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SPECIAL MULTSERIAL ALGEBRAS ARE QUOTIENTS OF

SYMMETRIC SPECIAL MULTISERIAL ALGEBRAS

EDWARD L. GREEN AND SIBYLLE SCHROLL

Abstract. In this paper we give a new definition of symmetric special multiserial
algebras in terms of defining cycles. As a consequence, we show that every special
multiserial algebra is a quotient of a symmetric special multiserial algebra.

1. Introduction

A major breakthrough in representation theory of finite dimensional algebras is the
classification of algebras in terms of their representation type. This is either finite, tame
or wild [D]. Algebras of finite representation type have only finitely many isomorphism
classes of indecomposable modules, the infinitely many indecomposable modules of a
tame algebra can be parametrized by one-parameter families whereas the representation
theory of a wild algebra contains that of the free algebra in two generators and so
in some sense contains that of any finite dimensional algebra. Thus no hope of a
parametrization of the isomorphism classes of the indecomposable modules can exist.

For this reason, algebras of finite and tame representation type have been the focus of
much of the representation theory of finite dimensional algebras. An important family
of tame algebras are special biserial algebras defined in [SW]. This class contains many
of the tame group algebras of finite groups and tame subalgebras of group algebras of
finite groups [E], gentle algebras, string algebras and symmetric special biserial algebras
[WW], also known as Brauer graph algebras [R, S], algebras of quasi-qurternion type
[La] and the intensely studied Jacobian algebras of surface triangulations with marked
points in the boundary arising in cluster theory [ABCP].

The strength of the well-studied representation theory of special biserial algebras, de-
rives from the underlying string combinatorics. Namely, by [WW] every indecompos-
able non-projective module over a special biserial algebra is a string or band module.
Not only does this give rise to a formidable tool for calculations and proofs but it also
shows that special biserial algebras are of tame representation type.

Special multiserial algebras, defined in [VHW], are in general of wild representation type
and as a consequence their indecomposable modules cannot be classified in a similar
way. It is therefore remarkable that many of the results that are known to hold for
special biserial algebras still hold for special multiserial algebras. For example, a very
surprising fact about the indecomposable modules of these wild algebras was shown
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2 GREEN AND SCHROLL

in [GS2]. Namely, the indecomposable modules over a special multiserial algebra are
multiserial, that is, their radical is either 0 or a sum of uniserial submodules. Thus
generalizing the analogous result for special biserial algebras [SW]. However, given the
absence of string combinatorics in the multiserial case, the proof is built on an entirely
different strategy. The same holds true for the result and proofs in this paper.

We start by giving the definition of an algebra defined by cycles. This definition is
built on the notion of a defining pair. We show that such an algebra is symmetric
special multiserial and that conversely, every symmetric special multiserial algebra is
an algebra defined by cycles. Note that in this context a symmetric algebra is an
algebra over a field endowed with a symmetric linear form with no non-zero left ideal
in its kernel. Symmetric algebras play an important role in representation theory and
many examples of well-known algebras are symmetric such as group algebras of finite
groups or Hecke algebras.

Given the new definitions of defining pairs and algebras defined by cycles we show that
we can construct a defining pair for every special multiserial algebra A and that A is
a quotient of the corresponding algebra defined by cycles. Thus we prove that every
special multiserial algebra is a quotient of a symmetric special multiserial algebra. This
result is an analogue of the corresponding result for special biserial algebras [WW].
Moreover, the special biserial case follows from our our result omitting thus the need
for the string combinatorics on which the proof in [WW] is based.

2. Preliminaries

We let K denote a field and Q a quiver. An ideal I in the path algebra KQ is admissible
if JN ⊆ I ⊆ J2 for some N ≥ 2, where J is the ideal in KQ generated by the arrows of
Q. We begin by recalling the definition of a special multiserial algebra. A K-algebra is
a special multiserial algebra if it is Morita equivalent to a quotient of a path algebra,
KQ/I, by an admissible ideal I which satisfies the following condition:

(M) For every arrow a ∈ Q there is at most one arrow b ∈ Q such that ab /∈ I and

there is at most one arrow c ∈ Q such that ca /∈ I

Throughout this paper we assume that all algebras are indecomposable and that if
they are finite dimensional, the Jacobson radical squared is nonzero. Note that the
only non-semisimple special multiserial algebra of the form KQ/I with radical squared
zero is K[x]/(x2).

We introduce notation and definitions needed for what follows. We say that a nonzero
element x ∈ KQ is uniform if there exists vertices v and w in Q, corresponding to
idempotents ev and ew in KQ such that x = evxew. If a and b are arrows in Q, we let
ab denote the path consisting of the arrow a followed by the arrow b. We say a cycle
in Q is simple if it has no repeated arrows. If C is a cycle in Q and p is a path, we say
p lies in C if p is a subpath of Cs, for some s ≥ 1. If p is a path in Q, the length of p,
denoted ℓ(p), is the number of arrows in p.

If p is a path in Q, then the start vertex of p is denoted s(p) and the end vertex of p is
denoted t(p).
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3. Defining pairs

In this section we give a method for constructing symmetric special multiserial algebras.
Suppose that Q is a quiver. We say the pair (S, µ) is a defining pair in Q if S is a set
of simple cycles in Q and µ : S → Z>0 which satisfy the following conditions:

(D0) If C is a loop at a vertex v and C ∈ S, then µ(C) > 1.

(D1) If a simple cycle is in S, every cyclic permutation of the cycle is in S.

(D2) If C ∈ S and C ′ is a cyclic permutation of C then µ(C) = µ(C ′).

(D3) Every arrow occurs in some simple cycle in S.

(D4) If an arrow occurs in two cycles in S, the cycles are cyclic permutations of each
other.

If (S, µ) is a defining pair in Q then the K-algebra they define has quiver Q and ideal
of relations generated by all relations of the following three types:

Type 1 Cµ(C) − C ′µ(C
′), if C and C ′ are cycles in S at some vertex v ∈ Q0.

Type 2 Cµ(C)a, if C ∈ S and a is the first arrow in C.

Type 3 ab, if a, b ∈ Q1 and ab is not a subpath of any C ∈ S.

The algebra A = KQ/I, where I is generated by all relations of Types 1, 2, and 3, is
called the algebra defined by (S, µ) and we call A an algebra defined by cycles. We note
that some of the generators of Types 1,2, and 3 are in general redundant.

Theorem 3.1. Let Q be a quiver, K a field, and (S, µ) a defining pair for Q. Let
A = KQ/I be the algebra defined by (S, µ). Then A is a symmetric special multiserial
algebra.

Proof. We begin by showing that I is an admissible ideal. Clearly, I is contained in the
ideal generated by paths of length 2. Let N = max{µ(C)ℓ(C) | C ∈ S}. We claim that
all paths of length N + 1 are in I. Let p be such a path. If there are arrows a and a′

such that aa′ is a subpath of p and aa′ is a Type 3 relation, then p ∈ I. Suppose that
p contains no Type 3 relations. Then (D3) and the definition of N imply that there

is a simple cycle C ∈ S and an arrow b so that either bCµ(C) or Cµ(C)b is a subpath
of p. Since C ∈ S, we suppose first that Cµ(C)b is a subpath of p since the length
of p > N . Then Cµ(C)b either is a Type 2 relation or Cb contains a Type 3 relation.
Finally, suppose that bCµ(C) is a subpath of p. If b is the last arrow in C, then bCµ(C)

is a Type 2 relation using (D1) and (D2). If b is not the last arrow in C, then ba is a
Type 3 relation where a is the first arrow of C.

Next we show that A is a special multiserial algebra. Let a be an arrow. Suppose that
ab is a path of length 2 in Q. By D(3) and (D4), a is in a cycle C in S that is unique
up to cyclic permutation. Either b is the unique arrow such that ab lies in C or ab is a
Type 3 relation and hence in I. Thus, there is at most one arrow b such that ab /∈ I.
Similarly, there is at most one arrow c such that ca /∈ I and we see that A is a special
multiserial algebra.
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Finally we show that A is a symmetric algebra. We let π : KQ → A denote the canonical
surjection. Define f : KQ → K as follows. If p is a path in Q, define

f(p) =

{

1, if p = Cµ(C) for some C ∈ S

0, otherwise.

Linearly extend f toKQ. The reader may check that f induces a linear map f̄ : A → K.
Let B be the set of paths in Q. All sums will have only a finite number of nonzero
terms. Note that if x =

∑

p∈B αpp ∈ KQ with αp ∈ K, then f(x) =
∑

C∈S
αCµ(C) .

First we show that if λ, λ′ ∈ A, then f̄(λλ′) = f̄(λ′λ). Let x =
∑

p∈B αpp ∈ KQ and

y =
∑

q∈B βqq ∈ KQ such that π(x) = λ and π(y) = λ′. Then

f(xy) = f((
∑

p∈B

αpp)(
∑

q∈B

βqq)) =
∑

p∈B

∑

q∈B

αpβqf(pq) =
∑

pq=Cµ(C) for C∈S

αpβq

and

f(yx) = f((
∑

q∈B

βqq)(
∑

p∈B

αpp)) =
∑

q∈B

∑

p∈B

βqαpf(qp) =
∑

qp=Cµ(C) for C∈S

βqαp

It follows that f(xy) = f(yx) and hence f̄(λλ′) = f̄(λ′λ).

Finally we claim that ker(f̄) contains no nonzero left or right ideals. Supoose that I

is a right ideal of A contained in the kernel of f̄ . Assume I 6= (0) and let λ ∈ I with
λ 6= 0. Then λ = π(

∑

p∈B αpp) where αp ∈ K and all but a finite number of αp 6= 0.

Without loss of generality, we may assume that if αp 6= 0, then p /∈ I. First suppose

that there is a path p∗ /∈ I such that α∗
p 6= 0 and p∗ is not of the form Cµ(C) for any

C ∈ S. Then there is a unique C ∈ S and path q such that p∗q = Cµ(C). By (D1)-(D4),

if p′ 6= p∗, then p′q is not of the form C ′µ(C′) for any C ′ ∈ S. Hence

f̄(λπ(q)) = f̄(π((
∑

p∈B

αpp)q)) = f(
∑

p∈B

αppq) = αp∗ 6= 0.

But this contradicts I ⊆ ker(f̄) since λπ(q) ∈ I. The proof that there a no left ideals
in ker(f̄) is similar to the proof for right ideals.

Thus we may assume that if αp 6= 0 then p = Cµ(C) for some C ∈ S. Since λ 6= 0, we
see there is some vertex v such that evλev 6= 0. Let Sv = {C ∈ S | C is a cycle at v}.
Then

0 = f̄(evλev) = f̄(π(
∑

C∈Sv

αCµ(C)Cµ(C)) = f(
∑

C∈Sv

αCµ(C)Cµ(C)) =
∑

C∈Sv

αCµ(C) .

Choose some C∗ ∈ Sv. Then, using that, for C ∈ Sv, (C
µ(C) − C∗µ(C∗)) is a Type 1

relation and
∑

C∈Sv
αCµ(C) = 0 , we see that

evλev = π(
∑

C∈Sv

αCµ(C)Cµ(C))− (
∑

C∈Sv

αCµ(C))π(C∗µ(C∗)) =

∑

C∈Sv

αCµ(C)π(Cµ(C) − C∗µ(C∗)) = 0,

contradicting evλev 6= 0. This completes the proof. �

The converse of the above Theorem is also true. The Theorem below is not used in
the remainder of the paper and we only sketch the proof. The sketch below assumes
knowledge of Brauer configuration algebras found in [GS1].
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Theorem 3.2. Let A = KQ/I be an indecomposable symmetric special multiserial
algebra with Jacobson radical squared nonzero, where I is an admissible ideal in KQ.
Then there is a defining pair (S, µ) in Q such that the algebra defined by (S, µ) is
isomorphic to A.

Proof. By [GS2], we may assume that A is the Brauer configuration algebra associated
to a Brauer configuration Γ = (Γ0,Γ1, µ, o). Let S be the set of special cycles in the
quiver of A. If C is a special α-cycle for some α ∈ Γ0, define µ∗(C) = µ(α). Using the
properties of special cycles of a Brauer configuration algebra, the reader my check that
(S, µ∗) is a defining pair in Q. It is straightforward to see that the Brauer configuration
algebra A is isomorphic to the algebra defined by (S, µ∗). �

4. quotients

For the remainder of this section, we let A = KQ/I be a special multiserial algebra
satisfying condition (M). We introduce two functions associated to A which play a
central role. Let ⋄ be some element not in Q1 and set A = Q1∪{⋄}. Define σ : Q1 → A
and τ : Q1 → A by

σ(a) =

{

b if ab /∈ I

⋄ if ab ∈ I for all b ∈ Q1

and

τ(a) =

{

c if ca /∈ I

⋄ if ca /∈ I for all c ∈ Q1
.

where a, b, c ∈ Q1. From the definition of a special multiserial algebra, we see that
these functions are well-defined. Since A is finite dimensional, one of two things occur
for σ when repeatedly applied to an arrow a ∈ Q1. Either there is a smallest positive
integer ma such that σma(a) = ⋄ or there is a smallest positive integer m̂a such that
σm̂a(a) = a. Similarly, either there is a smallest positive integer na such that τna(a) = ⋄
or there is a positive integer n̂a such that τ n̂a(a) = a.

We list some basic properties of σ and τ .

B1 If σ(a) ∈ Q1, then τσ(a) = a.

B2 If τ(a) ∈ Q1, then στ(a) = a.

B3 For a ∈ Q1, ma exists if and only if na exists.

B4 For a ∈ Q1, m̂a exists if and only if n̂a exists.

Along with σ and τ , we need one more concept. We say a path M = a1a2 · · · ar, with
ai ∈ Q1 is (σ, τ)-maximal if σ(ar) = ⋄ = τ(a1). Let M denote the set of (σ, τ)-maximal
paths.

Suppose a ∈ Q1 is such that m̂a exists. Then we have a simple oriented cycle in Q,
denoted Ca such that Ca = aσ(a)σ2(a) · · · σm̂a−1(a) since σm̂a(a) = a implies that
s(Ca) = t(Ca). It is easy to check that Ca is a simple cycle. We let the set of such
simple cycles be denoted by C. Note that if C ∈ C, then every cyclic permutation of C
is in C.

Now suppose that a ∈ Q1 is such that ma exists. Then

Ma = τna−1(a)τna−2(a) · · · τ(a)aσ(a) · · · σma−1(a)
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is a (σ, τ)-maximal path in which a occurs.

The next lemma lists some basic properties of the above constructions. The proof is
straightforward and left to the reader.

Lemma 4.1. Let A = KQ/I be a special multiserial algebra and let a ∈ Q1. Then

(1) Either a occurs in the (σ, τ)-maximal path Ma or the simple cycle Ca but not
both.

(2) The arrow a occurs in at most one (σ, τ)-maximal path.

(3) If a is an arrow in a simple cycle Cb ∈ C, for some arrow b, then Cb is a cyclic
permutation of Ca.

(4) The length of Ca, if it exists, is m̂a = n̂a.

(5) If M ∈ M is a maximal path, M has no repeated arrows.

(6) If M ∈ M and a is an arrow in p, then M = Ma.

(7) If a occurs in the (σ, τ)-maximal path Ma then the length of Ma is ma+na− 1.

We now construct a new quiver, Q∗, from Q. Set Q∗
0 = Q0. For each M ∈ M, let aM

be an arrow from t(M) to s(M). Set Q∗
1 = Q1 ∪ {aM | M ∈ M}. Note that MaM is

a simple cycle in Q∗ at s(M). Let M∗ denote the set of cycles in Q∗ consisting of all
cyclic permutations of the MaM , for M ∈ M.

Since Q is a subquiver of Q∗, we will freely view paths and cycles in Q as paths or
cycles in Q∗. Let

S = {C ∈ C} ∪M∗,

viewed as a set of simple cycles in Q∗. Next, since I is admissble, there is a smallest
positive integer N , N ≥ 2, such that all paths of length N or larger, are in I. Define
µ : S → Z>0 by µ(C) = N for all C ∈ S

Proposition 4.2. Keeping the above notation, (S, µ) is a defining set in Q∗.

Proof. Since N ≥ 2 and we see that (D0) holds. Since µ is constant on S, (D2) holds.
It is immediate that (D1) holds. If a is an arrow in Q, then a occurs in some C ∈ C or
M ∈ M. It is easy to see that for all M ∈ M, the arrow aM occurs in some cycle in
M∗. Thus, every arrow in Q∗ occurs in some cycle in S and (D3) holds. By Lemma
4.1, and our construction, (D4) holds and the proof is complete. �

Let A∗ = KQ∗/I∗ be the algebra defined by (S, µ). By Theorem 3.1, A∗ is a symmet-
ric special multiserial algebra which we call the symmetric special multiserial algebra
associated to A.

Theorem 4.3. Let A be a special multiserial algebra and A∗ be the symmetric special
multiserial algebra associated to A defined by (S, µ). Then A is a quotient of A∗.

Proof. To define F : KQ∗ → KQ we use the universal mapping property of path al-
gebras. That is, we define F on the vertices of Q∗ so that {F (ev) | ev ∈ Q∗

0} is
a full set of orthogonal idempotents in KQ and define F on the arrows, so that, if
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a∗ : v∗ → w∗ is an arrow in Q∗, then F (a∗) is a uniform element of KQ such that
F (a∗) = F (e∗v)F (a∗)F (e∗w).

Let F (ev), for all v ∈ Q∗
0, be a full set of orthogonal idempotents in KQ as defined

above, F (aM ) = 0, for all M ∈ M, and F (a) = a for all the remaining arrows in
Q∗. The K-algebra homomorphism F is clearly surjective. The homomorphism F will
induce a surjection F̂ : A∗ → A if F (I∗) ⊆ I since we would have an exact commutative
diagram

0 // I∗

F|I∗

��

// KQ∗

F

��

// KQ∗/I∗

F̂
��

// 0

0 // I // KQ

��

// KQ/I // 0

0

We prove F (I∗) ⊆ I by showing that F applied the generators of I∗ of Types 1,2, and

3 are in I. If C and C ′ are in S then consider Cµ(C) − C ′µ(C′) . If C (or C ′) contains

an arrow of the form aM , for some M ∈ M, then F sends Cµ(C) (or C ′µ(C′)) to 0 which

is in I. If aM does not occur in C (or in C ′) then Cµ(C) (or C ′µ(C′)) has length greater
than or equal to N since µ has constant value N . Recalling that paths of length greater
or equal to N in KQ are in I, we conclude that F applied to a Type 1 relation is in I.

A similar argument works for Type 2 relations.

Finally, suppose that ab is a Type 3 relation. If either a or b is an arrow of the form
aM , for some M ∈ M, then F (ab) = 0 ∈ I. Suppose that neither a nor b is of the form
aM . Then F (ab) = ab. Since ab does not live on any C ∈ S, we see that ab does not
does not live on any C ∈ C, where C is the set of simple cycles of A as defined at the
beginning of this section, nor is ab a subpath of any M in M. It follows that σ(a) 6= b.
But then ab ∈ I and we are done. �
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