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Abstract

In this article, we concern a kind of partially observed non-zero sum stochastic differential game
based on forward and backward stochastic differential equations (FBSDEs). It is required that each
player has his own observation equation, and the corresponding open-loop Nash equilibrium control is
required to adapted to the filtration that the observation process generated. To find this open-loop Nash
equilibrium point, we prove the maximum principle as a necessary condition of the existence of this point,
and give a verification theorem as a sufficient condition to verify it is the real open-loop Nash equilibrium
point. Combined this with reality, a financial investment problem is raised. We can obtain the explicit
observable investment strategy by using stochastic filtering theory and the results above.

Keywords. forward-backward stochastic equation, differential game, maximum principle, partial
information, stochastic filtering

1 Introduction

1.1 Historical contribution

The general theory of backward stochastic differential equation (BSDE) was first introduced by Pardoux and
Peng [18]. For the BSDE coupled with a forward stochastic differential equation (SDE), it is so-called the
forward and backward stochastic differential equation (FBSDE), which has important applications in many
areas in our society. In stochastic control area, the Hamiltonian system is one of the form of FBSDEs. More
essentially in financial market, the famous Black-Scholes option pricing formula can be deduced by a certain
FBSDE. Some research based on FBSDE is surveyed by Ma and Yong [11].

In stochastic control theory, one can use control to reach a maximum or minimum objection based on
stochastic differential system. Peng [19] firstly considered the maximum principle of convex domain forward-
backward stochastic control system. In the following, Xu [34] dealt with a case that control domain doesn’t
need to be convex and there is no control variable in diffusion coefficient in the forward equation. In more
general case, Tang and Li [22] considered that the control domain is non-convex and diffusion coefficient
contains control variable. Moreover, Shi and Wu [20], [21] solved the corresponding fully-coupled case,
etc. All these previous work were based on the “complete information” case, meaning that the control
variable is adapted to the truth complete filtration. In reality, there are many cases the controller can only
obtains “partial information”, reflecting in mathematics that the control variable is adapted to the filtraion
generated by an observable process. Based on this phenomenon, Xiong and Zhou [33] dealt with a Mean-
Variance problem in financial marcket that the investor’s optimal portfolio is only based on the stock and
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bond process he observed. This assumption of partial information is indeed natural in financing market.
What’s more, Wang and Wu [25] considered the Kalman-Bucy filtering equation of FBSDE system. Huang,
Wang and Xiong [7] dealt with the backward stochastic control system under partial information. Wang
and Wu [26], Wu [31], Wang Wu and Xiong [27] solved the partially observed case of forward and backward
stochastic control system.

The game theory was firstly constructed by Von Neumann since 1928. Nash [12] - [15] made the fun-
damental contribution in the Non-cooperate Games, considered there are N-players acting independently
to maximize their own objective conducted. He gave the notion of equilibrium point. Then, Isaacs [9],
Basar and Olsder [2] conducted the game research on differential equation system. Varaiya [24], Eliott and
Davis [3] considered the stochastic case. Next, many articles of forward stochastic differential games which
is based on SDEs appeared, like Hamadene [4] - [6], Karoui and Hamadene [10], Wu [30], Øksendal [1], etc.
For the backward case, Yu and Ji [36] studied the Linear Quadratic (LQ) system, Wang and Yu [28] gave
the maximum principle of backward system. Øksendal and Sulem [16], Hui and Xiao [8] had a research
on the maximum principle of forward-backward system. Recently, Tang and Meng [23] solved the partial
information case of zero-sum forward and backward system. Wang and Yu [29] solved the partial information
case of non-zero sum backward system, etc.

In our article, we generate game theory to the partially observed non-zero sum forward-backward system.
The main difference here is that, we suppose every player has his own observation equation, not just as
partial information that focusing only on a smaller sub-filtration. In section 1, we introduce some historical
contributions and make notions we need. In section 2, we establish the necessary condition of maximum
principle for Nash equilibrium point and give a sufficient condition (verification theorem) to help us check
if the candidate equilibrium points are real. In section 3, we consider a reasonable financial investment
problem and use the theorems in section 2 to obtain the open-loop Nash equilibrium point and give the
explicit observable solution of investment strategy.

1.2 Basic Notions

Throughout our article, we denote (Ω,F , {Ft}t≥0,P) the complete probability space, on which (W (·), Y1(·),
Y2(·)) be a standard 3-dimensional Ft Brownian motion. Let FW

t ,F1
t ,F

2
t be the natural filtration generated

by W (·), Y1(·), Y2(·) respectively. We set Ft = FW
t ⊗F1

t ⊗F2
t . For fixed terminal time T , F = FT . What’s

more, we denote the 1-dimensional Euclidean space by R, the Euclidean norm by | · |, and the transpose
of matrix A by Aτ , the partial derivative of function f(·) with respect to x by fx(·). We also denote the

L2
F (0, T ;S) representing the set of S-valued, Ft-adapted square integrable process (i.e. E

∫ T

0
|x(t)|2dt <∞),

and the L2
F (Ω;S) representing the set of S-valued, F -measured square integrable random variable. In the

following discussion, we only consider 1-dimensional case if there is no specific illustration.

1.3 Problem formulation

We consider a partially observed stochastic differential game problem of forward-backward stochastic sys-
tems, focusing on necessity and sufficiency of the existence of open-loop Nash equilibrium point.

We formulate the controlled forward and backward stochastic differential equation (FBSDE) as





dx(t) =b(t, x(t), v1(t), v2(t))dt + σ(t, x(t), v1(t), v2(t))dW (t)

+σ1(t, x(t), v1(t), v2(t))dW
v1,v2
1 (t) + σ2(t, x(t), v1(t), v2(t))dW

v1,v2
2 (t),

−dy(t) =f(t, x(t), y(t), z(t), z1(t), z2(t), v1(t), v2(t))dt− z(t)dW (t)− z1(t)dY1(t)− z2(t)dY2(t),

x(0) =x0,

y(t) =g(x(T )),

(1.1)

where v1(·), v2(·) are two control processes taking values in convex sets U1 ⊂ R, U2 ⊂ R respectively,W v1,v2
1 (·)

and W v1,v2
1 (·) are controlled stochastic process taking values in R, b, σ, σ1, σ2 : Ω× [0, T ]×R×U1×U2 7→ R,
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f : Ω× [0, T ]× R×R× R×R× R× U1 × U2 7→ R, g : Ω× R 7→ R are continuous maps, x0 ∈ R, g(x(T )) is
a FT measurable square integrable random variable. Here for simplicity, we omit the notation of ω in each
process.

We regard v1(·), v2(·) as two strategies of player 1 and 2. For both of them, they cannot observe the
process x(·), y(·), z1(·), z2(·) directly. However, they can observe their own related processes Y1(·), Y2(·),
which satisfy the following equations 1

{
dYi(t) =hi(t, x(t), v1(t), v2(t))dt + dW

v1,v2
i (t),

Yi(0) =0 (i = 1, 2),
(1.2)

where hi : Ω × [0, T ] × R × U1 × U2 7→ R, i = 1, 2 is a continuous map. We define the filtration F i
t =

σ{Yi(s)|0 ≤ s ≤ t}, i = 1, 2 as the information for player i obtained at time t, and the admissible control
vi(·) as

vi(t) ∈ Ui = {vi(·) ∈ Ui|vi(t) ∈ F i
t and sup

0≤t≤T

E|vi(t)|
8 <∞, a.e} (i = 1, 2), (1.3)

where Ui, i = 1, 2 is called the open-loop admissible control set for player i.
Hypothesis(H1). Suppose functions b, σ, σ1, σ2, h1, h2, f, g are continuously differentiable in (x, y, z, z1, z2, v1, v2).

The partial derivatives bx, bvi , σx, σvi , σjx,σjvi , hjx, hjvi ,fx,
fy, fz, fzj , fvi , gx, i, j = 1, 2 are uniformly bounded. Further, we assume there is constant C such that
|h(t, x, v1, v2)| +|σ1(t, x, v1, v2)|+ |σ2(t, x, v1, v2)| ≤ C for ∀(t, x, v1, v2) ∈ [0, T ]× R× U1 × U2.

From the Hypothesis(H1), we can defined a new probability measure Pv1,v2 by

dPv1,v2

dP

∣∣∣∣
Ft

= Zv1,v2(t), (1.4)

where Zv1,v2(·) is a Ft-martingale

Zv1,v2(t) = exp
{ 2∑

j=1

∫ t

0

hj(s, x(s), v1(s), v2(s))dYj(s)−
1

2

2∑

j=1

∫ t

0

h2j(s, x(s), v1(s), v2(s))ds
}
. (1.5)

Equivalently, it can be written in the SDE form

{
dZv1,v2(t) =h1(t, x(t), v1(t), v2(t))Z

v1,v2(t)dY1(t) + h2(t, x(t), v1(t), v2(t))Z
v1,v2(t)dY2(t),

Zv1,v2(0) =1.
(1.6)

By using the Girsanov theorem, (W (·),W v1,v2
1 (·),W v1,v2

2 (·)) becomes a 3-dimensional standard Brownian
motion defined on (Ω,F , {Ft}t≥0,P

v1,v2), where (W v1,v2
1 (·),W v1,v2

2 (·)) is a 2-dimensional controlled Brownian
motion and Yj(·), j = 1, 2 turn out to be a stochastic observation process.

Based on the construction above, we define two cost functional under space (Ω,F , {Ft}t≥0,P
v1,v2).

Ji(v1(·), v2(·)) = E
v1,v2 [

∫ T

0

li(t, x(t), y(t), z(t), z1(t), z2(t), v1(t), v2(t))dt +Φi(x(T )) + γi(y(0))]

= E[

∫ T

0

Zv1,v2(t)li(t, x(t), y(t), z(t), z1(t), z2(t), v1(t), v2(t))dt+ Zv1,v2(T )Φi(x(T )) + γi(y(0))],

(1.7)

for two players i = 1, 2, where Ev1,v2 is the corresponding expectation. li : Ω × [0, T ] × R × R × R × R ×
R× U1 × U2 7→ R, Φi : Ω×R 7→ R, γi : R 7→ R are continuous maps. In this cost functional, it contains the
running cost part representing an utility in duration, and the terminal and initial representing the restrict
on the endpoints.

1Here we assume that the control variables v1(·), v2(·) explicitly appeared in the observation function hi(·), which is common
in control problems under partial observation (see, e.g., [27]).
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Hypothesis(H2). Suppose functions li, Φi, γi, i = 1, 2 are continuously differentiable in (x, y, z, z1, z2,
v1, v2), x, y respectively, the partial derivatives lix, liy, liz, lizj , livj , i, j = 1, 2 are bounded by C(1+ |y|+ |z|+
|z1|+ |z2|+ |v1|+ |v2|) where C is a constant.

For each of the player, his goal is to minimise his own cost. Here we set (u1, u2) ∈ U1 × U2 such that





J1(u1(·), u2(·)) = min
v1(·)∈U1

J1(v1(·), u2(·)),

J2(u1(·), u2(·)) = min
v2(·)∈U2

J2(u1(·), v2(·)).
(1.8)

In this definition, (u1, u2) is the well-known open-loop Nash equilibrium point of our partially-observed
forward-backward non-zero sum system, and (x, y, z, z1, z2, Z) is the corresponding equilibrium state process.
Similar to the optimal control, what we want to do is to find this equilibrium control. We denote the whole
problem above as Problem(NEP).

In particular, If we set J(v1(·), v2(·)) = J1(v1(·), v2(·)) = −J2(v1(·), v2(·)), then (1.8) is equivalent to

J(u1(·), v2(·)) ≤ J(u1(·), u2(·)) ≤ J(v1(·), u2(·)), (1.9)

for ∀(v1(·), v2(·)) ∈ U1 × U2.
In that case, the reward of player 1 is actually the cost of player 2, and the sum is always zero. We can

regard it as a special case of non-zero sum game. We define this problem of our system as Problem(EP).

Remark 1.1. If we at first suppose Wj(·) = W
v1,v2
j (·), j = 1, 2 to be a Ft-Brownian motion under P,

then the distribution of observation process Y (·) will be depending on the control process. In that way, our
admission control is adapted to a controlled filtration, which appears a circulation. Here, we break through
the circulation by Girsanov theorem, making observation process to be an uncontrolled stochastic process and
depict the controlled Brownian motion under related equivalent probability measure.

2 Maximum principle

In this section, we will establish the necessary condition (maximum principle) of existence of open-loop Nash
equilibrium point in problem (NEP), and give a sufficient condition (verification theorem) of a special class
of system.

2.1 Variational equation

Let (v1(·), v2(·)) ∈ L8
F1(0, T ;R)× L8

F2(0, T ;R) such that (u1(·) + v1(·), u2(·) + v2(·)) ∈ U1 × U2.
For any ǫ ∈ [0, 1], we make the variational controls as

uǫ1(·) = u1(·) + ǫv1(·),

uǫ2(·) = u2(·) + ǫv2(·).
(2.1)

Because U1,U2 are convex sets, we have (uǫ1(·), u
ǫ
2(·)) ∈ U1 × U2. We denote

φu
ǫ
i (·), φ = x, y, z, z1, z2, Z (i = 1, 2),

as the corresponding state processes of variation (uǫ1, u2) or (u1, u
ǫ
2).

It is noteworthy that when using the variational technique, we had better require the Brownian motion
do not affected by the control process. Then our state equation can be written as
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dx(t) =
[
b(t, x(t), v1(t), v2(t))−

2∑

j=1

σj(t, x(t), v1(t), v2(t))hj(t, x(t), v1(t), v2(t))
]
dt

+σ(t, x(t), v1(t), v2(t))dW (t) +
2∑

j=1

σj(t, x(t), v1(t), v2(t))dYj(t),

−dy(t) =f(t, x(t), y(t), z(t), z1(t), z2(t), v1(t), v2(t))dt − z(t)dW (t)−

2∑

j=1

zj(t)dYj(t),

x(0) =x0,

y(t) =g(x(T )),

(2.2)

where (W (·), Y1(·), Y2(·)) is Ft-Brownian motion under P.
Then we have the following estimates under Hypothesis (H1).

Lemma 2.1.
sup

0≤t≤T

E|x(t)|8 ≤ C(1 + sup
0≤t≤T

E|v(t)|8), (2.3)

sup
0≤t≤T

E|y(t)|2 ≤ C(1 + sup
0≤t≤T

E|v(t)|2), (2.4)

E
( ∫ T

0

|z(t)|2dt+

∫ T

0

|z1(t)|
2dt+

∫ T

0

|z2(t)|
2dt
)
≤ C(1 + sup

0≤t≤T

E|v(t)|2), (2.5)

sup
0≤t≤T

E|Zv1,v2(t)| ≤ K, (2.6)

where C,K is constant independent of ǫ.

Lemma 2.2.
sup

0≤t≤T

E|xu
ǫ
i (t)− x(t)|8 ≤ Cǫ8, (2.7)

sup
0≤t≤T

E|yu
ǫ
i (t)− y(t)|2 ≤ Cǫ2, (2.8)

E

∫ T

0

|zu
ǫ
i (t)− z(t)|2dt ≤ Cǫ2, (2.9)

E

∫ T

0

|z
uǫ
i

1 (t)− z1(t)|
2dt ≤ Cǫ2, (2.10)

E

∫ T

0

|z
uǫ
i

2 (t)− z2(t)|
2dt ≤ Cǫ2, (2.11)

sup
0≤t≤T

E|Zuǫ
i (t)− Z(t)|2 ≤ Cǫ2, (2.12)

for i = 1, 2., where C is constant independent of ǫ.

For notation simplicity, we set

ζ(t) = ζ(t, x(t), u1(t), u2(t)), for ζ = b, σ, σi, hi (i = 1, 2),

ψ(t) = ψ(t, x(t), y(t), z(t), z1(t), z2(t), u1(t), u2(t)), for ψ = f, li (i = 1, 2).
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We introduce the following variational equations





dx1i (t) =
{
[bx(t)−

2∑

j=1

(σjx(t)hj(t) + σj(t)hjx(t))]x
1
i (t) + [bvi(t)−

2∑

j=1

(σjvi (t)hj(t) + σj(t)hjvi (t))]vi(t)
}
dt

+[σx(t)x
1
i (t) + σvi(t)vi(t)]dW (t) +

2∑

j=1

[σjx(t)x
1
i (t) + σjvi (t)vi(t)]dYj(t),

−dy1i (t) =[fx(t)x
1
i (t) + fy(t)y

1
i (t) + fz(t)z

1
i (t) +

2∑

j=1

fzj(t)z
1
ji(t) + fvi(t)vi(t)]dt− z1i (t)dW (t)−

2∑

j=1

z1ji(t)dYj(t),

x1i (0) =0,

y1i (T ) =gx(x(T ))x
1
i (T ) (i = 1, 2),

(2.13)
and





dZ1
i (t) =

2∑

j=1

[
Z1
i (t)hj(t) + Z(t)(hjx(t)x

1
i (t) + hjvi(t)vi(t))

]
dYj(t),

Z1
i (0) =0 (i = 1, 2).

(2.14)

From Hypothesis (H1), we know that (2.13) and (2.14) exist a unique solution respectively.
Next, we make the notation

φǫi(t) =
φu

ǫ
i (t)− φ(t)

ǫ
− φ1i (t), for φ = x, y, z, z1, z2, Z (i = 1, 2),

and
φ̄(t) = φu

ǫ
i (t)− φ(t), for φ = x, y, z, z1, z2, Z, b, σ, σ1, σ2, h1, h2, Z (i = 1, 2).

Then we have

Lemma 2.3. For i, j = 1, 2,
lim
ǫ→0

sup
0≤t≤T

E|xǫi(t)|
4 = 0, (2.15)

lim
ǫ→0

sup
0≤t≤T

E|Zǫ
i (t)|

2 = 0, (2.16)

lim
ǫ→0

sup
0≤t≤T

E|yǫi (t)|
2 = 0, (2.17)

lim
ǫ→0

E

∫ T

0

|zǫi (t)|
2dt = 0, (2.18)

lim
ǫ→0

E

∫ T

0

|zǫji(t)|
2dt = 0. (2.19)

Proof. We only consider the first two case for i = 1. The rest are similar and are well-known results.
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(i).

dxǫ1(t) =

{( b̄(t)
ǫ

− bx(t)x
1
1(t)− bvi(t)vi(t)

)
−

2∑

j=1

[( σ̄j(t)
ǫ

− σjx(t)x
1
1(t)− σjv1 (t)v1(t)

)
hj(t)

+
( h̄j(t)

ǫ
− hjx(t)x

1
1(t)− hjv1(t)v1(t)

)
σj(t) +

σ̄j(t)

ǫ
h̄j(t)

]}
dt

+
( σ̄(t)
ǫ

− σx(t)x
1
1(t)− σv1 (t)v1(t)

)
dW (t) +

2∑

j=1

( σ̄j(t)
ǫ

− σjx(t)x
1
1(t)− σjv1 (t)v1(t)

)
dYj(t)

=

[
xǫ1(t)bx(t) +

x̄(t)

ǫ

( ∫ 1

0

bx(Θ)dλ − bx(t)
)
+ v1(t)

( ∫ 1

0

bv1(Θ)dλ − bv1(t)
)]
dt

+

[
xǫ1(t)σx(t) +

x̄(t)

ǫ

( ∫ 1

0

σx(Θ)dλ− σx(t)
)
+ v1(t)

( ∫ 1

0

σv1 (Θ)dλ− σv1(t)
)]
dW (t)

+

2∑

j=1

{[
xǫ1(t)σjx(t) +

x̄(t)

ǫ

( ∫ 1

0

σjx(Θ)dλ − σjx(t)
)
+ v1(t)

( ∫ 1

0

σjv1 (Θ)dλ− σjv1 (t)
)]
hj(t)dt

+

[
xǫ1(t)hjx(t) +

x̄(t)

ǫ

( ∫ 1

0

hjx(Θ)dλ − hjx(t)
)
+ v1(t)

( ∫ 1

0

hjv1 (Θ)dλ− hjv1(t)
)]
σj(t)dt

+

[
x̄(t)

ǫ

∫ 1

0

σjx(Θ)dλ+ v1(t)

∫ 1

0

σjv1 (Θ)dλ

]
h̄j(t)

}
dt,

(2.20)
where

(Θ) = (t, x(t) + λx̄(t), u1(t) + λǫv(t), u2(t)).

Thus we have

E|xǫ1(t)|
4 ≤CE

∫ t

0

|xǫ1(s)|
4ds+ C

√
E

∫ t

0

|
x̄(s)

ǫ
|8ds

[√
E

∫ t

0

( ∫ 1

0

bx(Θ)dλ − bx(s)
)8
ds

+

√
E

∫ t

0

( ∫ 1

0

σx(Θ)dλ− σx(s)
)8
ds+

2∑

j=1

√
E

∫ t

0

( ∫ 1

0

σjx(Θ)dλ− σjx(s)
)8
ds

+

2∑

j=1

√
E

∫ t

0

( ∫ 1

0

hjx(Θ)dλ − hjx(s)
)8
ds

]

+C

√
E

∫ t

0

|v1(s)|8ds

[√
E

∫ t

0

( ∫ 1

0

bv1(Θ)dλ− bv1(s)
)8
ds

+

√
E

∫ t

0

( ∫ 1

0

σv1 (Θ)dλ− σv1(s)
)8
ds+

2∑

j=1

√
E

∫ t

0

( ∫ 1

0

σjv1 (Θ)dλ− σjv1 (s)
)8
ds

+

2∑

j=1

√
E

∫ t

0

( ∫ 1

0

hjv1(Θ)dλ − hjv1(s)
)8
ds

]

+C
(
√
E

∫ t

0

|
x̄(s)

ǫ
|8ds+

√
E

∫ t

0

|v1(s)|8ds
)
√
E

∫ t

0

x̄(s)ds,

(2.21)

where C is a constant. From Hypothesis (H1), we know that the right side of the inequality converges to 0
when ǫ 7→ 0. The case of i = 2 is similar.
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(ii).

dZǫ
1(t) =

2∑

j=1

[
h
uǫ
1

j (t)Zuǫ
1(t)− hj(t)Z(t)

ǫ
− Z1

1 (t)hj(t)− Z(t)hjx(t)x
1
1(t)− Z(t)hjv1(t)v1(t)

]
dYj(t)

=

2∑

j=1

[
Zuǫ

1(t)− Z(t)

ǫ
hj(t) + Zuǫ

1(t)
h
uǫ
1

j (t)− hj(t)

ǫ
− Z1

1(t)hj(t)− Z(t)hjx(t)x
1
1(t)

− Z(t)hjv1 (t)v1(t)

]
dYj(t)

=

2∑

j=1

[
Zǫ
1(t)hj(t) + Z(t)

h̄j(t)

ǫ
− Z(t)hjx(t)x

1
1(t)− Z(t)hjv1 (t)v1(t) +

Z̄(t)

ǫ
h̄j(t)

]
dYj(t)

=

2∑

j=1

[
Zǫ
1(t)hj(t) + Z(t)

(
xǫ1(t)hjx(t) +

x̄(t)

ǫ

( ∫ 1

0

hjx(Θ)dλ− hjx(t)
)

+ v1(t)
( ∫ 1

0

hjv1(Θ)dλ − hjv1(t)
))

+
(
Zǫ
1(t) + Z1

1 (t)
)
h̄j(t)

]
dYj(t)

=

2∑

j=1

[
Zǫ
1(t)h

uǫ
1

j (t) + Z(t)

(
xǫ1(t)hjx(t) +

x̄(t)

ǫ

( ∫ 1

0

hjx(Θ)dλ− hjx(t)
)

+ v1(t)
( ∫ 1

0

hjv1(Θ)dλ − hjv1(t)
))

+ Z1
1 (t)h̄j(t)

]
dYj(t).

(2.22)

Thus we have

E|Zǫ
1(t)|

2 ≤C

[
E

∫ t

0

|Zǫ
1(s)|

2ds+ E

∫ t

0

|Z(s)xǫ1(s)|
2ds

+E

∫ t

0

|Z(s)
x̄(s)

ǫ
|2
(∫ 1

0

hjx(Θ)dλ− hjx(s)
)2
ds

+E

∫ t

0

|v1(s)|
2
(∫ 1

0

hjv1 (Θ)dλ− hjv1(s)
)2
ds+ E

∫ t

0

|Z1
1(s)h̄j(s)|

2ds

≤C

[
E

∫ t

0

|Zǫ
1(s)|

2ds+

√
E

∫ t

0

|xǫ1(s)|
4ds

+
4

√
E

∫ t

0

|
x̄(s)

ǫ
|8ds

√
E

∫ t

0

( ∫ 1

0

hjx(Θ)dλ− hjx(s)
)4
ds

+

√
E

∫ t

0

|v1(s)|4ds

√
E

∫ t

0

( ∫ 1

0

hjv1 (Θ)dλ− hjv1(s)
)4
ds

+

√
E

∫ t

0

|Z1
1 (s)|

4ds

√
E

∫ t

0

|x̄(s)|4ds,

(2.23)

where C is a constant. From Hypothesis (H1), we know that the right side of the inequality converges to 0
when ǫ 7→ 0. The case of i = 2 is similar.

2.2 Variational inequality

From the definition of open-loop Nash equilibrium point (u1(·), u2(·)) in Problem (NEP), it is clear that
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ǫ−1[J1(u
ǫ
1(·), u2(·))− J1(u1(·), u2(·))] ≥ 0,

ǫ−1[J2(u1(·), u
ǫ
2(·))− J2(u1(·), u2(·))] ≥ 0.

(2.24)

Let Γi(·) = Z1
i (·)Z

−1
i (·), i = 1, 2., From Itô’s formula, we have





dΓi(t) =
2∑

j=1

[
hjx(t)x

1
i (t) + hjvi(t)vi(t)

]
dW

u1,u2

j (t),

Γi(0) =0 (i = 1, 2).

(2.25)

From (2.24), we can derive the variational inequality.

Lemma 2.4.

E
u1,u2

[
Φix(x(T ))x

1
i (T ) + γiy(y(0))y

1
i (0) + Φi(x(T ))Γi(T ) +

∫ T

0

Γi(t)li(t)dt

+

∫ T

0

[lix(t)x
1
i (t) + liy(t)y

1
i (t) + liz(t)z

1
i (t) +

2∑

j=1

lizj (t)z
1
ji(t)]dt+

∫ T

0

livi(t)vi(t)dt

]
≥ 0.

(2.26)

Proof. we only consider the case i = 1. From (1.7), we have

ǫ−1[J1(u
ǫ
1(·), u2(·))−J1(u1(·), u2(·))] = ǫ−1

E

[ ∫ T

0

(
Zuǫ

1(t)l
uǫ
1

1 (t)− Z(t)l1(t)
)
dt

+
(
Zuǫ

1(T )Φ
uǫ
1

1 (x(T ))− Z(T )Φ1(x(T ))
)
+
(
γ
uǫ
1

1 (y(0))− γ1(y(0))
)]

≥ 0.

(2.27)

According to Lemma 2.3 and Hypothesis (H2),

ǫ−1[γ
uǫ
1

1 (y(0))− γ1(y(0))] =

∫ 1

0

γ1y

(
y(0) + λ

(
yu

ǫ
1(0)− y(0)

))
dλ

(yu
ǫ
1(0)− y(0))

ǫ
→ γiy(y(0))y

1
1(0), (2.28)

and

ǫ−1
E[Zuǫ

1(T )Φ
uǫ
1

1 (x(T )) − Z(T )Φ1(x(T ))]

=ǫ−1
E[Zuǫ

1(t)(Φ
uǫ
1

1 (x(T ))− Φ1(x(T ))) + Φ1(x(T ))(Z
uǫ
1(T )− Z(T ))]

=E[Zuǫ
1(T )

(∫ 1

0

Φ1x

(
x(T ) + λ

(
xu

ǫ
1(T )− x(T )

))
dλ

(xu
ǫ
1 (T )− x(T ))

ǫ

)
+Φ1(x(T ))

(Zuǫ
1(T )− Z(T ))

ǫ
]

→E[Z(T )Φ1x(x(T ))x
1
1(T ) + Φ1(x(T ))Z

1
1 (T )].

(2.29)
Similarly, we have

ǫ−1
E[

∫ T

0

(Zuǫ
1(t)l

uǫ
1

1 (t)− Z(t)l1(t))dt] →E

[ ∫ T

0

Z(t)
(
l1x(t)x

1
1(t) + l1y(t)y

1
1(t) + l1z(t)z

1
1(t) +

2∑

j=1

l1zj (t)z
1
j1(t)

+l1v1(t)v1(t)
)
dt+

∫ T

0

l1(t)Z
1
1 (t)dt

]
.

(2.30)
From the definition of Γ(·) and (2.28)-(2.30), we derive the variational inequality.
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2.3 A necessary condition (maximum principle)

In the following, we ignore the superscript ofWu1,u2

j (·), j = 1, 2 for notation simplicity. We formulate adjoint
equaions under probability measure Pu1,u2 .





−dPi(t) =li(t)dt−Qi(t)dW (t)−

2∑

j=1

QjidWj(t),

Pi(T ) =Φi(x(T )) (i = 1, 2).

(2.31)





dpi(t) =[fy(t)pi(t)− liy(t)]dt + [fz(t)pi(t)− liz(t)]dW (t) +
2∑

j=1

[(
fzj (t)− hj(t)

)
pi(t)− lizj (t)

]
dWj(t),

−dqi(t) =
{[
bx(t)−

2∑

j=1

σj(t)hjx(t)
]
qi(t) + σx(t)ki(t) +

2∑

j=1

[
σjx(t)kji(t) + hjx(t)Qji(t)

]

−fx(t)pi(t) + lix(t)
}
dt− ki(t)dW (t)−

2∑

j=1

kji(t)dWj(t),

pi(0) =− γy(y(0)),

qi(T ) =− gx(x(T ))pi(T ) + Φix(x(T )) (i = 1, 2).
(2.32)

It is noteworthy here that Wj(·), j = 1, 2 is the Brownian motion under probability measure Pu1,u2 . Due
to the observation equation (1.2) and the appearance ofW v1,v2

j (·) and Yj(·), j = 1, 2 in the forward-backward
state equation (1.1), the equation (2.32) is not the classic form any more. Also we should introduce equation
(3.25) to deal with the controlled probability measure Pv1,v2 or expectation Ev1,v2 related to observation
process when using the variational method.

Now we give the necessary condition.

Theorem 2.1. Suppose (H1) and (H2) hold, (u1(·), u2(·)) is an open-loop Nash equilibrium point of problem
(NEP), and (x, y, z, z1, z2) is the corresponding state process, then we have

E
u1,u2 [H̃1v1(t, x, y, z, z1, z2, u1, u2; q1, k1, k11, k21, p1, Q11, Q21)(v1 − u1(t))|F

1
t ] ≥ 0,

E
u1,u2 [H̃2v2(t, x, y, z, z1, z2, u1, u2; q2, k2, k12, k22, p2, Q12, Q22)(v2 − u2(t))|F

2
t ] ≥ 0,

(2.33)

for ∀(v1, v2) ∈ U1 × U2, a.e.. Here we set

H̃ivi(t) =H̃ivi(t, x, y, z, z1, z2, u1, u2; qi, ki, k1i, k1i, pi, Q1i, Q2i)

=Hivi(t)−
2∑

j=1

qi(t)σj(t, x(t), u1(t), u2(t))hjvi (t, x(t), u1(t), u2(t)),
(2.34)

where

Hi(·) ,b(t, x, u1, u2)qi(t) + σ(t, x, u1, u2)ki(t) +

2∑

j=1

[σj(t, x, u1, u2)kji(t) + hj(t, x, u1, u2)Qji(t)]

−[f(t, x, y, z, z1, z2, u1, u2)−
2∑

j=1

hj(t, x, u1, u2)zj(t)]pi(t) + li(t, x, y, z, z1, z2, u1, u2) (i = 1, 2).

(2.35)

Proof. We only consider the i = 1 case. Applying Itô’s formula to q1(·)x
1
1(·), p1(·)y

1
1(·), P1(·)Γ1(·) respec-

tively, we have
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E
u1,u2 [

(
Φ1x(x(T ))− gx(x(T ))p1(T )

)
x11(T )] = E

u1,u2

∫ T

0

[
q(t)

(
[bx(t)−

2∑

j=1

σj(t)hjx(t)]x
1
1(t)

+[bv1(t)−
2∑

j=1

σj(t)hjv1 (t)]v1(t)
)
− x11(t)

(
[bx(t)−

2∑

j=1

σj(t)hjx(t)]q1(t) + σx(t)k1(t)

+

2∑

j=1

(σjx(t)kj1(t) + hjx(t)Qj1(t))) − fx(t)p1(t) + l1x(t)
)]
dt+ E

u1,u2

[∫ T

0

k1(t)(σx(t)x
1
1(t) + σv1(t)v1(t))dt

]

+

2∑

j=1

E
u1,u2

[∫ T

0

kj1(t)(σjx(t)x
1
1(t) + σjv1 (t)v1(t))dt

]
,

(2.36)

E
u1,u2 [(p1(T )gx(x(T ))x

1
1(T ) + γy(y(0))y

1
1(0)] = E

u1,u2

∫ T

0

[
− p1(t)

(
fx(t)x

1
1(t) + fy(t)y

1
1(t)

+fz(t)z
1
1(t) + fv1(t)v1(t) +

2∑

j=1

(
fzj (t)− hj(t)

)
z1j1(t)

)
+ y11(t)

(
fy(t)p1(t)− liy(t)

)]
dt

+E
u1,u2

[ ∫ T

0

z11(t)
(
fz(t)p1(t)− l1z(t)

)
dt

]
+

2∑

j=1

E
u1,u2

[ ∫ T

0

z1j1(t)
(
(fzj (t)− hj(t))p1(t)− l1zj (t)

)
dt

]
,

(2.37)
and

E
u1,u2 [Φ1(x(T ))Γ1(T )] = E

u1,u2

[ ∫ T

0

−Γ1(t)l1(t)dt] +

2∑

j=1

E
u1,u2

[ ∫ T

0

Qj1(t)
(
hjx(t)x

1
1(t) + hjv1 (t)v1(t)

)]
dt.

(2.38)
Substituting (2.36)-(2.38) into variational inequality, we get

E
u1,u2

[ ∫ T

0

((
bv1(t)−

2∑

j=1

σj(t)hjv1 (t)
)
q1(t)− fv1(t)p1(t) + σv1 (t)k1(t) +

2∑

j=1

(
σjv1 (t)kj1(t) + hjv1 (t)Qj1(t)

)

+l1v1(t)
)
· v1(t)

]
dt ≥ 0,

(2.39)
for any v1(·) such that u1(·) + v1(·) ∈ U1.

Let w1(·) = u1(·) + v1(·), then above equation implies that

E
u1,u2 [H̃1v1(t) · (w1(t)− u1(t))] ≥ 0, a.e. (2.40)

We set
w̄1(t) = v11A + u1(t)1Ω−A, ∀v1 ∈ U1, ∀A ∈ F1

t . (2.41)

Then
v1(t) = (v1 − u1(t))1A, ∀v1 ∈ U1, ∀A ∈ F1

t . (2.42)

So
E
u1,u2 [1AH̃1v1(t) · (v1 − u1(t))] ≥ 0, ∀v1 ∈ U1, ∀A ∈ F1

t . (2.43)
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Thus we get
E
u1,u2 [H̃1v1(t) · (v1 − u1(t))|F

1
t ] ≥ 0, ∀v1 ∈ U1. (2.44)

The prove of case i = 2 is similar.

Remark 2.1. The appearance of second part in the right-side of equation (2.34) is caused by the appearance
of control variables v1(·), v2(·) of h(·) in observation equation (1.2).

Corollary 2.1. Suppose (H1) and (H2) hold, (u1(·), u2(·)) is a saddle point of problem (EP), then we have

E
u1,u2 [H̃1v1(t, x, y, z, z1, z2, u1, u2; q1, k1, k11, k21, p1, Q11, Q21)(v1 − u1(t))|F

1
t ] ≥ 0,

E
u1,u2 [H̃1v2(t, x, y, z, z1, z2, u1, u2; q1, k1, k11, k21, p1, Q11, Q21)(v2 − u2(t))|F

2
t ] ≤ 0,

(2.45)

for ∀(v1, v2) ∈ U1 × U2, a.e..

Remark 2.2. Theorem 2.1 (corollary 2.1) is equivalence to

E
u1,u2 [H̃1v1(t, x, y, z, z1, z2, u1, u2; q1, k1, k11, k21, p1, Q11, Q21)|F

1
t ] = 0,

E
u1,u2 [H̃1v2(t, x, y, z, z1, z2, u1, u2; q2, k2, k12, k22, p2, Q12, Q22)|F

2
t ] = 0,

(2.46)

for ∀(v1, v2) ∈ U1 × U2, a.e..
(
E
u1,u2 [H̃1v1(t, x, y, z, z1, z2, u1, u2; q1, k1, k11, k21, p1, Q11, Q21)|F

1
t ] = 0

E
u1,u2 [H̃1v2(t, x, y, z, z1, z2, u1, u2; q1, k1, k11, k21, p1, Q11, Q21)|F

2
t ] = 0

)
, (2.47)

for ∀(v1, v2) ∈ U1 × U2, a.e..

In the following remarks, we discuss some special cases in the system of our problem (NEP).

Remark 2.3. If the form of the forward equation x(·) in (1.1) satisfies
{
dx(t) =b(t, x(t), v1(t), v2(t))dt+ σ(t, x(t), v1(t), v2(t))dW (t),

x(0) =x,
(2.48)

where it doesn’t contain the Wu1,u2

j (·) part. Then, It is a special case that σj(·) ≡ kj·(·) ≡ 0. According to
the theorem 2.1, the necessary condition becomes:

E
u1,u2 [H̄ivi(t, x, y, z, z1, z2, u1, u2; qi, ki, k1i, k2i, pi, Q1i, Q2i)|F

i
t ] = 0 (i = 1, 2), (2.49)

where

H̄i(·) =b(t, x, u1, u2)qi(t) + σ(t, x, u1, u2)ki(t) +
2∑

j=1

hj(t, x, u1, u2)Qji(t)

−f(t, x, y, z, z1, z2, u1, u2)pi(t) + li(t, x, y, z, z1, z2, u1, u2).

(2.50)

The adjoint process are changed to




dpi(t) =[fy(t)pi(t)− liy(t)]dt+ [fz(t)pi(t)− liz(t)]dW (t) +

2∑

j=1

[(fzj (t)− hj(t))pi(t)− lizj (t)]dWj(t),

−dqi(t) =
[
bx(t)qi(t) + σx(t)ki(t) +

2∑

j=1

hjx(t)Qji(t)− fx(t)pi(t) + lix(t)
]
dt− ki(t)dW (t),

pi(0) =− γy(y(0)),

qi(T ) =− gx(x(T ))pi(T ) + Φix(x(T )) (i = 1, 2),
(2.51)
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and 



−dPi(t) =li(t)dt−Qi(t)dW (t) −

2∑

j=1

Qji(t)dWj(t),

Pi(T ) =Φi(x(T )) (i = 1, 2).

(2.52)

Remark 2.4. If we set h(·) in the observation equation satisfies h(t, x(·), v1(·), v2(·)) = h(t, x(·)), then the
Hamiltanian in theorem 2.1 becomes:

H̃ivi(t) = Hivi(t) (i = 1, 2), (2.53)

where

Hi(·) ,b(t, x, u1, u2)qi(t) + σ(t, x, u1, u2)ki(t) +

2∑

j=1

[σj(t, x)kji(t) + hj(t, x)Qji(t)]

−[f(t, x, y, z, z1, z2, u1, u2)−
2∑

j=1

hj(t, x)zj(t)]pi(t) + li(t, x, y, z, z1, z2, u1, u2),

(2.54)

and the corresponding adjoint equations (3.25), (2.32) are unchanged.

Remark 2.5. As mentioned in Remark 1.1, the main obstacle in the construction of the partially observed
system is that if observation variable Y (·) relies on control variable, the control will adapted to a controlled
filtration, and the dY (·) part will be affected by convex variational method. Here, if we consider the special
case that hj(·, x(·), v1(·), v2(·)) = hj(·) in (1.2), then Yj(·) is uncontrolled process naturally. Thus we don’t
need to use Girsanov theorem to reconstruct the system. We set W v1,v2

j (·) = Wj(·) to be the B.M. under
probability measure Pv1,v2 = P straightly. In that way, the adjoint process P (·) is needless for the reason that
control doesn’t affect the observation equation any more.

Thus the Hamiltonion in theorem 2.1 becomes the classic form below

E[Hivi (t, x, y, z, z1, z2, u1, u2; qi, ki, k1i, k2i, pi)|F
i
t ] = 0 (i = 1, 2), (2.55)

where

Hi(t) =Hi(t, x, y, z, z1, z2, u1, u2; qi, ki, k1i, k2i, pi)

=b(t, x, u1, u2)qi(t) + σ(t, x, u1, u2)ki(t) +

2∑

j=1

σj(t, x, u1, u2)kji(t)

−[f(t, x, y, z, z1, z2, u1, u2)−

2∑

j=1

hj(t)zj(t)]pi(t) + li(t, x, y, z, z1, z2, u1, u2),

(2.56)

with adjoint process satisfies





dpi(t) =−Hiy(t)dt−Hiz(t)dW (t) −

2∑

j=1

Hizj (t)dWj(t),

−dqi(t) =Hix(t)dt − ki(t)dW (t)−

2∑

j=1

kji(t)dWj(t),

pi(0) =− γy(y(0)),

qi(T ) =− gx(x(T ))pi(T ) + Φix(x(T )) (i = 1, 2),

(2.57)
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and 



−dPi(t) =li(t)dt−Qi(t)dW (t) −

2∑

j=1

Qji(t)dWj(t),

Pi(T ) =Φi(x(T )) (i = 1, 2).

(2.58)

2.4 A sufficient condition (verification theorem)

Here we establish the sufficient condition of the case when the observation process is not affected by the
control process. Just as Remark 2.5, we suppose h(t, x(t), v1(t), v2(t)) = h(t, x(t)) and (W (·),W1(·),W2(·))
is a standard B.M. on probability space (Ω,F , {Ft}t≥0,P).

Theorem 2.2. Suppose hypothesis (H1) (H2) hold, and the adjoint equation (2.57) admits a solution
(pi(·), qi(·), ki(·),k1i(·), k2i(·)) ∈ L2

F (0, T ;R
5) for i = 1, 2.

Suppose
E[H1(t)|F

1
t ] = min

v1∈U1

E[Hv1
1 (t)|F1

t ],

E[H2(t)|F
2
t ] = min

v2∈U2

E[Hv2
2 (t)|F2

t ],
(2.59)

where
Hi(t) =Hi(t, x, y, z, z1, z2, u1, u2; qi, ki, k1i, k2i, pi) (i = 1, 2),

Hv1
1 (t) =H1(t, x, y, z, z1, z2, v1, u2; q1, k1, k11, k21, p1),

Hv2
2 (t) =H2(t, x, y, z, z1, z2, u1, v2; q2, k2, k12, k22, p2).

(2.60)

Suppose that E[Hvi
ivi

(t)|F i
t ] is continuous at vi = ui(t) (i = 1, 2).

Suppose
(t, x, y, z, z1, z2, vi) 7→Hvi

i (t) (i = 1, 2),

x 7→g(x)

x 7→Φi(x) (i = 1, 2),

x 7→γi(y) (i = 1, 2)

(2.61)

are convex functions respectively. Then, (u1(·), u2(·)) is the open-loop Nash equilibrium point.

Proof. We only prove the case of i = 1. For ∀v1(·) ∈ U1, we have

J1(v1(·), u2(·)) − J1(u1(·), u2(·)) = A+B + C, (2.62)

with

A =E

∫ T

0

[lv11 (t)− l1(t)]dt,

B =γ1(y
v1(0))− γ1(y(0)),

C =E[Φ1(x
v1 (T ))− Φ1(x(T ))].

(2.63)

Due to γ1(y) is convex on y,

B ≥ γ1y(y(0))(y
v1(0)− y(0)). (2.64)

Using Itô’s formula to p1(·)(y
v1 (0)− y(0)),
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B ≥ E

∫ T

0

[
−p1(t)

(
fv1(t)− f(t)−

2∑

j=1

(zv1j (t)− zj(t))hj(t)
)
−
(
yv1(t)− y(t)

)
H1y(t)−

(
zv1(t)− z(t)

)
H1z(t)

−
2∑

j=1

(
zv1j (t)− zj(t)

)
H1zj (t)

]
dt− p1(T )

(
g(xv1(T )− g(x(T ))

)
.

(2.65)
Due to Φ1(x) is convex on x,

C ≥ Φ1x(x(T ))(x
v1 (T )− x(T )). (2.66)

Using Itô’s formula to q1(·)(x
v1 (T )− x(T )),

C ≥ E

∫ T

0

[
q1(t)(b

v1 (t)− b(t))− (xv1 (t)− x(t))H1x(t) + k1(t)(σ
v1 (t)− σ(t))

+
2∑

j=1

kj1(t)(σ
v1
j (t)− σj(t))

]
dt.

(2.67)

Moreover, we have

A = E

∫ T

0

[
Hv1

1 (t)−H1(t)
]
dt− E

∫ T

0

[(
bv1(t)− b(t)

)
q1(t) +

(
σv1(t)− σ(t)

)
k1(t)

+
2∑

j=1

(
σv1
j (t)− σj(t)

)
kj1(t)−

[
fv1(t)− f(t)−

2∑

j=1

(
zv1j (t)− zj(t)

)
hj(t)

]
p1(t)

]
dt.

(2.68)

From A,B,C,

J1(v1(·), u2(·))−J1(u1(·), u2(·)) ≥ E

∫ T

0

[
(Hv1

1 (t)−H1(t)) − (xv1(t)− x(t))H1x(t)

−(yv1(t)− y(t))H1y(t)− (zv1(t)− z(t))H1z(t)−

2∑

j=1

(zv1j (t)− zj(t))H1zj (t)

]
dt.

(2.69)

Due to (t, x, y, z, z1, z2, v1) 7→ Hv1
1 (t) is convex,

J1(v1(·), u2(·))− J1(u1(·), u2(·)) ≥E

∫ T

0

H1v1(t)(v1(t)− u1(t))dt

=E

∫ T

0

E

[
H1v1(t)

(
v1(t)− u1(t)

)
|F1

t

]
dt.

(2.70)

From the assumption v1 7→ E[Hv1
1 (t)|F1

t ] is minimal at v1 = u1(t) for ∀t ∈ [0, T ] and Hv1
1v1

(t) is continuous
on v1, then we have

E

[
H1v1(t)(v1(t)− u1(t))|F

1
t

]
=
( ∂

∂v1
E
[
H1(t)|F

1
t

])
(v1(t)− u1(t)) ≥ 0. (2.71)

Thus, it implies that
J1(u1(·), u2(·)) = min

v1(·)∈U1

J1(v1(·), u2(·)). (2.72)
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Similarly, we can prove the case when i = 2,

J2(u1(·), u2(·)) = min
v2(·)∈U2

J1(u1(·), v2(·)). (2.73)

3 An example in finance

In this section, we consider a realistic investment problem in our financial market. We can solve it by using
the necessary and sufficient condition we derived in section 2, and give the related Nash equilibrium strategy
explicitly.

We assume that there are n+ 1 assets can be continuously traded in financial market.
1 bond {

dB(t) =r(t)B(t)dt,

B(0) =1.
(3.1)

n stocks 



dSi(t) =µi(t)Si(t)dt+
n∑

j=1

σij(t)Si(t)dWj(t),

Si(0) =1 (i = 1, 2 . . . n),

(3.2)

whereW (·) = (W1(·), . . . ,Wn(·))
τ is n-dimensional standard B.M. defined on probability space (Ω,F , {Ft}t≥0,

P). µ(·) = (µ1(·), . . . , µn(·))
τ is appreciation rate of the stock process. The n × n matrix valued process

Σ(t) = (σij(t)) is the volatility coefficients of the stock process. We set S(·) = (S1(·), . . . , Sn(·))
τ .

We make the following assumptions.
Hypothesis (H3). µ(·) is Ft-adapted bounded process, r(·) and σij(·) are deterministic bounded

coefficients. Σ(·) has full rank for ∀t ∈ [0, T ], and the inverse matrix Σ(·)−1 is bounded.
We suppose that there is a company hires two managers. Each of them observes few stocks from S(·).

manager 1: dS1
i (t) =µ

1
i (t)S

1
i (t)dt+

n1∑

j=1

σ1
ij(t)S

1
i (t)dW

1
j (t) (i = 1, . . . , n1),

manager 2: dS2
i (t) =µ

2
i (t)S

2
i (t)dt+

n2∑

j=1

σ2
ij(t)S

2
i (t)dW

2
j (t) (i = 1, . . . , n2),

(3.3)

where nk is the dimension of observed stocks Sk(·) = (Sk
1 (·), . . . , S

k
nk
(·))τ for k = 1, 2, which are parts of

real stock process S(·) corresponding to the two managers respectively. Thus, we denote the rest of both
unobservable part of stock process as S0(·) = (S0

1(·), . . . , S
0
n0
(·))τ , which can be also invested by company.

Here W k(·) = (W k
1 (·), . . . ,W

k
nk
(·))τ , k = 0, 1, 2 are the corresponding mutually independent nk-dimensional

Brownian motions (see Theorem 3.1 in Xiong and Zhou [33]). For calculation simplicity, we might as well
suppose there is no common B.M. among the vectors W k(·), k = 0, 1, 2 and no common observed stock
between two managers. If not, it will not cause any trouble during calculation but more redundant to be
represented. In that way, we have n0 + n1 + n2 = n. We set µk(·) = (µk

1(·), . . . , µ
k
nk
(·))τ , k = 0, 1, 2 and

Σk(·) = (σk
ij(·)) i, j = 1, . . . , nk, k = 0, 1, 2 to be the corresponding appreciation rate and volatility of stock

process Sk(·). Further, we make the assumption naturally that the appreciation rate µk(·) is unobservable for
k = 0, 1, 2. We denote akij(·) =

∑nk

l=1 σ
k
il(·)σ

k
jl(·), i, j = 1, . . . , nk, k = 0, 1, 2., Ak(·) = (ak11(·), . . . , a

k
nknk

(·))τ ,
Now we set

dY k(·) = Σk(·)−1d logSk(·) (k = 1, 2). (3.4)
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By using Itô’s formula, our observation equation turns to

dY 1(t) =η1(t)dt+ dW 1(t), (3.5)

dY 2(t) =η2(t)dt+ dW 2(t), (3.6)

where Y k(·) = (Y k
1 (·), . . . , Y k

nk
(·))τ (k = 1, 2).

and

ηk(·) , Σk(·)−1(µk(t)−
1

2
Ak(·)) (k = 1, 2). (3.7)

Let
Fk

t = σ{B(s), Y k(s); 0 ≤ s ≤ t} (k = 1, 2) (3.8)

be the available filtration to each manager. In that case, r(·),Σ(·) are all completely observable, while µ(·)
is unobservable.

Here we assume that the nk-dimensional drift process µk(·), k = 1, 2 of each observation equation is the
solution of the following stochastic equation

{
dµk(t) =θk(δk − µk(t))dt+ ζkdW̄ k(t),

µk(0) =1 (k = 1, 2),
(3.9)

where W̄ k(·) = (W̄ k
1 (·), . . . , W̄

k
nk
(·)), k = 1, 2 are Brownian motions with respect to (Ω,F , {Ft}t≥0,P), in-

dependent of W k(·), k = 1, 2 under P. θk is the nk × nk diagonal matrix with the i-th component θki ,
δk = (δk1 , . . . , δ

k
nk
)τ , ζk = (ζkij), i, j = 1, . . . , nk are nk × nk matrix for k = 1, 2. We also suppose that θki ,

δk1 , ζij are all positive constants for i, j = 1, . . . , nk, k = 1, 2. Then µk(·), k = 1, 2. is the nk-dimensional
Ornstein-Uhlenbeck process with mean reverting drift.

We assume the company plans to obtain a terminal wealth ξ, which is a Ft-adapted non-negative random
variable satisfying E|ξ|2 <∞. Now the whole wealth of the company is denoted by y(·). The first manager
invests π1

i (t) wealth in stock S1
i (t)(i = 1, . . . , n1) he observed, and the second manager invests π2

i (t) wealth
in stock S2

i (t)(i = 1, . . . , n2) he focused on. We suppose that there are π0
i (t) wealth invested by company

in unobservable stocks S0
i (t)(i = 1, . . . , n0) of both managers. So the rest y(t) −

∑2
k=0

∑nk

i=1 π
k
i (t) wealth

invested in bond. Thus we can establish the wealth equation as





dy(t) =
[
r(r)y(t) +

2∑

k=0

nk∑

i=1

(µk
i (t)− r(t))πk

i (t) + I1(t) + I2(t)
]
dt+

2∑

k=0

nk∑

i=1

nk∑

j=1

πk
i (t)σ

k
ij(t)dW

k
j (t),

y(T ) =ξ,

(3.10)

where I1(·), I2(·) are represented to the instantaneous capital injection of each manager to guarantee the
terminal wealth of the company.

For each of them, their mission is to use the minimal capital injection wealth and the minimum start-up
capital to make sure the company reach the ultimate wealth. Meanwhile, any one of them has his own utility
on their injection process. The more capital he uses, the danger he undertakes. So we can define the related
utility function for each manager.

Ji(I1(·), I2(·)) = E

∫ T

0

[Lie
−βtI2i (t)dt+Miy(0)] (i = 1, 2), (3.11)

where Li,Mi are two positive constants, β is the discount rate. We define the risk-seeking running cost as
a criteria for injection utility. To attain the terminal wealth, they want to minimize both of the injection
utility and the start-up wealth value. That is
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J1(Ī1(·), Ī2(·)) = min
I1(·)∈I1

J1(I1(·), Ī2(·)),

J2(Ī1(·), Ī2(·)) = min
I2(·)∈I2

J2(Ī1(·), I2(·)),
(3.12)

where we define
Ii = {Ii(·) ∈ L2

Fi
·

(0, T ;R); Ii(t) ≥ 0, t ∈ [0, T ])} (i = 1, 2). (3.13)

We regard (Ī1(·), Ī2(·)) as the open-loop Nash equilibrium strategy of this investment problem.
The wealth equation (3.10) is a backward case. We can denote πk(t) = (πk

i (t), . . . , π
k
nk
(t))τ , zk(t) =

(zki (t), . . . , z
k
nk
(t)) = πk(t)τΣk(t) (k = 0, 1, 2).

Therefore, our wealth equation turns into





dy(t) =
[
r(t)y(t) +

2∑

k=0

bk(t)τzk(t)τ + I1(t) + I2(t)
]
dt+

2∑

k=0

zk(t)dW k(t),

y(T ) =ξ,

(3.14)

where
bk(t) = Σk(t)−1(µk(t)− r(t)) (k = 0, 1, 2). (3.15)

Form (3.14) and (3.11), we use the maximum principle derived in section 2.
The Hamiltonian functions are

Hi(t, y, z
0, z1, z2, I1, I2; pi) =

(
r(t)y(t) +

2∑

k=0

bk(t)τzk(t)τ + I1(t) + I2(t)
)
pi(t) + Lie

−βtI2i (t), (3.16)

for i = 1, 2.
The adjoint process pi(·) satisfies





dpi(t) =− r(t)pi(t)dt −
2∑

k=0

bk(t)τpi(t)dW
k(t),

dpi(0) =−Mi (i = 1, 2).

(3.17)

From the necessary condition, we can find a candidate open-loop Nash equilibrium point





Ī1(t) =−
1

2
eβtL−1

1 p̂1(t),

Ī2(t) =−
1

2
eβtL−1

2 p̃2(t),

(3.18)

where we set φ̂(t) = E[φ(t)|F1
t ], ψ̃(t) = E[ψ(t)|F2

t ] for ∀φ(·), ψ(·) ∈ F·.
Now focusing on the i = 1 case, from observation equation (3.5) and the Kushner-FKK equation in

Xiong [32], we have




dp̂1(t) =− r(t)p̂1(t)dt+

[
− ̂b1(t)τp1(t) + ̂η1(t)τp1(t)− η̂1(t)τ p̂1(t)

]
dŴ 1(t),

dp̂1(0) =−M1,
(3.19)

where the innovation process Ŵ 1(·) satisfying

Ŵ 1(t) = Y 1(t)−

∫ t

0

η̂1(s)ds (3.20)

is a F1
t -Brownian motion under probability measure P.
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From η1(·) in (3.7), b1(t) in (3.15), we find that

̂η1(t)p1(t)− η̂1(t)p̂1(t) = Σ1(t)−1
(

̂µ1(t)p1(t)− µ̂1(t)p̂1(t)
)
= ̂b1(t)p1(t)− b̂1(t)p̂1(t). (3.21)

Substituting (3.21) into (3.19), we get

{
dp̂1(t) =− r(t)p̂1(t)dt− b̂1(t)τ p̂1(t)dŴ

1(t),

dp̂1(0) =−M1.
(3.22)

Thus

p̂1(t) = −M1 exp{

∫ t

0

[−r(s)−
1

2
b̂1(s)2]ds−

∫ t

0

b̂1(s)dŴ 1(s)}. (3.23)

From equation (3.5), (3.9) and Theorem 8.1 in [32], we have

{
dµ̂1(t) =θ1(δ1 − µ̂1(t))dt+ (P1(t)(Σ

1(t)−1)τ )dŴ 1(t),

µk(0) =I (k = 1, 2),
(3.24)

and P1(·) = E
[(
µ1(t)− µ̂1(t)

)(
µ1(t)− µ̂1(t)

)τ ]
= E

[(
µ1(t)− µ̂1(t)

)(
µ1(t)− µ̂1(t)

)τ
|F1

t ] satisfies

{
Ṗ1(t) + 2θ1P1(t) + P1(t)(Σ

1(t)−1)τΣ1(t)−1P1(t)− ζ1(ζ1)τ = 0,

P1(0) = I.
(3.25)

From classic Riccati equation theory, (3.25) exists a unique solution. Then, we obtain the unique expres-

sion of b̂1(·) in (3.23).
Similarly, we can obtain p̃2(·) satisfies

{
dp̃2(t) =− r(t)p̃2(t)dt− b̃2(t)τ p̃2(t)dW̃

2(t),

dp̃2(0) =−M1,
(3.26)

where

W̃ 2(t) = Y 2(t)−

∫ t

0

η̃2(s)ds. (3.27)

Thus

p̃2(t) = −M1 exp{

∫ t

0

[−r(s)−
1

2
b̃2(s)2]ds−

∫ t

0

b̃2(s)dW̃ 2(s)}. (3.28)

From equation (3.6), (3.9) and Theorem 8.1 in [32], we have

{
dµ̃2(t) =θ2(δ2 − µ̃2(t))dt+ (P2(t)(Σ

2(t)−1)τ )dW̃ 2(t),

µk(0) =I (k = 1, 2),
(3.29)

and P2(·) = E
[(
µ2(t)− µ̃2(t)

)(
µ2(t)− µ̃2(t)

)τ ]
= E

[(
µ2(t)− µ̃2(t)

)(
µ2(t)− µ̃2(t)

)τ
|F2

t ] satisfies

{
Ṗ2(t) + 2θ2P2(t) + P2(t)(Σ

2(t)−1)τΣ2(t)−1P2(t)− ζ2(ζ2)τ = 0,

P2(0) = I.
(3.30)

From classic Riccati equation theory, (3.30) exists a unique solution. Then, we obtain the unique expres-

sion of b̃2(·) in (3.28).
Finally, from the linearity of state processes and convexity of cost functions as well as the sufficient

condition we discussed above, we know that (Ī1(·), Ī2(·)) is the open-loop Nash equilibrium strategy satisfies
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Ī1 =
1

2
eβtL−1

1 M1 exp{

∫ t

0

[−r(s)−
1

2
b̂1(s)2]ds−

∫ t

0

b̂1(s)dŴ 1(s)},

Ī2 =
1

2
eβtL−1

2 M1 exp{

∫ t

0

[−r(s)−
1

2
b̃2(s)2]ds−

∫ t

0

b̃2(s)dW̃ 2(s)}.

(3.31)
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