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We present a theoretical framework for understanding the wavefunctions and spectrum of an ex-
tensively studied paradigm for quasiperiodic systems, namely the Fibonacci chain. Our analytical
results, which are obtained in the limit of strong modulation of the hopping amplitudes, are in
good agreement with published numerical data. In the perturbative limit, we show a new symme-
try of wavefunctions under permutation of site and energy indices. We compute the wavefunction
renormalization factors and from them deduce analytical expressions for the fractal exponents cor-
responding to individual wavefunctions, as well as their global averages. The multifractality of
wavefunctions is seen to appear at next-to-leading order in ρ. Exponents for the local spectral den-
sity are given, in extremely good accord with numerical calculations. Interestingly, our analytical
results for exponents are observed to describe the system rather well even for values of ρ well outside
the domain of applicability of perturbation theory.

Introduction As distinct from periodic crystals on the
one hand, where electronic states are typically extended,
and disordered systems on the other hand, where states
are typically localized for low dimension and/or strong
enough disorder, electronic states in quasicrystals are be-
lieved to have an intermediate “critical” character. The
study of tight binding models on the Fibonacci chain,
a one dimensional paradigm for quasicrystalline struc-
tures, is particularly important, as a first step towards
understanding the physics of these systems. These mod-
els have been extensively investigated theoretically, as in
[1–5]. There have also been many experimental stud-
ies of electronic properties of this model. To cite some
recent works, in [6] investigated transport due to topo-
logically protected edge states in a Fibonacci photonic
waveguide. In [7], the density of states of a Fibonacci
tight-binding model was studied by direct observation of
polariton modes in a one-dimensional cavity, and shown
to have the fractal structure, log-periodic oscillations and
gaps labeled as predicted by theory [3].

While the spectral properties in the model are now
reasonably well understood, wavefunctions are less well
characterized. More generally, despite the belief, sup-
ported by numerical evidence, that there are critical wave
functions in quasicrystals, there are no analytical calcu-
lations for the fractal properties of all wavefunctions, to
our knowledge. In view of the importance of the struc-
ture of eigenstates to understand, for example, dynamics
or transport, obtaining a theoretical description of states
in this 1D quasicrystal is necessary. In this paper, we
present a detailed calculation of the properties of all the
wavefunctions in the off-diagonal Fibonacci tight-binding
model, in which the hopping terms have two possible am-
plitudes, ordered according to the Fibonacci sequence.
In the strong modulation regime where the ratio of hop-
ping amplitudes ρ � 1, one can write an approximate
renormalization group transformation for this model [8–
10] and obtain recursion relations for multifractal expo-
nents of the spectrum. Returning to this approach, we

obtain explicit expressions for the fractal exponents cor-
responding to individual wavefunctions. We show, using
the conumbering scheme, that wavefunctions are sym-
metric under exchange of site and energy indices in the
perturbative limit. We show that the multifractal prop-
erty of wavefunctions appears at next-to-leading order in
ρ. We give expressions for their globally averaged val-
ues. We compute next the generalized exponents of the
global and the local spectral measures. Our results agree
very well with numerical computations on approximants
of the Fibonacci chain.

In Sec.I we introduce the model, and some basic defi-
nitions and notations. In Sec.II we review the real space
renormalization group used to calculate the wavefunc-
tions in perturbation theory. In Sec.III we present the
main steps of the calculation of fractal exponents, show-
ing in detail how to obtain results to leading order. In
the following section Sec.IV, we present the higher order
corrections, and we obtain theoretical predictions which
we then compare with numerical data. In Sec.V we dis-
cuss some of the implications of these results. We present
an inequality relating the different families of exponents
which, we speculate, might be more generally valid in
other 1D models. Summary and conclusions are pre-
sented in Sec.VI. The Appendix shows details of the
higher order calculation in perturbation theory.

I. MODEL AND DEFINITIONS

The tight-binding Hamiltonian that we will consider in
this work is the pure hopping model given by

H =
∑
i

ti (|i〉 〈i+ 1|+ |i+ 1〉 〈i|) , (1)

where the hopping amplitude between sites i and i +
1, ti, can take the value ts (strong) or ts (weak). The
ratio of the number of hopping amplitudes of each type
is N(tw)/N(ts) = ω where ω = 2/(1 +

√
5) is the inverse
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of the golden ratio. This ratio is irrational, showing that
the chain cannot be periodic. ti varies along the chain
according to the rule

ti =

{
tw when i mod ω−1 ≥ ω,
ts otherwise.

(2)

The Fibonacci chain can alternatively be constructed re-
cursively by the inflation method. We start with the
finite chain C0 = ts, to which we apply the inflation rule

r
def
=

{
tw → twts
ts → tw

(3)

to obtain a series of longer and longer chains : C1 =
r(C0) = tw, C2 = r(C1) = twts, ... Cn = rn(C0). The
Fibonacci chain is then defined as the semi-infinite chain
C∞.

In numerical calculations, we will replace the Fibonacci
chain C∞ by a periodic system, whose elementary cell is
the finite chain Cn (the so-called nth periodic approxi-
mant). In the above formula, this amounts to replacing
ω by a rational approximant, ωn = Fn−2/Fn−1, where Fn
is the nth Fibonacci number (starting from F1 = F2 = 1).

F5 = 8
1 6 3 8 5 2 7 4 1

Figure 1: The periodically repeated block of the fifth
approximant to the Fibonacci chain. Weak couplings tw
are represented by a single line, and strong couplings ts
by a double line. Below each site is its conumbered

label.

Atoms and molecules. In the strongly modulated limit,
one has a natural classification of sites into “molecule-
”type (m) and “atom-”type sites (a) depending on their
local environment. Atom-type sites have weak bonds on
the left and on the right, so they are weakly coupled to
the rest of the chain. Molecule-sites are linked by a strong
bond to another molecule-site, and have a weak bond on
either side. In the limit tw → 0, these pairs form isolated
diatomic molecules, while the remaining sites correspond
to isolated atoms.

II. THE PERTURBATIVE
RENORMALIZATION SCHEME

We now recall the main ideas behind the perturbative
renormalization scheme introduced by Niu and Nori [9],
and independently by Kalugin, Kitaev and Levitov [8].
The Hamiltonian depends on the single parameter ρ =
tw/ts, with ρ� 1 in the strong modulation limit.

When ρ = 0, the atoms and the molecules decou-
ple. The spectrum consists of three degenerate levels:
E = ±ts, corresponding to molecular bonding and anti-
bonding states, and E = 0, for the isolated atomic state.

When ρ 6= 0, the states in each of the three degener-
ate levels weakly couples to each other, thus lifting the
degeneracy. We now consider separately the case of the
atomic and of the molecular energy levels.
Atomic levels At first order, each atomic energy level,

localized on an atomic site couples to the atomic levels lo-
calized on the two neighboring atoms (figure (2)). In per-
turbation theory, the effective bond coupling two neigh-
boring atoms takes on only two possible values (as illus-
trated on figure (2)), a strong and a weak one, arranged
again according to the Fibonacci sequence. More pre-
cisely, upon replacement of the couplings between atoms
by renormalized couplings, one passes from the chain Cn
to the chain Cn−3. We call this geometrical transforma-
tion the atomic deflation. The renormalized couplings
are linked to the old ones by a multiplicative factor z
[10]. One finds t′s = zts, t′w = ztw, with z = ρ2.

tw ts tw ts tw tw ts tw

t′w t′s

Figure 2: Illustration of the atomic deflation rule: here the
fifth approximant is transformed to the second.

Molecular levels. In a similar fashion, each state local-
ized on a diatomic molecule, is coupled to the neighboring
molecules through only two possible effective couplings
between two neighboring molecules. Upon replacement
of the couplings between molecules by renormalized cou-
plings, one passes from the chain Cn to the chain Cn−2
(see figure (3) for an example). We call this geometrical
transformation the molecular deflation. The renormal-
ized couplings are linked to the old ones by a multiplica-
tive factor z. One finds t′′s = zts, t′′w = ztw, with z = ρ/2.
In addition, the molecular renormalization introduces on-
site potentials ±ts on the deflated chain, shifting the
whole energy spectrum by +ts (bonding molecular lev-
els), or −ts (antibonding molecular levels).

tw ts tw ts tw tw ts tw

t′w t′s t′w t′s

±ts ±ts ±ts

Figure 3: Illustration of the molecular deflation rule: the
fifth approximant is transformed to the third.

To summarize, the Hamiltonian of the nth approximant
decouples into the direct sum of three Hamiltonians:

Hn = (zHn−2 − ts)︸ ︷︷ ︸
bonding levels

⊕ (zHn−3)︸ ︷︷ ︸
atomic levels

⊕ (zHn−2 + ts)︸ ︷︷ ︸
antibonding levels

+O(ρ4)

(4)
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In the limit n → ∞, the chain becomes quasiperiodic
and one expects its wavefunctions and its spectrum to be
nontrivial, namely to exhibit multifractality.

A. Renormalization paths, equivalence between
energy labels and conumbers.

Renormalization paths of the energy bands.
Eq. (4) tells us that the spectrum of the Hamiltonian
Hn is the union of three energy clusters – the antibond-
ing molecular cluster, the atomic cluster and the bonding
molecular cluster – each of which is a scaled version of the
spectrum of a smaller approximant. Molecular clusters
are separated from the atomic cluster by a gap of width
∆ ∼ ts(1−z). Each of these main clusters can be decom-
posed into three sub-clusters, and so on. The spectrum
has therefore a recursive, Cantor set-like description, as
shown by fig. (4).

zz z

n-3

n-2

n-1

n

Energy spectrum

Figure 4: Spectrum of the approximant Hn (n = 8)
constructed geometrically from the spectra of Hn−2 and
Hn−3 (relation (4)). z and z are the two scaling factors.

One can assign to the energy bands belonging to the
bonding, atomic or antibonding clusters respectively the
labels +, 0 or −. To this, one can append another +, 0 or
− according to the sub-cluster type of each energy. Re-
peating this procedure recursively, one obtains for each
energy band a unique sequence of letters called its renor-
malization path [10, 11]. Figure (5) shows the renormal-
ization paths of two particular energy bands. Let us note
that although the renormalization path labeling of the
energy bands has been derived in the perturbative limit,
it continues to hold for 0 < ρ < 1 since no gap closes.

Renormalization paths of the sites. One assigns
to every atomic (resp molecular) site of the chain Cn a
label “a” (resp “m”). Because the set of atoms and the set
of molecules of Cn are mapped to the chains Cn−3 and
Cn−2 respectively, one can repeat the labeling procedure
recursively. Thus, to each site is associated a sequence
of letters, that we call the renormalization path of the
site. Note that because we have not distinguished be-
tween bonding and antibonding states on molecules, sev-
eral molecular states can have the same renormalization

Figure 5: Every energy band can be labeled by its
renormalization path. As an example, here are shown the
renormalization paths of the energy bands labeled by 0+

(red) and +−− (blue).

path.

m

mm mm

mmm mmmmmmmmm

m mm

am amam am

Figure 6: Every site can be labelled by its renormalization
path, as shown here for the sites of non-zero amplitude, at
first order, of the wavefunctions labelled by 0+ (red) and

+−− (blue).

Symmetry between renormalization paths for
sites and energies. In the perturbative limit,
because of (4), an eigenfunction associated to an
atomic/molecular energy band has nonzero amplitude
only on atomic/molecular sites. This again true at every
step of the renormalization process, so that by recursion,
a given eigenfunction has nonzero amplitude at first or-
der only on sites whose renormalization path matches the
one of the energy level associated energy band (provided
that we make the identification ± ↔ m and 0↔ a).

In order to further understand the symmetry between
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atoms

molecules

molecules

Figure 7: Example of the cut and project method showing sites along the horizontal physical axis, and their conumber along
the perpendicular space (vertical) axis. Conumbering naturally orderes sites according to their local environment: atomic
sites (in blue) are clustered around the center of the windows, while molecular sites (in red) are grouped at the sides.

the renormalization paths for sites and energies, we now
make use of the well known cut an project method. Let
us recall very briefly that the cut and project method
considers the sites on the chain Cn as projections along
an axis E‖ of selected sites on a square lattice (see fig.
(7)). We can as well consider the projection of the se-
lected sites along the E⊥ axis, orthogonal to E‖. In the
perpendicular space, sites are naturally ordered by their
conumber, as shown here. In E⊥, as seen on fig. (7),
the sites regroup in 3 clusters : a central atomic clus-
ter surrounded by two molecular clusters. Keeping only
sites belonging to the atomic/molecular clusters exactly
amounts to performing an atomic/molecular decimation.
Since the deflated chains are again Fibonacci chains, the
3 clusters are made of 3 molecular-atomic-molecular sub-
clusters, and so on. Thus, in E⊥ the sites are ordered
exactly in the same way as the energy bands.

To exploit this symmetry, we order the sites according
to their projection on E⊥ (see fig. (7)). The resulting
relabeling of the sites was first introduced by R. Mosseri
[5, 12], and was called conumbering. Because of the sym-
metry between the ordering of the sites in E⊥ and the
ordering of the energy bands, the conumber labels play
the same role as the energy labels.

As an illustration, we show the local density of states as
a function of the energy labels and the conumber labels.
This plot should be invariant under the exchange of the
position/energy axes. This is indeed what we observe,
both analytically and numerically for small values of ρ
(figure (8)).

B. The gap labelling theorem in the perturbative
limit

To conclude this section devoted to the spectral prop-
erties of the Fibonacci chain, we show how we can inter-
pret the gap labelling theorem using the insight we gain
from the renormalization scheme.

In the gaps, the integrated density of states (IDOS)
N(Egap), takes values in a set specified by the gap la-
beling theorem. In the case of the Fibonacci chain, the
theorem states that
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Figure 8: Upper figure: intensity plot of the numerically
computed LDoS. x-axis: conumber index, y-axis: energy
index. Color reprents the presence probability (ie the

LDoS). Lower figure: the first few steps of the geometrical
construction of the LDoS according to our perturbation

theory.
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N(Egap) = ωq mod 1 = ωq + p (5)

where p and q are integers. q is the label of the gap, and
p(q) is such that the IDOS satisfies 0 ≤ N ≤ 1.

For the nth approximant, the gap labelling becomes

Nn(Egap) = ωnq + p (6)

with ωn = Fn−1/Fn, and q ∈ [1, Fn). As we have seen,
in the strong modulation limit the spectrum has a hier-
archical, ternary tree structure, and therefore the gaps
have this structure as well. To demonstrate the gap
structure, let us call Gn the set of IDOS of the gaps
of the nth approximant. We then have the following re-
cursion relations for the set of gap values in the bond-
ing/atomic/antibonding clusters:

G−n =
Fn−2
Fn

Gn−2 ≡ d−(Gn−2) (7)

G0
n =

Fn−3
Fn

Gn−3 +
Fn−2
Fn

≡ d0(Gn−3) (8)

G+
n =

Fn−2
Fn

Gn−2 +
Fn−1
Fn

≡ d+(Gn−2) (9)

where we have defined the three mappings d−, d0, d+
corresponding to the three different clusters. These rela-
tions have a geometrical interpretation that can be best
seen if we replace the gap Nn(Egap) = ωnq + p by the
vector g = (p, q). Then the above relations are replaced
by the following affine transformations, depending on
whether g is in the bonding, atomic or antibonding clus-
ter:

d−(g) = M−2g (10)

d0(g) = M−3g + g1 (11)

d+(g) = M−2g + g2 (12)

where g1 = (1,−1) and g2 = (0, 1) are the labels of the
two main gaps (corresponding to q = ±1, see figure (9)),
and M is the substitution matrix

M =

[
1 1
1 0

]
(13)

that generates the Fibonacci sequence by acting repeti-
tively of the letters A and B.

The recursive gap labeling procedure we just men-
tioned labels each of the Fn − 1 gaps of the nth approx-
imant. However we know that some of these gaps are
going to disappear in the quasiperiodic limit, while some
are going to persist. Following [10], we call the former
transient gaps and the latter stable gaps. The gap at
E = 0 that appears for even Fn is an example of tran-
sient gap. The two main gaps that separate the molecu-
lar clusters from the atomic cluster are examples of stable
gaps. From the recursive construction of the gap labels
(7), it is clear that the stable gaps are precisely the iter-
ates through renormalization of the two main gaps, while

1

-1 1

-1 12 -2

-3 2 -1 1 -2 3-4

-3 2 -1 4 -4 1 -2 35 -6 6 -5

Figure 9: The gap labels, q, of the first few approximants.
Blue: stable gaps, red: transient gaps. All the stable gaps
are iterates of the 2 main gaps, while all the transient gaps

are the iterates of the E = 0 gap.

the transient gaps are the iterates through renormaliza-
tion of the E = 0 gap.

Let us stress that although the value of the IDOS inside
a given stable gap varies with the size of the approximant
(but converges in the quasiperiodic limit), its gap label
(p, q) is independant of the size of the approximant, and
equal to the value we would have found for the infinite
quasiperiodic system. In contrast, the gap label of a tran-
sient gap varies with the size of the approximant. Also
note that whereas the width of the transient gaps goes
to zero in the quasiperiodic limit, their fraction stays fi-
nite. It converges to (4 + 3ω)/(18 + 11ω) ' 0.24. A more
detailed discussion of the role of gap labeling for approx-
imants is under preparation and will be given elsewhere
[13].

To summarize this short section, we have seen that
the renormalization group picture gives us a natural in-
terpretation of the gap labelling theorem in terms of in-
flation/deflation transformations. It has been shown that
these gap labels can be physically interpreted in terms of
the topological properties of edge states of a finite chain
[6, 14]. We have also seen that the gap labelling, often
mentioned in the context of quasiperiodic systems, natu-
rally extends to periodic approximants. The only price to
pay for this extension is the introduction of the transient
and stable gaps.

III. EXPRESSIONS FOR FRACTAL
DIMENSIONS TO LEADING ORDER

We turn to the question of the fractal dimensions of the
spectrum and of the wavefunctions in the limit n → ∞.
For completeness, we first describe the derivation of the
fractal dimensions of the spectrum [10].
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A. Fractal dimensions of the spectrum

The fractal dimensions of the global DoS can be de-
termined using the thermodynamical formalism [15]. We
define the partition function

Γn(q, τ) =
∑
E

(1/Fn)
q

(∆n(E))τ
(14)

where ∆n(E) is taken to be the width of the energy band
associated to the energy level labelled E. Separating the
contributions of the bonding, antibonding and atomic en-
ergy levels, and using equation (4), we obtain

Γn = 2

(
Fn−2
Fn

)q
z−τΓn−2 +

(
Fn−3
Fn

)q
z−τΓn−3 (15)

Taking the quasiperiodic limit, one obtains an implicit
equation for the spectral fractal dimensions Dq:

2ω2qz−(q−1)Dq + ω3qz−(q−1)Dq = 1. (16)

We can solve it at first order in ρ, obtaining

Dq =
1

1− q
log
[
ω−q

(√
1 + ω−q − 1

) ]
log ρ

+O
(

1

(log ρ)2

)
(17)

For the case q = 0, we recall, one obtains the Hausdorff
dimension D0, which helps to characterize the nature of
the spectrum. D0 = 0 for a pure-point spectrum, while
D0 = 1 indicates that the spectrum has an absolutely
continuous component. An intermediate value 0 < D0 <
1 is the signature of a fractal spectrum. Multifractality
corresponds to situations where Dq varies with q, which
is the case here.

Here, we find

D0 =
log(
√

2− 1)

log ρ
+O

(
1

(log ρ)2

)
(18)

in agreement with the result of Damanik & Gorodetski
[16], using trace-map-based methods. For ρ > 0, one
sees that 0 < D0 < 1, and therefore we recover the
well-established result that the spectrum of the Fibonacci
Hamiltonian is fractal for nonzero ρ, however small.

These results compare well with numerical data only
for extremely small values of ρ. Note however that im-
proved multifractal analysis that goes beyond the first
order was carried out [17].

B. Fractal dimensions of the wavefunctions

The fractal dimensions Dψ
q (E) of the wavefunction as-

sociated to the energy E are defined by

χnq (E) =
∑
i

|ψni (E)|2q ∼
n→∞

(
1

Fn

)(q−1)Dψq (E)

(19)

χ2(E) is the inverse participation ratio, and the exponent
Dψ

2 (E) provides information as to the degree of localiza-
tion of the state. The value Dψ

2 (E) = 1 indicates that
the state E is extended, while Dψ

2 (E) = 0 characterizes a
localized state. Intermediate values 0 < Dψ

2 (E) < 1 are a
signature of a critical state, whose multifractal properties
can be probed by varying q.

At leading order in ρ the renormalization of the eigen-
states is simple, and well understood [18]. For a wave-
function in the atomic cluster, we have |ψni (E)| =
|ψn−3i′ (E′)|. For a wavefunction in the molecular cluster,
|ψni (E)| = |ψn−2i′ (E′)|/

√
2. E and E′ are the energies on

the original chain and on the deflated one respectively.
Therefore, we obtain immediately the leading order frac-
tal dimensions of the wavefunction associated to the en-
ergy E:

Dψ
q,0(E) = −x(E)

log 2

logω
+O(ρ2), (20)

where

x(E) = lim
n→∞

nm(E)

n
(21)

with nm(E) the number of +/− letters in the renormal-
ization path of E, i.e. x(E) is the fraction of RG steps
spent in molecular clusters. x is a non trivial function of
the energy (figure (10)), whose structure is reminiscent of
the one of the local density of states (8). In the quasiperi-
odic limit, x varies continuously between 0 and 1/2, and
Dψ
q,0(E) is a continuous function of x. The distribution

of x is given by

Ω(x(n0, nm)) = 2nm
(n0 + nm)!

n0!nm!
(22)

Where Ω(x) is the number occurrences of a given value of
x. It coincides with the distribution of the widths of the
energy bands [10]. Therefore, in the quasiperiodic limit,
the distribution of x is given by f , the Legendre trans-
form of the fractal dimensions of the spectrum: P (x) ∼
F
f(x)−1
n . This distribution is sharply peaked around the

most probable value, xmp = 2(3ω − 1)/5 ' 0.3416....
States with this value of x are statistically the most sig-
nificant.

Since the fractal dimensions only depend on x, we per-
form the change of variables Dψ

q,0(E) → Dψ
q,0(x). Since

0 ≤ x ≤ 1/2, we have 0 < Dψ
q (x) < 1: the wavefunctions

are critical, as we expect for a quasiperiodic system.
The parameter x determines completely the fractal

properties of the wavefunctions. For example, xa = 0 for
the level in the center having the renormalization path
00... (cf figure (10)). The corresponding eigenstate has a
zero fractal dimension, and is thus completely localized.
On the other hand, the maximal value of x = 1

2 is reached
for the levels E = Emin, Emax = ±ts/(1− z) at the edges
of the spectrum, for which the renormalization paths are
+ + ... and − − −... The corresponding eigenstates are
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Figure 10: The parameter x as a function of the energy
labels (or equivalently of the sites in conumbering), for the
approximant of 233 sites. Lines are drawn to guide the eye.

the most extended. They occupy a fraction (1/Fn)−
log 2

2 logω

of the sites.
To conclude, we note that, to leading order in ρ, the

fractal dimensions of the wavefunction do not depend on
q. Thus the wavefunctions are not multifractal at this
order in ρ and multifractality appears only at the next-
to-leading order, as discussed in the next section. This
first-order description of the wavefunctions has been com-
pared to numerical results in [19], where the agreement
was found not to be very good. We argue that this is
because the wavefunctions becomes rapidly multifractal
as ρ is increased. Fortunately it is possible to calculate
higher order corrections, and thereby vastly improve our
theoretical predictions concerning the wavefunctions, as
shown below.

IV. HIGHER ORDER RENORMALIZATION
GROUP AND MULTIFRACTALITY

At higher order the picture of molecular and atomic
eigenstates and energies remains relevant, but it is now
possible for an atomic eigenstate to have nonzero ampli-
tude on molecular sites, and vice-versa. In this section
we explain our ansatz for the wavefunctions. In the next
section, we will apply it to the computation of the fractal
dimensions of the wavefunctions.

A. Renormalization group for the wavefunctions

At leading order in ρ, we know that the wavefunction
amplitudes on the nth approximant are related by a triv-
ial multiplicative factor to the ones on a smaller approxi-
mant. At higher order, we still relate wavefunction coeffi-
cients on large approximants to wavefunctions on smaller
ones through multiplicative factors. We call these multi-
plicative factors λ if the wavefunction is of atomic type,

|ψi|2 = λ|ψi′ |2

λ λ λ
|ψi′ |2

|ψi|2 = λ|ψi′ |2

λ λ λ
λ|ψi′ |2

Figure 11: Schematization of the RG procedure. Top figure:
a wavefunction of the atomic cluster, bottom figure: a

wavefunction of the molecular cluster.

and λ is it is of molecular type (figure (11)).{
|ψ(n)
i (E)|2 = λ|ψ(n−3)

i′ (E′)|2 if E is atomic
|ψ(n)
i (E)|2 = λ|ψ(n−2)

i′ (E′)|2 if E is molecular
(23)

λ and λ are renormalization group parameters, and
they play in the renormalization of the wavefunctions the
role z and z plays in the renormalization of the energy
bands.

We find (details of the calculations are given in the
Appendix):

λ(ρ) =
2

(1 + ρ2)2 +
√

(1 + ρ2)4 + 4ρ4
(24)

λ(ρ) =
1

1 + ρ2γ(ρ) +
√

1 + (ρ2γ(ρ))2
(25)

with γ(ρ) = 1/(1 +ρ2). At leading order in ρ, we recover
λ(0) = 1/2, λ(0) = 1 as expected. At next order,

λ(ρ) =
1

1 + ρ2
+O(ρ2) (26)

λ(ρ) =
1

2 + ρ2
+O(ρ2) (27)

Although our calculations are done in the strong modu-
lation limit, in the periodic limit ρ → 1, we obtain the
exact expression for the renormalization factors:

λ(ρ) −−−→
ρ→1

ω3 (28)

λ(ρ) −−−→
ρ→1

ω2 (29)

.

B. Local wavefunction dimensions

For q ≥ 0 and when ρ� 1, we can write

χnq (E) '

{(
λ(ρ)q/λ(ρq)

)
χn−3q (E′) if E is atomic,

(λ(ρ)q/λ(ρq))χn−2q (E′) if E is molecular.
(30)
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Iterating this relation, we understand that the fractal di-
mensions depends only on the renormalization path of
the energy E we started with. Actually, it only depends
on x. Solving the recurrence we obtain an explicit ex-
pression for the fractal dimensions in the quasiperiodic
limit:

(q−1)Dψ
q (x) = log

[(
λ(ρ)q

λ(ρq)

)x(
λ(ρ)q

λ(ρq)

)(1−2x)/3]
/ logω.

(31)
It is easy to check that we recover the first-order expres-
sion for the fractal dimensions (20) if we take ρ = 0.

0.2 0.4 0.6 0.8 1.0
ρ

0.4

0.6

0.8

1.0

λ(ρ)

λ(ρ)

Figure 12: Numerical results and theoretical predictions for
the renormalization factors λ(ρ) and λ(ρ). Dots: Numerical

results (n = 19, 4181 sites). Solid lines: theoretical
predictions (31).

From this we can express the renormalization factors
in terms of the fractal dimensions for q →∞:

λ(ρ) =
logDψ

∞(0)

logω3
(32)

λ(ρ) =
logDψ

∞(1/2)

logω2
(33)

Thus, computing numerically the fractal dimensions for
q large gives us a numerical estimation of the renormal-
ization factors, that we can compare to the theoretical
predictions. We expect the agreement to be good in the
strong modulation ρ � 1 and in the weak modulation
ρ ∼ 1 regimes, because we know that in these limits the
renormalization factors are exact. In fact, we see that
the agreement with numerics is excellent for all values of
ρ (fig .(12)). Note that for λ, the values have a spread,
representing different types of states (dots show the nu-
merical results for the wavefunctions at the edge of the
spectrum, and the bars show the results for the other
wavefunctions that also have x = 1/2). The agreement
with numerics is especially good for the λ renormalization
factor, that corresponds to the wavefunction at E = 0.
Because it corresponds to a known cycle of the trace map,
this wavefunction, along with its fractal dimensions, can
be determined exactly [2]. The exact fractal dimensions,
computed using the trace map, coincides with our pertur-
bative predictions, for all values of ρ. Thus, this explains
why the agreement between the numerics and the analyt-

ical predictions for λ is so good, and actually the small
discrepancy is only due to finite-size effects.

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

x

D
2
ψ
(x
)

E

D
2
(E
)

Figure 13: Numerical results and theoretical predictions for
the fractal dimensions of the wavefunctions. Dots:

Numerical results ( n = 19, 4181 sites). Dashed line:
theoretical prediction at leading order (eq. (20)), solid line:
theoretical prediction including multifractal corrections (eq.
(31)). Inset: The fractal dimension Dψ

2 (E) for every energy.
In accordance with theoretical predictions, the fractal

dimensions organize in lines, each line corresponding to a
given value of x(E).

We now check our theoretical predictions against nu-
merical results. The inset of figure (13) shows how the
fractal dimension for a given q (here we chose q = 2)
depend on the chosen state of energy E. We observe
that the value of the fractal dimension organizes in lines.
Along each line Dψ

q (E) is constant up to small variations
and corresponds to a given value x(E) = x. That is, up to
small corrections that should vanish in the limit ρ → 0,
the fractal dimension of a given wavefunction does not
depend on the energy E, but only on x(E). This is in
agreement with the theoretical predictions (31). Figure
(13) shows, for example, the x dependence of the fractal
dimension for q = 2. Calculated numerical results are
seen to be in very good agreement with the theoretical
predictions. As the figure shows, the multifractal prop-
erties of the wavefunctions – which were not captured at
leading order in ρ – are relevant, even for the small value
coupling ratio ρ = 0.1. For x = 0 the first order contri-
bution to the fractal dimensions vanishes, so that only
the multifractal correction term remains.

To conclude this section, we show the q dependance of
the fractal dimensions for fixed values of x (fig. (14)).
The agreement with the theoretical predictions is excel-
lent for all positive values of q. This demonstrates that
our theoretical analysis indeed captures the q dependance
of the fractal dimensions. Since it is the multifractality
of the wavefunctions that is responsible for the nontriv-
ial q dependance of the fractal dimensions, we conclude
again that the multifractal corrections are relevant even
at small coupling.
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0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

q

D
q
ψ
(x
)

ρ = 0.15

x=0.

x=0.0526316

x=0.157895

x=0.210526

x=0.315789

x=0.368421

x=0.473684

Figure 14: The fractal dimensions Dψ
q (x) of the

wavefunctions for the different values of x accessible
numerically. Dots are numerically computed data points,

solid lines are the theoretical predictions (eq. (31)).

C. The spectrally averaged fractal dimensions of
wavefunctions

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

q

D
q
ψ

ρ=1/10

ρ=1/2

Figure 15: The averaged fractal dimensions of the
wavefunctions Dψ

q as a function of the multifractal
parameter q, for ρ = 0.1, 0.5. Dots: numerical results, solid

line: theoretical predictions.

In the previous section we have defined the fractal di-
mensions of individual wavefunctions, and have seen that
they were associated with the energy level parameter x.
In this section we calculate scaling properties of the wave-
functions after averaging over all states. We define an
averaged fractal dimension Dψ

q by

〈χq〉 =
1

Fn

∑
E

χq(E) ∼
(

1

Fn

)(q−1)Dψq
(34)

This quantity, studied in disordered systems at the An-
derson localization transition [20], has been computed
numerically by [19] for the Fibonacci model. Within our
perturbation theory, we obtain an implicit equation for
the averaged fractal dimensions:

2ω2λ(ρ)q

λ(ρq)
ω−2(q−1)D

ψ
q + ω3λ(ρ)q

λ(ρq)
ω−3(q−1)D

ψ
q = 1 (35)

This equation is perturbative, valid to order ρ2q. The
derivation can be found in the Appendix, which also takes

into account higher orders in ρ, resulting in a lengthier
expression. Note the similarity of structure between (35)
and the implicit equation obtained for the spectral di-
mensions (eq (16), see also [10]).

The resulting theoretical predictions are compared
with numerical results on a finite size system in fig. (15).
The agreement is excellent for all positive values of q
compared to the lowest order theory used in [19].

For larger ρ, (35) can be corrected to include higher
order terms. The resulting theoretical prediction (see
Appendix) agrees with the numerical computations even
for large ρ as shown in fig. (15) for the choice ρ = 0.5.
The reason for this unexpected robustness of our pertur-
bative theory outside its domain of validity is unclear. It
supports the idea that the renormalization group picture
stemming from the geometrical inflation/deflation prop-
erty of the Fibonacci chain contains all the fundamental
physics determining its electronic properties.

D. The local spectral dimensions and their average

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

q

D
q
μ

ρ=1/10

Figure 16: The averaged local spectral dimensions Dµ
q as a

function of the multifractal parameter q, for ρ = 0.1. Dots:
numerical results, solid line: theoretical predictions (eq.

(40)).

In this section we consider the local density of states,
and the associated fractal dimensions. For a finite-size
system, the local density of states (LDoS) at site i is

dµi(E) =
1

Fn

Fn∑
a=1

δ(E − Ea)|ψi(Ea)|2dE (36)

The global density of states is obtained by the sum over
all sites of the LDoS. The local density of states defines
µi, the local spectral weight at site i associated to the
band a of width ∆n

a :

µi(∆
n
a) =

∫
E∈band a

dµi(E) (37)

The local spectral weight at site i sums up all the in-
formation about the spectral and wavefunction properties
of the Hamiltonian. To probe the multifractality of the
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local density of states one defines the partition function

Γn(q, τ ; i) =
∑
a

(µi(∆
n
a))

q

(∆n
a)τ

(38)

using which one can compute the local spectral fractal
dimensions for individual sites. One can also define a
site-averaged gamma function through:

〈Γn(q, τ)〉 =
1

Fn

∑
i

Γn(q, τ ; i) (39)

The site-averaged local spectral dimensions Dµ
q , obey the

implicit equation:

2ω2λ(ρ)q

λ(ρq)
z(1−q)D

µ
q + ω3λ(ρ)q

λ(ρq)
z(1−q)D

µ
q = 1 (40)

We compare these theoretical predictions with numeri-
cal data in fig. (16)) for ρ = 0.1 and q > 1, finding an
excellent agreement between the two. We note, finally,
that the theoretical prediction for the Hausdorff dimen-
sion Dµ

0 given by the equation (40) agrees also well with
the numerical result.

V. RELATIONS BETWEEN EXPONENTS

Comparing the relations (16), (35) and (40) for the
global spectral, the average wavefunction and local spec-
tral dimensions respectively, one sees that they bear great
similarity. This suggests that there might be a relation
between the three families of exponents. We present be-
low two possible inequalities, to be investigated in future
work.

A. A relation between fractal dimensions

Consider the case q = 0. In this case, the local and
global spectral dimensions coincide, and the wavefunc-
tion dimension is 1, so that we have Dµ

0 = Dψ
0D0. A

generalization of this relation appears to hold also for all
q > 0, namely Dµ

q = Dψ
qD1+(q−1)Dψq . This relation is

satisfied numerically for values of ρ <∼ 0.2. For larger
values of ρ, it transforms into the inequality:

Dµ
q ≥ Dψ

qD1+(q−1)Dψq (41)

B. An upper bound for the diffusion moments

Ketzmerick et al [21] obtained a lower bound for the
exponent σq, describing the moments of the spreading of
a wavepacket: σq ≥ Dµ

2 /D
ψ
2 . We propose a new upper

bound

σ
(1−q)Dψq ≤

Dµ
q

Dψ
q

(42)

that we derive from the inequality (41), using the relation
σq = D1−q [18]. To our knowledge, this is the first upper
bound that is proposed for the diffusion exponents. It
is interesting in that it involves the spectral properties
(through Dµ), and the wavefunction properties (through
Dψ). Work in progress on the study of dynamical corre-
lations on the Fibonacci chain will be reported elsewhere.

VI. SUMMARY AND CONCLUSIONS

In this paper we provide a theoretical description of the
spectrum and the wavefunctions of the Fibonacci pure-
hopping model in the strong modulation limit, using a
perturbative renormalization group scheme. The pertur-
bative approach allows to discuss the structure and la-
belling of gaps, properties of topological origin and there-
fore valid for all values of the coupling ratio. We show
how using the conumbering basis allows one to character-
ize wavefunctions conveniently according to their renor-
malization path. We show that the system has an ap-
proximate symmetry, in the perturbative limit, under the
exchange of site and energy indices. The leading order
expressions for exponents are observed to agree with nu-
merical calculations only for the smallest values of the
coupling ratio ρ. We obtain the analytical description of
the spectrum and wavefunctions of the Fibonacci chain
at next-to-leading order in ρ. These expressions show ex-
plicitly how the multifractality of wavefunctions appears
for larger values of ρ. The extended theory is shown to be
in very good agreement with numerical results for values
of ρ in a wide range from small values all the way upto ρ of
order unity. Exponents for the local and global spectral
measures for individual states are calculated. Averaged
exponents are defined as well, and compared with nu-
merical data. New inequalities relating these exponents,
and the diffusion exponent, are proposed and numerically
tested.
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Appendix A: Appendix

In this appendix, we derive the implicit equation the
average fractal dimensions of the wavefunctions obey. In
the course of doing so, we find the analytical expression
for the renormalization factors λ and λ (equation (24)).

the q-weight for an energy level E writes

χn(E) =

Fn∑
i=1

|ψi(E)|2q (A1)

We are also going to define the partial sums on atomic
(A) or on molecular (M) sites only:

χnA/M (E) =
∑

i, at/mol

|ψi(E)|2q (A2)

Atomic energy levels. Let us assume that E is an en-
ergy in the atomic cluster at step n. Using the tight-
binding equations, we can relate at leading order in ρ
the amplitudes on molecular sites to the amplitude on
neighboring atomic sites. Using our Ansatz for the wave-
functions, we relate the amplitude on atomic sites at step
n to the amplitude on atomic and molecular sites at step
n− 3.

χn(E) = λ
q (

(1 + 2ρ2q + ρ4q)χn−3(E′) + ρ4qχn−3A (E′)
)

(A3)
Molecular energy levels. Using the tight-binding equa-

tions, we can relate the amplitudes on atomic sites to the
amplitude on neighboring molecular sites. Specifically,
we write the q-weight on an atomic site i surrounded by
two molecular sites i− 1 and i+ 1 as

|ψi|2q = γq(ρ)ρ2q(|ψi−1|2q + |ψi+1|2q) (A4)

where we have introduced the function γq(ρ) that takes
into account the possible interferences bewteen the site
i − 1 and i + 1. We have the constraints γ0(ρ) = 1/2,
γq 6=0(0) = 1, γq(1) = 1/2. We chose for this param-
eter the form γq(ρ) = 1/(1 + ρ2q), which is supported
by numerical evidences. Then, the total q-weight on a
molecular level writes

χn(E) = λq
(
(2 + γqρ

2q)χn−2(E′) + γqρ
2qχA(E′)

)
(A5)

The special case q = 1. When q = 1, the q-norm is
independant of n. Therefore, we have a closed system of
equations for λ and λ. It is straightforward to solve it,
and we obtain the expressions given by equation (24).
The general case: q arbitrary. Now the q-norm de-

pends on n. To obtain a closed system of equations, we
take the limit n→∞, knowing that the limit behavior of
the q-norm is logχnq ∼ (q−1)Dψ

q log(1/Fn). After aver-
aging over the energies, we obtain as an implicit equation

2ω2(2ω2IMM + ω3IAM ) + ω3(2ω2IMA + ω3IAA) = 1
(A6)

with

IMM =
(
2 + 2ρ2qγq(1−M(τ, q))

)
M(τ, q)

IAM =
(
2 + ρ2qγq(1 +A(τ, q))

)
M(τ, q)

IMA =
(
1 + 2ρ2q + 2ρ4q(1−M(τ, q))

)
A(τ, q)

IAA =
(
1 + 2ρ2q + ρ4q(1 +A(τ, q))

)
A(τ, q)

and the “molecular” and “atomic” coefficients given by

M(τ, q) = ω−2τλq

A(τ, q) = ω−3τλ
q

Then, for a given q, τ = τψq is the solution of the implicit
equation (A6). The averaged fractal dimensions of the
wavefunctions are given by Dψ

q = τψq /(q − 1).
Perturbative expression in the strong modula-

tion limit:
Neglecting terms of order ρ4q in the above expression, we
obtain

IMM ∼ IAM ∼ λ(ρ)q/λ(ρq)ω−2τ

IMA ∼ IAA ∼ λ(ρ)q/λ(ρq)ω−3τ .

Then, from (A6) we get the perturbative formula (35).
The derivation of the implicit relation for the averaged

local spectral dimensions (equation (40)) is in the same
lines. The final relation is much simpler because we have
dropped the terms of order ρ4q. This is in order to be
consistent with the results for the spectrum, that are only
valid at leading order in ρ.
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