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From algebraic geometry perspective database relations are succinctly defined as Finite Varieties. After establishing basic framework,
we give analytic proof of Heath’s theorem from Database Dependency theory. Next, we leverage Algebra-Geometry dictionary and
focus on algebraic counterparts of finite varieties – [polynomial] Ideals. It is well known that intersection and sum of ideals are lattice
operations. We generalize this fact to ideals from different rings, therefore establishing that algebra of ideals is Relational Lattice. The
final stop is casting the framework into Linear Algebra and traverse to Quantum Theory.   

Categories and Subject Descriptors: H.2 [Database Management]: 
General Terms: Algebraic Geometry, Database Theory, Functional Dependency
Additional Key Words and Phrases: Quantum Theory

________________________________________________________________________

INTRODUCTION

Database field is firmly grounded in two disciplines: predicate logic and set theory. However, neither logic

nor set theory are dominant mathematics subjects. Just counting tags at  mathoverflow.net can give rough

idea of an individual topic importance, and it is evident that  algebraic geometry governs the math world.

This field is so rich that it spawned new sub-fields, such as category theory. Furthermore, mathoverflow.net

hints that category theory is more popular than either predicate logic or set theory! Some category theorists

even proposed to rebuild the entire mathematics foundation with category theory toolkit…

Does algebraic geometry offer any insights to database theory? First, we recall what mathematical objects

algebraic geometry operates with. The basic geometric object is affine variety — a system of polynomial

equations. Affine variety is a set of tuples in Rn
while our focus on database applications prompts that

we must narrow our scope to finite varieties, when polynomial system has finite number of roots. 

An observation that database relation can be represented as a system of constraints is not new. Constraint

databases were promoted since the  1990s by Paris Kanellakis  with conventional wisdom of representing

relations as semi-algebraic sets. The motivation for that is quite obvious: Tarski-Seidenberg theorem, which

asserts that projection of semi-algebraic set is semi-algebraic. Together with folklore knowledge that the

class  of  all  semi-algebraic  subsets  is  closed under  finite  unions and intersections,  taking complement,

inverse image by a polynomial mapping, and Cartesian product it becomes obvious that semi-algebraic sets

fit nicely into Codd's relational algebra. 

Unlike semi-algebraic sets, polynomial varieties are not closed under projection, therefore, something has

to be done about it. One needs to treat projection of algebraic set as geometric projection combined with

elimination  of  variables  via  Zariski  closure.  Such  combined  operation  transforms  algebraic  set  into

mailto:Vadim.Tropashko@orcl.com
http://mathoverflow.net/tags
mailto:Vadim.Tropashko@orcl.com
mailto:Vadim.Tropashko@orcl.com
mailto:Vadim.Tropashko@orcl.com
mailto:Vadim.Tropashko@orcl.com


algebraic set. Then, canonical algebra-geometry dictionary from classic textbook [1] (page 214) provides a

recipe for  algebra of finite varieties resembling Codd's  relational algebra.  This development takes  up the

first part of the article and is concluded with analytical proof of Heath’s theorem.

In the  second part we we shift the focus from varieties to dual algebraic objects — [polynomial]  ideals.

Unlike varieties  ideals  describe  not  only the set  of  roots  where  polynomial  system vanishes,  but  root

multiplicities  as well. In database terminology ideals are  multi-relations.  We make quick comparison of

naive database model of multi-relation with ideal and explain why ideals capture enough information to

give rise to a consistent algebra. We conclude this section with main result generalizing well-known fact

that intersection and sum of ideals are lattice operations. 

In the final section we study polynomial ring with Linear Algebra methods borrowed from [2]. This is quite

refreshing perspective:  attributes  of  a  database  relation can  be  viewed as  commuting linear  operators.

Attribute  values  are  eigenvalues  of  corresponding  operator.  The  entire  picture  gets  distinct  quantum

mechanical flavor, where database attribute is essentially an observable. 

1. FINITE VARIETIES 

Basic object  of algebraic geometry is  affine variety — a system of  multivariate  polynomial  equations.

Affine variety is a set of points in Rn
(or Cn

)1 and our database focus prompts that we must narrow

our scope to finite varieties, when polynomial system has a finite number of roots. 

Our first task is to describe how to construct a variety out of any given database relation. Database relations

are assembled from smaller pieces by joining attribute values into a tuple, then unioning the tuples.  This

prompts the need in the two fundamental operations over varieties.

1. Set intersection of two varieties V and W is a set which is, again, a variety. The defining

set of polynomials for V ∩W is a union of the polynomial  constraints systems defining the

V and W .

2. Set union of two varieties V and W is a set which is, again, a variety. The defining set of

polynomials for V ∪W is a set of all pairwise products of the polynomials from the systems

defining V and W . 

Now, we can exhibit a variety corresponding to any relation. Consider an unary relation with a single tuple

1 Certainly, we have to work with nice domains such as algebraically closed field of complex numbers C , or real numbers

R , at least.



x
1

Geometrically, it corresponds to a single point on the x axis, so it becomes immediately obvious what

equation defines it:

x−1=0

Likewise, the relation

y
1

is defined by

y−1=0

Next, we construct join of these two relations – a binary relation with one tuple

 x y
1 1

Join is set intersection, and intersection of varieties gives us the system of defining equations

x−1=0
y−1=0

Let’s expand our example and add one more attribute to the relation:

x y z
1 1 1

Our system of equations grows with one more constraint:

x−1=0
y−1=0
z−1=0

(2.1)

Now, knowing how to construct “single tuple varieties”, we are ready to move onto relations with more

than one tuple. This is accomplished via union. Consider a ternary relation:



x y z
1 1 1
2 1 2

which is a union of already familiar relation

x y z
1 1 1

with

x y z
2 1 1

To build the union of varieties we need a polynomial system defining the second variety

x−2=0
y−1=0
z−1=0

(2.2)

Taking set of all pairwise products of all the polynomials from the systems 2.1 and 2.2 above we obtain the

following polynomial system for the union:

(x−1)(x−2)=0
( y−1)(x−2)=0
( z−1)(x−2)=0
(x−1)( y−1)=0
( y−1)( y−1)=0
( z−1)( y−1)=0
( x−1)( z−1)=0
( y−1)( z−1)=0
(z−1)( z−1)=0

At this stage the complexity of this polynomial system seems to be discouraging, but we have grossly over

specified the system of constraints, because not all of these equations are independent. Groebner basis is

ubiquitous method to  find a set of independent  polynomials.  Executing  GroebnerBasis command in a

typical Computer Algebra system would output much smaller set of equations:

x2
−3 x+2=0
y−1=0
z−1=0



As an afterthought, this result is obvious. The first equation constraints x to being either 1 or 2 ,

the second equation asserts that y is equal to 1 , while the third one asserts z=1 . It is satisfying

to know the general method, though.

With this technique (applying the union rule and, consequently, reducing the system with Grobner basis)

we can proceed and find a variety corresponding to the relation with 4 tuples:

x y z
1 1 1
2 1 1
3 2 1
3 2 2

−6+11 x−6 x2
+ x3

=0
−4+3 x−x2

+2 y=0
3−x−3 z+ x z=0

2−3 z+ z2
=0

This  is,  again,  the  exact  output  of  GroebnerBasis  command,  but  for  human  reader  factorizing  these

polynomials makes them more intuitive

(x−3)(x−2)(x−1)=0
−4+3 x−x2

+2 y=0
(x−3)(z−1)=0
(z−2)( z−1)=0

The first and the last equations are univariate. The first equation asserts that values x  are restricted to

the set {1,2,3} . Likewise, the last constraint claims z∈{1,2} . The third equation asserts that either

x=3 or z=1 . What is the second constraint?

Since there is only one monomial containing y (and it is limited to the first power), the equation can be
rewritten as

y=(−4+3 x−x2
)/2

In other words, y is a function of x .  This is not a coincidence, because the ternary relation in our

example had functional dependency 

x→ y

If we apply Lagrange interpolation to any set of points, such as



(x , y)∈{(1,1) ,(2,1) ,(3,2)}

in our case, then we'll find explicit expression of y as a [polynomial] function of x . 

For centuries a function has been considered as a set of rules which describes a procedure how to transform

an input to an output. Mathematicians simply refused to believe in (or saw no purpose for) functions which

can't be described via nice analytic formulas. A function defined formally as a relation (set of ordered pairs)

is  comparatively  recent  (20th  century)  development.  Having  functional  dependency  in  analytic  form

illuminates some classic results from database dependency theory, such as Heath's theorem.  

Heath's theorem.  Given relation Q(x , y , z) , and functional dependency x→ y , then Q can be

decomposed into join of projections: 

Q=πxy Q∧πxz Q

What is Heath's theorem in algebraic geometry terms?

First, let's focus on join of two relations. If both relations had the same set attributes, then the join were set

intersection of tuples.  A relation corresponds to  a  finite variety,  and we already know how to perform

intersection  of  varieties  by  just  combining both  sets  of  constraining equations.  If  two varieties  have

different sets of attributes  as in our example, then we can expand them into larger space spanning the

common set of attributes. This procedure doesn't affect the set of defining equations. For example, if we

consider a variety defined by a single equation

(x−3)(x−2)(x−1)=0

R1 , then it is also a variety in R2 -- there is simply no constraints onto the other variable. Likewise,

the variety defined by the system

(x−3)(x−2)(x−1)=0
−4+3 x−x 2

+2 y=0

is actually two varieties (at least): one defined in space R2 of variables {x , y } , and

the other in space R3 of variables {x , y , z} . Likewise, the system

(x−3)(x−2)(x−1)=0
(x−3)(z−1)=0
(z−2)( z−1)=0

defines one variety in {x , y } , and the other in {x , y , z} .



As far as our example is concerned, we have achieved our goal – splitting the system of constraints into

the two parts.  The first  system contains univariate  constraint  for  the allowed domain x values  plus

functional dependency. The second system contains all the equations, but the functional dependency. It is

just a coincidence that none of these equations have any monomials with powers of y . However, if

there were such monomials, we would just eliminate y via substitution, leveraging the explicit formula

for functional dependency.

2. IDEALS 

In this  section we shift the focus from varieties to dual algebraic objects — [polynomial]  ideals.  Unlike

varieties  ideals  describe  not  only  the  set  of  roots  where  polynomial  system  vanishes,  but  also  root

multiplicities. In database terminology ideals are multi-relations. For example, the ideal

〈 x2
−4x+4〉

in the ring k [ x ] of univariate polynomials describes unary multi-relation:

x
2
2

It is instructive to compare [database] relation definition with an ideal. Database relation is a set-theoretic

construction  involving  two sets:  set  of  attributes  (relation  header)  and  set  of  tuples.  Then,  tuples  are

elaborate constructs themselves (that is functions from domain to attributes). The definition for an ideal is

much more concise: it is a set of multivariate polynomials which is closed with respect to addition and

multiplication.

Hilbert  Basis  Theorem  asserts  that  every  polynomial  ideal  has  finite  basis,  which  is  not  obvious

proposition  given  that  ideals  are  infinite  sets.  It  legitimizes  angle  bracket  notation  which  lists  basis

polynomials separated with comma.

Our main focus in this section is algebra of  ideals.  With database theory application in mind we allow

ideals from different rings.  Therefore, when describing operands and result we have to be careful which

polynomial ring each ideal lives in.

Consider an ideal I in polynomial ring k [ x , y ] . Next, consider an ideal J in polynomial ring

k [ y , z ] . The sum of ideals I + J is defined as an ideal in polynomial ring k [ x , y , z ] . 



Formally, 

I + J ={ f k 1+g k 2 : f ∈I , g∈J , k 1∈k [ x , y , z ] , k 2∈k [ x , y , z ]}

This is generalization of the standard definition of the sum of ideals living in the same ring. The proof that

the result is in fact an ideal is almost verbatim. An important technicality is that we have amended standard

definition of sum with factors k 1 and k 2 , which helps for verification that the sum is closed under

multiplication of any element of the ring k [ x , y , z ] .

The basis of the sum of ideals I + J is just the concatenation of the basis of I with the basis of J

.  Equivalently, the sum of an ideals I + J  is the smallest ideal which contains the set theoretic union

I∪J of ideals (which itself is not an ideal). 

The second operation we are interested in is the intersection of ideals, which is pure set theoretic operation.

Once again, consider an ideal I ∈k [ x , y ] and an ideal J ∈k [ y , z ] . Then, I∩J ∈k [ y ] .  A

proof that  I∩J is in fact an ideal is immediate for  inclusion of 0 polynomial and closure under

addition of polynomials. The proof of closure under multiplication by any element of the ring k [ y ]

follows from the fact  that I is  closed under multiplication by  k 1∈k [ x , y ] and, therefore,  it  is

closed by multiplication by k ' 1∈k [ y ] , likewise, for J .

Since ideals are infinite sets, this definition is not practical.  An alternative definition involves auxiliary

variable t ,  so that  given the bases  of the operands I and J we can compute the basis  of  the

intersection via the formula:

I∩J =(t I +(1−t) J )∩k [ y ]

Intersection  of  the  ideal t I +(1−t )J living  in  a  larger  ring k [ x , y , z , t ] with  smaller  ring

k [ y ] is called elimination ideal (w.r.t. variables t , x , z ).  

Proposition. Sum and intersection of ideals are lattice operations.

This follows from the fact that we have set-theoretic intersection together with sum defined as a closure of

set-theoretic union.

Axioms of  relational  lattice  [3]  provide  foundation  for  Relational  Algebra.  Likewise,  lattice  of  ideals

provides a coherent foundation for algebra of multi-relations.  The adjective “coherent” is the key here,



because,  naïve  SQL  implementation  has always  been criticized  for  lack  of  rigor  and  elementary

inconsistencies. For example, self-join of

x
2
2

in MySQL would output  a  multi-relation  containing 4 tuples,  while we have just  established why this

operation has to be idempotent.  A less sophisticated argument  why self-join should  have only 2 tuples

involves tiny perturbation of the input:

x
1.99999
2.00001

From  this  section perspective  it  is  evident  why  naïve  database  implementation  of  multi-relations via

duplicated tuples is problematic –  it captures significantly less information compared to a basis of an ideal.

3. QUANTUM THEORY 

From physicist's  perspective relational  databases provide classic description of the world. Surprisingly,

Samson Abramsky claimed that the crux of quantum behavior – ERP paradox and Bell inequalities – can

be  interpreted  in  database  terms  [4].  Mathematical  formulation  of  quantum  mechanics  created  by

Heisenberg,  Born, and Jordan  in 1925  involves matrices, vectors, eigenvalues,  and probabilities. There

can't  possibly be a  language more distant  from relations,  attributes,  and values studied in the field of

databases.  In this section we'll investigate what does it take to consolidate frameworks of quantum and

database theory. From now on, let's fix the field k to be the set of complex numbers ℂ .

First, we shift our focus from [polynomial] ideals to their residue classes. Formally,  given polynomial

p∈ℂ[ x , y , z ] its residue class is defined as the set 

[ p]I={r∈ℂ[ x , y , z ] : r− p∈ I }

of all remainders modulo the ideal I⊂ℂ[ x , y , z ] .

Clearly, the set [ p]I is obtained by adding each element of I to p :



[ p]I= p+ I

Next, the set of all residue classes is organized into a vector space. The linear operations over residue

classes are defined as follows:

[ p]I +[r ]I=[ p+r ]I

α[ p]I=[α p ]I

This implies that we must be able to choose a basis {[e0]I ,[e1]I , ...}  for that vector space so that any

element (residue class) is represented as

[ p]I=∑
k

πk [e k ]I

Finite varieties correspond to zero-dimensional radical ideals. Vector space of residue classes for zero-

dimensional ideals is finite [2].

Now  that  we  have  inched  towards  quantum  description  and  have  vector  space,  let's  discover  linear

operators acting on it.  The critical  observation is that this vector space is actually a [quotient] ring with

multiplication of its element defined via

[ p]I [r ]I=[ p r ]I

This operation is commutative and distributive, which helps if we want to express it in terms of basis:

[ p ]I [r ]I=∑
k
∑

l

πk [ek ]I ρl [el ]I=∑
k
∑

l

πk ρl [ek el ]I (4.1)

Then, product of basis vectors themselves must be representable in terms of basis:

[ek ]I [el ]I=[ek el ]I=∑
m

ϵklm [em]I (4.2)

4.1 and 4.2 imply that  multiplication by an element of quotient ring can be expressed as  linear operator

acting  on the  linear  space  of  residue  classes.  In  terms  of  our  chosen  basis {e1, e2,. .. , en} it  is

multiplication of row vector by a matrix:

[ p ]I(
ρ1
ρ2

⋮
ρn
)=(

p11 p12 ⋯ p1n

p21 p2n

⋮ ⋮
pn1 pn2 ⋯ pnn

)(
ρ1
ρ2

⋮
ρn
)



where each matrix element is defined as:

pij=∑
k

πk ϵkij

Let's work out multiplication matrices for the example of ideal from section 1:

I={−6+11 x−6 x2
+ x3 ,−4+3 x−x2

+2 y ,3−x−3 z+x z ,2−3 z+z2
}

The  vector  space  is  4-dimensional,  so  we  need  to  choose  4  basis  vectors.  Let's  evaluate

{[1] , [ x] ,[ x2
] , [x3

]} as a suitable basis. However,

−6 [1]+11[ x ]−6 [ x2
]+[ x3

]=[0]

so, the chosen vectors are linearly dependent. Either {[1] , [ x ] ,[ x2
] , [ z ]} or {[1] , [ x ] ,[ y ] , [ z ]}

or {[1] , [ x ] ,[ xy ] , [xz ]} is  legitimate choice.  The difference between the alternatives is the amount

of work required to calculate multiplication matrices.  Let's  fix  {[1] , [ x ] ,[ y ] , [ z ]} as  a  basis  and

calculate multiplication matrix for [x ] . Multiplying by each basis vector and reducing the higher power

monomials via ideal elements we get

[ x ][1]= [ x ]= 0 [1]+1 [x ]+0[ y ]+0 [ z ]

[x ][x ]= [ x2
]=−4 [1]+3 [ x ]+2 [ y ]+0 [ z ]

[ x ][ y ]= [ x y ]=−3[1]+[ x]+3[ y ]+0 [ z ]
[ x ][ z ]= [ x z ]=−3[1]+[ x]+0 [ y ]+3 [ z ]

which implies the multiplication matrix:

A[ x ] = (
0 1 0 0

−4 3 2 0
−3 1 3 0
−3 1 0 3

)
Likewise, multiplication matrices for [ y ] and [ z ] are:

A[ y ] = (
0 0 1 0

−3 1 3 0
−2 0 3 0
−2 0 1 2

)



A[ z ] = (
0 0 0 1

−3 1 0 3
−2 0 1 2
−2 0 0 3

)
The  Central  Theorem of  polynomial  system  solving  by  Stetter  [2]  asserts  the  following  facts  for  0-

dimensional ideal:

• a family of multiplication matrices for ring variables is commuting

• this family of matrices have joint eigenvectors 

• the ideal polynomials vanish on associated eigenvalues

• each of multiplication matrices can be factorized as 

A=E Λ E−1

where E is matrix constructed from eigenvectors, and Λ is diagonal matrix with eigenvalues at

the main diagonal. In other words, E defines a change of basis which transforms all the multiplication

matrices into diagonal form.

In our example, eigenvalue problem for A[ x] admits the following solution:

v1 =(
0
0
0
1
) λ1 = 3, v2 =(

1
3
2
0
) λ2 =3, v3=(

1
2
1
1
) λ3 = 2, v 4 =(

1
1
1
1
) λ4 = 1

Please  note,  that  geometric  multiplicity  of  eigenvalue λ=3 is 2 ,  therefore,  we  have  two-

dimensional space of eigenvectors spanning {v1, v2} , not just one-dimensional space spanning v1

and  one-dimensional  space  spanning v 2 .  Thus,  we  can't  construct  transformation  matrix E yet.

Since  we  have  joint  eigenvector  problem,   we  proceed  calculating  eigenvectors  and  eigenvalues  for

A[ y ] :



v1 =(
0
0
0
1
) λ1 = 2, v 2 =(

1
3
2
0
) λ2 = 2, v3 =(

1
0
1
1
) λ3 = 1, v 4 =(

0
1
0
0
) λ4 = 1

Finally, the eigensystem for A[ z] :

v1 =(
1
3
2
2
) λ1 = 2, v2 =(

1
0
0
1
) λ2 =1, v3 =(

0
0
1
0
) λ3 = 1, v 4 =(

0
1
0
0
) λ4 = 1

These individual eigenproblems can be consolidated into joint eigensolution:

v1 =(
1
3
2
2
) λ1 =(3,2,2) , v2 =(

1
3
2
1
) λ2 = (3,2,1) , v3 =(

1
2
1
1
) λ3 =(2,1,1) , v4 =(

1
1
1
1
) λ4 =(1,1,1)

Aggregating these eigenvectors together into the change of basis matrix 

E = (
1 1 1 1
3 3 2 1
2 2 1 1
2 1 1 1

)
we obtain eigendecomposition of all three multiplication matrices

A[ x ] = E (
3 0 0 0
0 3 0 0
0 0 2 0
0 0 0 1

) E−1

A[ y ] = E (
2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

) E−1



A[ z ] = E (
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

) E−1

In other words, we have recovered the columns of the original relation as multiplication matrices.  On an

afterthought, we could have just leveraged the central theorem and claimed that multiplication matrices are

diagonal in some basis, thus avoiding tedious calculation.

In quantum mechanics physical quantities are observables and are formally described as linear operators.

The  measured  values  an  observable  are  eigenvalues  of  corresponding linear  operator.  Commuting

operators are observables which can be measured simultaneously. 

The following quantum-relational dictionary summarizes this section:

Quantum Relational
Observable Attribute

Commuting set of
observables

Relation

Value of physical quantity
(eigenvalue)

Attribute value

State (eigenvector) Tuple Id (i.e. row_id)

Foundation  of  quantum  theory  has  spawned  numerous  research  topics.  One  notable

development was Quantum Logic originated by Birkhoff and von Neumann in the 1930s.

Quantum logic is decisively different from Propositional Calculus, and its corresponding

algebra is  ortholattice.  Elements of ortholattice are linear  subspaces,  therefore,  in the

context of this section, ortholattice is a structure of  quotient space [of ideal residues].

Relational lattice is a structure of  dual space [of ideals].
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