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Abstract

The Chandra and XMM-Newton X-ray telescopes have led to numerous
advances in the study and understanding of astrophysical X-ray sources.
Particularly important has been the much increased spectral resolution of
modern X-ray instrumentation. Wind-broadened emission lines have been
spectroscopically resolved for many massive stars. This contribution reviews
approaches to the modeling of X-ray emission line profile shapes from single
stars, including smooth winds, winds with clumping, optically thin versus
thick lines, and the effect of a radius-dependent photoabsorption coefficient.

Keywords: X-rays; Massive Stars; Stellar Winds; Line Profile Modeling;
Stellar Mass Loss

1. Introduction

Massive stars have long been known to be X-ray sources (Cassinelli &
Olson, 1979; Harnden et al., 1979; Long & White, 1980; Cassinelli et al.,
1981). Early X-ray studies of massive stars (i.e., non-degenerate OB stars)
were limited to pass-band fluxes or low-resolution spectra (e.g., Berghöfer
et al., 1997). Recent instrumentation with Chandra and XMM-Newton have
since permitted observations of resolved broad-emission lines from several
massive stars, which have represented a major forward step in studies of
the X-ray properties of massive stars (e.g., Kahn et al., 2001; Waldron &
Cassinelli, 2001; Cassinelli et al., 2001; Skinner et al., 2001; Oskinova, Feld-
meier, & Hamann, 2006; Waldron & Cassinelli, 2007; Güdel & Nazé, 1981;
Oskinova et al., 2012; Leutenegger et al., 2013; Cohen et al., 2014a,b).
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Winds of massive stars typically have wind terminal speeds of order
103 km s−1. Shocks involving speeds at this level easily produce peak tem-
peratures at several MK. At such temperatures a thermal plasma will cool
primarily via emission lines (Cox & Tucker, 1969; Raymond & Smith, 1977).
There are many scenarios that can lead to strong shocks in massive star
winds. Some massive stars are in binary systems, and the winds of the two
stars can collide to produce relatively hard and luminous X-ray emission.
Another scenario involves stellar magnetism. In some massive stars, the
stellar magnetic field is strong enough to deflect or even channel a portion
of the wind flow. The channeling can lead to head-on collisions of counter-
moving streams of plasma, leading to strong shocks and a significant X-ray
luminosity. The calculation of line profile shapes for colliding wind binaries
and magnetically channeled winds is not reviewed in this constribution. A
review of X-ray emission from colliding winds appears in Rauw et al. (2015);
and the influence of stellar magnetism for X-ray emission from massive stars
is reviewed in ud-Doula & Nazé (2015).

This review focuses on approaches for modeling X-ray emission line profile
shapes for single massive stars. Modeling of the line shape is important for
extracting information about the source, such as the mass-loss rate of the
wind. This paper emphasizes line profile calculations; results derived from
model fitting to observed X-ray spectra of massive stars are reviewed by
Oskinova (2015).

For single massive stars, the leading culprit for the production of multi-
million degree gas is found in the same mechanism that propels their fast
winds, namely the line-driving force (Lucy & Solomon, 1970; Castor et al.,
1975; Pauldrach et al., 1986; Müller & Vink , 2008). This force is subject
to the line deshadowing instability (LDI) that results in the formation of
wind shocks (Milen, 1926; Lucy & White, 1980; Owocki et al., 1988). As
a result, a highly structured, supersonic wind flow develops (e.g., Dessart
& Owocki, 2003), with a distribution of wind shocks capable of emitting
X-rays at observed temperatures (Feldmeier et al., 1997a). Modeling of the
line shapes has grown more complex to match the observations. This is
exciting because the data have pushed the line modeling to include greater
physical realism.

Section 2 provides an overview of the evolution of X-ray emission line
profile calculations. Section 2.1 begins with a description of the emissive
process for the production of X-rays from single massive-star winds, followed
by a description of the properties of spherical stellar winds in section 2.2.
Then 2.3 details expressions to calculate line profile shapes for smooth winds.
A review of the exospheric approximation is given in section 2.4 to illustrate
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basic scalings, followed by 2.5 that compares effects for thin versus thick
lines. The special case of a constant expansion wind is handled in 2.6.
The topic of clumping is covered in 2.7. Using a linear (or, homologous)
velocity law, a selection of illustrative profile calculations are provided in
section 2.8. A summary and conclusions are given in section 3. Appendix A
details the derivation of profile shapes for constant spherical expansion with
a power-law volume filling factor. Appendix B presents a derivation for the
photoabsorbing optical depth in the case that the absorbing coefficient is a
power law in the wind velocity.

2. Modeling of Stellar Wind X-ray Emission Line Profiles

2.1. The Line Emissivity

X-ray line profile shape modeling begins by specifying the source geom-
etry and the emissivity process. For geometry the winds are assumed to be
spherically symmetric in time average. This assumption can accommodate
the inclusion of stochastic structure in the wind, normally referred to as
“clumping”.

The X-ray emission from single and non-magnetic massive star winds is
normally attributed to embedded wind shocks. This “hot plasma” com-
ponent at millions of Kelvin is a thermal plasma that emits a spectrum
dominated by lines of highly ionized metals (e.g., Cox & Tucker, 1969; Ray-
mond & Smith, 1977). The bulk of the line photons arises from collisional
excitation followed by radiative decay. Consequently, the line emissivity is
a density-squared process. In addition, wind shocks are expected to dis-
play a range of temperatures as the post-shock gas undergoes cooling (e.g.,
Feldmeier et al., 1997b; Cassinelli et al., 2008; Krtička, et al., 2009; Gayley,
2014).

The volume emissivity for a line is denoted as jl [erg s−1 cm−3] and is
given by

jl(T,El) = Λl(T,El) (ni ne)X , (1)

where the “l” subscript identifies a particular line, Λl(T,El) [erg s−1 cm3]
is the cooling function for a line at energy El, and ni and ne are number
densities for the ions and electrons in the X-ray emitting gas (hence the “X”
subscript). Here Λl is frequency (or energy, or wavelength) integrated over
the line profile; its value depends on the temperature, T , of the plasma.
Note that another form of the emissivity is the volume emissivity per unit
solid angle, ηl. For isotropic emission one has that jl = 4π ηl.
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For an optically thin plasma in which there is no line transfer and no
photoabsorption of the X-rays, the line luminosity generated in a differential
volume element is

dLl(T,El) = jl(T,El) dV (2)

= Λl(T,El) (ni ne)X dV (3)

= Λl(T,El) dEMX , (4)

where EMX is the emission measure of the X-ray emitting gas.
The total luminosity generated from a multi-temperature plasma in a

particular line becomes

Ll =

∫

Λl(T,El)
dEMX

dT
dT, (5)

where dEMX/dT signifies the differential emission measure and represents
the relative amounts of plasma at different temperatures.

Although equation (5) is correct, the integration over differential emis-
sion measure is not normally how line profile shapes are modelled. Instead,
most approaches for the line modeling tend to start with equation (3). The
properties of the stellar wind density and temperature distribution are spec-
ified. Taking account of the wind velocity distribution, the contribution by
a differential volume element to the line profile depends on the volume’s
Doppler shift with respect to the observer.

2.2. The Stellar Wind Model

For a spherically symmetric wind, the density of the gas, ρ, is determined
by the continuity equation

ρ(r) =
Ṁ

4π r2 v(r)
, (6)

where Ṁ is the mass-loss rate, r is the radius in the wind, and v(r) is the
wind speed. The wind speed starts with a low initial value of v0 at the wind
base, that is frequently taken to be the stellar radius R∗. The flow achieves
an asymptotic terminal speed, v∞, for r ≫ R∗.

The wind velocity profile is often parametrized in terms of a “beta law”
(Pauldrach et al., 1986), with

v(r) = v∞

(

1−
bR∗

r

)β

, (7)
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where 0 < b < 1 is a parameter that sets the initial wind speed, with
v0 = v∞(1− b)β.

Frequently, the presumption is that the hot plasma is a minority compo-
nent (in terms of relative mass) of the wind flow; however, this may not al-
ways be the case. Some have considered “coronal” wind models (Lucy, 2012)
to explain the so-called “weak-wind stars”. Huenemoerder et al. (2012) have
reported evidence for a case in which the X-ray emitting plasma is the dom-
inant component of the wind. However, in the majority of stars with highly
resolved X-ray lines, the X-ray emitting plasma is the minority component;
this review focuses on these cases.

Recall from the previous section that the total emission measure for X-ray
production is

EMX =

∫

wind
(ni ne)X dV. (8)

It is common to express the X-ray emissivity in terms of the wind density.
This is accomplished through the introduction of a volume filling factor,
fV (e.g., Owocki & Cohen, 1999; Ignace et al., 2000). The total emission
measure available in the wind is defined to be

EMw =

∫

wind
(ni ne)w dV. (9)

A wind-averaged volume filling factor, in terms of emission measure, is
〈fV 〉 = EMX/EMw. Thus, fV ≤ 1. (Note that slightly different defini-
tions of fV appear in the literature.)

The volume filling factor can be treated as a radius-dependent parameter
(e.g., Hillier et al., 1993; Ignace, 2001; Owocki & Cohen, 2001; Runacres &
Owocki, 2002). Now the emission measure available for X-rays is

EMX =

∫

wind
fV (r) (ni ne)w dV. (10)

Allowing for a radius dependence of fV introduces a free parameter to alter
emission profile shapes when fitting observed lines.

2.3. Formalism for X-ray Line Profile Modeling

The X-ray emission lines from massive star winds are expected to be
optically thin. However, it is possible that in some rare cases, a line could
be optically thick (Ignace & Gayley, 2002; Leutenegger et al., 2007). To
handle stellar wind lines of general optical depth, the Sobolev approximation
is a useful technique for calculating the transfer of line radiation (Sobolev,
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Figure 1: Schematic for the adopted coordinate system. The observer is located right
along the z-axis. The vector indicates a point in the wind at (r, θ), with θ the polar angle
from the observer axis. The impact parameter of this point is p = r sin θ (not shown).

1960; Rybicki & Hummer, 1978). The Sobolev approach simplifies the line
transfer when the flow speeds are large1 compared to the thermal speed.

In dealing with high-speed stellar wind outflows, an understanding of
the line profile shape is facilitated through the use of “isovelocity zones”.
Isovelocity zones represent spatial “sectors” through the emitting volume,
with each zone contributing its emission to a different velocity shift in the
line profile. Spatially, the vector velocity of the flow throughout one of
these zones is not uniform; however, all points within a zone share the
same Doppler-shifted velocity with respect to the observer. The shape of
the resolved spectral line is related to the velocity distribution of the wind,
since v(r) sets the spatial configuration of the isovelocity zones.

To develop a prescription for line profile calculation, consider a spherically
symmetric wind with a velocity beta law as given in equation (7). The
observer view of this source is axially symmetric. Figure 1 shows a ray

1The Sobolev approximation relates to velocity gradients. However, expansion and/or
rotation of flow about a star involves both physical gradients of the flow as well as geo-
metrical line-of-sight gradients. Consequently, large bulk flow speeds as compared to the
thermal speed is often a sufficient condition for the Sobolev approach to be valid.
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from the observer to a point in the wind at (r, θ) or equivalently (p, z). The
normalized line-of-sight (“los”) Doppler velocity shift of the flow at that
point is given by

wz = −µw(r), (11)

where w(r) = v(r)/v∞ and µ = cos θ. An isovelocity zone is a surface of
revolution about the observer’s axis to the star center, for which wz is a
constant, as given by the condition that µ = −wz/w(r).

To calculate the line profile, the thin line case is considered first, with
modification for the effects of line optical depth following. Guided by Owocki
& Cohen (2001), the emission line profile is given by

dLl

dwz
=

∫

4π η(r) δ(wobs − wz) dV, (12)

where the δ-function signifies application of the Sobolev approximation, and
wobs is an observed normalized Doppler shift in the line profile. The inte-
gration is carried out over the zone for which wobs = wz = −µw(r).

The delta function can be expressed as

δ(wobs − wz) = δ[µ − µ(p, z)]

∣

∣

∣

∣

dwz

dµ

∣

∣

∣

∣

−1

, (13)

with

dwz

dµ
= −w(r). (14)

The emissivity function is

η(r) = η0
Λl(T,El)

Λ0

[

ρ(r)

ρ0

]2

, (15)

with Λ0 a scaling factor for the cooling function, and

ρ0 =
Ṁ

4π R2
∗
v∞

. (16)

The emissivity scaling factor is then

η0 = Λ0 ρ
2
0. (17)

The expression for the line profile becomes:
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dLl

dwz
= 4π η0 R

3
∗

∫

wz

fV (r) g[T (r)]

[

R4
∗

r4w2(r)

] [

1

w(r)

]

2π r2 dr

R3
∗

, (18)

where again the integral is taken over a particular isovelocity zone, with
account of stellar occultation implied. Note that dLl/dwz can easily be con-
verted to a specific luminosity, in appropriate units for any given dataset,
through the use of the Doppler formula. The combination of factors leading
the integral has units of luminosity. The function g[T (r)] allows for tem-
perature variations with radius. In principle, the factor g can be subsumed
into the volume filling factor, that would then be interpreted as a volume
filling factor specific to a given ionic species and line transition (c.f., Owocki
& Cohen, 2001). It can be useful to introduce such a line-specific volume
filling factor, with

fl(r) = fV (r) g[T (r)], (19)

which will be employed later.
In evaluating the integration, a change of variable is introduced with

u = R∗/r. The line profile shape is now given by

dLl

dwz
= L0

∫ u(wz)

0

fV (u) g(u)

w3(u)
du, (20)

where

L0(El) = 8π2 η0(El)R
3
∗
. (21)

The lower limit of zero to the integral of equation (20) corresponds to r → ∞.
The upper limit depends on the Doppler shift. The upper limit is the stellar
radius, which is u = 1, for the observer-facing side of the star where wz ≤ 0.
However, on the far side of the star where wz < 0, a portion of the emission
from an isovelocity zone is occulted by the star. The upper limit to the
integral must take this into account. Emission only reaches the observer for
µ ≥ µocc =

√

1− u2occ(wz).
It is also possible to allow for an “onset radius” below which there is no X-

ray emitting gas. Let this radius be rX , and let uX = R∗/rX . This provides
additional flexibility in the line profile modeling to account for where wind
shocks become strong enough to produce sufficiently high-temperature gas
to emit X-rays. So, the upper limit to equation (20) can be generalized
as umax, where for blueshifts, umax is the minimum of uX and 1, and for
redshifts, umax is the minimum of uX and uocc(wz).
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Equation (20) does not include the effect of line optical depth. One can
think of the integrand of that equation as a photon generation rate per unit
interval in u. When the line is thin, photon escape is locally isotropic. When
the line is thick to resonance scattering, the escape of X-ray photons can be
non-isotropic. Following Leutenegger et al. (2007), the direction-dependent
optical depth that governs photon escape is

τS,µ =
τS,0

1 + σ µ2
, (22)

where the “S” subscript is used to signify the Sobolev line optical depth,
τS,0 is a characteristic line optical depth for the line of interest, and

σ =
d ln v

d ln r
− 1 (23)

is the “anisotropy” factor. The escape of line photons is isotropic if σ = 0,
which occurs for a linear velocity law with v(r) ∝ r (e.g., Ignace & Hendry,
2000). Equation (22) shows that the line optical depth has a directional
dependence on µ, and the strength of that dependence is set by the velocity
gradient term in σ.

The Sobolev escape probability PS represents the probability of a line
photon escaping into a certain direction. This parameter depends on the
Sobolev optical depth, with

PS(r, µ) =
1− e−τS,µ

τS,µ
. (24)

If the line is optically thin, PS → 1, regardless of the value of σ. Leutenegger
et al. (2007) introduced an angle-averaged quantity P̄S as

P̄S(r) =
1

2

∫ +1

−1
P̄(r, µ) dµ. (25)

The ratio PS/P̄S becomes a correction factor to the case of pure optically
thin emission.

The new integral for the line profile shape that accounts for the possibility
of anisotropic photon escape is:

dLl

dwz
= L0

∫ u(wz)

0

fV (u) g(u)

w3(u)

[

PS(u, µ)

P̄S(u)

]

du. (26)

Note that µ = µ(u) by virtue of the shape of the isovelocity surface. Equa-
tion (26) reduces to equation (20) when τS,0 . 1.
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Equation (26) still lacks the possibility of photoabsorption of X-ray pho-
tons by the wind. Photoabsorption by interstellar gas reduces the observed
number of source line photons received at the Earth, but it does not alter
the line profile shape. Photoabsorption by the wind can alter the line profile
shape because the amount of absorption depends on the column density of
the wind between the point of emission and the observer. The column den-
sity increases monotonically from the near side toward the back side along
a given ray; consequently, more severe photoabsorption is to be expected
for rearward isovelocity zones (i.e., with wz > 0) than for forward ones (i.e.,
with wz < 0).

Let κ(r) be the photoabsorptive coefficient, then the optical depth τ for
wind attenuation of X-rays will be given by

τ =

∫

κ(r) ρ(r) dz, (27)

where τ is the optical depth along a ray to some point in the wind (see
Fig. 1). Then the effect of photoabsorption for calculation of the line profile
can be included in equation (26) as follows:

dLl

dwz
= L0

∫ u(wz)

0

fV (u) g(u)

w3(u)

[

PS(u, µ)

P̄S(u)

]

e−τ du, (28)

For completeness the total line luminosity is

Ll =

∫ +1

−1

dLl

dwz
dwz. (29)

At this point equation (28) is a fairly sophisticated expression for the
wind emission line profile shape under the following assumptions: spher-
ical symmetry, smooth wind, monotonically increasing wind velocity (not
necessarily a beta law), and the Sobolev approximation. Clumping of the
emitting gas is implied by virtue of using a volume filling factor; however, it
is assumed that the integral representation remains valid. Clumping by the
absorbing component generally requires modification of equation (28) (see
Sect. 2.7); however, if the clumps are individually optically thin, then the
expression remains valid.

2.4. The Exospheric Approximation

Before exploring applications of equation (28), it is useful first to review
the “exospheric approximation” (e.g., Owocki & Cohen, 1999; Ignace & Os-
kinova, 1999), which represents a quick and easy approach to understanding
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Figure 2: Geometry for the exospheric approximation. The star is indicated as the central
sphere with radius R∗. The location of optical unity (τ = 1) along the line-of-sight to the
star center for a distant observer to the right is indicated by radius r1. That radius is
then taken to demarcate a sphere, shaded in magenta, for which X-rays can be seen only
exterior to its boundary.

some of the principle factors that influence the X-ray line emission from
stellar winds. This approximation is based on a severe simplification, and
yields inaccurate results in detail (e.g., Leutenegger et al., 2010); still, it is
intuitive in nature and can yield overall useful scalings, and so it is worth
review.

The exospheric approximation is a core-halo approach in which the radius
r1, at which τ = 1 in photoabsorption along the los from the star to the
observer, demarcates a division between inner radii where no X-ray photons
escape the wind versus outer radii where all X-ray photons escape the wind
(see Fig. 2). Using equation (27), this location is determined by the condition

τ = 1 =

∫

∞

r1

κ(r) ρ(r) dr. (30)

This expression is an implicit relation for r1, and its solution requires that
κ(r) be provided.

Frequently a constant absorption coefficient with κ(r) = κ0 has been
adopted (e.g., see Leutenegger et al., 2010). Using this case for illustration,
the relation for the radius of optical unity becomes
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1 = τ0

∫ u1

0

du

w(u)
, (31)

where the integral is reexpressed in terms of the inverse radius, u, and
u1 = R∗/r1. An optical depth scaling coefficient is also introduced as τ0 =
κ0 ρ0 R∗. Note that it has been common in the literature to use τ∗ as the
optical depth through the wind to the stellar radius (e.g., Owocki & Cohen,
2001). For κ(r) a constant, the relation between τ∗ and τ0 is

τ∗ = τ0

∫ 1

0

du

w(u)
. (32)

With constant expansion with w(u) = 1, the solution for the radius of
optical depth unity is r1 = τ0R∗. Bear in mind that τ0 = τ(λ), so the
extent of r1(λ) may vary from one line to another. The case of r1(λ) < R∗

means that the wind is largely transparent to X-rays at that wavelength.
The photoabsorptive absorption coefficient is comprised in large part by
bound-free opacity from H and He and from K-shell ionization of metals.
The overall energy trend can be crudely approximated as a power law with
κ(E) ∼ E−2.6 (Cassinelli & Olson, 1979).

The radius of optical unity can be derived analytically for a beta velocity
law. With β 6= 1, the solution for r1 is

r1 =
bR∗

1−
[

1 + b(β−1)
τ0

]

−1/(β−1)
. (33)

For β = 1, the solution becomes

r1 =
bR∗

1− e−b/τ0
. (34)

Note that when τ0 ≫ 1, both of these expressions reduce to r1 ∝ τ0, which is
the solution for a constant expansion wind. This arises because the optical
depth integral is an inward evaluation, not an outward one; so τ = 1 occurs
far from the acceleration zone of the flow where, in fact, the wind is in
constant expansion.

In the exospheric approximation, the total line emission is

Ll =

∫

∞

r1

4π η(r) dV (35)

where for simplicity an optically thin line is assumed. The lower limit of
the integral takes account of the wind absorption of X-ray photons. For a
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constant expansion wind in which fV = f0 and g = g0 are constants, the
solution to the integral becomes

Ll = L0 u1 =
L0(El)

τ0(El)
, (36)

where L0 is given in equation (21). More broadly, this result represents an
overall scaling for the luminosity of an optically thin line that forms in a wind
that is optically thick to X-rays. The implication is that a distribution of
normalized line luminosities Ll/L0 should scale inversely with τ0. Allowance
for v(r), fV (r), and/or g(r) will alter the result in detail, but overall one
still expects a trend of normalized line luminosities with El. The variation
of the optical depth with energy therefore provides a diagnostic of the wind
mass-loss rate, if the absorbing opacity is known (c.f., Cohen et al., 2010).

Now consider the case of a beta velocity law. The total line luminosity
is given by

Ll = L0 f0 g0

∫ u1

0

du

w2(u)
(37)

=
L0 f0 g0
b (2β − 1)

[

1

(1− bu1)2β−1
− 1

]

. (38)

with a reminder that u1 = u1(El). Again, the ratio Ll/L0 depends on the
energy of the line in question.

But what are the implications for the line profile shape? The radius r1 is
treated like the stellar photosphere in this core-halo approximation in terms
of (a) being a lower boundary for the integration that determines the line
emission and (b) acting in the form of stellar occultation. The isovelocity
zones are taken to terminate at the r1-sphere. In the core-halo approach,
the r1-sphere leads to occultation for some of the emission with redshifted
velocities, which leads to line asymmetry.

To be explicit, consider the case of a constant expansion wind, still with
fV and g as constants in the wind. An optically thin line would produce a
flat-top profile if occultation could be ignored. In the exospheric approxima-
tion, the flat-top morphology remains for blueshifted velocities, whereas the
redshifted portion takes on the shape

√

1− w2
z . However, when the wind is

optically thick to X-rays, a proper treatment of the photoabsorption reveals
that generally no portion of the line is flat-topped in shape.
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2.5. Thin and Thick Lines for Smooth Winds

Optically thin lines were explored in Owocki & Cohen (2001), who con-
sidered different velocity laws and filling factors. That paper also considered
different onset radii, rX , for the hot plasma. This parameter allows for an
offset of the X-ray emitting gas from the wind base, although recent work
indicates that wind shocks can develop quite close to the photosphere (for
more details, see Sundqvist & Owocki, 2013).

As a general rule, even without photoabsorption, thin X-ray emission
lines are asymmetric owing to stellar occultation. The profiles tend to be-
come more symmetric in appearance as the onset radius for the production
of the X-ray emitting gas is made larger. This corresponds to smaller values
of u(wz) for the upper limit to the integral in equation (28), and therefore
reduces the influence of stellar occultation. Increasing the onset radius also
tends to produce flat-top portions near line center.

The effect of photoabsorption is to enhance the asymmetry of the line. In
addition to reducing the overall line luminosity, photoabsorption by the wind
shifts location of peak emission away from line center toward blueshifted
velocities, although other parameters also influence where the peak occurs.
In changing the line shape, the line width (i.e., FWHM) is also altered.

When a line becomes optically thick to resonance scattering, the effect of
anisotropic escape from a Sobolev zone can make the line more symmetric,
an effect that is in opposition to the influence of photoabsorption. For
optically thick resonance line scattering (i.e., τS,0 ≫ 1), Leutenegger et al.

(2007) noted that the direction-dependent correction for photon escape is
given by

PS/P̄S =
1 + σ(u)µ2

1 + σ(u)/3
, (39)

where σ was given in equation (23). In this equation µ = cos θ, with θ as in
Figure 1. The σ parameter is a somewhat complicated function of radius.
However, photons appearing at line center correspond to µ = 0. Photon
escape toward the observer is enhanced where σ < 0, which occurs at radii
close to the star. In this way line optical depth can act to reduce the line
asymmetry caused by the photoabsorption.

2.6. The Special Case of a Constant Expansion Wind

It can be fruitful to consider limiting behavior to gain an understanding
of the influences of the different model parameters. Here the asymptotic be-
havior of thin and thick lines are described for a wind with a constant speed
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of spherical expansion. Aside from insights gained from asymptotic behav-
ior, applications may be found for winds that have a high optical depth in
photoabsorption. The Wolf-Rayet (WR) stars are the evolved counterparts
of the most massive stars (e.g., Langer, 2012). These stars are known to
have high mass-loss rates and dense winds. Their X-rays are thought to be
strongly absorbed (e.g., Pollock , 1987; Skinner et al., 2002; Oskinova et al.,
2003, 2012). At some wavelengths the X-rays will emerge predominantly
from the terminal speed flow of the wind.

2.6.1. The Limiting Behavior for Thin Lines

Following MacFarlane et al. (1991), Ignace (2001) showed that for a wind
that expands from a star at constant speed, the solution for the X-ray emis-
sion line profile is analytic with

dLl

dwz
= L0 ×

{

1−exp[−τ0 s1(wz)]
τ0 s1(wz)

for wz ≤ 0
1−exp[−τ0 s2(wz)]

τ0 s1(wz)
for wz > 0,

(40)

where the difference between the redshifted and blueshifted velocities arises
from considerations of stellar occultation. For wz ≤ 0, the fraction is an
escape probability that depends on τ0 and velocity shift. For wz > 0, the
fraction is similar to an escape probability, but at low optical depth, the
fraction recovers the effect of occultation. The two functions s1 and s2 are
given by:

s1(wz) =
θ

sin θ
=

cos−1(−wz)
√

1− w2
z

(41)

s2(wz) = θ = cos−1(−wz) (42)

In the limit of large photoabsorptive optical depth, the solution reduces to

dLl

dwz
=

L0(El)/τ0(El)

s1(wz)
, (43)

where the energy dependence is made explicit. This profile shape has peak
emission at wz = −1 and declines smoothly to zero at wz = +1.

Ignace (2001) showed that a volume filling factor with a power-law de-
pendence on radius gives a semi-analytic result. Recalling fl(u) = fV (u)g(u)
from equation (19), a power-law dependence is introduced for the line-
specific filling factor, with fl = fl,0 u

q, for fl,0 a constant and q > −1.
The line profile shape becomes
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Figure 3: Explicitly thin emission lines in the regime of large photoabsorbing optical depth
for a smooth wind. The different curves are for different line-specific volume filling-factor
power laws (see eq. [19]), with fl ∝ uq. The value of q ranges from −1 (solid curve) to
+2 (long dash dotted curve) in intervals of 0.5. The case of constant filling factor (q = 0)
is the short dashed curve. Note that all of the line profiles are normalized to have a peak
value of unity.

dLl

dwz
= L0

Γ(1 + q, umax τ0 s1)

(τ0 s1)1+q
(44)

where umax corresponds to the lower radius bound to the X-ray emission,
and takes account of stellar occultation (which depends on wz).

For τ0 ≫ 1, the Gamma function varies only weakly with wz (see Ap-
pendix A.), so that there is little error in taking umax = 1. Consequently
in this limit, the line profile shape is well described by

dLl

dwz
∝ s

−(1+q)
1 . (45)
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Figure 4: A portion of a Chandra HETG spectrum of the nitrogen-rich WR star WR 6
from 8 to 13 Å. Black is for the spectral data. Strong lines are labeled. Red is a model fit
assuming a constant expansion wind, as suggested by the sharp blue wings of the emission
lines. Note that some lines are blends. (Figure courtesy of D. Huenemoerder.)

Several example line profiles using equation (45) are displayed in Figure 3,
ranging from q = −1 to q = +2 in intervals of 0.5. The case of q = 0 is for fl
a constant (shown as short dashed). The case2 of q = −1 actually recovers
a flat-top profile shape (shown as solid) across the entire line. The value
of q serves mainly to alter the steepness of decline for the line profile as it
moves from peak emission at extreme blueshift to no emission at extreme
redshift. As a result, the FWHM of the line profile declines monotonically
with increasing q for w(u) = 1.

An interesting special case for applications of the preceding results can
be found among the WR stars. WR winds can be so thick to X-rays, that
observed lines form in the terminal-speed flow. The only example of high-
resolution X-ray lines from a (putatively) single WR star is WR 6 (Huen-
emoerder et al., 2015). When the line emission emerges from large radii,
line-profile fitting no longer offers constraints on Ṁ for the wind, aside from

2Formally, q = −1 leads to a line luminosity that diverges, which is unphysical. The
example has only heuristic value in showing that a flat-top profile is a limiting case.
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requiring that τ0 ≫ 1. On the other hand, ambiguities about the choice of
wind velocity law (e.g., the value of β) or the onset radius, rX , are no longer
a concern.

Figure 4 shows an application of equation (45) to a Chandra HETG
spectrum of WR 6 (based on Huenemoerder et al., 2015). The figure shows
a portion of the spectrum, with data in black and model line profiles in red.
Steep blue wings to the line profiles do indeed suggest that the lines form
in the terminal-speed flow. However, different lines require different values
of q.

One may interpret the different values of q for different lines as indicat-
ing a temperature distribution in the hot plasma at large radius. In this
consideration a range in FWHMs among lines does not translate to lines be-
ing formed in different velocity regimes, since all the model profiles assume
v(r) = v∞. Indeed, allowing for the line width to be a free parameter of
the model, Huenemoerder et al. (2015) find that fits to the observed lines
are consistent with all the resolved lines being formed in a constant-speed
outflow.

Figure 5 illustrates the contribution function for the total line luminosity,
dLl/dr. This refers to how shells of width dr contribute to the total emergent
line luminosity, Ll. The calculation accounts for wind absorption. The
curves are for the constant expansion case, with each curve for a different
value of q as labeled. The plot is a log-log plot against inverse radius, u. In
this example a wind optical depth of τ0 = 10 is chosen. Note that optical
depth unity along the line-of-sight occurs at u1 = 1/τ0 = 0.1, as indicated
in the figure. With the exception of q = −0.5, the most luminous shell for
each curve actually occurs below the optical depth unity location.

Note that the results described above assume that κ(r) = κ0. This is
understood not always to be the case. (Leutenegger et al., 2010; Hervé et al.,
2012, 2013). However, it is expected that κ approaches a constant value at
large radii, and so the asymptotic results should hold if photoabsorption is
sufficiently strong.

2.6.2. The Limiting Behavior for Thick Lines

Ignace & Gayley (2002) derived the influence of resonance line scattering
on X-ray emission lines in the limit of a constant expansion wind. For strong
wind absorption, the profile shape for a thick line can be obtained from the
result for a thin line as multiplied by an additional factor that depends
on wz. Taking the solution equation (43) for large τ0, and multiplying by
τS,0 (1−w2

z ) gives the profile shape for a thick line (Ignace & Gayley, 2002):
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Figure 5: The luminosity contribution of individual shells to the total line luminosity is
dLl/dr. For the case of constant expansion, the function is shown for different q values
against u = R∗/r in a logarithmic plot. These curves are for τ0 = 10; the location of
optical depth unity u1 is indicated by the vertical magenta line.

dLl

dwz
∝

τS,0
τ0

×
(1− w2

z )

s1(wz)
. (46)

This result can be extended to the case of a power law in fl, all other
assumptions being the same. Using equation (45) and multiplying by the
factor as above, the thick line result for a constant expansion wind with
large τ0 is

dLl

dwz
∝

(1− w2
z )

s1+q
1

(47)

Example line profiles for different values of q are shown in Figure 5 in the
same way as displayed in Figure 3. For thin lines, q = −1 recovers a flat-top
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profile, as if no wind absorption was present. For thick lines the case q = −1
recovers a downward-opening parabolic profile of the form (1 − w2

z ), which
is the result for a thick line with τ0 = 0.

2.7. Line Profiles from Winds with Clumping

There is considerable evidence for departures from a smooth wind, indi-
cating that massive star winds are structured. This evidence derives from
discrete absorption components (or DACs) in the absorption troughs of UV
P Cygni resonance lines (e.g., Prinja & Howarth, 1986; Massa et al., 1995),
optical emission line variability (Lépine et al., 1996; Lépine & Moffat, 2008),
polarimetric variability (Robert et al., 1989; Brown et al., 1995; Rodrigues
& Magalhães, 1995), and a relative absence of X-ray variability (Cassinelli &
Swank, 1983; Nazé et al., 2013). The wind structure consists of a stochastic
component and possibly a globally-ordered component. For the stochastic
structure, a natural explanation is the intrinsic instability associated with
the line-driving force (Castor et al., 1975). A popular candidate for globally
ordered structure is found in co-rotating interaction regions, or CIRs (e.g.,
Mullan, 1986; Cranmer & Owocki, 1996; Dessart, 2004; St-Louis et al., 2009;
Ignace et al., 2015).

“Clumping” is the term that is associated with the ubiquitous stochastic
component of structured massive star winds. There have been several sim-
ulations of radial clumping effects in 1-dimensionl (1D) flow. (e.g., Owocki
et al., 1988; Feldmeier et al., 1997a). Shocks form to produce a hot plasma
component of the wind. Being 1D, the structures take the form of spherical
shells. Many researchers use the 1D results as motivation for 3D clumping
scenarios. The structured flow seen in 1D are taken to occur independently
in a large number of sectors about the star. Although fully 3D simula-
tions have not been reported, 2D simulations have been explored (Dessart
& Owocki, 2003). In 2D, clumped structures take the form of rings, and the
results support a picture of highly fractured and evolving wind structure
with stellar latitude.

How does clumping influence the calculation of X-ray line profiles? Cer-
tainly, it adds complexity to the evaluation, depending on the nature of
the adopted assumptions. Inspired by Feldmeier et al. (1997a,b), Feld-
meier et al. (2003) developed a model for a “fragmented” wind in which the
cool-wind absorbing component took the form of an ensemble of circular
“pancake-shaped” structures that propagate radially from the star. These
compressed fragments lead to geometric avenues for increasing the escape
of X-ray photons from the far hemisphere of the star relative to the smooth
wind case. At high photoabsorptive optical depths, model emission line
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profiles are more symmetric as compared to the smooth wind case. Within
the context of these fragmented wind models, Oskinova et al. (2004) used a
monte carlo approach to confirm the semi-analytic results, and considered a
variety of clump structures in a parameter study of line profile shapes.

One important consideration is making clear what is clumped. The winds
are normally considered to have 2 components: the X-ray emitting gas and
the cooler gas that can give rise to photoabsorption of X-rays. The volume
filling factor, fV , that has been used up to this point refers to the hot
plasma component. In a smooth wind, this hot component is considered
to be uniformly “intermingled” with the cooler component; details about
the spatial relationship between the two components is often not specified
beyond characterization in terms of fV . However, in Feldmeier et al. (2003)
and subsequent work, much attention is given to the clumping of the cool
component. Consequently, a new volume filling factor must be introduced,
fabs, for the cool, absorbing component as distinct from the X-ray emitting
gas.

Similar in spirit to Feldmeier et al. (2003), Owocki & Cohen (2006) intro-
duced a formalism based on “porosity”. Their approach is a time-averaging
of the stochastic flow, and is described in terms of a characteristic porosity
length-scale. The two methods of Feldmeier et al. (2003) and Owocki &
Cohen (2006) are generally commensurate. Whereas Feldmeier et al. (2003)
used “fragmentation frequency” to parametrize the degree of clumping in
the wind, Owocki & Cohen (2006) used the porosity length.

At this point it is useful to establish terminology. Macroclumping and
porosity have been used somewhat interchangeably. Here I suggest that
macroclumping explicitly refers to the approach that treats clumps as dis-
cretized structures. Such is the case of Oskinova et al. (2004), who modeled
line profile shapes using monte carlo simulations. Porosity is then macro-
clumping when the radiative transfer through the clumped medium can be
described with integral relations. In the macroclumping approach, a clumpy
wind can produce time-variable line shapes that are not necessarily smooth,
owing to discrete structures that evolve through the flow. The porosity
approach yields smooth line shapes that do not vary in time. Finally, mi-
croclumping is the limit in which all wind clumps are optically thin so that
radiative transfer effects through clumps can be ignored.

Oskinova, Feldmeier, & Hamann (2006) and Sundqvist et al. (2012) pro-
vide a summary of the porosity formalism with application to X-ray line
profiles. Again, the porosity is in reference to the absorbing medium through
which the source X-rays must escape to be observed. An effective absorption
coefficient is introduced (Feldmeier et al., 2003; Oskinova et al., 2004):

21



Figure 6: Model line profiles like those of Fig. 5, but now for optically thick lines instead
of thin ones. The profiles are again for different q values from −1 (highest) to +2 (lowest).
The profiles are relative to the case of q = −1.

κeffρ = χeff = nclAcl Pcl. (48)

The opacity χ is noted here since it is often used in the literature. The
number density of clumps is ncl, the cross-section of a clump is Acl, and
the probability that a photon will be absorbed by a clump is Pcl. This
probability can be expressed as

Pcl = 1− e−τcl , (49)

for τcl the optical depth of a photoabsorbing clump. The clump optical
depth is given by

τcl = κ ρ̄ h, (50)
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where ρ̄ is the average density, and h is the porosity length with

h =
1

nclAcl
. (51)

Then the relation between the effective and average absorption coefficients
is

(κρ)eff =

(

1− e−τcl

τcl

)

κρ̄. (52)

Here the factor in parentheses involving the clump optical depth is an escape
probability from the clump (however, see Sundqvist et al., 2012, for further
discussion on “bridging laws” for the effective opacity). The factor reduces
to unity for thin clumps – the limit of microclumping – and becomes 1/τcl for
thick clumps. When the absorbing clumps are optically thin, the smooth
wind result for the line profile calculation is recovered. It is only when
clumps become optically thick that porosity significantly influences the line
shape, an influence that in detail depends on the clump geometry.

As an example, Figure 7 shows model X-ray line profiles in the limiting
case of constant spherical expansion using the porosity formalism. Generally,
the porosity length can vary with location in the wind. With v(r) = v∞,
the porosity length is a constant as a function of r, with a value given
by h∞ (e.g., Sundqvist et al., 2012). Here the subscript “∞” is used in
analogy with the wind velocity; v∞ is the asymptotic wind speed, and h∞
is the asymptotic porosity length. The profiles of Figure 7 were calculated
for τ0 = 1 and optically thin lines (i.e., τS,0 ≪ 1) assuming “pancake”-
like clump fragments. The fragment geometry and the constant wind speed
give a porosity length h(r, µ) = h∞/|µ|, which can also be expressed as
h = h∞/|wz|.

In Figure 7, the red curve is the analytic solution for a smooth wind from
Ignace (2001) at τ0 = 1. The blue curve corresponds to the smooth wind
case with zero photoabsorption (i.e., τ0 = 0). Stellar occultation is included.
The four other curves in black are for h∞/R∗ = 0.01, 0.1, 1.0, and 10, with
the smallest value corresponding to the solid curve (lying nearly atop of the
red profile), and the largest value to the long-dashed curve (nearest to the
blue profile). The figure illustrates how at fixed τ0, large porosity lengths
make the wind more transparent to X-rays, as the absorbing opacity becomes
more spatially concentrated.

2.8. The Special Case of a Linear Velocity Law
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Figure 7: Left: An illustration of porosity effects on line profile shapes. The profiles are
normalized to a peak value of unity. Red is for a smooth wind with τ0 = 1; blue is τ0 = 0.
In black from solid to long dash are profiles with h∞ = 0.01, 0.1, 1.0, and 10, respectively,
all with τ0 = 1. Right: Shown is the percent difference between normalized line profiles
appearing in the left panel, with the red curve as the reference profile. Magenta (top) is
the percent difference between the blue curve and the red one. The black curves are for
winds with porosity corresponding to the lines in the left panel. Moving from small to
large porosity lengths leads to a wind that is increasingly optically thin to photoabsorption
for fixed τ0.

Owocki & Cohen (2001) presented a parameter study for line profile
shapes for smooth winds. As previously noted, it is standard to adopt a
beta velocity law for the wind velocity. The rise in speed, from an inner
value of v0 to an asymptotic value of v∞, is approximately linear with ra-
dius for a portion of the inner wind. As a way of illustrating the influences
of different model parameters, example line profiles are presented here using
a linear velocity, with v(r) = kr,

One motivation for a linear velocity law is that the photoabsorbing optical
depth has an analytic solution for κ(r) a constant. A second motivation is
the interesting property that the escape of photons is always isotropic for
a linear velocity, even when the line is optically thick. This means that
PS/P̄S = 1 for all values of τS,0.

Conceptually, the emission profile contribution from a geometrically thin
spherical shell is flat-topped in shape, regardless of optical depth for a linear
law. Ignoring stellar occultation, the FWHM of the shell’s contribution is
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2v(r). A radius-dependent volume filling factor serves to modify the emission
amplitude of this flat-top contribution. By contrast photoabsorption serves
to make the emission contribution deviate from a flat-top shape. Stellar
occultation blocks a portion of the blueshifted side of the shell, in a way
that depends on the shell’s radius.

It is useful now to introduce a characteristic speed for normalizing the
Doppler velocity shifts. Let rc be the radius where a characteristic velocity
vc is achieved. Then vc = k rc. Stellar winds have terminal speeds, whereas
the linear law formally has no maximum speed value. So, vc = v∞ is chosen
for convenience, even though the wind speed never achieves a terminal value.
However, the r−3 decline in density ensures that the large radius wind makes
relatively little contribution to the emission profile in the examples that will
be shown. It is also useful to introduce a minimum speed, v0 = k R∗. So,
the normalized wind speed is w = v(r)/vc, for which w = 1 occurs where
v = vc, and w0 = v0/vc.

The normalized Doppler velocity shift is wz = −v(r)µ/vc = −z/rc =
−µ r/rc. Thus, wz is a constant for z a constant, and isovelocity zones are
therefore parallel planes that are oriented orthogonal to the observer los.

Assuming κ(r) = κ0 throughout the wind, and using equation (27), the
photoabsorbing optical depth to any point in an isovelocity zone has an
analytic solution. Again, v ∝ r implies ρ ∝ r−3, and the integral for the
optical depth along a ray of impact p is

τ(r, wz) = τ0

∫

∞

z(wz)

R2
∗
dz

r3
.

As before, the optical depth scaling τ0 = κ0ρ0R∗, and r2 = p2 + z2. Using
a change of variable with z = p/ tan θ, the integral becomes

τ(r, wz) = τ0
R2

∗

p2

∫ θ

0
sin θ′ dθ′.

Changing to the inverse radius u, and noting that p = r sin θ, the solution
for optical depth becomes:

τ(r, wz) = τ0 u
2

(

1− cos θ

sin2 θ

)

,

= τ0

(

u2

1− wz u/uc

)

, (53)

where uc = R∗/rc, and
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Figure 8: Example emission line profile shapes using v(r) ∝ r, with each profile normalized
to peak emission. Each panel shows four model profiles for τ0 = 0 (solid), 1 (dotted), 4
(short dash) and 14 (long dash). Upper left is for a constant photoabsorbing opacity; upper
right is for one that varies with radius (see text). Lower panels are for constant absorption
coefficient. Lower left is for rX = 1.4R∗, and lower right is for a radius-dependent filling
factor (see text).

cos θ = −wz u/uc. (54)

However, the wind opacity can be influenced by the radial dependence
of the ionization in the wind, such as the recombining of ionized He (Hervé
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et al., 2012). To illustrate such effects for the parameter study, κ(r) =
κ0 (1 − u) is chosen3. In this case the resultant optical depth is more com-
plicated, but still analytic. Following the steps that led to equation (53),
the optical depth with the above κ(r) is

τ(r, wz) = τ0

[

u2
(

1− cos θ

sin2 θ

)

−
u3

2

(

θ − sin θ cos θ

sin3 θ

)]

. (55)

The volume filling factor is another parameter that is commonly allowed
to vary. The examples used so far in this article have been power laws for
fV . Here a new form is chosen, with fV ∝ u (1 − u). This version achieves
a maximum at r = 2R∗. Based on wind simulations, it is reasonable that
measures for the wind structure can achieve peak values at intermediate radii
(e.g., Runacres & Owocki, 2002). For this example the functional form and
location of the maximum are arbitrary and used for illustrative purposes
only. Finally, line profiles are calculated with an onset radius, rX ≥ R∗.
Figure 8 shows model line profiles for different combinations of κ(r), fV (r),
and rX . Line optical depth is not a consideration since the emissivity is
always isotropic for a linear velocity law. In all of these examples, w0 = 0.2
is used.

The upper left panel of the figure shows line profiles with a constant
absorption coefficient, κ = κ0, using equation (53). The optical depth coef-
ficient values are τ0 = 0 (solid), 1 (dotted), 4 (short dashed), and 14 (long
dashed). Upper right has the same values of τ0, but for κ(r) ∝ (1− u) and
using equation (55). For a given value of τ0, lowering the inner absorption
coefficient increases the relative prominence of the inner wind as making the
dominant contribution to the line emission. Note that in both of the upper
panels, rX = R∗ and fV is a constant.

At lower left in Figure 8, the profiles are for rX = 2R∗, constant filling
factor, constant absorption coefficient, and the same values of τ0 as in the
upper panels. Lower right shows the variable filling factor described above,
now with rX = R∗ restored, also a constant absorption coefficient, and again
the same four values of τ0.

As expected, increasing the optical depth alters the line shape, by shifting
peak emission blueward, and changing the line width. Other parameters
have an influence on the shape as well. For profiles in the upper right

3Note that if κ ∝ w(u), the wind photoabsorption optical depth actually reduces to the
case of a constant expansion flow, as in Ignace (2001), although the emissivity function
and the isovelocity surfaces still depend on w(u). A consideration of κ ∝ wm for beta laws
is given in Appendix B.
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panel, where the opacity starts low and increases toward a constant at large
radius, the line shape is still significantly altered, although interestingly the
blueward shift of the line emission peak is much less pronounced.

It should be noted that the chosen value of w0 is rather large, at 20% of vc.
For a beta law, the value of w0 is typically much smaller (more like 0.03).
In Figure 8, the relatively high value of w0 leads to a central blueshifted
portion of the line profile that is flat-topped for low τ0. The relatively large
value of w0 serves to emphasize the influence that stellar occultation can
have.

3. Summary and Conclusions

Modeling X-ray emission lines from single, spherically symmetric, smooth,
massive star winds requires specification of the velocity structure for the hot
plasma, the photoabsorbing opacity with radius, and the temperature struc-
ture. The velocity structure determines the density structure, and since the
emissivity scales as ρ2, the density sets the overall amplitude for the line
emission throughout the wind. A line volume filling factor can be included
as a free parameter to match observed line shapes. Physically, the filling
factor is motivated by a picture of embedded wind shocks.

Inclusion of a structured wind, as opposed to a smooth one, is certainly
justified given the vast amount of multi-wavelength evidence for clumping.
The influence of wind clumping for modeling of X-ray lines has been ad-
dressed in several papers (Feldmeier et al., 2003; Oskinova et al., 2004; Os-
kinova, Feldmeier, & Hamann, 2006; Owocki & Cohen, 2006; Sundqvist
et al., 2012).

The papers that deal with macroclumping or porosity effects usually treat
the wind as having two components: the cool wind and the hot plasma. The
cool wind is treated as clumped, and the hot plasma is effectively smoothly
distributed in most applications. If the hot plasma is not smoothly dis-
tributed, then specification of its spatial distribution in relation to the cool,
absorbing clumps is required for line profile calculations to proceed (e.g., as
in Feldmeier et al., 2003; Oskinova et al., 2004).

Cassinelli et al. (2008) adopted a different approach to modeling X-ray
lines from a structured wind flow. They used the idea of a wind consist-
ing of two cool components: dense clumps and an interclump medium (c.f.,
Zsargó et al., 2008; Sundqvist et al., 2010; Šurlan et al., 2012). If the two
components have a velocity difference, then a bow shock develops around
the cool clumps to produce yet a third component, called the “clump bow
shock”. For a sufficiently large velocity difference, the post-shock gas of this
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third component will be hot enough to emit X-rays. The properties of an
isolated clump bow shock were investigated in 2D hydrodynamic simula-
tions. Assuming adiabatic cooling, the simulations led to a prediction for
the differential emission measure arising from a single bow shock.

Ignace et al. (2012) developed a phenomenological model that “peppered”
a wind flow with clump bow-shocks to calculate X-ray emission line profiles
from the ensemble. Those results represent an extension for a considered in
Feldmeier et al. (2003), who modeled flattened shock fragments with spa-
tially correlated emitting and absorbing components (their Sect. 4.4 on “na-
tal fragment absorption”). The line profile shapes showed features that are
inconsistent with observations. By contrast the case of clump bow-shocks
indicate that the spatial correlation of cool and hot components can in prin-
ciple produce reasonable emission line profiles. However, the simulations of
Cassinelli et al. (2008) did not evolve a clump through the flow. Instead,
Ignace et al. (2012) made use of beta velocity laws to impose a velocity dif-
ference between the clumps and interclump gas. Future modeling should
address the viability of significant velocity differences for producing hot gas,
and should include radiative cooling of the post-shock gas to better match
conditions in some massive star winds.

It is worth commenting on the nature of the data to which line pro-
file modeling is applied. Good-quality resolved spectra for massive star
winds require typical exposures of many hours with current instrumenta-
tion. Such times are comparable to, or longer than, the characteristic wind
flow timescale of R∗/v∞. Thus, resolved X-ray line profiles are not usually
reflective of a snapshot of the wind flow; instead, the flow structure will
have evolved as the spectral data are accumulated. In fact, spectra may
be obtained in multiple exposures that can be widely separated in time. In
order to achieve better signal-to-noise, the separate exposures are combined.
The end result is a measured spectrum that is a time average of the vari-
able wind-structure. This suggests that it is reasonable to use smooth wind
models, or clumped wind models that assume sphericity in time average,
when fitting observed spectral lines.

Ultimately, an observed X-ray line profile shape contains information that
can be used to constrain the properties of the bulk wind and the hot plasma
component. A number of parameters are used in fitting model line profiles to
observed ones, such as the onset radius for the hot plasma (rX in this review),
the volume filling factor fV (r), the temperature distribution g(r), the wind
absorbing coefficient κ(r), and possibly the relevance of resonance scattering
effects in rare cases. A strong motivation for line profile fitting has been
the possibility of measuring wind mass-loss rates (e.g., MacFarlane et al.,
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1991; Kramer, Cohen, & Owocki, 2003; Oskinova, Feldmeier, & Hamann,
2006). There are many papers that address Ṁ determinations from line
fitting, with recent examples including Leutenegger et al. (2013); Cohen
et al. (2014a); Rauw & Nazé (2015); Shenar et al. (2015). A review of these
and other results from spectral modeling and line profile fitting are reviewed
in a separate contribution to this special issue of the journal (Oskinova,
2015).

Acknoledgements

Thanks are due to Mike Corcoran and the reviewers for several helpful
comments to improve this paper. Special thanks to David Huenemoerder
for providing Figure 4.

Appendix A. Profile Shapes for Constant Expansion and Con-

stant Photoabsorption Coefficient with Power-Law

Filling Factors

For a power-law filling factor and κ(r) = κ0, a constant, the emission
profile shape for a thin line from a smooth wind in constant expansion is
analytic if stellar occultation is ignored. The derivation begins with equa-
tion (28) by setting w = 1 and taking fl = fV g = fl,0 u

q. Also, the bracketed
factor for resonance scattering effects will be unity for a thin line. Finally,
the upper limit to the integral becomes 1.

The integral to be solved is then

dL

dwz
= L0

∫ 1

0
uq e−τ(θ) u du, (A.1)

for θ as in Figure 1. The solution for integer q is

dL

dwz
= L0

q!

τ1+q

{

1− e−τ
q

∑

k=0

τk

k!

}

(A.2)

where

τ = τ0

(

θ

sin θ

)

= τ0 s1(wz), (A.3)

and s1 is given in equation (41). With κ a constant, the optical depth
coefficient τ0 = κ0 ρ0 R∗ is also the total absorbing optical depth to the
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photosphere along a radial (i.e., τ0 = τ∗). Note that if q = 0, the optical
depth factors reduce to the escape probability (1− e−τ )/τ .

There are two comments to make regarding this result. The first is that
ignoring stellar occultation is reasonable if τ0 is of order unity or larger
(i.e., the inner wind is not optically thin to X-rays). The second, and more
important, is that if τ0 ≫ 1, it is evident that the summation term inside
the curly brackets tends to zero, for all q, because of the exponential factor.
In this case the solution reduces to

dL

dwz
= L0

q!

τ1+q
. (A.4)

To obtain corresponding results for optically thick lines (i.e., τS,0 ≫ 1),
the preceding solutions are to be multiplied by (1− w2

z ).

Appendix B. Considerations of a Radius-Dependent Opacity with

κ ∝ w
m

The evaluation of κ(r) for purposes of computing photoabsorption of X-
rays throughout a wind flow can depend on the ionization of He, as already
noted. The trend is for κ to increase outwardly from the star, eventually
to achieve an asymptotic constant value at large radius (e.g., Hervé et al.,
2012).

This section presents a convenient parametrization for exploring the ef-
fects of radius-dependent absorption coefficient on line profile shapes. This
parametrization is not meant to reproduce, in detail, the output from numer-
ical radiative transfer calculations of winds, such as PoWR4 or CMFGEN5.
Instead, the goal is to characterize the gross trend of κ(r) to obtain an
analytic form for the wind absorbing optical depth.

Using equations 6 and (27), the optical depth to an arbitrary point in
the wind is

τ(u, µ) = τ0

∫

u2
γ(r)

w(r)

dz

R∗

, (B.1)

where u = R∗/r. The integral is along a ray of fixed impact parameter p.
The parameter γ(r) allows for the radius-dependence of κ(r), with κ(r) =
κ∞ γ(r) for κ∞ an asymptotic value (which may be wavelenth dependent).

4www.astro.physik.uni-potsdam.de/ wrh/PoWR/powrgrid1.html
5kookaburra.phyast.pitt.edu/hillier/web/CMFGEN.htm
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The optical depth coefficient is then τ0 = κ∞ ρ0 R∗. The expression can be
recast in terms of angle θ (see Fig. 1), with z = p/ tan θ, to give

τ(r, µ) = τ0
R∗

p

∫ θ

0

γ(u)

w(u)
dθ′, (B.2)

where the prime indicates a variable of integration, Note that p = r sin θ,
µ = cos θ, and u = u(θ′).

The wind velocity law is commonly expressed as a beta velocity law:
w = (1 − bu)β , with b a parameter that sets the inner wind speed, so that
w0 = (1 − b)β at u = 1. Choosing γ = wm is a way to mimic the gross
trend for κ(r) . This choice allows for analytic solutions for τ under certain
conditions.

The integration for optical depth becomes

τ(r, µ) = τ0
R∗

p

∫ θ

0
wm−1 dθ′ (B.3)

= τ0
R∗

p

∫ θ

0
(1− bu)β(m−1) dθ′. (B.4)

The integral is analytic when the product β(m− 1) is a positive integer.
For K = β(m− 1) an integer, and using a change of variable u = R∗/r =

R∗ sin θ′/p, the integral becomes

τ(r, µ) = τ0
R∗

p

∫ θ

0

(

1− b
R∗

p
sin θ′

)K

dθ′. (B.5)

With integer K, the parenthetical can be expanded to be of the form
∑

ak sin
k θ′, for k from 0 to K, and ak are constant coefficients of the inte-

gration. Each term then gives an integral of the form

p−(1+k)

∫ θ

0
sink θ′ dθ, (B.6)

which can be individually evaluated to obtain the solution for τ .
It is useful to consider a characteristic radius rκ, at which the absorption

coefficient κ ∝ wm achieves half of its asymptotic value. This radius can be
expressed in terms of of the product βm:

rκ =
21/βm

21/βm − 1
bR∗. (B.7)
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A common choice for modeling massive star winds is β = 1. With β
fixed, m determines the radial extent over which κ varies significantly. For
example, rκ/bRκ = 2, 3.4, and 4.8 for m = 1, 2, and 3. Following are
solutions for τ at these three values of m. In each case, after solving for the
integration, the substition p = R∗ sin θ/u is used to obtain τ in terms of the
inverse radius and polar angle.

With m = 1 (K = 0), the optical depth is

τ = τ0 u

(

θ

sin θ

)

, (B.8)

which, although the velocity follows a β = 1 law, is the same result as for a
constant expansion wind. For m = 2 (K = 1), the solution is

τ = τ0 u

[(

θ

sin θ

)

− b u

(

1− cos θ

sin2 θ

)]

. (B.9)

Finally, the case of m = 3 (K = 2) gives

τ = τ0 u

[(

θ

sin θ

)

− 2b u

(

1− cos θ

sin2 θ

)

+
b2 u2

4

(

2θ − sin 2θ

sin3 θ

)]

. (B.10)

Note that the results derived in this Appendix are different from expres-
sions given in eqs. (53) and (55). Those expressions are for a linear velocity
law with v ∝ r, whereas a beta velocity law is considered in this section.
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