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Abstract—We introduce the boosting notion extensively used
in different machine learning applications to adaptive signal
processing literature and implement several different adaptive
filtering algorithms. In this framework, we have several adaptive
filtering algorithms, i.e., the weak learners, that run in parallel
on a common task such as equalization, classification, regression
or filtering. For each newly received input vector and observation
pair, each algorithm adapts itself based on the performance of
the other adaptive algorithms in the mixture on this current
data pair. These relative updates provide the boosting effect such
that the algorithms in the mixture learn a different attribute
of the data providing diversity. The outputs of these parallel
running algorithms are then combined using adaptive mixture
approaches. We demonstrate the intrinsic connections of boosting
with the adaptive mixture methods and data reuse algorithms.
Specifically, we study parallel running recursive least squares
and least mean squares algorithms and provide different boosted
versions of these well known adaptation methods. We provide the
MSE performance results as well as computational complexity
bounds for the boosted adaptive filters. We demonstrate over
widely used real life data sets in the machine learning and
adaptive signal processing literatures that we can substantially
improve the performances of these algorithms due to the boosting
effect with a relatively small computational complexity increase.

Index Terms—Boosting, Online boosting, Adaptive filtering,
RLS, LMS, Ensemble method.

I. INTRODUCTION

Boosting is considered as one of the most important en-
semble learning methods in the machine learning literature
extensively used in several different real life applications from
classification to regression [1]–[3]. As an ensemble learn-
ing method [4], boosting combines several parallel running
“weakly” performing algorithms to build a final “strongly”
performing algorithm [1]. This is accomplished by finding a
linear combination of weak learning algorithms in order to
minimize the total loss over a set of training data, usually using
a functional gradient descent [2]. Boosting is successfully
applied to several different problems in the machine learning
literature including classification [2], regression [3], prediction
[5], [6] and financial forecasting [7]. However, significantly
less attention is given to the idea of boosting in the adaptive
signal processing literature. To this end, our goal is (a) to
use the boosting notion in adaptive filtering, (b) derive several
different adaptive filtering algorithms based on the boosting
approach (c) and demonstrate the intrinsic connections of
boosting with the adaptive mixture methods [8] and data reuse
algorithms [9] widely studied in the adaptive signal processing
literature.
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Although boosting is initially introduced in the batch setting
[2], i.e., where algorithms boost themselves over a fixed set of
training data, it is later extended to the online setting [10]. In
the online setting, we do not need or have a fixed set of training
data, however, the data arrives one by one as a stream. Each
newly arriving data is processed and then discarded without
any storing. The online setting is naturally motivated by many
real life applications especially for the ones involving big
data, where there is not enough storage space available or
the constraints of the problem require instant processing [11].
However, for our purposes, the online setting is especially im-
portant since it is directly akin to adaptive filtering framework
where the streaming or sequentially arriving data is used to
adapt the internal parameters of the filter, either to adaptively
learn the underlying model or to track the nonstationary data
statistics [12]. In this sense, we mainly concentrate on the
online boosting framework, which naturally conforms to the
widely studied adaptive filtering framework [12] that we are
interested in.

Specifically, we have m parallel running adaptive filters (or
weak learners [1]) that recieve the input vectors sequentially
one by one. Each adaptive algorithm can use a different update,
such as the recursive least squares (RLS) update or least-mean
squares (LMS) update, depending on the target of the appli-
cations or problem constraints [12]. After receiving the input
vector, each algorithm produces its output and then calculates
its instantaneous error after the observation is revealed. In the
most generic setting, this estimation/prediction error and the
corresponding input vector are then used to adapt the internal
parameters of the algorithm to minimize a priori defined loss
function, e.g., instantaneous error for the LMS algorithm.
These updates are performed for all the m constituent filters
in the mixture. However, in the online boosting approaches,
these adaptations at each time proceed in rounds from top
to bottom, starting from the first adaptive filter to the last
one to achieve the “boosting” effect [13]. Furthermore, unlike
the usual mixture approaches [8], the update of each adaptive
filter depends on the previous adaptive filters in the mixture.
In particular, at each time t, after the kth filter, calculates its
error over (xt, dt) pair, it passes a certain weight to the next
adaptive filter, the (k+1)th filter, quantifying how much error
the constituent filters from 1st to kth made on the current
(xt, dt) pair. Based on the performance of the filters from 1
to k on the current (xt, dt) pair, the (k+ 1)th filter may give
more or less emphasize to (xt, dt) pair in its adaptation in
order to rectify the mistake of the previous adaptive filters.

This idea is clearly related to the adaptive mixture algo-
rithms widely used in the signal processing literature, where
several parallel running adaptive algorithms are combined to
improve the performance. In the mixture methods, the perfor-
mance improvement is achieved due to the diversity provided
by using several different adaptive algorithm each having
either a different view or advantage [8]. This diversity is
exploited to yield a final combined algorithm, which achieves
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a performance better than any of the algorithms in the mixture.
Although the online boosting approach is similar to mixture
approaches in the adaptive filtering literature [8], however,
there are significant differences. In the boosting notion, the
parallel running adaptive algorithms are not independent,
where one deliberately introduces the diversity by adapting
the filters one by one from the first filter to the last mth filter
for each new sample based on the performance of all the
previous filters on this sample. In this sense, each adaptive
algorithm, say the (k + 1)th filter, receives feedback from
the previous filters, i.e., 1st to kth, and updates its inner
parameters accordingly. As an example, if the current (xt, dt)
is well modeled by the previous filters, then the (k + 1)th
filter performs minor update using (xt, dt) and may put more
emphasize to the later arriving samples which may be worse
modeled by the previous filters. Therefore, by boosting, each
adaptive algorithm in the mixture can concentrate on different
parts of the input and output signal pairs achieving diversity
and significantly improve the gain. Moreover, we introduce the
“random updates” method for boosting, which significantly
reduces the computational complexity, while achieving the
performance of the mixture methods. This is because in this
scenario, the kth filter is updated with probability λ(k)

t , which
depends on the performance of other filters.

The linear filters, such as LMS or RLS, are among the
simplest as well as the most widely used adaptive filters in
the real-life applications [12]. However, note that although
linear filters have a low complexity, piecewise linear filters
deliver a significantly superior performance in real life ap-
plications [14], with a comparable complexity. These filters
mitigate the overfitting, stability and convergence issues tied to
nonlinear models [12], [15]–[17], while effectively improving
the modeling power relative to linear filters [14]. Therefore,
we implement our boosting algorithms on piecewise linear
filters. To this end, we first apply the boosting notion to
several parallel running piecewise linear RLS-based filters,
and introduce three different approaches to use the importance
weights [13]. In the first approach, we use the importance
weights directly to produce certain weighted RLS algorithms.
In the second approach, we use the importance weights to
construct data reuse adaptive algorithms. However, we need
to emphasize that the data reuse in boosting, such as [10], is
significantly different from the usual data reusing approaches
in adaptive filtering [9]. As an example, in boosting, the
importance weight coming from the kth filter determines the
data reuse amount in the (k + 1)st filter, i.e., it is not used
for the kth filter, hence, achieving the diversity. The third
approach, uses the importance weights to decide whether to
update the constituent filters, based on a random number
generated from a Bernoulli distribution with the parameter
equal to the weight. The latter method can be effectively used
for big data processing [18], due to the reduced complexity.
The output of the mixture filters, before the boosting step,
is also combined using a linear filter to construct the final
output of the algorithm. The final combination filter is also
updated using the RLS algorithm [8]. The boosting idea
is then extended to parallel running piecewise linear LMS-
based algorithm similar to the RLS case. For this case, we
combine the outputs of the constituent filters using a linear
filter, which is trained using the LMS algorithm. For all these

different cases, we derive the corresponding mean squared
error (MSE) results and provide performance bounds in an
individual sequence manner [19], [20].

We start our discussions by introducing the problem setup
and background in Section II, where we provide individual
sequence as well as MSE convergence results for the RLS and
LMS algorithms. We introduce our first boosted adaptive filters
using the RLS update in Section III. Three different updates
are introduced in this section. We then continue with the
boosted LMS algorithms in Section IV. Then, in Section V we
provide the mathematical analysis for the MSE performance
and computational complexity of the proposed algorithms. The
paper concludes with extensive sets of experiments over the
well known benchmark data sets and simulation models widely
used in the machine learning and adaptive signal processing
literatures to demonstrate the significant gains achieved by the
boosting notion.

II. PROBLEM DESCRIPTION AND BACKGROUND

All vectors are column vectors and represented with bold
lower case letters. Matrices are represented by bold upper case
letters. For a vector a (or a matrix A), aT (or AT ) is the
transpose and Tr(A) is the trace of the matrix A. Here, Im
and 0m represent an identity matrix of dimension m×m and
a vector of all zeros of length m, respectively. Except Im
and 0m, the time index is given in the subscript, i.e., xt is
the sample at time t. We work with real data for notational
simplicity. We denote the mean of a random variable x as
E[x].

We sequentially receive r-dimensional input (regressor)
vectors {xt}t≥1, xt ∈ Rr, and desired data {dt}t≥1, and
estimate dt by

d̂t = ft(xt), (1)

in which, ft(.) is an adaptive filter. At each time t the estima-
tion error is given by et = dt − d̂t, and is used to update the
parameters of the adaptive filter. For presentation purposes, we
assume that dt ∈ [−1, 1], however, our derivations hold for any
bounded but arbitrary desired data sequences. For example,
in the prediction problem dt = xt+1 and in the channel
equalization application {dt} are the transmitted bits, where
xt is the received data from the channel. In our framework,
we do not use any statistical assumptions on the input vectors
or on the desired data such that our results are guaranteed
to hold in an individual sequence manner [21]. However, we
also provide steady-state, tracking and transient MSE analysis
of the algorithms under widely used statistical models in the
signal processing literature [12] for completeness.

Note that although nonlinear filters can outperform linear
filters, they usually undergo overfitting, stability, and conver-
gence issues [14], [22]. Furthermore, nonlinear filters generally
have higher computational complexities, which limits their use
in most of the real-life applications [14], [22]. To overcome
these problems, piecewise linear filters are proposed, which
mitigate the overfitting and stability issues, while offering a
comparable modeling performance to the nonlinear filters [14],
[22]. Therefore, in this paper, we are particularly interested in
piecewise linear filters, which serve as an elegant alternative
to linear filters. Nevertheless, for illustration, we first explain
the basic principles of linear filters, and their extension to
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the piecewise linear case. Then, in Sections III and IV, we
introduce our algorithm in a piecewise linear model.

The linear filters are considered as the simplest adaptive
filters, which estimate the desired data dt by a linear model as
d̂t = wT

t xt,, where wt is the linear adaptive filter coefficients
at time t. We emphasize that (II) also covers the affine
model if one includes a constant term in xt, hence we use
the purely linear form for notational simplicity. When the
true dt is revealed, the algorithm updates its linear filter
coefficients wt based on the error et. As an example, in the
basic implementation of the RLS algorithm, the linear filter
coefficients are selected to minimize the accumulated squared
regression error up to time t− 1 as

wt = arg min
w

t−1∑
l=1

(dl − xTl w)2,

=

(
t−1∑
l=1

xlx
T
l

)−1(t−1∑
l=1

xldl

)
. (2)

where w is a fixed vector of coefficients. The RLS algorithm
is shown to enjoy several optimality properties under different
statistical settings [12]. Apart from these results and more
related to the framework of this paper, the RLS algorithm
is also shown to be rate optimal in an individual sequence
manner [23]. As shown in [23] (Section V), when applied to
any sequences {xt}t≥1 and {dt}t≥1, the accumulated squared
error of the RLS algorithm is as small as the accumulated
squared error of the best batch LS filter that is directly
optimized for these realizations of the sequences, i.e., for all
n, {xt}t≥1 and {dt}t≥1, the RLS filter achieves

n∑
l=1

(dl − xTl wl)
2 −min

w

n∑
l=1

(dl − xTl w)2 ≤ O(lnn). (3)

The RLS algorithm is a member of the Follow-the-Leader
type algorithms [20] (Section 3), where one uses the best
performing linear model up to time t − 1 to predict dt.
Hence, (3) follows by direct application of the online convex
optimization results [24] after regularization. The convergence
rate (or the rate of the regret) of the RLS algorithm is also
shown to be optimal so that O(lnn) in the upper bound cannot
be improved [19]. It is also shown in [19] that one can reach
the optimal upper bound (with exact scaling terms) by using
a slightly modified version of (3)

wt =

(
t∑
l=1

xlx
T
l

)−1(t−1∑
l=1

xldl

)
. (4)

Note that the extension (4) of (3) is a forward algorithm
(Section 5 of [25]) and one can show that, in the scalar case,
the predictions of (4) are always bounded (which is not the
case for (3)) [19].

We emphasize that in the basic application of the RLS
algorithm all data pairs (dl,xl), l = 1, . . . , t, receive the
same “importance” or weight in (2). Although there exists
exponentially weighted or windowed versions of the basic RLS
algorithm [12], these methods weight (or concentrate on) the
most recent samples to model the nonstationary better [12].
However, in boosting framework [2], each sample pair receives
a different weight based on not only those weighting schemes,

but also the performance of the boosted algorithms on this pair.
As an example, if an algorithm performs worse on a sample,
the next iteration concentrates more on this example to better
rectify this mistake. In the following sections, we use this
notion to derive different boosted adaptive filters.

We use a piecewise linear adaptive filtering method, such
that the desired signal is predicted as

d̂t =

N∑
i=1

si,tw
T
i,txt, (5)

where si,t is the indicator function of the ith region, i.e.,

si,t =

{
1 if xt ∈ Ri
0 if xt /∈ Ri.

(6)

Note that at each time t, only one of the si,t’s is nonzero,
which indicates the region in which xt lies. Thus, if xt ∈ Ri,
we update only the ith linear filter. As an example, consider
2-dimensional input vectors xt, as depicted in Fig. 1. Here,
we construct the piecewise linear filter ft such that

d̂t = ft(xt) = s1,tw
T
1,txt + s2,tw

T
2,txt

= stw
T
1,txt + (1− st)wT

2,txt, (7)

Then, if st = 1 we shall update w1,t, otherwise we shall
update w2,t, based on the amount of the error, et.

θ

Region 2 Region 1
1, 1,( ) T

t t t tf =x x w2, 2,( ) T
t t t tf =x x w

1ts =0ts =

Direction 
vector

Separating 
hyper-plane

Fig. 1: A sample 2-region partition of the input vector (i.e., xt) space, which
is 2-dimensional in this example. st determines whether xt is in Region 1
or not, hence, can be used as the indicator function for this region. Similarly,
1− st serves as the indicator function of Region 2.

III. BOOSTED RLS ALGORITHMS

As shown in Fig. 2, at each iteration t, we have m

parallel running adaptive filters with estimating functions f (k)
t ,

producing estimates d̂(k)
t = f

(k)
t (xt) of dt, k = 1, . . . ,m.

As an example, if we use m “linear” filters, d̂(k)
t = xTt w

(k)
t

is the estimate generated by the kth constituent filter, and
if we use piecewise linear filters (each of which with N

different regions), d̂(k)
t =

∑N
i=1 si,tx

T
t wi,t. The outputs of

these m filters are then combined using the linear weights
zt to produce the final estimate as d̂t = zTt yt [8], where
yt , [d̂

(1)
t , . . . , d̂

(m)
t ]T is the vector of outputs. After the

desired signal dt is revealed, the m parallel running filters
will be updated for the next iteration. Moreover, the linear
combination coefficients zt are also updated using ordinary
RLS method, as detailed later in Section III-D.

After dt is revealed, the constituent filters, f (k)
t , k =

1, . . . ,m, are consecutively updated as shown in Fig. 2 from
top to bottom, i.e., first k = 1 is updated, then, k = 2
and finally k = m is updated. However, to enhance the
performance, we use a boosted updating approach [2], such
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Fig. 2: The block diagram of a boosted adaptive filtering system that uses
the input vector xt to produce the final estimate d̂t. There are m constituent
filters f (1)t , . . . , f

(m)
t , each of which is an adaptive piecewise linear filter that

generates its own estimate d̂(k)t . The final estimate d̂t is a linear combination
of the estimates generated by all these constituent filters, with the combination
weights z(k)t ’s corresponding to d̂(k)t ’s. The combination weights are stored
in a vector which is updated after each iteration t. At time t the kth filter is
updated based on the values of λ(k)t and e(k)t , and provides the (k+1)th filter
with l(k+1)

t that is used to compute λ(k+1)
t . The parameter δ(k)t indicates

the average MSE of the kth filter over the first t estimations, and is used in
computing λ(k)t , as detailed in Fig. 3.

_
+ +

Parameters 

Update

Fig. 3: Parameters update block of the kth constituent filter, which is
embedded in the kth filter block as depicted in Fig. 2. This block receives the
parameter l(k)t provided by the (k − 1)th filter, and uses that in computing
λ
(k)
t . It also computes l(k+1)

t and passes it to the (k + 1)th filter. The
parameter [e

(k)
t ]+ represents the error of the thresholded estimate as explained

in (10), and Λ
(k)
t shows the sum of the weights λ(k)1 , . . . , λ

(k)
t . The WMSE

parameter δ(k)t−1 represents the time averaged weighted square error made by
the kth filter up to time t− 1.

that, the (k+1)th filter receives a “total loss” parameter, l(k+1)
t ,

from the filter f (k)
t , as (Refer to Fig. 3)

l
(k+1)
t = l

(k)
t +

[
σ2 −

(
dt − f (k)

t (xt)
)2
]
, (8)

to compute a weight λ(k)
t . The total loss parameter l(k)

t , indi-

(k)

1,twk
Linear 

Filter


(k)

te

(k)ˆ
td
-

td

Input 

Vector tx

Desired 

Signal

+

1

Adaptation 

Block

(k)

i,twk
Linear 

Filter i

(k)

N,twk
Linear 

Filter N

(k)

t













(k)

i,ts

(k)

1,ts

(k)

N,ts

(k)

N,ts

(k)

i,ts

(k)

1,ts

Piecewise Linear Adaptive Filter

Fig. 4: A sample piecewise linear adaptive filter, used as the kth constituent
filter in the system depicted in Fig. 2. This fliter consists of N linear filters,
one of which produces the estimate at each iteration t. Based on where the
input vector at time t, xt, lies in the input vector space, one of the s(k)i,t ’s is
1 and all others are 0. Hence, at each iteration only one of the linear filters
is used for estimation and upadated correspondingly.

cates the sum of the differences between the desired MSE (σ2)
and the squared error of the first k−1 filters at time t, as shown
in Fig. 3. Then, the difference σ2 − (e

(k)
t )2 is added to l

(k)
t ,

to generate l(k+1)
t , and l(k+1)

t is passed to the next constituent

filter as shown in Fig. 2. Here,
[
σ2 −

(
dt − f (k)

t (xt)
)2
]

measures how much the kth constituent filter is off with
respect to the final MSE performance goal. For example, if
dt = f(xt)+νt for some deterministic nonlinear function f(·)
and νt is the observation noise, then σ2 can be selected as an
upper bound on the variance of the noise process νt. In this
sense, l(k)

t measures how the constituent filters j = 1, . . . , k
are cumulatively performing on (dt,xt) pair with respect to
the final performance goal.

We then use the weight λ(k)
t to update the kth constituent

filter with one of the methods “weighted updates”, “data
reuse”, or “random updates”, which will be explained later in
the subsections of this section. Our aim is to make λ(k)

t large
if the first k− 1 constituent filters made large errors on dt, so
that the kth filter gives more importance to (dt,xt) in order to
rectify the performance of the overall system. We now explain
how to construct these weights, such that 0 < λ

(k)
t ≤ 1. To

this end, we set λ(1)
t = 1, for all t, and introduce a weighting

similar to [13], [26]. We define the weights as

λ
(k)
t = min

{
1,
(
δ

(k)
t−1

)c l(k)t

}
, (9)

where δ
(k)
t−1 indicates an estimate of the kth filter’s MSE,

and c ≥ 0 is a design parameter, which determines the
“dependence” of each filter update on the performance of
the previous filters, i.e., c = 0 corresponds to “independent”
updates, like the ordinary combination of the filters [8],
while a greater c indicates the greater effect of the previous
filters performance on the weight λ(k)

t of the current filter.
Here, δ(k)

t−1 is an estimate of the “Weighted Mean Squared
Error” (WMSE) of the kth constituent filter over {xt}t≥1 and
{dt}t≥1. In the basic implementation of online boosting [13],
[26],

(
1− δ(k)

t−1

)
is set to the classification advantage of the

weak learners [26], where this advantage is assumed to be the
same for all weak learners from k = 1, . . . ,m. In this paper,
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to avoid using any a priori knowledge and to be completely
adaptive, we choose δ

(k)
t−1 as the weighted and thresholded

MSE of the kth filter up to time t− 1 as

δ
(k)
t =

t∑
τ=1

λ(k)
τ

4

(
dτ −

[
f

(k)
τ (xτ )

]+)2

∑t
τ=1 λ

(k)
τ

=

Λ
(k)
t−1δ

(k)
t−1 +

λ
(k)
t

4

(
dt −

[
f

(k)
t (xt)

]+)2

Λ
(k)
t−1 + λ

(k)
t

(10)

where Λ
(k)
t ,

∑t
τ=1 λ

(k)
τ , and

[
f

(k)
τ (xτ )

]+
thresholds

f
(k)
τ (xτ ) into the range [−1, 1]. This thresholding is necessary

to assure that 0 < δ
(k)
t ≤ 1, which guarantees 0 < λ

(k)
t ≤ 1

for all k = 1, . . . ,m and t. We point out that (10) can be
recursively calculated as in Fig. 3.

Regarding the definition of δ(k)
t and λ

(k)
t , if the kth filter

is “good”, i.e., if δ(k)
t is small enough, we will pass less

weight to the next filters, such that those filters can concentrate
more on the other samples. Hence, the filters can increase the
diversity by concentrating on different parts of the data [8].
Furthermore, following this idea, in (9), the weights λ(k)

t ’s
are larger, i.e., close to 1, if most of the constituent filters,
j = 1, . . . , k, have errors larger than σ2 on (dt,xt), and
smaller, i.e., close to 0, if the pair (dt,xt) is easily modeled by
the previous constituent filters such that the filters k+1, . . . ,m
do not need to concentrate more on this pair. Based on these
weights, we next introduce three approaches to update the
constituent filters, which are piecewise linear filters explained
in Section II updated using RLS algorithm.

A. Directly Using λ’s as Sample Weights
As depicted in Fig. 4, each constituent filter is a piecewise

linear filter consisting of N linear filters. At each time t,
all of the constituent filters (shown in Fig. 2) estimate the
desired data dt in parallel, and the final estimate is a linear
combination of the results generated by the constituent filters.
However, at each time t, exactly one of the N linear filters in
each constituent filter is used for estimating dt. Correspond-
ingly, when we update the constituent filters, only the filter
that has been used for the estimation will be updated. To this
end, we use the indicator function s(k)

i,t for the ith linear filter
embedded in the kth constituent filter, as was explained in
Section II. Therefore, at each time t, only the filters whose
indicator functions equal 1, will be updated. When the kth
constituent filter receives the weigh λ(k)

t , it updates the linear
coefficients w(k)

i,t , assuming that xt lies in the ith region of the
kth constituent filter. We consider λ(k)

t as the weight for the
observation pair (dt,xt) and apply a weighted RLS update to
w

(k)
i,t . For this particular weighted RLS algorithm, we define

the autocorrelation matrix and the cross correlation vector as

R
(k)
i,t+1 , βR

(k)
i,t + λ

(k)
t xtx

T
t , (11)

p
(k)
i,t+1 , βp

(k)
i,t + λ

(k)
t xtdt, (12)

where β is the forgetting factor [12] and w
(k)
i,t+1 =(

R
(k)
i,t+1

)−1

p
(k)
i,t+1 can be calculated in a recursive manner

as

e
(k)
t = dt − xTt w

(k)
i,t ,

g
(k)
i,t =

λ
(k)
t P

(k)
i,t xt

β + λ
(k)
t xTt P

(k)
i,t xt

,

w
(k)
t+1 = w

(k)
i,t + e

(k)
t g

(k)
i,t ,

P
(k)
i,t+1 = β−1

(
P

(k)
i,t − g

(k)
i,t x

T
t P

(k)
i,t

)
. (13)

where P
(k)
i,t ,

(
R

(k)
i,t

)−1
, and P

(k)
i,0 = v−1I for i = 1, . . . , N ,

and 0 < v � 1.

Remark 1: We emphasize that one can be inclined to use
a single boosted RLS algorithm instead of running m RLS
algorithms in parallel due to the computational complexity
considerations. In this single RLS implementation, the cal-
culated importance weight can be used as a weight in the
next time instant t + 1 so that a single RLS algorithm may
concentrate more on wrongly regressed samples. However,
running m RLS filters with boosting provides “diversity” [8],
where each constituent algorithm concentrates on different
parts of the data, where the other filters are not successful,
due to the boosting weights in (9). Hence, by this boosting
and then final mixture-of-experts combination [8], we achieve
a significantly improved filtering performance.

B. Data Reuse Approaches Based on the Weights
Another approach follows Ozaboost [10]. In this approach,

from λ
(k)
t , we generate an integer, say n

(k)
t = ceil(Kλ

(k)
t ),

and apply the RLS update on the (dt,xt) pair repeatedly n(k)
t

times, i.e., run the RLS update on the same (dt,xt) pair n(k)
t

times consecutively. Here, K is an integer, as an example, we
use K = 2 in our simulations. The final w(k)

t+1 is calculated
after n(k)

t RLS updates. As a major advantage, clearly, this
reusing approach can be readily generalized to other adaptive
algorithms in a straightforward manner.

We point out that Ozaboost [10] uses a different data reuse
strategy. In this approach, λ(k)

t is used a parameter of a Poisson
distribution and an integer n(k)

t is randomly generated from
this Poisson distribution. We then apply the RLS update n(k)

t

times.

C. Random Updates Approach Based on The Weights

In this approach, we simply use the weight λ(k)
t as a

probability of updating the kth filter at time t. To this end,
we generate a Bernoulli random variable, which is 1 with
probability λ

(k)
t and is 0 with probability 1 − λ

(k)
t . Then,

in each of the constituent filters, we update one of the
linear filters that is involved in estimation process, only if
the Bernoulli random variable equals 1. With this method,
we significantly reduce the computational complexity of the
algorithm. Moreover, due to the dependence of this Bernoulli
random variable on the MSE performance of the previous
constituent filters, this method does not degrade the MSE
performance severely, while offering a considerably lower
complexity, i.e., when the MSE is low, there is no need for
further updates, hence, the probability of an update is low,
while, this probability is larger when the MSE is high.
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Algorithm 1 Boosted RLS with the weighting scheme in (13)

1: Input: (xt, dt) (data stream), m (number of RLS picewise
linear constituent filters running in parallel) and σ2 (the
desired MSE, upper bound on the error variance).

2: Initialize the regression coefficients w
(k)
i,1 for each

RLS filter; and the combination coefficients as z1 =
1
m [1, 1, . . . , 1]T ; and for all k set δ(k)

0 = 0.
3: for t = 1 to T do
4: Receive the regressor data instance xt;
5: Compute the indicator functions s(k)

i,t for all k’s
6: Compute the constituent filter outputs d̂

(k)
t =∑N

i=1 s
(k)
i,t x

T
t w

(k)
i,t ;

7: Produce the final estimate d̂t = zTt [d̂
(1)
t , . . . , d̂

(m)
t ]T ;

8: Receive the true output dt (desired data);
9: λ

(1)
t = 1; l(1)

t = 0;
10: for k = 1 to m do
11: Update the regression coefficients w(k)

i,t by using RLS
and the weight λ(k)

t based on one of the introduced
algorithms in Section III;

12: e
(k)
t = dt − d̂(k)

t ;

13: λ
(k)
t = min

{
1,
(
δ

(k)
t−1

)c l(k)t

}
;

14: δ
(k)
t =

Λ
(k)
t−1δ

(k)
t−1+

λ
(k)
t
4

(
dt−

[
f
(k)
t (xt)

]+)2

Λ
(k)
t−1+λ

(k)
t

;

15: Λ
(k)
t = Λ

(k)
t−1 + λ

(k)
t

16: l
(k+1)
t = l

(k)
t +

[
σ2 −

(
e

(k)
t

)2
]

;

17: end for
18: et = dt − zTt yt;
19: gt =

Ptyt
λ+yTt Ptyt

;
20: zt+1 = zt + etgt;
21: Pt+1 = λ−1Pt − λ−1gty

T
t Pt;

22: end for

D. The Final Algorithm

After dt is revealed, we also update the final combination
weights zt based on the final output d̂t = zTt yt, where
d̂t = zTt yt, yt = [d̂

(1)
t , . . . , d̂

(m)
t ]T . To update the final

combination weights, we use an exponentially weighted RLS
algorithm yielding [8]

Rt+1 = λRt + yty
T
t ,

pt+1 = λpt + ytdt,

and

et = dt − zTt yt,

gt =
Ptyt

λ+ yTt Ptyt
, (14)

zt+1 = zt + etgt,

Pt+1 = λ−1Pt − λ−1gty
T
t Pt,

where 0 < λ ≤ 1 is the exponential weighting. The complete
algorithm is given in Algorithm 1 with the weighted RLS
implementation in (13).

IV. BOOSTED LMS ALGORITHMS

In this case, as shown in Fig. 2, we have m parallel running
piecewise linear filters, each of which updated using LMS
algorithm with a different learning rate, i.e., if the input vector
xt lies in the ith region of the kth filter partition, s(k)

i,t = 1,
hence, we use w

(k)
i,t to estimate dt, and update this linear filter

with its own learning rate µ(k)
i . Based on the weights given in

(9) and the total loss and MSE parameters in equations (8) and
(10), we next introduce three LMS based boosting algorithms,
similar to those introduced in Section III.

A. Directly Using λ’s to Scale the Learning Rates

We note that by construction method in (9), 0 < λ
(k)
t ≤ 1,

thus, these weights can be directly used to scale the learning
rates for the LMS updates. When the kth filter receives
the weight λ(k)

t , it updates its filter coefficients w
(k)
i,t , i =

1, . . . , N , as

w
(k)
i,t+1 =

(
I− µ(k)

i λ
(k)
t xtx

T
t

)
w

(k)
i,t + µ

(k)
i λ

(k)
t xtdt, (15)

where 0 < µ
(k)
i λ

(k)
t ≤ µ

(k)
i . Note that we can choose

µ
(k)
i = µi for all k, since the adaptive algorithms work

consecutively from top to bottom, and the ith linear filters of
different constituent filters will have different learning rates
µiλ

(k)
t .

B. A Data Reuse Approach Based on the Weights

In this scenario, for updating w
(k)
i,t , we use the LMS update

n
(k)
t = ceil(Kλ

(k)
t ) times to obtain the w

(k)
t+1 as

q(0) = w
(k)
i,t ,

q(a) =
(
I− µ(k)

i xtx
T
t

)
q(a−1) + µ

(k)
i xtdt, a = 1, . . . , n

(k)
t ,

w
(k)
t+1 = q

(
n
(k)
t

)
. (16)

Similar to the RLS case, if we follow the Ozaboost [10],
we use the weights to generate a random number n(k)

t from
a Poisson distribution with parameter λ(k)

t , and perform the
LMS update n(k)

t times on w
(k)
i,t as explained above.

C. Random Updates Based on the Weights
Again, in this scenario, similar to the RLS case, we use

the weight λ(k)
t to generate random number from a Bernoulli

distribution, which equals 1 with probability λ
(k)
t , or equals

zero with probability 1− λ(k)
t . Then, if this number is 1, we

do the ordinary LMS update on w
(k)
i,t , otherwise we do not.

D. The Final Algorithm
After the desired data dt is revealed, we update the con-

stituent filters as well as the combination weights zt. To update
the combination weights, we again employ an LMS algorithm
yielding

zt+1 =
(
I− µytyTt

)
zt + µytdt, (17)

where µ > 0 and yt = [d̂
(1)
t , . . . , d̂

(m)
t ]T .
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The complete final algorithm is similar to Algorithm 1,
with the weighted LMS implementation in (15), i.e., for
updating the constituent filters (line 11 in Algorithm 1), we
use the LMS recursion given in (15) (for weighted updates),
and for updating the combination weights zt, we use the
LMS update given in (17).

Remark 2: Similar updates can be written for all different
types of online learning methods.
Remark 3: We supposed that each constituent filter is built up
based upon a fixed partition, which means that the partition
cannot be updated during the algorithm. However, one can
use a method similar to that in [14] to make the partitioning
adaptive. As an example, suppose that each constituent filter is
defined on a 2-region partition, as shown in Fig. 1, the regions
of which are separated using a hyper-plane with the direction
vector θ(k)

t , which is going to be updated at each time t. In
order to boost the performance of a system made up of N
such piecewise linear filters, we not only apply the weights
effects to update the linear filters updates in each region of
each constituent filter, but also update the direction vectors
θ

(k)
t in a boosted manner. In order to indicate the region in

which xt lies, we use an indicator function s
(k)
t defined as

follows
s

(k)
t =

1

1 + exp(−θTt xt)
, (18)

and the estimate made by the kth filter is represented by

d̂
(k)
t = s

(k)
t d̂

(k)
1,t +

(
1− s(k)

t

)
d̂

(k)
2,t (19)

which, yields the following ordinary LMS update for θ(k)
t [14]

θ
(k)
t+1 = θ

(k)
t + µθe

(k)
t

(
d̂

(k)
1,t − d̂

(k)
2,t

)
∇θt

(
s

(k)
t

)
= θ

(k)
t + µθe

(k)
t

(
d̂

(k)
1,t − d̂

(k)
2,t

)
s

(k)
t

(
1− s(k)

t

)
xt.

(20)

Then, in “random updates” scenario we either will or will
not perform this update with probabilities λ(k)

t and 1 − λ(k)
t ,

respectively, and for “weighted updates” scenario we achieve
the following update for θ(k)

t

θ
(k)
t+1 = θ

(k)
t + µθλ

(k)
t e

(k)
t

(
d̂

(k)
2,t − d̂

(k)
1,t

)
s

(k)
t

(
1− s(k)

t

)
xt.

(21)
However, for the “data reuse” scenario, we perform this update
n

(k)
t = ceil(λ(k)

t K) times, along with updating the linear filters
coefficients, which results in

ϑ(a+1) = ϑ(a) + µθε
(a)xtx

T
t

(
q

(a)
1 − q

(a)
2

)
ψ(a)

(
1− ψ(a)

)
,

q
(a+1)
1 = q

(a)
1 + µ

(k)
i ψ(a)ε(a)xt,

q
(a+1)
2 = q

(a)
2 + µ

(k)
i (1− ψ(a))ε(a)xt,

ψ(a+1) =
1

1 + exp(−ϑTt xt)
,

ε(a+1) = dt −
(
ψ(a+1)q

(a+1)
1 + (1− ψ(a+1))q

(a+1)
2

)
xt,

(22)

where a = 0, . . . , (n
(k)
t − 1), ϑ(0) = θ

(k)
t , ε(0) = e

(k)
t ,ψ(0) =

s
(k)
t , and q

(0)
i = w

(k)
i,t for i = 1, 2. Also, the updated values

are θ(k)
t+1 = ϑ(n

(k)
t ), and w

(k)
i,t+1 = q

(n
(k)
t )

i for i = 1, 2.

V. ANALYSIS OF THE PROPOSED ALGORITHMS

In this section we provide the MSE as well as complexity
analysis for the proposed algorithms. We prove an upper bound
for the weights λ(k)

t , which is significantly less than 1. This
bound shows that the complexity of the “random updates”
algorithm is significantly less than other proposed algorithms,
and slightly greater than that of a single piecewise linear
filter. Hence, it shows the considerable advantage of “boosting
with random updates” in processing high dimensional data.
Furthermore, we use this bound in MSE analysis of the
algorithms. In addition, for the sake of simplicity, we have
chosen the “dependence parameter” c = 1. Nevertheless, the
results can be easily extended to the general case.
A. Complexity Analysis

In this section we compare the complexity of the proposed
algorithms and find an upper bound for the computational
complexity of random updates scenario (introduced in Sec-
tion III-C for RLS, and in Section IV-C for LMS updates),
which shows its significantly lower computational burden
with respect to two other approaches. Suppose that the input
vector has a length of r, i.e., xt ∈ Rr. Each constituent
filter performs O(r) computations to generates its estimate,
and if updated using the RLS algorithm, requires O(r2)

computations due to updating the matrix R
(k)
i,t , while it needs

O(r) computations when updated using the LMS method (in
their most basic implementations).

We first derive the computational complexity of using the
RLS updates in different boosting scenarios. Since there are
a total of m constituent filters, all of which are updated in
“weighted samples” method, this method has a computational
cost of order O(mr2) per each iteration t. However, in
“random updates”, at iteration t, the kth filter will or will not
be updated with probabilities λ(k)

t and 1 − λ(k)
t respectively,

yielding

C
(k)
t =

{
O(r2) with probability λ(k)

t

O(r) with probability 1− λ(k)
t ,

(23)

where C(k)
t indicates the complexity of running the kth filter

at iteration t. Therefore, the total computational complexity
Ct at iteration t will be Ct =

∑m
k=1 C

(k)
t , which yields

E [Ct] = E

[
m∑
k=1

C
(k)
t

]
=

m∑
k=1

E[λ
(k)
t ]O(r2) (24)

Hence, if E
[
λ

(k)
t

]
is upper bounded by λ̃(k) < 1, the average

computational complexity of the random updates method, will
be

E [Ct] <

m∑
k=1

λ̃(k)O(r2). (25)

In Theorem 1, we provide sufficient constraints to have such
an upper bound.

Furthermore, we can use such a bound for the “data reuse”
mode as well. In this case, for each filter f (k)

t , we perform the
RLS update λ(k)

t K times, resulting a computational complex-

ity of order E [Ct] <

m∑
k=1

K E[λ̃(k)](O(r2)). For the LMS
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updates, we similarly obtain the computational complexities
O(mr), O

(
λ̃(k)r

)
, and O

(
Kλ̃(k)r

)
, for the “weighted sam-

ples”, “random updates”, and “data reuse” scenarios respec-
tively.

The following theorem determines the upper bound λ̃(k) for
E
[
λ

(k)
t

]
.

Theorem: If the adaptive filters converge and achieve a
sufficiently small MSE (according to the proof following this
Theorem), the following upper bound is obtained for λ

(k)
t ,

given that σ2 is chosen properly,

E
[
λ

(k)
t

]
≤ λ̃(k) =

(
γ−2σ2

(1 + 2ζ2 ln γ)
) 1−k

2

, (26)

where γ , E
[
δ

(k)
t−1

]
and ζ2 , E

[(
e

(k)
t

)2
]

.

It can be straightforwardly shown that, this bound is less than
1 for appropriate choices of σ2, and reasonable values for the
MSE according to the proof. This theorem states that if we
adjust σ2 such that it is achievable, i.e., the adaptive filters
can provide a slightly lower MSE than σ2, the probability
of updating the filters in the random updates scenario will
decrease. This is of course our desired results, since if the
filters are performing sufficiently well, there is no need for
additional updates. Moreover, if σ2 is opted such that the
filters cannot achieve a MSE equal to σ2, the filters have to
be updated at each iteration, which increases the complexity.

Proof: For simplicity, in this proof, we have assumed that
c = 1, however, the results are readily extended to the general
values of c. We construct our proof based on the following
assumption:
Assumption: assume that e(k)

t ’s are independent and identi-
cally distributed (i.i.d) zero-mean Gaussian random variables
with variance ζ2.
We have

E
[
λ

(k)
t

]
= E

[
min

{
1,
(
δ

(k)
t−1

)l(k)t

}]

≤ min

{
1, E

[(
δ

(k)
t−1

)l(k)t

]}
(27)

Now, we show that under certain conditions, E
[(
δ

(k)
t−1

)l(k)t
]

will be less than 1, hence, we get an upper bound for E
[
λ

(k)
t

]
.

We define s , ln(δ
(k)
t−1), yielding

E

[(
δ

(k)
t−1

)l(k)t

]
= E

[
E
[
exp

(
s l

(k)
t

)∣∣∣s]] = E
[
M
l
(k)
t

(s)
∣∣∣s] ,
(28)

where M
l
(k)
t

(.) is the moment generating function of the

random variable l
(k)
t . From the Algorithm 1, l(k)

t = (k −
1)σ2 −

∑k−1
j=1

(
e

(j)
t

)2
. According to the Assumption, e

(j)
t

ζ is

a standard normal random variable. Therefore,
∑k−1
j=1

(
e

(j)
t

)2
has a Gamma distribution as Γ

(
k−1

2 , 2ζ2
)

[27], which results
in the following moment generating function for l(k)

t

M
l
(k)
t

(s) = exp
(
s(k − 1)σ2

) (
1 + 2ζ2s

) 1−k
2

=
(
δ

(k)
t−1

)(k−1)σ2 (
1 + 2ζ2 ln

(
δ

(k)
t−1

)) 1−k
2

. (29)

In the above equality δ(k)
t−1 is a random variable, the mean of

which is denoted by γ. We point out that γ will approach
to ζ2 in convergence. We define a function ϕ(.) such that
E
[
λ

(k)
t

]
= E

[
ϕ
(
δ

(k)
t−1

)]
, and seek to find a condition for

ϕ(.) to be a concave function. Then, by using Jenssen’s
inequality for concave functions, we have

E
[
λ

(k)
t

]
≤ ϕ(γ). (30)

Inspired by (29), we define A
(
δ

(k)
t−1

)
,

δ
(k)
t−1

−2σ2 (
1 + 2ζ2 ln

(
δ

(k)
t−1

))
and ϕ

(
δ

(k)
t−1

)
,(

A
(
δ

(k)
t−1

)) 1−k
2

. By these definitions we obtain

ϕ′′
(
δ
(k)
t−1

)
=

1− k

2

(
A
(
δ
(k)
t−1

))−k−3
2

[(
−k − 1

2

)(
A′
(
δ
(k)
t−1

))2
+
(
A
(
δ
(k)
t−1

))2
A′′
(
δ
(k)
t−1

)]
. (31)

Considering that k > 1, in order for ϕ(.) to be concave, it
suffices to have(

A
(
δ

(k)
t−1

))2

A′′
(
δ

(k)
t−1

)
>

(
k + 1

2

)(
A′
(
δ

(k)
t−1

))2

, (32)

which reduces to the following necessary and sufficient con-
ditions: (

δ
(k)
t−1

)2σ2

(
1 + 2ζ2 ln

(
δ

(k)
t−1

))2 <

(
1 + 2σ2

)2
4(k + 1)

, (33)

and
(1− ξ1)σ2

1− 2σ2 ln
(
δ

(k)
t−1

) < ζ2 <
(1− ξ2)σ2

1− 2σ2 ln
(
δ

(k)
t−1

) , (34)

where

ξ1 =
α2(1 + 2σ2) + α

√
(1 + 2σ2)2α2 − 4(k + 1)(δ

(k)
t−1)2σ2

2(k + 1)(δ
(k)
t−1)2σ2

,

ξ2 =
α2(1 + 2σ2)− α

√
(1 + 2σ2)2α2 − 4(k + 1)(δ

(k)
t−1)2σ2

2(k + 1)(δ
(k)
t−1)2σ2

,

and
α , 1 + 2ζ2 ln

(
δ

(k)
t−1

)
.

Under these conditions, ϕ(.) is concave, therefore, by substi-
tuting ϕ(.) in (30) we achieve (26). This concludes the proof
of Theorem. 2

B. MSE Analysis
We provide the MSE analysis for the “weighted updates”

scenarios, which can be straightforwardly extended to the other
scenarios. Consider that each constituent filter consists of N
different linear adaptive filters, as shown in Fig. 1. Based on
the region in which the input vector xt lies, one of these filters
is used for estimating dt. Note that we have considered a fixed
partition over the space of the input vectors. Suppose that in
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each region, say ith region, which is corresponding to the ith
linear filter of the constituent filter k, there is a vector w

(k)
o,i

such that

dt =

N∑
i=1

s
(k)
i,t

[(
w

(k)
o,i

)T
xt + νt

]
, k = 1, . . . ,m

where we have supposed that the estimation error νt is inde-
pendent of the region to which xt belongs, and has a variance
of σ2

ν . Moreover, suppose that the input vector distributes over
the regions of the kth constituent filter, with a probability
distribution π(k), i.e., xt lies in the ith region of the kth
constituent filter with probability π(k)

i .
We first analyze the LMS case. Therefore, under the general

separation assumptions (see [12], chapter 6), and given that all
linear filters converge, the MSE of the kth constituent filter at
the steady state can be expressed as [12]

γ(k) =

N∑
i=1

π
(k)
i σ2

ν

(
1 +

µλ̃(k)Tr(Rxi)

2− µλ̃(k)Tr(Rxi)

)
. (35)

where Rxi shows the covariance matrix of the input vectors
lying in the ith region. Assuming that xt is i.i.d and has the
covariance matrix Rx, we have the following MSE for the
kth constituent filter at the steady state

γ
(k)
LMS = σ2

ν

(
1 +

µλ̃(k)Tr(Rx)

2− µλ̃(k)Tr(Rx)

)
. (36)

In order to find the MSE of the final estimate, i.e., the estimate
obtained by combining the results of all constituent filters, we
define the covariance matrix Ry as Ry , E

[
yyT

]
, which

leads to

Tr
(
Ry
)

= E
[
yTy

]
=

m∑
k=1

(
σ2
d + γ(k)

)
. (37)

We further assume that the dt can be modeled as dt = yT zo+
ωt, in which, ωt is the estimation noise with the variance σ2

ω ,
and in general different from νt. From [12] (chapter 6), we
get

ηLMS =

(
µzTr(Ry)

2− µzTr(Ry)
+ 1

)
σ2
ω, (38)

where µz is the step size used for updating the combination
coefficients zt.

Now, consider the RLS case, in which we use (13) for
updating each w

(k)
i,t . We use the same model and assumptions

as the LMS case. In this case, although the input vectors
xt do not appear with the same weight in computing the
autocovariance matrix R

(k)
i,t , it is reasonable to assume the

same weight for all input vectors in steady state. We assume
that the weights converge to the upper bound obtained in the
Theorem. Thus, from [12] (chapter 6), we get

γ
(k)
RLS =

(
(1− β)r

2λ̃(k) − (1− β)r
+ 1

)
σ2
ν , (39)

where r is the dimension of xt. Hence, in this case the overall
MSE will be

ηRLS =

(
(1− λ)m

2− (1− λ)m
+ 1

)
σ2
ω. (40)

VI. EXPERIMENTS

In this section, we demonstrate the efficacy of the proposed
boosting algorithms for RLS and LMS piecewise linear filters
under different scenarios. To this end, we first consider the
“regression” of a signal generated with a piecewise linear
model, under stationary conditions. Then, we illustrate the
performance of our algorithms under nonstationary conditions,
to thoroughly test the adaptation capabilities of the proposed
boosting framework. Furthermore, we investigate the effect of
the number of the constituent filters as well as the “dependence
parameter” c, on the final MSE performance. We also compare
the computational time used by each algorithm, to show the
advantage of “random updates” boosting method, over other
methods.

Throughout this section, “PLMS” represents the piecewise
linear LMS-based filter, “SPLMS” represents the piecewise
linear LMS-based with soft partition (explained in Section IV,
Remark 3), “BPLMS” represents the boosted piecewise lin-
ear LMS-based filter, and “BSPLMS” represents the boosted
piecewise linear LMS-based with soft partition. Similarly,
“PRLS” represents the piecewise linear RLS-based filter, and
“BPRLS” represents the boosted piecewise linear RLS-based
filter. In addition, we use the suffixes “-WU”, “-RU”, or “-DR”
to denote the “weighted updates”, “random updates”, or “data
reuse” modes, respectively. Also, “LMS-MIX” and “RLS-
MIX” denote the conventional LMS-based and RLS-based
mixture methods, which are a special case of our methods,
i.e., the case c = 0.

In our simulations, we have set the step sizes for the
LMS filters to 0.02 in all algorithms, except the SPLMS. For
SPLMS, the step size for updating the filter coefficients is set
to 0.1, while the step size for the regions boundaries update
is set to 0.5. In addition, for boosted RLS filters we have set
β = 0.99 for weighted updates and random updates, and set
β = 0.995 for data reuse updates. In all of the RLS-based
algorithms, we have set λ = 0.999, which is the forgetting
factor of PRLS, and the forgetting factor for updating the
combination weights in boosting algorithms. Moreover, we
have chosen σ2 as the desired mse parameter, K = 2 for
data reuse approach, c = 1 for all boosting algorithms, and
m = 5 as the number of constituent filters, in all experiments,
except the experiments through which we have investigated
the effects of these parameters.

For the performance comparison, we compare the per-
formance of our methods with that of the best constituent
filter. To this end, we have provided the Accumulated Square
Error (ASE) results as well as the relative improvements in
the values of the ASE, which is defined as %alg , 100 ×
ASE0 −ASEalg

ASE0
, where, ASE0 denotes the ASE of the

single piecewise linear filter that is to be boosted, e.g., ASE of
PLMS, and ASEalg indicates the underlying algorithm, e.g.,
BPLMS. All of the results have been averaged over 30 rounds.

A. Stationary Data

In this experiment, we have considered the case where the
desired data is generated by a piecewise linear model with 3
regions. The input vectors xt = [x1 x2 1] are 3-dimensional,
and [x1 x2] is drawn from a jointly Gaussian random process,
and then scaled such that xt = [x1 x2]T ∈ [0 1]2. We have
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Fig. 5: The relative improvement in ASE performnce of the RLS-based
algorithms in the stationary data experiment.
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Fig. 6: The relative improvement in ASE performnce of the RLS-based
algorithms in the stationary data experiment.

included 1 as the third entry of xt to consider affine filters.
Specifically the desired data is generated by the following
model

dt =


[1 1]xt + νt if ΦT0 xt < 0.5

0.5 + νt if 0.5 ≤ ΦT0 xt < 0.8

[1 − 0.5]xt + νt if ΦT0 xt ≥ 0.8

(41)

where Φ0 = [1 1]T , and νt is a random Gaussian noise. We
have used 5 piecewise linear filters, each with 2 regions, as the
constituent filters in boosting. The filters regions are different,
and for the linear filter in each region, the initial values are
set to zero.

As depicted in Fig. 5 and Fig. 6 our proposed methods,
significantly boost the performance of a single piecewise linear
filter, in both LMS and RLS cases. Note that, the random
updates method achieves the performance of the weighted
updates method and the conventional mixture method, with
a much lower complexity. The simulations show that we
can perform better than the conventional mixture method
using the data reuse boosting approach. However, since the
complexity of data reuse updates is considerably higher than
other approaches, one may prefer to use the other boosting
approaches. Specifically, as shown in Fig. 5 and Fig. 6, the
random update method, provides a satisfactory performance,
while its complexity is much lower than other approaches.

B. Nontationary Data

Here, we have considered the case where the desired data
is generated by a nonstationary piecewise linear model with
3 regions, like the stationary data in the previous section.
Again, xt = [x1 x2]T ∈ [0 1]2 is randomly generated as in
the stationary data experiment. However, in this experiment,
we have divided the total data interval [0 T ] into 4 disjoint
intervals, each of length T/4, and used a different 3-region
model in each region.

In this experiment, each boosting algorithm uses 5 con-
stituent filters, each of which uses a piecewise linear filter
over a 2-region partition. The learning rates for the LMS-
based algorithms are set to 0.02, the forgetting factor β for
the RLS-based algorithms are set to 0.999, and the desired
mse parameter σ2 is set to 0.01. Also, the direction vector
for the separating hyperplane is set to θ = [θ1 θ2 − θ3]T ,
which is used as the initial direction vector in “SPLMS” and
“BSPLMS” cases as well. θ is consisted of three random
variables, each with mean 1, to construct random constituent
filters. The figures show the superior performance of our
algorithms over the single piecewise linear filters, as well as
the mixture method, in this highly nonstationary environment.
Moreover, as shown in Fig. 7b, the data reuse method shows
a better performance relative to the other boosting methods.
However, from the Fig. 8, the random updates method has a
significantly lower time consumption, which makes it desirable
for big data applications. We performed the simulations with
RLS-based filters, and got good results, which shows that our
methods can perform well with RLS updates too.

From the Fig. 9, we observe the approximate changes of
the weights, in a BPRLS algorithm run over the nonstationary
data. As shown in this figure, the weights do not change
monotonically, and this shows the capability of our algorithm
in effective tracking of the nonstationary data. Furthermore,
since we update the filters in an ordered manner, i.e., we
update the filter k+ 1 after the filter k is updated, the weights
assigned to the last filters are generally smaller than the
weights assigned to the previous filters. As an example, in Fig.
9 we see that the weights assigned to the second constituent
filter are larger than those of the third and fourth filters.
Moreover, note that in this experiment, we have set c = 1 as
the dependency parameter. We should mention that increasing
this parameter, in general, causes the lower weights, hence,
it can considerably reduce the complexity of random updates
and make it a useful method for big data processing tasks.

C. The Effect of Parameters

In this section, we investigate the effects of the dependence
parameter c as well as the number of constituent filters, on the
boosting performance of our methods in the nonstationary data
experiment, explained in Section VI-B. From the results in Fig.
10a and Fig. 10b, we observe that, increasing the number of
constituent filters can improve the performance significantly.
However, as shown in Fig. 10c and 10d, in this experiment,
for the short-length data, increasing the dependency param-
eter cannot improve the performance. Nevertheless, in this
experiment, as the data length increases, we can get a better
performance by using a larger value for dependency parameter.
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Fig. 7: The performance results of the boosting approaches in the nonstationary experiment.
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D. Benchmark Real and Synthetic Data Sets

In this section, we demonstrate the efficiency of the
introduced methods over some widely used real and synthetic
regression data sets. The data sets we have used can be
found in [28]. We have normalized the data to the interval
[−1, 1] in all algorithms. These experiments show that our
algorithms can successfully improve the performance of single

piecewise linear filters, and in some cases, even outperform
the conventional mixture method. We now describe the
experiments and provide the results:

1) California Housing: This data set has been obtained from
StatLib repository. They have collected information on
the variables using all the block groups in California
from the 1990 Census. We are going to find the house
median values, based on the given attributes. For further
description one can refer to [28]. In this experiment
we have used the same parameters as the nonstationary
experiment, for the filters. The results in Fig. 11 shows
that our methods can perform well on this data set.

2) Computer Activity (CompAct): This real data set is a
collection of computer systems activity measures [28].
The task is to predict usr, the portion of time that
cpus run in user mode from all attributes [28]. In our
simulation for this data set, we have set K = 2, m = 5,
and c = 1. Also, for all of LMS based algorithms
we have used 0.03 as the step size for linear filter
coefficients updates, except for data reuse scenarios. For
BPLMS-DR we have used a step size of 0.01, and for
BSPLMS-DR we have used a step size of 0.05. The
results shown in Fig. 12 and Fig. 13 indicate the superior
performance of our algorithms.

3) Bank: This data set is generated from a simulation
of how bank-customers choose their banks [28]. The
algorithm should predict the fraction of bank customers
who leave the bank because of full queues. We used
the variant with m=32 (This is related to the data set,
and one should not confuse this m with the number
of constituent filters.) [28]. We have used the same pa-
rameters as the nonstationary data experiment described
in Section VI-B for this experiment. The results are
provided in Fig. 14.

VII. CONCLUSION

We introduce the boosting concept, extensively studied
in machine learning literature, to adaptive filtering context,
and propose three different boosting approaches, “weight
updates”,“data reuse”, and “random updates” which are appli-
cable to different adaptive filtering algorithms. We show that
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Fig. 10: The effect of the parameters m and c on the relative performance improvement of the RLS and LMS-based algorithms in the nonstationary data
experiment.
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Fig. 11: The performance of LMS-based boosting methods on the California
Housing data set.

by these approaches we can significantly improve the MSE
performance of the conventional LMS and RLS algorithms
in piecewise linear models, and we provide an upper bound
for the weights generated during the algorithm, which lead us
to a thorough analysis of the complexity of these methods.
We show that the complexity of random updates method is
remarkably lower than other two approaches, while the MSE
performance does not degrade. Therefore, the boosting using
random updates approach can be applied to real life large scale

Data Length (t)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
el

at
iv

e 
Im

pr
ov

em
en

t (
%

)

-20

-10

0

10

20

30

40

50

60
Relative Performance Improvement, LMS

LMS-MIX
BPLMS-WU
BPLMS-RU
BPLMS-DR
SPLMS
BSPLMS-WU
BSPLMS-RU
BSPLMS-DR

Fig. 12: The performance of LMS-based boosting methods on the CompAct
data set.

problems, which boosts the MSE performance with only a
slight increase in the complexity.
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