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Energy shift and conduction-to-valence band transition mediated by a time dependent

potential barrier in graphene
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We investigate the scattering of a wave packet describing low-energy electrons in graphene by a
time-dependent finite step potential barrier. Our results demonstrate that, after Klein tunneling
through the barrier, the electron acquires an extra energy which depends on the rate of change the
barrier height in time. If such a rate is negative, the electron loses energy and ends up as a valence
band state after leaving the barrier, which effectively behaves as a positively charged quasi-particle.
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The phenomenon of tunneling has long been a text-
book example of the contrasts between quantum and
classical behaviors. The fact that a particle can, with
a certain probability, be transmitted through a classi-
cally forbidden region is not only a manifestation of the
dual wave-particle character of microscopic systems, but
is also at the basis of the explanation of phenomena such
as the alpha emission. In most discussions of tunneling
through one-dimensional potential profiles, the barrier is
assumed to be static and the usual solution for the trans-
mission coefficients can be found by comparing the am-
plitudes of incoming and outgoing plane waves. Further-
more, textbook calculations are usually presented within
the framework of non-relativistic quantum mechanics1.
Recently there has been a renewed interest in the study

of tunneling in the relativistic regime.2–6 This was moti-
vated by the production of graphene,7 a bi-dimensional
layer of carbon atoms organized in a honeycomb lat-
tice. One unusual aspect of the electronic band structure
of that material is the fact that at the vicinity of the
Fermi level the spectrum is gapless with a linear disper-
sion, such that the charge carriers can be described as
ultra-relativistic massless fermions, albeit with an effec-
tive light speed given by the Fermi velocity of the ma-
terial (vF ≈ c/300).8,9 This feature has important con-
sequences, such as the perfect transmission of normally
incident electrons through p-n and p-n-p junctions, an
effect known as Klein tunneling.5 Thus graphene, apart
from being of interest for device applications, also allows
the investigation of quantum relativistic effects by means
of tabletop experiments.
Quantum mechanical tunneling through one-

dimensional oscillating or moving potential barriers
has been previously investigated in the context of
non-relativistic electrons described by Schrödinger’s
equation.10–14 These studies have shown that a
wavepacket incident on an oscillating barrier develops
multiple peaks which propagate with different velocities.
This has been explained as resulting from an energy
exchange between the incident particle and the oscil-
lating potential. Due to the parabolic dispersion of the
tunneling particles in these calculations, an energy shift
of the wavepacket components will result on different

group velocities.
In this work we investigate the interaction of wavepack-

ets corresponding to massless Fermion states propagating
in graphene with time-dependent potential barriers. We
show that the gapless and linear aspects of the disper-
sion in graphene lead to an outcome that is quite distinct
from the non-relativistic case: the electron-hole symme-
try in graphene implies that, within a single-particle de-
scription, depending on the initial energy and the rate of
change of potential, the resulting energy shift can convert
an incoming conduction band electron into an outgoing
particle within the valence band, which behaves as a pos-
itively charged quasi-particle. In addition, the fact that
at low energies the group velocity of the charge carriers
is independent of the energy, together with the perfect
transmission at normal incidence, results that the outgo-
ing wavepackets preserve the shape of the incoming wave.
We consider a low-energy electron propagating in

an infinite graphene sample, so that the system mim-
ics a propagating massless Dirac particle, obeying
i~∂Ψ(~x, t)/∂t = HΨ(~x, t), for the Dirac Hamiltonian of
graphene H = vF ~p · ~σ. The electron is described by a
Gaussian wave packet, multiplied by a spinor that ac-
counts for the probability distributions over the two sub-
lattices of graphene (labeled A and B), and by a plane
wave, which gives the particle a non-zero average mo-
mentum k0:

Ψ(~x, 0) = N

(

A
B

)

exp

[

−
(x− x0)

2

d2x
−

(y − y0)
2

d2y
+ ik0x

]

,(1)

where N is a normalization factor, (x0, y0) are the coor-
dinates of the center of the Gaussian wave packet, dx (dy)
is its width in the x(y)-direction, k0 = E0/~vF , and E0 is
the initial wave packet energy. The time evolution of such
a wave packet is calculated by means of the split-operator
technique, which is explained in details in Refs. [5,15–
18]. However, in order to deal with a time-dependent
potential V (~x, t), one must adapt the technique so that

the time evolution operator in Ψ(~x, t) = Û(0, t)Ψ(~x, 0) is
written as

Û(0, t) = e−
i

~

∫
t

0
Hdt. (2)
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The integral in the argument of the exponential in Eq.
(2) can be separated into a sum of integrals for each
time step, so that, in principle, one could make U(0, t) =

e−
i

~

∫
t

t−∆t
Hdte−

i

~

∫
t−∆t

t−2∆t
Hdt...e−

i

~

∫
2∆t

∆t
Hdte−

i

~

∫
∆t

0
Hdt,

which is then just an sequence of exponential operators
applied recursively to an initial wave packet. However,
if the Hamiltonian at two different time steps t1 and
t2 does not commute, [H(t1), H(t2)] 6= 0, one has, in
general,

e−
i

~

∫
t1
t0

Hdt− i

~

∫
t2
t1

Hdt 6= e−
i

~

∫
t1
t0

Hdte−
i

~

∫
t2
t1

Hdt (3)

Nevertheless, the multiplication between exponentials in
the right side of the equation can be seen as a first or-
der approximation, according to the Suzuki-Trotter ex-
pansion of the exponential of a sum of non-commuting
operators.19,20 The error in this approximation is propor-
tional to ∆t2. Therefore, assuming a small ∆t, applying
the exponentials recursively to an initial wave packet pro-
vides, to a good approximation, an accurate description
of the actual time-evolution of the system. Moreover, one
can re-write

Û(t, t+∆t) = e−
i

2~

∫
t+∆t

t
V dte−

i

~
T̂∆te−

i

2~

∫
t+∆t

t
V dt +O(∆t3),(4)

where T̂ is the kinetic energy operator. We further ne-
glect the O(∆t3) terms in this expansion by using a suf-
ficiently small time step: since the argument of the ex-
ponential basically involves ∆t(T + V )/~, T and V are
of the order of hundreds of meV and ~ is of the order of
hundreds of meVfs, a fraction of fs (namely, ∆t = 0.1 fs)
is enough to give an accurate result.
The wave packet starts at x0 = −300 Å and propa-

gates through a potential barrier at x = 0, with width
W , as illustrated by the shaded area in Fig. 1, where
the barrier height is considered to vary linearly in time
as V0(t) = αt if 0 < x < W , and V = 0 otherwise. As we
explain in greater detail below, such a time-dependent
potential can be generated e.g. by a microwave field so
that, for the typical spatial dimensions of the system, the
period of oscillation of the potential is much smaller than
the traversal time, thus retaining the linear dependence

E0

V(t)0 E
+

E
-

W

FIG. 1: Sketch of the potential barrier (shaded area) con-
sidered in our calculations, which has width W and a time-
dependent height V0(t). The red circle represents the incom-
ing electron, with energy E0, which is able to go across the
barrier, represented as a dashed line, even if E0 < V0(t) for
a given time t, due to Klein tunnelling. The outgoing elec-
tron leaves the barrier region either with higher (E+) or lower
(E−) energy, depending on how the barrier height varies on
time (see text).

of the potential in time. In this case, the integral term

in Eq. (2) becomes
∫ t+∆t

t
V dt = α(∆t2 + 2t∆t)/2 for

0 < x < W .
After undergoing Klein tunnelling through a barrier,

the propagating wave packet acquires a phase21 given by

φ =
1

~vF

∫ ∞

−∞

V (x, t)dx (5)

which, for the step barrier potential considered here
yields φ = Wαt

/

~vF . However, such a phase appears in

the wave function as exp (−iφ) = exp
(

− i
~

αW
vF

t
)

, which

is equivalent to an extra energy factor exp
(

− i
~
Ext

)

,
where Ex = αW/vF . This suggests that after tunnelling
through such a time varying potential, the electron would
acquire an extra energy Ex. If α < 0, the tunnelled elec-
tron loses energy and may even end up in a valence band
state, provided the magnitude of α is high enough. This
is indeed the case, as we will demonstrate. In all cases in-
vestigated here, time-dependence of the Hamiltonian did
not affect the Klein tunnelling effect, and all transmission
probabilities are found to be 1 (within the numerical pre-
cision of the calculation method).
Let us first investigate a one-dimensional problem by

considering dx = 100 Å and dy → ∞, which represents
a wave front propagating in the x−direction. The initial
energy of such a wave front is considered as E0 = 100
meV. The average kinetic energy E = 〈Ψ|T |Ψ〉 is shown
in Fig. 2 as function of time for (a) a fixed width
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FIG. 2: Kinetic energy of the wave packet as function of time
for (a) a fixed width W = 200Å and different values of α, and
for (b) a fixed α = 7 meV/fs and different values of width W .
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FIG. 3: Contour plots of the time evolution of (a, b) the
squared modulus of the wave packet in reciprocal space, as
well as the (c, d) real part of the wave packet in the real space.
The potential barrier lies within 0 ≤ x ≤ 200 Å and two
values are considered for the linear dependence of its height
in time: α = -7 meV/fs (a, c) and +7 meV/fs (b, d).

W =200Å and several values of variation rate of the po-
tential height α, and for (b) a fixed α and several values
of W . It is seen that the final energy E, after the wave
packet leaves the barrier region, differs from the initial
wave packet E0 if α 6= 0. In fact, the final energy is
higher (lower) than E0 when α > 0 (α < 0). That agrees
with the argument that the energy shift is proportional
to the rate of variation of the barrier height. Notice that
in the α = −5 and -7 meV/fs cases, the final energy
is even negative, suggesting that the electron ended up
in the valence band after traversing the time-dependent
barrier. Notice that in all cases investigated here, we as-
sume empty bands, so that all states are accessible by the
electron and no Pauli blocking is involved. That would
be the case, for example, of hot electrons in a system
with a low Fermi level.

In the α ≤ 0 cases, we have considered an initial po-
tential barrier of 200 meV at t = 0 fs. This explains why
even for α = 0 (i.e., for a constant 200 meV potential
barrier), the wave packet loses kinetic energy while in-
side the barrier region: such energy reduction is related
only to the addition of the average potential energy 〈V 〉,
which is non-zero only when the wave packet lies within
the barrier. Nevertheless, the final energy does not de-
pend on this initial potential barrier height, but rather
only on α, since it is a consequence of a different mecha-
nism, namely, the equivalence between a Klein tunneling
phase that depends linearly in time and an extra energy
for the particle. Indeed, after leaving the barrier region
in the α = 0 case, the wave packet recovers its initial en-
ergy [see Fig. 2(a), green-dotted curve], no matter how
high or low the barrier height is, as expected.

Figure 3 helps us to visualize the effect shown in Fig. 2
by showing contour plots of the wave packet in reciprocal
space (upper panels) as function of time. After leaving
the barrier region, namely for t ' 60 fs, the constant
peak seen in the wave function at k = 0.0092 Å−1 for
t = 0 moves either (a) to the left, representing an energy
decrease for α = −7 meV/fs, even reaching the region
of negative k, or (b) to the right, representing a energy
enhancement for α = 7 meV/fs. Despite the negative
〈k〉 in (a), we observe that in both cases, the group ve-
locity remains positive, as the wave packet keeps moving
forward in real space. It is then interesting to see what
happens to the phase velocity in the 〈k〉 < 0 case. Fig-
ures 3(c) and (d) show the contour plots of the real part
of the wave function as function of time, for the same
parameters as in Figs. 3(a) and (b), respectively. By
the number of peaks, one can estimate the wave length,
which is inversely proportional to |k|. After the barrier,
the number of peaks remains essentially the same in (c)
and increases in (d). The latter is consistent with the
larger 〈k〉 (smaller wave length) observed for t ' 60 fs
in Fig.3(b), whereas the former shows an outgoing wave
packet whose wave vector k has changed in sign, but not
significantly in magnitude. We observe that phase ve-
locity is always positive after the barrier (the position of
each peak increases with time), which confirms that the
outgoing wave packet in Fig. 3(a) behaves as a hole with
E < 0, since the phase velocity is vp = E/~k > 0 and
〈k〉 is shown to be negative after the barrier in this case.

Our previous analytical calculations show that the ex-
tra energy Ex provided by the time-dependent potential
barrier depends linearly both on α and W . This is con-
firmed by the results in Fig. 4, which show the final
energy Efinal as function of these quantities. In Fig.
4(a), the numerically obtained final energy E (symbols)
is compared to the one predicted by the Klein tunnelling
phase for a time dependent barrier (lines), as explained
above, where very good agreement is observed. Figure
4(b) confirms that this extra energy depends linearly on
W and demonstrates that electronic wave packets can
become hole-like for strongly negative α - considering an
initial wave packet energy E = 100 meV and α = −5
meV/fs, e.g., the final energy is E < 0 for W & 150 nm.

Further indication of the conduction-to-valence band
states conversion in the case of high negative α can be
gained by analysing the behavior of the outgoing wave
packet in the presence of an external magnetic field. For
instance, if the outgoing packet represents a valence band
state, which behaves as positively charged quasi-particle
(similar to a hole in semiconductors or a positron in high-
energy systems), its behavior under such field should be
opposite to that of an electron. In order to check that,
we carried out the following simulation: a circular wave
packet dx = dy = 200 Å with energy E0 = 100 meV

starts at x0 = −600 Å , reaches a W = 200 Å barrier,
placed between x = −200 Å and x = 0, and enters a
B = 5 T magnetic barrier for x > 0. The trajectories
of the center of mass of such wave packet, calculated
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by (〈x〉, 〈y〉), resulting from such simulation, are shown
in Fig. 5, considering α = 0 (green dotted), 4.1 (red
dashed) and -8.2 meV/fs (black solid). By the fact that
the trajectory for α = 4.1 meV/fs exhibits larger radius
as compared to the one for α = 0, one already infers that
the time-dependent barrier has boosted the electron en-
ergy, since the radii of the circular trajectories coming
from Lorentz force are directly proportional to the par-
ticle energy E as R = E

/

evB.16 In fact, the trajectory
for the α = 0 case resembles a semi-circle with a diame-
ter 2R ≈ 450 Å inside the magnetic barrier, whereas for
α = 4.1 meV/fs, which leads to an extra energy Ex ≈ 100
meV and, consequently, doubles the electron energy, the
resulting circular trajectory has twice larger diameter.
Moreover, after passing through the α = −8.2 meV/fs
barrier, the wave packet trajectory is curved to the oppo-
site direction, which is expected for a positively charged
particle, but with a similar radius as the one observed for
α = 0 (green dotted). In fact, α = −8.2 meV/fs leads
to an energy loss of ≈ 200 meV, which makes the wave
packet, which initially has E0 = 100 meV, end up with
E ≈ −100 meV, i.e. as a hole. As the final energies for
α = 0 and α = −8.2 meV/fs differ practically only by a
negative sign, it is then expected that their circular tra-
jectories inside the magnetic barrier exhibit almost the
same radii, but in opposite directions.

It is worthy to point out the difference between the
valence band quasi-particles observed here and the usual
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FIG. 4: Final energy, after the wave packet leaves the poten-
tial barrier, (a) as function of the variation rate of the poten-
tial height α, considering different values of barrier width W ,
and (b) as function of W , for different values of α. Symbols in
(a) are the numerically obtained results, whereas curves are
an analytical estimate.
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FIG. 5: Trajectories of a circular wave packet dx = dy = 200
Å tunnelling through a barrier at −200 Å ≤ x < 0 (purple,
dark-shaded area) and reaching a magnetic step barrier for
x ≥ 0 (yellow, light-shaded area). The wave packet starts
with initial energy E0 = 100 meV, and the barrier height
varies with rates α = −8.2 meV/fs (black solid) and α = +4.1
meV/fs (red dashed). The result for α = 0 (green dotted) is
shown for comparison.

definition of holes in semiconductor physics. The latter is
rather a collective effect of valence band electrons: if one
of the valence band states is unoccupied, the dynamics of
the remaining electrons in real and reciprocal spaces can
be effectively described by that of a positively charged
particle, which even interacts via Coulomb potential with
conduction band electrons, forming excitons, trions, etc.
Holes in semiconductors can be also seen as an analog of
a positron in the context of high-energy physics.2 In our
study, the valence band is empty, so, we cannot have a
hole strictu sensu. What is observed is rather regarded
as a valence band electron, whose charge is still negative,
so that charge conservation is respected. However, in-
terestingly enough, such state turns out to behave as a
positively charged particle (just like holes and positrons),
say, in the presence of electromagnetic fields, due to its
negative effective mass.

It is important to address the issue of the feasibility
of experimental detection of such an effect. The time
dependent barrier could be provided by a time depen-
dent electric field perpendicular to the layer and applied
just in a finite region, so that electrons in this region
(barrier) would have higher energy. As mentioned above,
such a time dependent electric field can be obtained from
an electromagnetic wave. Linear dependence of the po-
tential, however, would only be obtained by approxima-
tion of the sinusoidal form of the electromagnetic wave
as sin(ωt) ≈ ωt, which is only valid for t ≪ 1/ω. There-
fore, the time for the electron to cross the whole barrier
t = W/vF must be much smaller than the period of the
electromagnetic wave in order to produce a barrier with
approximately linear time dependence, so ω ≪ vF /W .
As an example, a barrier with width W = 1000 Å , for
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instance, would require ω ≪ 8.2 THz, i.e. in the higher
frequency limit of the GHz (microwaves) range. On the
other hand, such electromagnetic wave would produce a
potential V0(t) = −Φ0 sin(ωt) ≈ Φ0ωt, where Φ0 = Fd,
d is the distance from the source to the graphene sam-
ple and F is the electric field intensity, therefore Φ0ω
plays the role of α in our theory. If one considers specif-
ically the conduction-to-valence band states transition,
the amount of energy Ex reduced by the time dependent
barrier in this case must be larger than the initial electron
energy, E < Ex. After some algebraic manipulations,
one finds ω = ExvF

/

Φ0W ≪ t, which yields Φ0 ≫ E. In
other words, the conduction-to-valence band states tran-
sition can be observed provided the electromagnetic wave
frequency is in the GHz range (to guarantee linearity of
the potential in time) and its intensity is high enough.
In summary, we investigated the Klein tunnelling of an

electronic wave packet through a potential barrier whose
height varies linearly in time, in an infinite monolayer
graphene sample. Our results demonstrate that for this
specific form of time dependence of the potential barrier,
the phase acquired by the electron after the tunnelling

has an important meaning, as it can be seen as an ex-
tra energy for this charge carrier. If this extra energy
is negative, an incident electron, initially in the conduc-
tion band, can be converted into a valence band state
after tunnelling, which behaves similarly to a positively
charged quasi-particle. Such transition is theoretically
verified both by analysing the sign of the tunnelled wave
packets energy and the trajectory of the center of mass of
such wave in the presence of an external magnetic field.
Results predicted here are possible to be experimentally
observed e.g. by investigating the scattering of hot elec-
trons by an oscillating potential barrier, whose height is
modulated by a microwave22 focused on a finite region of
the graphene sample.
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