
ar
X

iv
:1

60
1.

00
53

0v
1 

 [
cs

.I
T

] 
 4

 J
an

 2
01

6
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.10 OCTOBER 2015

1
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HISTORY: An Efficient and Robust Algorithm for Noisy

1-bit Compressed Sensing

Biao SUN†, Hui FENG†, Nonmembers, and Xinxin XU††, Member

SUMMARY We consider the problem of sparse signal recov-
ery from 1-bit measurements. Due to the noise present in the
acquisition and transmission process, some quantized bits may
be flipped to their opposite states. These sign flips may result
in severe performance degradation. In this study, a novel algo-
rithm, termed HISTORY, is proposed. It consists of Hamming
support detection and coefficients recovery. The HISTORY al-
gorithm has high recovery accuracy and is robust to strong mea-
surement noise. Numerical results are provided to demonstrate
the effectiveness and superiority of the proposed algorithm.
key words: 1-bit compressed sensing, sign flips, Hamming dis-

tance

1. Introduction

Compressed sensing, as introduced in [1]–[3], addresses
the problem of estimating high dimensional signals
from a set of relatively few linear measurements. It
was demonstrated that a sparse signal can be recon-
structed exactly if the measurement matrix satisfies
the restricted isometric property (RIP) [4]. It was also
shown that random matrices will satisfy the RIP with
high probability if the entries are chosen according to
independent and identically distributed (i.i.d.) Gaus-
sian distribution.

In practical CS architectures, the measurements
must be quantized to a finite number of bits. The ex-
treme quantization setting where only the sign is ac-
quired is known as 1-bit compressed sensing (1-bit CS)
[5]. It has become increasingly popular due to its low
computational cost and easy implementation for hard-
ware [6]. In 1-bit CS, measurements of a signal x ∈ R

N

are computed via

y = sign(Ax + n), (1)

where x ∈ R
N is the signal, A ∈ R

M×N is the mea-
surement matrix, n ∈ R

M is the measurement noise,
y ∈ R

M is the set of 1-bit measurements, and function
sign(·) maps the signal from R

N to the Boolean cube
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BM := {−1,+1}M . Since signs of real-valued mea-
surements are used, one loses the ability to recover the
magnitude of x and thus assumes that the signal has a
unit norm, i.e., ‖x‖2 = 1. The 1-bit CS has been stud-
ied by many people and several algorithms have been
developed to recover the sparse signals [5], [7]–[12].

Despite the attractive attributes of 1-bit CS, the
major disadvantage is that measurements are suscep-
tive to noise during both acquisition and transmission
[13]–[15]. In noisy scenario, the output bit is randomly
perturbed from the sign of the real-valued measure-
ment, and the so-called sign flips seriously degrade re-
covery performance. To date, researchers have devel-
oped numerous approaches for noisy 1-bit CS. Yan et
al. [16] proposed a greedy method which detect the po-
sitions of sign flips iteratively, and recover the signals
using correct measurements. However, it requires the
prior knowledge of noise level, which is often intractable
in practical applications. Plan et al. [17] proposed a
constrained optimization method with a linear objec-
tive. This convex formulation can work with a general
notion of noise and achieve error for both exactly and
approximately sparse signals. Ai et al. [18] extends [17]
to sub-Gaussian measurements, and gets an irreducible
component in the error and cannot be reduced by in-
creasing the sample size or otherwise. However, they
are computational inefficient and difficult for hardware
implementation. Recently, Zhang et al. [19] developed
an efficient passive algorithm with closed-form solution,
which improves the recovery performance for exactly
K-sparse signal. Due to its high performance, robust-
ness, and computational efficiency, they can be seen as
the state-of-the-art algorithm for noisy 1-bit CS.

This study focuses on recovering exactly K-sparse
signal in the noisy setting for 1-bit CS. A novel algo-
rithm is proposed. Termed HISTORY, it consists of
two key parts, namely HammIng Support deTection,
and cOefficients RecoverY. The former aims to con-
struct a candidate support set by detecting possible
supports of nonzero entries. The latter aims to calcu-
late the coefficients belonging to the candidate support
set. Experimental results show that the proposed algo-
rithm has high recovery performance than the state-of-
the-art. In addition, due to the fact that containing no
iterative step, it is computationally efficient and easy
to implement.
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2. HISTORY Algorithm

The main objective of this section is to characterize the
HISTORY algorithm. Notations used in this paper are
first described, then the two key parts of HISTORY are
introduced in sequence.

2.1 Notations

Boldfaced capital letters such as A are used for matri-
ces. Italic capital letters such as S denote sets. For a
matrix A, Aj , Ai,j , A

T, and AS denote its jth column,
ijth element, transpose, and sub-matrix which contains
the columns with indices in S, respectively. Small let-
ters such as x are reserved for vectors and scalars. A
vector x is called K-sparse if at most K of its coeffi-
cients are nonzero. For a vector x, xj , ‖x‖p, and xS

denote the jth element of the vector, its p-norm, and
sub vector which contains the elements with indices in
S, respectively. For two vectors u ∈ R

N and v ∈ R
N ,

the notationH(u, v) denotes the Hamming distance be-
tween them, which is defined as

H(u, v)
def
= #(uj 6= vj) , j ∈ 1, 2, . . . , N. (2)

The notation P denotes probability of an event.

2.2 Hamming support detection

To detect possible supports of nonzero coefficients from
noisy 1-bit measurements, a Hamming support detec-
tion method is developed based on Angle Proportional
Probability (APP), which is outlined as follows,

Theorem 1 (Angle Proportional Probability). Let
x ∈ ΣK be a K-sparse signal with ‖x‖2 = 1. Let φ
be a Gaussian random vector which is drawn uniformly
from the unit ℓ2 sphere in R

N (i.e., each element of φ
is firstly drawn i.i.d. from the standard Gaussian dis-
tribution N (0, 1). Define an event E to be

E : sign(xTφ) 6= sign(φj), (3)

then it holds,

P(E) =
1

π
arccos(xj). (4)

The proof can be found in Appendix A. In par-
ticular, it shows that P(E) has a cosine function rela-
tionship with the j-th element of φ. Thus, xj can be
uniquely identified by P(E). In addition, the probabil-
ity can be estimated from the instances of the random
variable sign(xTφ), which are exactly the 1-bit mea-
surement vector y defined in (1). Therefore, y contains
sufficient information to reconstruct xj from the esti-
mation of P(E).

In noisy setting, due to the fact that the signs of y

are randomly perturbed, xj cannot computed directly
from (3) and (4). However, given the noise level (sign
flip ratio) as a prior knowledge, we have the following
lemma,

Lemma 1. Given a K-sparse signal x with ‖x‖2 = 1,
a standard Gaussian measurement matrix A ∈ R

M×N ,
and a 1-bit measurements vector y = sign(Ax). In
noisy setting, suppose the sign flip ratio ρ < 0.5, define
P ∈ [0, 1]N as a probability vector with Pj denoting its
j-th element as

Pj
def
= P

(

sign (yi) 6= sign (Aij)
)

, (5)

and it holds

Pj =
1− 2ρ

π
arccos(xj) + ρ. (6)

The proof can be found in Appendix B. In the
limit of large systems as the measurements dimen-
sion M → ∞, Pj is an asymptotically approximation
with the Hamming Distance between y and Aj , i.e.,
H{y,Aj}/M = Pj . Consequently, given the noise level
and a relatively high measurements dimension, Pj can
be well estimated by computing the Hamming distance,
then xj can be estimated accordingly. However, di-
rectly estimating xj from (6) is intractable. For one
thing, with the decrease of measurements dimension,
the coefficients estimation performance degrades signif-
icantly. For another, (6) requires the sign flip ratio ρ
as prior knowledge, which is often unknown in practi-
cal applications. To address the first problem, we only
detect possible supports in current part, and leave the
coefficients estimation to the next one. To address the
second problem, it is easy to verify that despite the
value of ρ, Pj in (6) is a monotone decreasing function
with respect to xj , i.e., when M → ∞, we have

H{y,Au} > H{y,Av}, ∀ xu < xv. (7)

The main point is that despite the noise level, am-
plitude order of nonzero coefficients will be maintained
while dependencies in ρ vanish in the corresponding
Hamming distance. Therefore, we can set ρ to be an
arbitrarily value (e.g. ρ = 0) and compute approximate
amplitudes of each coefficients via (6), then form the
candidate support set by selecting the supports with
largest amplitudes.

2.3 Coefficients recovery

Providing the candidate support set, denoted by S, the
next part is coefficients recovery, which aims to com-
pute the amplitudes of nonzero coefficients. In this
paper, we try to compute the coefficients vector c by
solving the following constrained least squares problem,

c∗ = minimize
c∈R‖S‖0

‖y −AS · c‖2 s.t. ‖c‖0 ≤ K, (8)
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where ‖c‖0 denotes the 0-norm of c, i.e., counting the
number of nonzero coefficients in c. It’s worth noting
that is a overdetermined system when |S|0 < M . Thus,
the sparsest solution to (8) is given by

c∗ = AS \ y, (9)

where \ denotes the left matrix divide operation. (9)
can be solved via the QR decomposition [20] efficiently.

Based on the two parts described above, the HIS-
TORY algorithm is fully summarized in Algorithm 1,
where FindSupp(|h|, αK) returns the supports of the
largest αK elements in |h|, and HK(·) denotes the hard
thresholding operator which only preserve the largestK
coefficients and set others to 0. It’s worth noting that
Algorithm 1 is a nearly-linear time algorithm, with its
computational complexity to be O(MN). Therefore,
the proposed algorithm runs significantly faster than
iterative algorithms.

Algorithm 1 HISTORY

Input: y,A, K, α
1: Initialize: x∗ = Zeros(N)
2: for each j ∈ 1, . . . , N do
3: Pj = H{y,Aj}/M
4: hj = cos(πPj)
5: end for
6: S = FindSupp(|h|, αK)
7: c∗ = AS \ y
8: x∗

S = c∗

9: if α > 1 then
10: x∗ = HK(|x∗|)
11: end if
12: x∗ = x∗/‖x∗‖2
Output: recovered sparse signal x∗

3. Experiments

3.1 Experimental Setup

The target vector x ∈ R
N is generated by drawing its

nonzero elements from the standard Gaussian distri-
bution, and then normalized to have unit norm. The
locations of the K nonzero coefficients of x are ran-
domly selected. The elements in the measurement ma-
trix A ∈ R

M×N are also drawn from the standard
Gaussian distribution. To generate sign flips, the mea-
surement vector y is firstly acquired as in (1), then the
sign of every element in y is flipped with probability
ρ. For each setting of M , N , K and ρ, the recovery
experiment is repeated for 100 trials, and the average
recovery error, denoted by ‖x−x∗‖2/‖x‖2, is reported.
In all experiments, the parameter α in Algorithm 1 is
set to 2.

The HISTORY algorithm is compared with the fol-
lowing three algorithms,

• BIHT-ℓ2: a heuristic algorithm proposed in [14],

M
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Fig. 1: Evaluate recovery error of each algorithm versus
measurement dimension M , when N = 1000, K = 10,
and ρ = 0.1.

which has been proved to have better performance
than BIHT in noisy setting. The maximum iter-
ative number and step size are set to 200 and 1,
respectively †.

• Convex: a provable algorithm proposed in [17],
which solves a convex optimization problem to re-
cover the sparse signal ††.

• Passive: an efficient optimization algorithm with
closed-form solution proposed in [19], experimen-
tal results illustrated that their passive algorithm
outperforms other baselines. The regularization

parameter γ is set to
√

logN

M
, which is the opti-

mal choice in [19].

3.2 Results

3.2.1 Recovery error versus measurement dimension

First the recovery error at different measurement di-
mension M is studied. Parameters are set as N = 1000,
K = 10, ρ = 0.1, andM is varied from 200 to 4000. The
recovery error curve is shown in Fig. 1. It’s observed
that with the increase of M , the recovery error of all
algorithms decrease. In particular, BIHT-ℓ2 has worst
performance among these algorithms, that is because it
is very sensitive to noise in the 1-bit measurements. In
contrast, HISTORY has best performance, especially
when M is relatively large. The recovery error of Con-
vex is similar to Passive as in noiseless scenario.

3.2.2 Recovery error versus sparsity

Then the recovery error at different sparsity K is eval-

†A matlab implementation of BIHT-ℓ2 algorithm can be
downloaded from http://perso.uclouvain.be/laurent.jacques
/index.php/Main/BIHTDemo.

††The CVX package is used to solve this optimiza-
tion problem. The package can be downloaded from
http://cvxr.com/cvx/.
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Fig. 2: Evaluate recovery error of each algorithm versus
sparsity K, when N = 1000, ρ = 0.1, and M = 4000.

uated. Parameters are set as N = 1000, ρ = 0.1,
M = 4000, and K is varied from 10 to 200. The re-
covery error curves are shown in Fig. 2. Results show
that with the increase of K, the recovery error of all
algorithms increase. In particular, among these algo-
rithms, HISTORY has best performance while BIHT-ℓ2
has worst one. In addition, Passive and Convex almost
have the same performance. Finally, we would like to
emphasize that HISTORY increase its advantage with
the increase of K, i.e., it is less sensitive to sparsity
than other algorithms.

3.2.3 Recovery error versus noise level

Next the recovery error at different sign flip ratio ρ is
evaluated. Parameters are set as N = 1000, K = 10,
M = 4000, and ρ is varied from 0 to 0.5. The recovery
error curves are shown in Fig. 3. Though BIHT-ℓ2 had
the minimum recovery error when ρ is small, with the
increase of ρ, its recovery error increased very quickly,
making it to be the worst algorithm at high noise level.
Passive and Convex had almost the same performance,
which are better than that of BIHT-ℓ2. HISTORY has
best performance both at high and low noise levels.
Thus, HISTORY has best noise robustness among these
algorithms.

3.2.4 Recovery error under misspecified model

Next we study the error of each algorithm under mis-
specified model, i.e., the sparsity of original signal is
unknown. Parameters are set as N = 1000, K = 10,
M = 4000, ρ = 0.1, and we select Kselect from 1 to 20
to evaluate the algorithms. The recovery error curves
are shown in Fig. 4. Results show that the recov-
ery error of HISTORY sharply drops at the correct
Kselect = K, moreover, HISTORY performs better than
Passive and Convex in a neighborhood of K. Under
mis-specification with Kselect < K, the recovery error
is large since the error from unrecovered coefficients is
large. For Kselect > K, the nonzero coefficients are

ρ

0 0.05 0.1 0.15 0.2 0.25 0.3

R
ec

o
v

er
y

 E
rr

o
r

0

0.1

0.2

0.3

0.4

0.5

0.6

HISTORY

Passive

BIHT-ℓ2

Convex

Fig. 3: Evaluate recovery error of each algorithm versus
sign flip ratio ρ, when N = 1000, K = 10, and M =
4000.
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Fig. 4: Evaluate recovery error of each algorithm when
K is unknown. Parameters are set to N = 1000, K =
10, M = 4000, and ρ = 0.1. K is selected from 1 to 20.

correctly recovered so that the corresponding error is
small, but there is some additional error due to noise.

3.2.5 Computational complexity

To evaluate the computational complexity of each algo-
rithm, we study the running time of them. Parameters
are set as N = 1000, K = 10, M = 4000, and ρ = 0.1.
The running time of those algorithms can be found in
Table 1. Results show that the running time of HIS-
TORY and Passive are similar, while that of Convex
and BIHT-ℓ2 are significantly higher.

Table 1: Running time of each algorithm, when N =
1000, K = 10, M = 4000, and ρ = 0.1. For BIHT-ℓ2,
there is no formal stoping criterion, and we report the
running time after 100 iterations.

Algorithm BIHT-ℓ2 Convex Passive HISTORY

Time (s) 325.82 163.54 2.95 3.51
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4. Conclusion

In this paper, we develop a efficient and robust algo-
rithm for noisy 1-bit compressive sensing. Compared
with the existing methods, the proposed algorithm have
several important advantages: it is robust to noise, it
is computationally efficient, it has lower sample com-
plexity, and it is easy to be implement. Experimental
results provide sound support to our theoretical devel-
opment.
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Appendix A: Proof of Theorem 1

It’s worth noting that

P(sign(xTφ) = sign(φj))

= P(xTφ > 0, φj > 0) + P(xTφ ≤ 0, φj ≤ 0).

We can divide xTφ into two parts as

m = xTφ = mj +mc,

where

mj = φjxj ,

mc = xTφ− φjxj .

In addition, it can be easily verified both mj and mc

satisfy Gaussian distribution, i.e.,

mj ∼ N (0, x2
j ),

mc ∼ N (0, 1− x2
j ).

Depending on xj , we have three situations as follows,
(1) when xj = 0, we have

P(xTφ > 0, φj > 0)

= P(mc > 0,mj > 0)

= P(mc > 0)P (mj > 0)

=
1

4
.
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In the same way, we have

P(xTφ 6 0, φj 6 0) =
1

4
.

Therefore,

P(sign(xTφ) = sign(φj)) =
1

2
.

(2) when xj > 0, we have

P(xTφ > 0, φj > 0) = P(mc +mj > 0,mj > 0)

The joint probability density function of mc and mj is

p(mc,mj) =
1

2πxj

√

1− x2
j

exp

(

−
1

2

(m2
j

x2
j

+
m2

c

1− x2
j

)

)

Assume that

mc = r cos θ,

mj = r sin θ,

then we have,

P(mc +mj > 0,mj > 0)

=
1

2πxj

√

1− x2
j

∫ 3

4
π

0

dθ

∫ ∞

0

exp

(

−
1

2

(r2 cos θ2

1− x2
j

+
r2 sin θ2

x2
j

)

)

rdr

=
1

2
−

1

2π
arccos(xj).

In the same way, we have

P(xTφ ≤ 0, φj ≤ 0)

= P (mc +mj ≤ 0,mj ≤ 0)

=
1

2
−

1

2π
arccos(xj).

Therefore, we have

P(sign(xTφ) = sign(φj)) = 1−
1

π
arccos(xj).

(3) when xj < 0,

P(sign(xTφ) = sign(φj))

= P(xTφ > 0, φj > 0) + P(xTφ ≤ 0, φj ≤ 0)

= P(mc +mj > 0,mj < 0) + P(mc +mj ≤ 0,mj ≥ 0).

The first part can be computed via

P(mc +mj > 0,mj < 0)

=
1

2πxj

√

1− x2
j

∫ 0

− 1

4
π

dθ

∫ ∞

0

exp

(

−
1

2

( r2

1− x2
j

cos θ2 +
r2

x2
j

sin θ2
)

)

rdr

=
1

2
−

1

2π
arccos(xj).

In the same way, we calculate the second part as

P(mc +mj < 0,mj > 0) =
1

2
−

1

2π
arccos(xj).

Therefore, we have

P(sign(xTφ) = sign(φj)) = 1−
1

π
arccos(xj).

Synthesize the above three situations, we have

P(sign(xTφ) = sign(φj)) = 1−
1

π
arccos(xj)

P(sign(xTφ) 6= sign(φj)) =
1

π
arccos(xj).

This concludes the proof.

Appendix B: Proof of Lemma 1

Providing M → ∞ with sign flip ratio ρ, the Hamming
distance between y and φj can be computed via

H{y, φj}

= (1 − ρ)M · P(sign(xTφ) 6= sign(φj))

+ ρM · P(sign(xTφ) = sign(φj))

=
(1 − ρ)M

π
arccos(xj) + ρM

(

1−
1

π
arccos(xj)

)

=

(

1− 2ρ

π
arccos(xj) + ρ

)

M,

which yields

H{y, φj}

M
=

1− 2ρ

π
arccos(xj) + ρ.

Then the proof completes.
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