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Approximate Message Passing with Nearest
Neighbor Sparsity Pattern Learning
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Abstract—We consider the problem of recovering clus- group LASSO [[10], StructOMP[[17], Graph-CoSaMP
tered sparse signals with no prior knowledge of the sparsity [18], and block sparse Bayesian learning (B-SEL) [19]-
pattern. Beyond simple sparsity, signals of interest often [21], etc. However, these algorithms require knowledge
exhibits an underlying sparsity pattern which, if leveraged, ’ ; R L
can improve the reconstruction performance. However, the of sparsity pattern Wh'c,h IS usqalllynknowna priort.
Sparsity pattern is usua”y unknown a priori_ |nspired To reconstruct Sparse S|gnals W|th unknOWn Structure, a
by the idea of k-nearest neighbor (k-NN) algorithm, we number of methods [22]-[28] have been developed to use
propose an efficient algorithm termed approximate message various structured priors to encourage both sparsity and
passing with nearest neighbor sparsity pattern leaming .| ster patterns simultaneously. The main effort of these

(AMP-NNSPL), which learns the sparsity pattern adap- lgorithms lies i tructi hi hical bri del
tively. AMP-NNSPL specifies a flexible spike and slab prior algornthms lies in construcling a hierarchical prior mode

on the unknown signal and, after each AMP iteration, sets €.9., Markov tree[[23], structured spike and slabl [24],
the sparse ratios as the average of the nearest neighbor[25], hierarchical Gamma-Gaussian [26]-[28] to encode
estimates via expectation maximization (EM). Experimen- the structured sparsity pattern.
tal results on both synthetic and real data demonstrate | this |etter, we take an alternative approach and
the superiority of our proposed algorithm both in terms of ;. . -
reconstruction performance and computational complexity proposg an efficient mgssage paSS|_ng algorithm, ter.med
AMP with nearest neighbor sparsity pattern learning
(AMP-NNSPL), to recover clustered sparse signals adap-
tively, i.e., without any prior knowledge of the sparsity
pattern. For clustered sparse signals, if the nearestheigh
. INTRODUCTION bors of one element are zeros (nonzeros), it will tend to

Compressed sensing (CS) aims to accurately recdif zero (non_zero) with high propability, gsimilar idea of
struct sparse signals from undersampled linear mdgnearest neighbor (k-NN) algorithm which assumes that

surements[[1]5[3]. To this end, a plethora of methodiata close together more likely belong to the same cate-

have been studied in the past years. Among othePOY [29], [30]. Therefore, instead of explicitly modeling

approximate message passing (AMP) [4] proposed quphistigated sparsity pattern,AMP-NNSPL_ specifies
Donohoet al.is one state-of-the-art algorithm to addres@ flexible spike and slab prior on the unknown signal and,
sparse signal reconstruction in CS. Moreover, Anvpfter each AME’lterat|on,updates the sparse rguos as the
has been extended to Bayesian AMP (B-AMP) [SPVerage pf _the|_r nearest neighbor _est|mates via exp_ecta—
[6] and general linear mixing problems| [7/-[9]. Whilgtion maximization (EM)[[31]. In this way, the sparsity
many practical signals can be described as sparse, tﬁ)é\}tern is learned adaptively. Simulations results on both
often exhibit an underlying structure, e.g., the nonzefynthetic and real data demonstrate the superiority of
coefficients occur in clusters [10J=[16]. Exploiting suctPU Proposed algorithm both in terms of reconstruction
intrinsic structure beyond simple sparsity can signifP€rformance and computational efficiency.

cantly boost the reconstruction performancel [14]-[16].

; . . Il. SYSTEM MODEL
To this end, various algorithms have been proposed, e.g., ) o )
Consider the following linear Gaussian model

Index Terms—Compressed sensing, structured sparsity,
approximate message passing, k-nearest neighbor.
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To enforce sparsity, from a Bayesian perspective, For more details of AMP and its extensions, the
the signals are assumed to follow sparsity-promotimgaders are referred tol [4]+[6], [35]. Two problems arise
prior distributions, e.g., Laplace prior_[32], automatidn traditional AMP. First, it assumes full knowledge of
relevance determination [33], and spike and slab pritiie prior distribution and noise variance, which is an
[6], [34]. In this letter we consider a flexible spike andmpractical assumption. Second, it does not account for

slab prior of the form the potential structure of sparsity. In the sequel, we
N N resort to expectation maximization (EM) to learn the un-
po(x) :H po(z:) :H [(1=X)8(z)+ i f ()], (2) known hyperparameters. Further, to encourage structured
i i sparsity, we develop a nearest neighbor sparsity pattern

learning rule motivated by the idea of k-NN algorithm.
YFor lack of space, we only consider the sparse Gaussian
case, f(z;) = N (@i;po,70), while generalization to
8ther settings is possible.

where); € (0,1) is the sparse ratio, i.e., the probabilit
of z; being nonzerog(z;) is the Dirac delta function,
f(x;) is the distribution of the nonzero entriessne.g.,

f(wi) = N(xi o, 7o) for sparse Gaussian signals an The hidden variables are chosen as the unknown signal

f(xl.) . O(z: — 1) for sparse b_mary signals, _etc. . .vector x and the hyperparameters are denotedéby
It is important to note that iM{2) we specify an indi- " s )

. The specific definition o depends on the choice of
vidual \; for each entry, as opposed to a common valu

in [6], [34]. This is a key feature that will be exploited by“qs”'b““o” f(z) in @. In the Gaussian casé, =

, . Ao, N\iyi =1,...,N} while in the binary case
the proposed algorithm for reconstruction of structurelf'®> 70> 20> 26> AR . :
brop g ={A¢,)\;,i=1,...,N}. Denote byd' the estimate

sparse signals. Up to now, it seems that no structu i .
is ever introduced to enforce the underlying sparsitg)e hyperparameters at thith EM iteration, then EM
lternates between the following two steps|[31]

pattern. Indeed, if the sparse ratiog,i = 1,..., N

are learned independently, we will not benefit from the Q(6,6") = E{lnp(x,y)|y;0t}, )
potential structure. The main contribution of this letter 1 .
is a novel adaptive learning method which encourages 0" = argmgx@(@,e )7 (8)

clustered sparsity, as descried in Secfioh lII. ; ] N
where E{-y; '} denotes expectation conditioned on

I1l. PROPOSEDALGORITHM observationy with parameterd®’, i.e., the expectation
is with respect to the posterior distributigr{x|y; 6").

In this section, inspired by the idea of k-NN, w .y I . .
propose an adaptive reconstruction algorithm to recosgsgiwe(? ;’SD)’ the joint distributiop(x,y) in (@) is

clustered sparse signals without any prior knowledge o

the sparsity pattern, e.g., structure and sparse ratio. p(x,y) = p(ylx) H(l —X)0(x;) + Nif(x:), (9)
Before proceeding, we first give a brief description of i

AMP. Generally, AMP decouples the vector estimatiofnere pylx) = N(y;Ax,AOI). AMP offers an

proplem IC_L) intoN scalar problems in the asymptoticagficient approximation Ofp(x|y;0t)’ denoted as

regime [35], [36] q(x|y;0") = II, ¢(=:|Ri, %;), whereby the E stefi7)

can be efficiently calculated. Since joint optimization of

0 is difficult, we adopt the incremental EM update rule

Yy=Ax+w— (! (3) proposed in[[37], i.e., we update one or partial elements

at a time while holding the other parameters fixed.

) ) ) After some algebra, the marginal posterior distribution
where the effective noisei; asymptotically follows of 4, in @) can be written as

N (w;;0,%;). The values ofR;,%; are updated itera-
tively in each AMP iteration (see Algorithid 1) and the q(wilRi, %) = (1=m3)0 (i) + mlN (2i3ms, V3), (10)

Ry =z +uw1

Ry =2nv +wn

posterior distribution ofr; is estimated as where
1 Y
q(wi|Ri, Xi) = —=—=~po(w:)) N (zi; Ri, Xi), (4 V= — 2t 11
( | ) Z(Rz-,Ei) 0( ) ( ) (4) Zi-l-To’ (11)
whereZ(R;, ;) is the normalization constant. Frof (4), ;. — ToR: + Xipo (12)
the estimates of the mean and variance:pfire X+ 70
Ai
i = , 13
9a(Ri, i) = /wiq($i|Ri72i)d$i, (5) T Ai + (1= X;) exp(—£L) (13)
2
1 ¥, R?  (Ri— o)
ge(Ri, X5) = /2012(1 2| Ri, 3i)dz; — g2(Ri, X5). (6) L£L==1 : UNS U 14
( ) ( | ) ( 2 nzi-i-To 221' 2(2i+7'0) ( )



Note that for notational brevity, we have omitted thenaximum or a saddle point of the likelihood function
iteration indext. The mean and variance defined [ih (5)31]. The sparse ratios; and n0|se varianceé\, are
and [B) can now be explicitly calculated as initialized as\! = 0.5 and A} = HyH /M (SNR’ +1),
da (Rl-,Z-) - (15) respectively, where SNRis suggested to be 100 [34].
9 5 For the sparse Gaussian case, active mﬁaand vari-
ge(Riy 5i) = mi(mi + Vi) — ga(Ri, %i). (16) ancer, are initialized asuy = 0, and 73 = (Hy||2
To learn the sparse ratiog,i = 1,..., N, we need MA )/)\IHAHF’ respectively, Whe'ﬁ?HT H HF are the
to maximizeQ(O Ot) with respect to)\;. After some I3 norm and Frobenius norm, respectively.
algebra, we obtain the standard EM update equation asThe proposed approximate message passing with near-
At = xt, which, albeit simple, fails to capture theest neighbor sparsity pattern learning (AMP-NNSPL) is
|nherent structure in the sparsity pattern. To address tRimmarized in Algorithni]l. The complexity of AMP-
problem, a novel Iearning rule is proposed as follows NNSPL is dominated by matrix-vector multiplications in
N Z 17) the original AMP apd thL_Js only scalfas é)s{MN),. ie
|N( v l)” the proposed algorithm is computationally efficient.
where NV (i) denotes the set of nearest neighbor irAlgorithm 1 AMP-NNSPL Algorithm
dexes of element; in x (@) and |\ (i)| denotes the Input: y A.
cardinality Of./\/(z) For one dimensional (1D) data ,Initialization : Sett =1 andT},.qz, €10c. Initialize
N(@i)={i-1,i+1 and |NV(i)| = 2, while for two  1i9, 79, Ag andA;,i = 1,..., N as in SectiofTll.
dimensional (2D) data\/ (i) = {(q,1—1), (¢, 1+1), (q— 2} = [@ipo(x;)dzi, v} = [ |z — 2}?po(xi)das, i =
1,0),(¢+1,1)} and |N(i)| = 4, where(q,1) indicates 1,...,N, V) =1,20 =y,,a=1,..., M.

the coordinates of; in the 2D space. Generalizationsl) Factor node update: Far=1,..., M
to other cases can be made.
Note that in[[1V), we have chosen the nearest neighbor Z | i,

of each element, excluding itself, as the neighboring set. ;
The estimate of one sparse ratio is not determined by Zt = ZA‘“I Ltl( —Zt7h).
its own estimate, but rather the average of its nearest Ab+ Ve

neighbor estimates. The insight for this choice is thaég Variable node update: For— 1 N

for clustered sparse signals, if the nearest neighbors of

one element are zero (nonzero), it will be zero (nonzero) nt [ | Aail® }’1

with high probability, a similar idea to k-NN. If the ‘ Ay + ViDL

neighboring set is chosen as the whole elements, the A _(y Zt)

proposed algorithm reduces to EM-BG-GAMP [6]. [34]. Rl =gl +xl) 22—
The leaning of other hyperparameters follows the a Ao+ Va

standard rule of EM algorithm. Maximizing (6, ") =g, (RL DY),

with respect toA, and after some algebra, we obtain -

2
ALHL LZ[ (v — Z3) AGVy } (18) 3) Updatex:*! i=1,...N, as [I7);
M (1+ Va‘f/NO)2 A+ VY 4) Updateut+1 bl At“ as [19), [(2D), and (18);
whereZ! andV! are obtained within the AMP iteration 5) Sett « f+ 1 and proceed to step 1) untlyqs

i ; ot+1 _ ot ot
and are defined in Algorithia] 1. Similarly, maximizingIteratlons oer X H2 < E“’CHX H2 i
Q(6,6") with respect tquo andr, results in the update

equations
X wtmt IV. NUMERICAL EXPERIMENTS
Fo = 7Tt ’ (19) In this section, a series of numerical experiments
t+1 t are performed to demonstrate the performance of the
= 7rt ZW - my) * Vi) (20) proposed algorithm under various settings. Comparisons

are made to some state-of-the-art methods which need no
Valid initialization Of the unknown hyperparametersrior information of the sparstiy pattern, e.g., PC-SBL
is essential since EM algorithm may converge to a locf#6] and its AMP version PCSBL-GAMP [27], MBCS-
1 . , LBP [28], and EM-BG-GAMPI[[34]. The performance of
For end points of 1D data, the nearest neighbor set has omly o

element. For edge points of 2D data, the nearest neighbdrasetnly gaSIS Pursuit (BP) [‘-’8] -4 0] is also evaluated. Through-
two or three elements. out the experiments, we set the maximum number of
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Figure 1. Success rate (left) and pattern success rate)(vigh\//N  Figure 2. NMSE (left) and recovery time (right) v&{/N for block-
for block-sparse signal®’ = 100, K = 25, L = 4, noiseless case. sparse signal$v = 100, K = 25, L = 4, SNR = 50 dB.

—6—-AMP-NNSPL
—8—PCSBL-GAMP
—A—EM-BG-GAMP

I )
iterations for AMP-NNSPL, PCSBL-GAMP, and EM- ,, o hCsaL oA o) 8
BG-GAMP to beT,,., = 200, and the tolerance value Sy oo
of termination to be:;,. = 10~5. For other algorithms,
we use the defaut setting. The elements of measurem
matrix A € RM*N are independently generated follow- -
ing standard Gaussian distribution and the columns ¢ SFEFEERIEE 00, 9o e 0 s o o
normalized to unit norm. The success rate is defined as
the ratio of the number of successful trials to the tot&igure 3. Success rate (left) in noiseless case and NMSHtrig
number of experiments, where a trial is successful ¥/t = 50dB vs.M/N for real 2D angiogram image.
the normalized mean square error (NMSE) is less than
-60 dB, whereNMSE = 20 log,,(||% — x|, /||x][,). The
pattern recovery success rate is defined as the ratio

°

Success Rate
°

can be seen that AMP-NNSPL significantly outperforms
. her methods both in terms of success rate and NMSE.
the number of successful trials to the total number (fn

experiments, where a trial is successful if the support |S particular, whenM/N = 0.12 and SN R = 50 dB,

- : . _fypical recovery results are illustrated in Fid. 4, which
exactly recovered. A coefficient whose magnitude is le . ;
4. - shows that AMP-NNSPL achives the best reconstruction
than10—* is deemed as a zero coefficient.

performance.

A. Synthetic Data

We generate synthetic block-sparse signals in a similar
way as [21], [[26], whereg/l nonzero elements are par-
titioned into L. blocks with random sizes and random
locations. SetN = 100, K = 25,L = 4 and the
nonzero elements are generated independently following

(a)Original (b) BP (c) EM-BG-GAMP

Gaussian distribution with meam, = 3 and variance Method | NMSE (d5)
70 = 1. The results are averaged over 1000 independent bp_| 0401
. . EM-BG-GAMP| —
runs. Fig[1 depicts the success rate and pattern recovery — ;?i
success rate. It can be seen that AMP-NNSPL achieves e 7 908
the highest success rate and pattern recovery rate at (@) PCSBL-CAIP () AHP-NNSPL (NS

various measurement ratios. In the noisy setting, Fig.

shows the average NMSE and runtime of differemtgure 4. Recovery results of real 2D angiogram image inynois
algorithms when the signal to noise ratio (SNR) is 56etting whenM/N = 0.12 and SNR = 50 dB.

dB, where SNR = 20log,(||Ax||,/||w|,). We see

that AMP-NNSPL outperforms other methods both in V. CONCLUSION

terms of NMSE and computational efficiency. In this lettter, we propose an efficient algorithm termed

AMP-NNSPL to recover clustered sparse signals when
B. Real Data the sparsity pattern is unknown. Inspired by the k-

To evaluate the performance on real data, we considdN algorithm, AMP-NNSPL learns the sparse ratios
a real angiogram imagé [18] of 1800 pixels with in each AMP iteration as the average of their nearest
sparsity around 0.12. Fiff] 3 depicts the success rateNfighbor estimates using EM, thereby the sparsity pat-
noiseless case and NMSE StVR = 50 dB, respec- tern is learned adaptively. Experimental results on both
tively. The MBCS-LBP and PC-SBL algorithms are nobynthetic and real data demonstrate the state-of-the-art
included due to their high computational complexity. [Performance of AMP-NNSPL.
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