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Abstract—We consider in this paper competition of was established experimentally if [1] which analyses the
content creators in routing their content through various  role of intermediate actors in dissemination of content.
media. The routing decisions may correspond to the selec- A gimilar game as the one in this paper was already
tion of a social network (e.g. twitter versus facebook or tudied in I2 dT31. but th the ol trol rat
linkedin) or of a group within a given social network. The stuaie !n [2] and([B], but there the payers contro _ra es
utility for a player to send its content to some medium is of creation of contents and/or decide how to split the
given as the difference between the dissemination utility rates. The resulting games are simpler than ours as they
at this medium and some transmission cost. We model possess a single equilibrium. The model studied in this
this game as a congestion game and compute the purepaner prings many novelties both in the system behavior

potential of the game. In contrast to the continuous case, . . e
we show that there may be various equilibria. We show that as well as in the tools used to study it. The difficulty

the potential is M-concave which allows us to characterize in studying j[he game in our atomic non-spli_table game
the equilibria and to propose an algorithm for computing framework is due to the integrity constraint on the

it. We then give a learning mechanism which allow us to players as they cannot split their content between several
give an efficient algorithm to determine an equilibrium. We  yaqia. This implies that the action space is discrete and
finally determine the asymptotic form of the equilibrium thus non convex which may result in problems in the
and discuss the implications on the social medium selection = ™, . e
problem. existence and/or uniqueness of the equilibrium.
Related work: Game theoretic models for com-
. INTRODUCTION petition have been proposed in a growing number of
Social networks involve many actors who competeeferences. The authors 6f [4] focus on the competition
over many resources. This gives rise to competitions @ver budget of attention of content consumers and the
different levels which need to be taken into account iimpact of this competition on the dynamic popularity of
order to explain and predict the system behavior. In thike content. A game model related to intermediate actors
paper, we focus on competition of individual contenthat participate in the spreading of news is considered
creators over media. A content creator has to decigte [I]. The authors study how to choose the type and
which one of several media to use. The media choiegnount of content to send so as to be influentialIn [5],
may correspond to a social network that will be used fahe authors study competition over space among content
sending (and disseminating) some content. For instancegators. The space may represent a slot (say the top
the decision can consist in choosing between twitter amehe) in a timeline, and a content that arrives occupies
facebook, or in deciding to which of several faceboothe space pushing out the one that is already there. It
groups to send the content. then stays visible there till the next arrival of content
The game we study in this paper is atomic and nomhat pushes it away. The authors study the timing game:
splitable. We consider a decision maker (or a player) t9hen should a content be sent to the timeline so as
be a single content instead. This regime can well ap maximize the expected time it remain visible. The
proximate decision making where a content creator, saythors of [6] study a dynamic competition model over
a blogger, occasionally sends content. Here, occasionallgibility in which the rate at which creator of contents
implies that the time intervals between generation @&fend their traffic is controlled.
consecutive contents by the blogger is large enough soGame theory has been used not only to model com-
that the states of the system at the different times of crgetition in social networks but also to design algorithms
ation of content are independent one from another. THisr the analysis of social network$][7]: this includes
regime is interesting not only because it is characterist@@mmunity detection[8], discovery of influential nodes
of systems with many sources of contents, but al§@] and more.
and foremost, it turns out that it precisely characterizes Contributions of our paperOur first contribution is
bloggers that have more popularity and influence. Thie make the observation that the game complies with the
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definition of congestion game introduced by Rosenthabe of this type of utility in competition for resources in

[10]. This allows us to show that our game is a potentialocial networks can be found inl[2].

game, for which Nash equilibria exist. This further im- Hence, the utility of seed is given by

plies that algorithms based on best response converge to

an equilibrium. We show that surprisingly, although the N,
. . . . . U (5() = = Vsko (1)

potential approximates a strictly concave function (in the s,

continuous space), there may exist many equilibria. This

is quite a new phenomenon in networking games, andvihere 5" is the vector of strategies of the seedls=

is due to the non convexity of the action space (due to tfiex) kex

non splitable assumption). In order to have uniqueness,For notational convenience, in the following we will

a new concept of integer concavity have to be used. Vilenote byS = J* the set of strategy profiles, and by

rely on the theory of M-concavity [11] which allowsI' = (K, (N;,~;) ecy) the game setting witli players

us to establish the structure of the set of equilibriihe seeds), the selt of social media of parameters

for this problem. We propose a learning algorithm thdt(N;,v;),ey) and the utility (uy)kex defined in Eq.[{L).

converges to an equilibrium and is more efficient than the Since the utility of each player (the seeds) only

best response algorithm. We finally study the asymptotifepends on the number of users choosing the same action

behavior of the system as the number of players growge. the same social media), the game is equivalent to a

both in terms of characterization of the equilibria and iBongestion game in the sense of Rosenthal [10], where

price of anarchy. the resources are the social media. It therefore is a
potential game[[14], that is to say that there exists a
I[I. MODEL AND NOTATIONS function Pot such that:

We consider a seK = {1,..., K} of seeds (content Vi e K,V5 e S,Vsy,
producers, bloggers, etc) that aim to publish their content v, (s, ..., sp_1, 8}, Sk41, -, SK) — ug(3) =
in social media. We focus on the problem where each POt(81, vy Sk—1, Sy Skt 1s -y Si) — POt(8).
seed needs to publish in some social mediurm J =
{1, ..., J}. The strategy,, of seedk is the social medium Let us introduce the Harmonic numbef, =
it selects for disseminating its content. Define the Ioag:;?zl 1/jif n>1andH, = 0if n < 0. Then, one can
¢; on social mediuny as the number of competing seedgeadily check that a suitable potential of the game is:
that send their content to mediumnlt can be written as
l; =", 0(sk,7) (0 is the Kronecker symbol, i.é(a, b) Pot(5) = Z (Nszj _ %.gj) )
equalsl if « = b and0 otherwise). Assume that social ;
medium; hasN; > 0 subscribers who are interested in

content shipped to that medium. _ Let ¢ be the vector of loads induced by
The utility of a player (seed) is given as the difference ang D the set of possible vector loads:
between alissemination utilityand adissemination cost D = {(t,...0;) €N | Z,ji ¢; = K\. By using

The former, that is, the value of disseminating a contem
at the jth social network is (i) proportional té&v; and
(i) inversely proportional to/;. Further, each seed pay

e equivalence with the congestion game [ofl [10] we
et the potential as a function of the loatls D of the
s

a constant dissemination cogt for publishing on social social media:
mediumj. =
This structure of utility is very common. In the Pot() _Z(Nszj —7its) -

networking community, we find it in resource sharing !

of link capacity for flow control problems. It is also | o4 g finally introduce the following notations that
assocateq wnh_t_he _so—called Kelly m.echamsm (see [1%}" come in handy in the rest of the paper:

for a similar utility in cloud computing), and models

tracing back to the Tullock rent-seeking problem][13]. ¢ For & € R", supp™ (Z) = {j | z; > 0} ,

In the social medium context, this utility naturally arises * (-|-) is the euclidian scalar product ovet’:

if different seeds create similar content (say news) and (Z]7) = Z_j LjYjs

thus a subscriber is not interested in receiving more than® |-l is the uniform normi|Z| = max; |z;],

one content. This implies the structure of point (ii). The * (€;); is the Euclidean base &



I1l. DISCRETEPOTENTIAL ANALYSIS somei in supp™ (% — ). If we hadsupp™ (¥ — %) =0

A. Nash equilibria then we would also have

Potential games have received a lot of attention in thez Yj =i+ Zyj <+ Z%‘ = ij =K
past years as they draw a natural bridge between the 7 I# I# /
theory of games and optimization. Indeed, the definitiophs is absurd sincg € D. Hencesupp ™ (7 — &) # 0.
of a potential implies the following. A strategy profile Then, letu € supp™ (& — #) andv € supp™ (i — 7).
§ is a Nash equilibrium iff it is a maximizer of the sjnce s, > y, > 0 andy, > z, > 0 we have that

potential, that is, Z—é,+¢é, andj— ¢, + &, are inD. Then:
vE vk €K Vs €1, @ J@—duta)+fI—2d+a) - f(@)-F@)
POt(81,vey Sk—1, 85y Ska1s -y Sk ) < Pot(5). 1 1 1 1
=N, — — | +N, —-— . O
Note that a change of strategy of a seeds from social T, +1 Yu+1  xy
mediasi to social medig amount in reducing the loat] >0 >0

of network¢ and increase that of by one unit. Hence,

) _ Note that since we did not choose a particutain
in the space of load vectors, Equatiéh (2) becomes: P

the preceding proof, we have actually shown a much
Vi il >0 = Pot([—i— & —¢)< Pot(_B. ©) stronger property, that is, that the inequality hofds
' any v, which is decisive for the rest of the analysis:
For a given load vectof, let V(¢) be the set of pos-
sible load vectors obtained after the deviation of a sin-

) - Vu € supp™ (Z — §), Vv € supp™ (§ — @), 4

Then, the Nash equilibria are all the strategy profifes e

for which the vector of loads is a local (in the sense d¢- Properties of the Nash equilibria

V) maximum ofPot : D — R. In this section, we show properties of the Nash equi-
libria of this game using the M-concavity ¢f.

Z,y € D,

B. M-concavity S
T ) _ Theorem 3. Let 5§ S and let? be the vector of loads
The potential is defined over a discrete set, and theigr = Then:

fore classical convexity properties do not hold. In order _ -
to understand the structural and uniqueness properties S is @ Nash equilibrium for the game
of the Nash equilibrium, we study the properties of the < ¢ maximizeglobally the potential oveD.

potential function in terms of M-concavily Proof. The sufficient condition is a direct consequence

Definition 1. A function f : Z7 — R is M-concave if ©f EQ. (3). Conversely, assume thiis a Nash equilib-

for all 7,77 in D and for all u € supp™ (Z — 7): rium. Then, by[(B), we know that is a local maximum
of Pot (overV({)). Letu,v € I:
Jv € supp™ (7 — ), If (—¢&,+¢, ¢ Dthenf(f) > f({—&,+¢,). Otherwise,
F@) 4 f(§) < (T —But )+ (T — G+ 8. we havel — ¢, + &, € V(Z)ﬁ. Hence( satisfies the
property:Vu,v € J, f(£) > f(£ — &, + &,).
We have the fundamental property: We then apply [[11, Thm 4.6] with the M-concave

function f on , given that? is a global maximum of

i .7d H .
Theorem 2. The functionf : Z° — R defined by: 7. Thereforel is a global maximum oPot on D. [

(@) = Pot(7) if 7€ l_)’ We show next that the set of loads corresponding
— otherwise to the different Nash equilibria of the game, are all

: neighbors of each other:
is M-concave.

Theorem 4. Let &r be the set of the loads of the Nash
equilibria of the game. Then:

VI, j€Er, = > du— > E

u€suppt(Z—7) vesuppt (§—7)

Proof. Let Z, i € D. First, if supp™ (Z—¢) = 0, then the
property is trivially true. Otherwise, assume that there Is

1For more information about M-convexity, sée [11, sec. 4.2].



In other words, all Nash equilibriaz, ¥y € &r satisfy A. Maximization of the potential

17— 9ll < 1. Consider the following optimization mechanism:
Proof. First, if & = {#}, then the theorem is trivially Step 1) Start with somé € D .
true. Otherwise, assume that there existy € &r Step 2) Find¢* the argmax ofPot on V(¢)
such that||Z — ]|, > 0. SinceZ and§ are inD, we Step 3) If¢* = £ then stop

can writeZ — j as¥ — § = €, — €, + Z for some Step 4) Let! = (* and repeat from step 2)

u,v € J and Z € Z7 satisfyingu # v, (z]&,) > 0 Thanks to Theorernl 3, we know that this mechanism
and(z|é,) < 0. Therefore, we have € supp™ (Z—4) converges to a vector of loads of a Nash equilibrium.
andv € supp™ (y — ). From the point of view of the seeds, it is similar to
Letd =7 — ¢, +¢, andb = §— &, + . By Eq. [4) a guided best-response mechanism where at each step
we have:f () + f(7) = 2f(Z) < f(@) + f(b). Hence the seed which could increase the most the potential by
we getf(@) = f(b) = f(&) by global maximality of changing its strategy is selected.
f(Z). Then f(Z) — f(@) + f(¥) — f(g) = 0, which in The problem is that, in the worst cases, this al-
turns implies that gorithm visits all the load vectors of the domaip,
NN N N which leads toO(K”’) steps to find a maximum.
vyt ‘4 . However, we can exploit the M-concavity of function
Tu Yo Yutl ol f to compute a Nash equilibrium in a far more effi-
Sincex, > y, + 1 andy, > z, + 1, the last equation cient way. To that end, we adapt the algorithm MODI-
implies thatz,, = y, + 1 andx, = y, — 1. Therefore: FIED_STEEPESTDESCENT given in[[15, p.8] to our
P Z . Z a. problem, which is presented in Algorithoh 1 below.

u€supp™ (Z—7) vesupp ™t (§—1) Algorithm 1: SD_MAX
Using this result, we can find a bound over the number Input: I' = (K, (N;,7;)jer)
of Nash equilibria: Output: A vector in &r

1 Letl=Ké&, andb=0¢ Z’/

Proposition 5. For any settingl’, the number of Nash 2 while Ju, £, — 1 > b, do

equilibria is upper bounded. More precisely, &t be N,

the set of the loads of the Nash equilibrialof Then: 3 | COMPputev € argmax; (m - ’Yt)
J 4 by, < ¥, +1
2

6 return ¢
Further, this bound is tight. Indeed, I8t> 2, m € N*

andy € R*. We define the game by K = |Z] and
Vj € J,Nj=m, v; =~. Then|ér| = (LéJ)- Proposition 6. Algorithm[d terminates, returns a vector
in &r with a time complexity IO (K J?).

The proof of Propositiofl5 is given in AppendiX A.
Note that the bound is i©(2L) and that it is Proof. We implemented the active domaiB of the

independent of the number of seekfs As the number &lgorithm used in[[15, p.8] by a vectérsatisfying:

of social media is typically small, then there is a limited
number of equilibria. B={1] qu =K andVu € J, x, > by
uelJ

We then remarked that we do not need to compute
) ) the potential sincey = argmax,.; f({ — &, + &) is

In__th_ls section we see how to compute a Nas@quivalent to: e “ t)
equilibrium. Note that, from Theorefd 5, computing all

the loads of the Nash equilibria would requ(@j—%) vied, f(t—éu+é)—fl—eéu+e)20

IV. ALGORITHMIC DETERMINATION OF AN
EQUILIBRIUM

operations. Further, for each load vectomaximizing S Vtel, 7 —:1 — Y — % +7n =0
Pot, computing all the corresponding Nash equilibria v ¢

§ € S would require up tad(K!) operations because of & v = argmax ( Ne %) .
the symmetry of the game. ter \b+1




We can then apply the same analysis aslin [15] for Second, consider that= w. We have
the correctness of the algorithm.

The quantity0 < >, (K —b,) < KJ decreases by Pot(€ +€y) — Pot(£ + €y — €y + )

at least one at each step of the algorithm. Therefore, = Pot({ + €y) — Pot(£ + 2¢, — €y)

the algorithm terminates with at mogtJ iterations. N, Ny

Moreover, finding au satisfying the loop condition and T o+ 2 T = Yu

computing the value ob can be done irO(J). Hence, N, Ny

this algorithms has a time complexity (K J?). O > VS| + % =Y =0
since’ € &r.

We have also designed a refinement of this algorithm Third, consider that: = w. We have
thanks to some scaling properties of functignwhich

gives a complexity inO(J3log K/J). It is omitted due Pot(£ + @,) — Pot(£ + &, — &y + &)
to length requirements. = Pot({ + &,) — Pot({ + &,)
N Ny >0
= - Yw — Yo =
B. An efficient learning mechanism bw+1 £y +1

. . ) by definition of w.
Note that the previous algorithm starts with SOme g reciprocal follows from the last formula: if
arbitrary load vector irD and then iteratively finds the ~, _ ~w Was not maximal, then there would be some

best improvement until reaching a global maximum. ‘»*! > > -
P gag v such thatPot(¢ + é,,) < Pot(¢ + €,). Hencel + &,

Instead, we propose a novel approach in which trwould not be inr from TheoreniB O
seeds arrive one by one. We then show that at each '

arrival of seedk, the strategys; can be computed in  We use Theoreni]7 to build an efficient algorithm
such way that after all arrivals, the resulting vectds a finding a vector of loads of a Nash equilibrium (Algo-
Nash equilibrium. This approach relies on the followingithm [2): it begins with no seed and simulat&stimes
theorem: the arrival of a seed maximizing its payoff.

Theorem 7. LetT' = (K, (N;,v;),c3) be a setting of _ -
the game and” = (K + 1, (]J\fj,{y;)jej) be the setting Algorithm 2: ORDER I EARNING
obtained by adding an extra seed bnLets be a Nash  Input: I' = (K, (N, 7)) jes)
equilibrium forT" and& the strategy profile of’ in which ~ Output: A vector in&p
the K first seeds choose the same strategy as (ne. 1 Let{=0¢cZ’ andk =1
sy = oy, for all k£ < K) and the additional seed chooses? while k¥ < K do
one of the social media which maximizes its payoff. Then | Computew € arg max, (lf\% — %)
& is a Nash equlllbrlum fol™. 4 Fei+é,

Formally, let ¢ € &r be the load of some Nashg kek+1
equilibrium of " andw € J. Then

6 return ¢

7 Ny
L+ ey, € Er & w € argmax £+1—7t .
tel K Proposition 8. Algorithm[2 terminates and returns a

vector in&r with a time complexity irfO(K J).

. Proof. Let T'y, = (k, (Nj,7;)jer) for k € {0,...,K}.

to show that/ + &, is in &r. Since0 € Z” is a vector of loads of a Nash equilibrium
Letu,v € J such th@iu+6(u,w) >0 andu # v. We of T'g, then, from TQeorenE]?, at the end of ti¢h

need to show thaPot(¢ +¢&,) > Pot({+ ¢, — €, +¢&,). iteration of the loop,/ is a vector of loads of a Nash

There are three cases detailed below. equilibrium of 'y, hence the correctness of Algorittfin 2.
First, consider that, # w andv # w. ThenPot(/+  Since we can computer in O(J) and there are

&) —Pot({+ &, —&,+¢,) = Pot(f)—Pot(/—¢&,+¢,) K iterations of the loop, then the time complexity of

so it is proven in this case. Algorithm[2 is in O(K J). O

Proof. Let w € argmax, (gfvﬁ - 'yt) . We proceed



V. ASYMPTOTIC BEHAVIOR medium get among the one with minimal cost is

In this section, we discuss the form of the Nash €dual to its market share. Formally:

equilibria when we have a lot more seeds than social 2 N,
media, soK > J. We are interested in this case Yw € G, /) K:ZO ﬁ

in practice as the activity in the Internet tend to be teG bt teG
concentrated in a restricted number of famous websitesThe proof of Theorerfil9 is given in Appendix B.

A. Intuition VI. NUMERICAL RESULTS

First, we can make a hypothesis about the asymptotic

behavior of this game wheK — oo according to the
form of the potential. Recall thall, ~ In(n) + u, when the number of see.d_K.grows large. Note that
% there may be up t@ equilibria and that the plots of

wherey is the Euler-Mascheroni constant. Then in ord . .
to find approximate Nash equilibria, we can study tfiehe figure correspond to the outputs of Algorithin 2. The

asymptotes obtained in Theordrh 9 are represented in

Figure[1 shows the convergence of the equilibrium

function dashed lines with colors matching those of the loads of
P(0) = Z (N; In(€;) — ~;¢;) - their associated social media (SM). The SMand 3,
j, £;>0 which have minimal cost, have loads growing to infinity

with the number of seeds. The asymptote of SMas a

We can see that,. for large values &f the Ime:_:\r part higher slope than that éfbecause it has a higher number
in ~;¢; is determinant compared to the logarithm paife subscribers, > Ns). Finally, while for large values
in N; In(¢;). Therefore we can make the hypothesis tha ’

. . of seeds the cost of the social media is predominant,
when the quantity>".¢; = K is large enough, then .
J : .in contrast, for low values of seeds, the number of
the only ¢; that continue to increase are the ones wit i s
. ; . customersM plays the larger role in determining the
minimal cost. Then, it seems natural that all social med

a : . .
with minimal cost would behave as if they were in e’\oads of the different social media.

subgame where new seeds would only choose them.
200

. . SM 1
B. Asymptotic Analysis SMQ
M3

Following our hypothesis, we defing,, the minimal
cost andG the set of social media with minimal costs:

Ym = min~y; andG = argmin~y;.
J J

Load ¢;

We know, thanks to Theoreml 7, that whéti in-
creases, the coordinates of the loads of the Nash equi-
librium we consider can only increase. We proceed to
show our intuition. In the following, we not&'; =
(K, (Nj,v;)ier) andEx = &r,.. We study the vectors

0 100 200 300 400 500

in £k obtained with the mechanism implemented in Number of seedsc
Algorithm[2. Let/U5) be the vector irf ¢ obtained after
the Kth iteration of the |00p in the algorithm. Fig. 1. Convergence to the asymptotic behavior. Case with:

(N1,m) = (100, 2), (N2,72) = (25,1) and (N3, v3) = (20, 1).
Theorem 9. When K goes to infinity, at the Nash
equilibria, the social media are divided into two groups: Figure[2 shows the evolution of the social welfare,
« The loads of the social media with non-minimathat is, the sum of total utilitiesy ", ux(5), at the Nash
cost stop increasing when they reach a constargquilibrium and at the social optimum. The asymptotic

Formally: behavior at the Nash equilibria is given byy,, K from
N Theorem[®. Further, le = {j,N; > ~,}. Recall
VielJ\G, £§K) P [ﬁw —1. that the social optimum is the strategy vector maximiz-
—00 i = TYm

ing the social welfare. Then, foK large enough, the
« The loads of the social media with minimal cossocial optimum satisfiesnax; -, , .o(N; — v;¢;) =
goes to infinity, and the proportion of seeds a socidl_ ;. . (N; —v;) — ym (K —|L[) ~ =y K. Hence, as the



100 fX ‘ Social Op‘_tim_um ‘ ]
Nash Equilibrium

-100

-200

-300

Load /,

-400 |-

Sum of utilitiesy", ux(5)

-500

-600

-700 |- S

100 200 300 400 500 600 700 800 0 200 400 600 800 1000
Number of seeds< Number of users of SM: Ny

Fig. 2. Sum of utilities at equilibrium compared with the ®bc Fig. 3. Influence of the number of users. Case with 2 socialiamed
optimum (same setting that Figuré 1). N1 = 250, v2 = 10 and K = 100.

number of seeds grows to infinity, the price of anarchy 100 :

converges td. M~ v
Finally, Figured B an@4 show the sensitivity of the 80 | \\\ N = 1000 |
equilibria with respect tav and~ for a case with/ = 2 \

social media.

We observe that the load of a social medium is
increasing with its number of customers, as expected
(Fig. [3). Further, if the dissemination cost of SMis
higher or equal to that of SM and if it has no customer,
then its load is zero, as exhibited in the red and blue
plots. Otherwise, even though it has no customer, if its
cost is minimal, it will receive some seeds (green plot).

Finally, note that as the cost of SM decreases, the Cost of SM 2172
number of customers in the SK has lower effect of
the evolution of the load,. Fig. 4. Influence of the dissemination cost. Case with 2 $ooédia:

We also observe that the load of a social mediufi = 30 N2 =250 and K = 100.

is decreasing with its dissemination cost, as expected
(Fig. @). Further, numerical results show that the loa4ture work, we will study the underlying competition
decreases more abrupt|y for lower number of ugﬁfs among the SOCial media in the Stackelberg Setting fOI’
but that the drop occurs for larger values-of a discrete number of seeds: according to their number
of subscribers (who consume content), how could they
VII. CONCLUSION appropriately set up their prices? We further plan to
In this paper, we have studied competition for popextend our model to the case where seeds have different
ularity of seeds among several social media. We hadéssemination utilities for sending to the various media.
shown that the game is equivalent to a congestidihie game is no more equivalent to a congestion game but
game and hence has a potential. We then studied fhéns out to be equivalent to crowding games [16]. This
properties of the potential in terms af-concavity. We allows to show existence of (pure) equilibria but best
have shown that there may exist several Nash equilibrigsponse policies need not converge, as there need not be
all belonging to a single neighborhood and provided potential anymore. Thus, designing learning algorithms
examples where the number of equilibria is maximal. W' this extension is yet an open problem.
have provided a novel efficient learning algorithm based
on a remarkable property of the Nash equilibria in some
subgames. We also investigated the asymptotic behaviflf A may, A. Chaintreau, N. Korula, and S. Lattanzi, “Gannethe
of the equilibria of the game and the price of anarchy. As  newsroom: Greedy bloggers for picky audience, Piroc. of the
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APPENDIXA min(|U],[V]) U /v
PROOF OFPROPOSITIONS] Erl<[Al=1+ > ( . ) ( 1 )
A. Proof of the upper bounitr| < (ij). . )k:1
2 min(a,J—«

Lemma 10. Let Z be a load vector at a Nash equilib- <1+ Z (O‘> (J - O‘)_
rium, ¥ € &r, andwu a social mediumy € J. Then P k k

(37 € &r, w0 > yu) = (VZE Er, 10 > 24). We conclude the proof by applying Lemnial 11,

Proof. Assume that there exisggand? in & such that
Ty > Yy @ndz, < z,. Then, by Theored4y, = =, —1

using the increasing property of functiof’) over
{0,..., [J/2]} and the fact that”) = (,” ) for all p:

andz, = =, + 1. Hencez, — y, = 2 which contradicts

J J
Theoren 4. O [Er| < (O) < (L%J) O



B. A Tight Class of Settings

Proof. First, this quantity is decreasing. Moreover, by

Let.J > 2, m € N* andy € R+. We define the game definition of the?'%), we have that for alf, Y~ £ =

|5] and¥j e J,N; =m, 7; =1

by K = |3

Lemma 12. The Nash equilibria of gamE satisfy the
property:

and /=&,

ucA

(eér=3AC], |A|=EJ

Proof. Assume that there exist& e & andw € J such
thatz, > 1. SinceK < J, there exista € J such that
x, = 0. Consider the vectof = & — x4 €, + T4€y.
Since all thelN; and~; are equal, the potential gf
is equal to the potential of. Thereforey € £r. But we

havey, — z, = z, > 1 which contradicts Theorefn 4

and concludes the proof.

Sinceé&r 7& 0, letZ € &. By LemmdIR, we can note

T =) ,ca6u forsomeAd C J. Let B C J verifying
|B| = |%] and§ =", €. Then, we have
Pot(d) = 3 (m =) = |5 | 6m =)
ucA
= 3" (m — ) = Pot(y).
veEB
Therefore,|Er| = {A cll|l4= MZJH = < { >
2 5]
APPENDIX B

PROOF OF THE ASYMPTOTIC BEHAVIOR

Note that, by definition of the learning mechanism

implemented in Algorithni12, for alll € N andj € J
we have

(K+1) _ p(K) Ne
t; ={; +1:>j€argt$ax(£t+1 %).(5)
A. Social media with non minimal cost
We want to prove that
N,
viel\a, &5 — { i -‘—1. (6)
. K—o0 F)/j — Ym

We begin by proving the following two lemmas.
Lemma 13. The quantity

N
B

is arbitrarily close to~,, for K large enoug.

M%) = max

2We denote byK “large enough” the fact that there exists sokig
such that the property is verified for ai’ > K.

J
K K—> oo. Therefore, there exists somec J such that
— 00

é&K) — oo. It means that there existd(,,),en such

K—oo
thatvn, (KD = £5K2>K+)1, which implies by [(5) that
Vn, — Yy = M),

TEn 1
Hence M (%) is arbitrarily close to—, for n large
enough. We conclude by noticing thaty, < —v,,,. O

Lemma 14. Let K > 0 andu € J. Then
Ny
o) 11
Proof. First, assume thatW Yu < —Ym- Then for
somew € G and for aIIK’ > K we have

—Yu > =Y & K> K, (KD S g(F)

N, Ny
O T
sincevy,, = Y. This implies that- o~ < MED,

Therefore, for allK’ > K, (8) leads tort) = ¢
NU
Then assume that(K)—1 Yu > —Vm- Accordlng to

Lemmal14,M K" is arbitrarily close to—-,, for K’
large enough. Therefore there exigts > K such that

/ N, .
ME) < . vu. Hence 05D = o) which
concludes the proof. O

We can now proceed with the proof @fi (6).
Let j € J\ G. We know by Lemmd 14 that")
increases withK" as long as(]:[i
G +1
Therefore, forK large enough we have

N; -
+1 Jm

Then, letp € N. Sincej € J\ G, we havey; > y,.

Yi > —Vm-

é;-K) = 1—|—max{p€ N

. Hence

N
We solve—2——v; > —v,, & p+1 <
p+1

Vi~ Tm

ég-K) +1= [ J w which concludes the proof.
’ Yi — TIm
B. Social media with minimal cost

We can directly conclude from Lemniall4 that the
load of any social medium having a minimal cost goes
to infinity as K increases. Formally:

Yw € G, E(K) —> 0.

— 00

(@)

Now we proceed to find the values 635{) for the
social media with minimal cost. LeK be large enough



so that [(6) is verified. LeKg = K — Z £§K) be the
jENG
number of seeds sharing the social mediazimnd

De = {(It)tec 1> @ = Kg andVt € Gz, > o} ,
teG

Consider the gamel'c = (Kg,(Nt,Ym)tea)-
From [7), the loads of the social media % can be
arbitrarily high with K large enough, so we determine
an approximation of a load of a Nash equilibrium for
the social media irG by solving

max P(Z) = Z (NyIn(zy) — ymae) St.7 € Dg.

teG

SinceP is concave, we apply a Lagrangian maximiza-

tion method. Letl be the Lagrangian for this problem:

L(Z,\)=P(Z) — A (Z Ty — Ka) ,

teG

where ) and thex; are nonnegative.
Since P is concave, the uniqgue maximut verifies

vt € G, 8—L(:z?*) = 0. Therefore, we get that for any

N, o N,
t t
Now we determine the value of.
Ny
St = Ka= Y s = Ko
teG teg Im +A
1
A= — — Y-
3= (T -
teG
Hencevw € G, 2}, = K¢ N;UN .
. te t .
Thanks to[(¥) and sincé,, —u ~ Inn, we finally
n— o0
50 Nu

get thatvw € G, — =
teG éz(tK) K00 3 ycq Vi
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