a very low sur-
face brightness object in terms of its continuum emission, which
made it undetectable both in the CFHTLS and WIRCAM data
(detection much lower than the 2σ level in these data). We also
estimated the significance of the ELDL source detection in the
sum of the MUSE [OII] (5699-5729 A), Hβ (7432-7471 A), and
[OIII] (7655-7696 A) images (see fig. 10). The ELDL source is
detected at the 5σ level in these data, and most of the diffuse
light sources previously described are detected at more than the
3σ level. It is not the first time emission lines have been de-
tected in ICL sources (see e.g. Melnick et al. 2012); however, to
the best of knowledge, all other detections were several orders
of magnitudes weaker in intensity for the oxygen lines.

We extracted a spectrum of this source inside the red ellipse
in fig. 10; the background was estimated and subtracted in a
nearby region outside the diffuse light regions (second red el-
lipse). The background subtracted spectrum is shown in fig. 10
and continuum subtracted fluxes of the visible lines are given in
Table 5.

Table 5. ELDL continuum subtracted line [OII], Hγ, Hβ, and
[OIII] fluxes in units of 10−20 erg/s/A/cm2.

[OII] Hγ Hβ [OIII]a [OIII]b
3727.3 A 4340.5 A 4861.3 A 4958.9 A 5006.8 A

14420 12 2938 3526 10360

These oxygen emission lines necessarily imply the presence
of an ionised compact source of gas of ∼13×6 kpc (the phys-
ical size of the red ellipses in fig. 10). Other similar sources
may be detected all around the BCG, but the one we consider
below is the only one to be clearly separated on the sky from
the BCG halo. Using the MUSE data to reconstruct an I-band
image (where the considered object is not detectable), we esti-
mated an upper value of the magnitude of this source of I≥26.5,
so MI ≥ -16 at z=0.534, roughly corresponding to a restframe
B magnitude. Adopting B�=5.48, this represents a maximum of
4 × 108 stars of solar type (and probably much lower) leading
to a maximum stellar density of 0.0002 pc−3. This is ∼500/1000
times lower than in the solar vicinity. This source is therefore
extremely poor in terms of stars.

At the same time, the [OII] and [OIII] emission of the consid-
ered source is comparable to the emission of the detected galax-
ies around the source position, while the Hβ flux is quite low.
To compare the fluxes in Table 5 with known regular galaxies,
we selected the galaxies with a known precise morphological
type and with measured [OII], Hβ, [OIII]a, and [OIII]b fluxes
in the samples of Moustakas et al. (2010) and Boselli et al.
(2013). We computed the R23 parameter from Moustakas et al.
(2010), which is basically the ratio between the oxygen ([OII]
and [OIII]) and the Hβ emissions. In fig. 11 we show that our
ELDL source clearly has a larger R23 than nearly all the galaxies
in the two previous papers, whatever their morphological type,
origin (Moustakas et al. (2010) or Boselli et al. (2013)), or star-
forming activity. Oey & Shields (2000) show that only a few HII
regions can show such a high R23 (see their Figure 7). The only
models shown in their paper able to reproduce such high values
require very specific conditions for the gas: ∼0.3-0.5 solar metal-
icity and a low gas excitation parameter U of ∼0.01. Any of their
models with metallicity larger than 1 predict R23 values at least
five times smaller than what we observe in the ELDL source.
We also compared our results with the work of Croxall et al.
(2009) on HII regions in dwarf galaxies of the M81 group. From
their figure 2, only HII regions detected in tidal dwarf galaxies
can reproduce our R23 value. This does not mean that the ELDL
source is a tidal dwarf galaxy as it is much larger (∼13×6 kpc )
than the typical size of tidal dwarf galaxies. However, the gas in-
cluded in the ELDL source probably has similar characteristics
to those present in these dwarf galaxies.

If we use the ELDL Hβ flux in the same way as we did for
the BCG to estimate a spectroscopic SFR, we have a low value
of 1.3±0.2 M�/yr. If we use the [OII] flux, the SFR estimate is
2.2 M� / yr. This confirms that the ELDL source is not forming
a large number of stars (or that it is very dusty).

Therefore, the ELDL is a galaxy-size, star-poor, and oxygen
emitting source with a of half solar metallicity and a low exci-
tation parameter. This may be consistent with an extremely low
surface brightness galaxy similar to the local group dwarves of
Gnedin (2000).
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Table 6. J2000 coordinates and redshifts of the emission line
sources not detected in the CFHTLS data.

Id alpha delta redshift
ELDL 32.6656 -5.9447 0.5339

1 32.6638 -5.9456 0.5477
2 32.6643 -5.9437 0.5351
3 32.6662 -5.9421 0.5578
4 32.6649 -5.9432 0.5352
5 32.6650 -5.9427 0.5342
6 32.6651 -5.9445 0.5334

5.2. Spectroscopy of six other non-CFHTLS sources

We scanned the MUSE data searching for localised regions ex-
hibiting emission lines without any counterparts in the CFHTLS
object list. We detected such emission lines in six distinct arcsec-
size regions (seeing dominated, clearly smaller than the ELDL
source). They all show [OII] emission lines at approximately the
cluster redshift (see Table 6) without being identified with a de-
tected CFHTLS object. They also do not exhibit strong Hβ lines.
These sources are much smaller than the ELDL source. Two
of these sources have a redshift slightly larger than 0.54. The
other four are more clustered along the line of sight (see fig. 9)
and have a velocity dispersion of 233 km/s. These four sources
are probably not all inside the halo of the BCG given their spa-
tial distribution (see figs. 12 and 13), while the two others (at
z≥0.54) are not linked with the BCG given their redshift.

5.3. Spectroscopy of CFHTLS-detected diffuse light

Figs. 12 and 13 show trichromic g’, i’, and Ks images of the
cluster centre. We note that the ELDL source (red ellipse) is not
visible in this figure because it is only visible in narrowband im-
ages as previously stated. It shows the six non-CFHTLS emis-
sion line objects, and the ellipses we defined in fig. 5 for the i’
band. These ellipses were grouped into two regions labelled 1
and 2 (see figs. 12 and 13).

We extracted spectra of the diffuse light detected earlier in
CFHTLS i’ band images. This diffuse light is very low sur-
face brightness, and it is therefore very difficult to reach a de-
cent signal-to-noise ratio in the spectroscopy; however, we were
able to extract exploitable spectra for the two defined regions
(see figs. 12 and 13). We first excluded the places occupied
by CFHTLS detected compact objects (galaxies) inside their
CFHTLS ellipse. We then subtracted a background spectrum
(defined in a circular empty region). This gave us the two spectra
shown in figs. 12 and 13.

The first spectrum (region 1 in fig. 12) shows an [OII] emis-
sion line on top of an early-type spectrum characterised by
clearly visible H&K lines. This source is therefore dominated by
old stars. There is no visible Hβ. This probably means that Hα
is also weak and that following Kennicutt et al. (1998) the SFR
is very low. Another explanation could be that this region is very
dusty, thereby masking the Hβ emission. In order to know if the
[OII] emission is due to the six compact regions described previ-
ously, we removed the contribution of these regions. Following
this removal, the [OII] emission is still visible. This shows that
region 1 probably has diffuse [OII] emission in addition to the
emission from the six compact regions. The redshift of region 1
is 0.5345, identical to the shift of the BCG.

The second source (region 2) has a pure early-type spectrum
(also dominated by old stars) without any detectable emission
lines. Its redshift is 0.5340, 150 km/s ahead of region 1.

5.4. Emission lines around other galaxies in the field

We also investigated the possible presence of ionised gas around
other bright elliptical galaxies in the field as this subject is of
prime interest for star formation in clusters (see e.g. Donahue et
al. 2015). In fig. 10 we show the significance contours of the dif-
fuse light detected in the summed MUSE [OII] (5699-5729 A),
Hβ (7432-7471 A), and [OIII] (7655-7696 A) images. Except
for the BCG, there are nearly no detections around the other vis-
ible galaxies. The only possible exception comes from the two
elliptical galaxies at (α; δ) = (02 10 40.26; -05 56 33) and (02 10
40.33; -05 56 36) toward the BCG north-east where some 2/2.5σ
small sources may be present.

6. Conclusions

In this article, we studied a cluster detected in the XXL Survey
with an apparent very high level of diffuse light.

- WIRCAM and MUSE data first allowed us to put the clus-
ter characteristics on a firmer ground. It is a z∼0.534 cluster of
galaxies with old stellar populations and consists of a main com-
ponent with a velocity dispersion of the order of 600 km/s and an
infalling low-mass group with a velocity dispersion of 170 km/s.

- We performed a Wavelet analysis of CFHTLS and
WIRCAM images and found diffuse light inside a 60x180 kpc
region. Detection was possible at all wavelengths, from u* band
to Ks band. The amount of diffuse light is equivalent to two
BCGs in the i’ band. To the best of our knowledge, this is the
first detected cluster with such a large amount of diffuse light.
The general orientation of the DL is north-east–south-west.

- SED fitting based on CFHTLS and WIRCAM data shows
an early-type spectrum for the diffuse light, in contrast to the
BCG which shows an Sd type.

- Using MUSE spectroscopy, we first detected a new 13×6
kpc source (ELDL source) only emitting in [OII], [OIII], and
weakly in Hβ, with no detectable continuum in any of the
CFHTLS and WIRCAM data. Its redshift coincides with the
cluster redshift. This source is very star-poor, with a low exci-
tation parameter of 0.01. Its gas probably has half a solar metal-
licity, which is statistically lower than some other metallicities
observed in other cluster ICL (see e.g. De Maio et al. 2015).

- We also detect six other small-scale emission line sources
that are not detected in the CFHTLS images, but are at the cluster
redshift. Spatially, some of these sources are not located within
the BCG halo and are therefore distributed in the cluster halo.

- The diffuse light detected in CFHTLS and WIRCAM im-
ages near the BCG (region 1) exhibit some emission lines in
addition to H&K lines, while the other region (region 2) con-
tains only absorption lines. Emission lines in region 1 are not
only due to the six small-scale emission line sources, but also to
a more diffuse emitting component. This diffuse light is also at
the cluster redshift.

Our conclusions are the following. First, the emission lines
detected in the diffuse light are probably not due to an intense
star formation process because the estimated SFR in the diffuse
light is relatively low and typical of values in an elliptical galaxy.
The emission lines, therefore, probably originate from gas simi-
lar to that found in objects of medium metallicity and low exci-
tation. It is also similar to the Croxall et al. (2009) HII regions
in tidal dwarf galaxies.

Second, the ICL star population is not very old, of the order
of 2.3×109 yrs, compared to the BCG population of 9.3×109 yrs.
This is also statistically younger than studies such as Melnick et
al. (2012). In the cluster they studied, only ∼25% of the ICL
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stars they detected are younger than 2 Gyrs. Most of the ICL
in their cluster is composed of ∼8-10 Gyr-old stars (see their
Fig.6). This can be explained, however, as the cluster Melnick
et al. (2012) consider has three bright interacting galaxies with
old stellar populations. This probably introduces a large num-
ber of old stars in the ICL (see their Fig. 2), while our case has
a very different configuration with a single BCG. This BCG is
also forming a large number of stars, even more than the star-
forming galaxies in the Puech et al. (2010) sample. This may
appear to contradict the old age derived for the BCG popula-
tion. A possible explanation would be a relatively recent episode
of star formation in the BCG. Given the actual SFR, this burst
would need at least 2 Gyr to generate enough young stars to
account for a significant amount (a quarter) of the BCG stellar
mass. This value is close to the age of the ICL stellar population.
Therefore, this burst probably did not occur more than ∼2 Gyr
ago.

Third, the ICL has a slightly lower stellar mass (1010.7 M�)
compared to the BCG (1010.9 M�), while it is clearly a mag-
nitude brighter in g’, r’, i’, z’ bands. This means that gas in
the ICL dominates the stellar contribution in the optical (as is
also the case in the ELDL source). This is at odds with other
ICL spectral characterisations as in Melnick et al. (2012) where
the young metal-poor component in ICL is less than 1%. This
shows that we really are dealing with a cluster where matter ejec-
tion from galaxies is peculiar. Processes that may play a role in
this matter ejection are ram pressure stripping, turbulent viscous
stripping, or supernovae winds. Other processes, which act prin-
cipally on stars, are not dominant and not favoured (e.g. slow
galaxy-galaxy interactions or mergers). Moreover, this ICL is
not forming a large number of stars, at most on the order of 1 or
2M�/yr in the ELDL source.

Fourth, we also know that XLSSC 116 is not currently un-
dergoing a major merger and only shows evidence of a minor
and very low temperature substructure clump, likely falling onto
the cluster from the rear side. Any other infalling galaxy struc-
tures must therefore already be in an advanced merging stage,
and so do not show as dynamically independent structures any
more. In that case, any additional structures must have passed
the second pericentre approach to be undetectable (as shown
in Poole et al. (2007)). The time elapsed between an infalling
group’s first virial crossing and the second pericentric approach
obviously depends on the cluster-infalling structure mass ratio
and on the impact parameter. However, assuming a value of 2
Gyr (the epoch of the potential burst of star formation in the
BCG) for this timescale, Fig. 1 of Poole et al. (2007) seems to
require an intermediate impact parameter of the order of 0.15
or lower and, more importantly, a mass ratio close to 1 between
the cluster and the potentially infalling structure. Such a merger
could have induced the observed shift between the XLSSC 116
BCG and the X-ray centre (e.g. Adami & Ulmer 2000). This po-
tentially implies a rapid motion of bright galaxies, including the
BCG, inside the cluster gas that induces a ram pressure stripping
process. A mass ratio close to 1 is also ideal for maximising
the energy and matter exchange process between the impacted
galaxy structure and the impactor, thereby generating a large
amount of detected ICL. Spectacular examples of this kind of
interaction are presented in Fumagalli et al. (2014), but are gen-
erally smaller in size. In conclusion, this cluster was likely built
by several overlapping mergers: an older merger of two compa-
rable mass systems and another ongoing minor merger.

This is the first time that we have been able to spectroscopi-
cally constrain diffuse light in a distant cluster and this illustrates
the potential of MUSE observations for such studies. We need

more observations of a larger sample of clusters in order to draw
a statistical picture of the diffuse light in clusters of galaxies.
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Fig. 6. Spectral energy distribution fitted on the available u*, g’,
r’, i’, z’, and Ks magnitudes (3σ error bars are also shown).
Adopted redshift and best-fit model are given in each case.
Upper figure: diffuse light, middle figure: BCG. The lower figure
is the MUSE spectrum of the BCG.
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Fig. 7. Comparison of our stellar mass and SFR estimates for the
XLSSC 116 ICL source (red vertical line for SED estimation and
red vertical dotted line for spectroscopic estimation) and BCG
(blue vertical line for SED estimation and blue vertical dotted
line for spectroscopic estimation) with the Puech et al. (2010)
emission line galaxies (continuous histograms) and the Liu et al.
(2012) BCGs (dashed histograms). Upper figure: stellar mass,
lower figure: SFR.

Fig. 8. Mean (upper figure) and median (lower figure) rest frame
spectrum of all the galaxies spectroscopically measured inside
the cluster (excluding the BCG). Strong sky lines have been
masked. The position of the most common lines are shown as
dashed lines.
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Fig. 9. Redshift histogram of the MUSE CFHTLS galaxy red-
shifts inside the XLSSC 116 cluster (red solid histogram: SG
substructure 1; blue solid histogram: SG substructure 2). We also
show the non-CFHTLS-only emission line objects described in
section 5.2 (blue dotted histogram). The vertical line is the red-
shift of the BCG.

Fig. 10. Upper figure: trichromic image of the ELDL area (blue
is for V-band MUSE reconstructed image, green for the I-
band MUSE reconstructed image, and red is the narrowband
[OII]+Hβ+[OIII] MUSE reconstructed image). Upper red el-
lipse is the area where the spectrum of ELDL was extracted and
lower ellipse is the region where the background was estimated.
The large green circle is a 100kpc radius region and the green
cross is the position of the BCG. [OII]+Hβ+[OIII] residual im-
age from OV WAV is shown as cyan contours. These contours
start at the 2.5σ level and progress by steps of 0.5σ. Lower fig-
ure: calibrated spectrum of the ELDL.
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Fig. 11. R23 versus galaxy morphological type in the Moustakas
et al. (2010: filled circles) and Boselli et al. (2013: empty circles)
samples. Large empty circles are active galaxies. The vertical
line shows our ELDL source. 32.670 32.668 32.666 32.664 32.662
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Fig. 12. CFHTLS and WIRCAM g’, i’, and Ks trichromic image
of the cluster centre. Cyan circle: region where the background
spectrum was extracted. It also gives the physical size of the fig-
ure. Diameter of this circle: 80kpc. Region 1: union of the three
magenta ellipses. Region 2: green ellipse. Small blue circles: six
detected non-CFHTLS emission line objects. Green cross: BCG
position. Red ellipse: ELDL source position.
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Fig. 13. Top to bottom: (1) Region 1 diffuse light spectrum; (2)
Region 1 diffuse light spectrum with the six non-CFHTLS emis-
sion line objects removed; (3) Region 2 diffuse light spectrum.
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Fig. 4. Left: original CFHTLS and WIRCAM images in the considered bands. Right: residual image from OV WAV. Red contour
is the 2.5σ level from the residual image. Blue contours start at the 3σ level (from the residual image) and progress by steps of 1σ.
These contours are computed with the residual images and reported on both residual and original images. The cyan circle (80kpc
in diameter) shows one of the empty residual fields we considered. It also gives the physical size of the figure. Pink ellipses are the
areas where we summed the flux of the diffuse light in the residual image. The green cross shows the BCG. From top to bottom: u*,
g’, r’ bands.

15



Adami et al.: MUSE characterisations of Intra Cluster Light in a z∼0.53 cluster of galaxies

Fig. 5. Same as fig. 4 but for (from top to bottom): i’, z’, Ks bands.
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