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AVERAGING ALGEBRAS, REWRITING SYSTEMS AND GR ÖBNER-SHIRSHOV
BASES

XING GAO AND TIANJIE ZHANG

Abstract. In this paper, we study the averaging operator by assigninga rewriting system to it.
We obtain some basic results on the kind of rewriting system we used. In particular, we obtain a
sufficient and necessary condition for the confluence. We supply the relationship between rewriting
systems and Gröbner-Shirshov bases based on bracketed polynomials. As an application, we give
a basis of the free unitary averaging algebra on a non-empstyset.
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1. Introduction

There is an extensive literature on averaging operators under various contexts, motivated largely
by the fact that they are generalizations of conditional expectation in probability theory. Let us
recall briefly. As early as 1895, O. Reynolds in a famous paperon turbulence theory [33] already
studied the averaging operator because of the closed relationship between averaging operators
and Reynolds operators—an idempotent operator is an averaging operator if and only if it is a
Reynolds operator. Kolmogoroff and Kampé de Fériet defined explicitly the averaging operator
in 1930s [25, 29] and began their study on it in a series of papers. G. Birkhoff continued the
study of averaging operators using the method of functionalanalysis [6]. S. T. C. Moy discussed
the relationship of averaging operators with conditional expectation in probability theory and
studied the connection between averaging operators and integration theory in probability [30].
J. L. Kelley [24] characterized the idempotent averaging operators on the Banach algebra of all
real valued continuous functions vanishing at the infinity on a locally compact Hausdorff space.
G. C. Rota [35] in 1964 showed that a continuous Reynolds operator on the algebraL∞(S,Σ,m) of
bounded measurable functions on a measure space (S,Σ,m) is an averaging operator if and only
if it has closed range.

In the above literatures, most studies on averaging operators are for various special algebras
and the topics are largely analytic. The algebraic study on averaging operators has also been
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deepened and generalized. W. Cao [12] studied averaging operators in the general context from an
algebraic point of view. He gave the explicit construction of free commutative averaging algebras
and investigated the Lie algebra structures induced naturally from averaging operators. By way
of analogy with the associative algebra as the enveloping algebra of the Lie algebra, J. L. Loday
defined the diassociative algebra as the enveloping algebraof the Leibniz algebra [28]. M. Aguiar
showed that a diassociative algebra can be derived from an averaging associative algebra [1]. A
further algebraic and combinatorial study of averaging operators was carried out in [21].

The averaging operators are interested also because they are closely related to Reynolds opera-
tors, symmetric operators and Rota-Baxter operators [15, 38, 10]. It is worth mentioning that the
Rota-Baxter operator has broad connections with many areasin mathematics and mathematical
physics [3, 4, 20]. In particular, L. Guo and J. Pei in a recent paper [21] obtained a connection
between averaging operators and Rota-Baxter operators: the algebraic structures resulted from
the actions of the two operators are Koszul dual to each other. In that paper [21], L. Guo and J.
Pei also gave a basis of the free nonunitary (noncommutative) averaging algebra on a non-empty
set. It is natural to consider the case of the free unitary (noncommutative) averaging algebra on a
non-empty set, our main object of study in the present paper.

Gröbner and Gröbner-Shirshov bases theory was initiatedindependently by Shirshov [37],
Hironaka [23] and Buchberger [11]. It has been proved to be very useful in different branches
of mathematics, including commutative algebras and combinatorial algebras, see [7, 8, 9]. Ab-
stract rewriting system is a branch of theoretical computerscience, combining elements of logic,
universal algebra, automated theorem proving and functional programming [2, 31]. The theories
of Gröbner-Shirshov bases and rewriting systems are successfully applied to study operators and
operator polynomial identities [17, 22].

In the present paper along this line, using the theories of Gröbner-Shirshov bases and rewriting
systems, we construct a basis of the free unitary (noncommutative) averaging algebra on a non-
empty set. Terminating and confluence are essential and desirable properties of a rewriting
system. To use the tools of Gröbner-Shirshov bases and rewriting systems, we obtain a sufficient
and necessary condition for the confluence of the kind of rewriting system we used. We supply
the relationship between Gröbner-Shirshov bases and rewriting systems based on bracketed poly-
nomials. Applying the method we obtained for checking confluence, we successfully prove that
the rewriting system associated to the averaging operator is confluent and then convergent with a
suitable order. Let us emphasize that there are a lot of forksin the process of checking confluence.
We handle technically most of them in a unified way. These techniques can also be used to study
other operators. It is well known that in the category of any given algebraic structure, the free
objects play a central role in study other objects. Thus as anapplication, we give a basis of the
free unitary (noncommutative) averaging algebra on a non-empty set.

Our characterization of averaging operators in terms of Gr¨obner-Shirshov bases and rewriting
systems reveals the power of this approach. It would be interesting to further study operators and
operator polynomial identities by making use of the two related theories: Gröbner-Shirshov bases
and rewriting systems.

The layout of the paperis as follows. In Section2, we first recall the concepts of averaging
algebras and free operated algebras. We next recall some necessary backgrounds of Gröbner-
Shirshov bases and rewriting systems. We obtain some basic results on the kind of rewriting
system we used. In particular, we obtain a sufficient and necessary condition to characterize the
confluence (Theorem2.36). We end this section by supplying the relationship betweenthe two
powerful tools—Gröbner-Shirshov bases and rewriting systems (Theorem2.41). Section3 is
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devoted to a basis of the free unitary averaging algebra on a non-empty set. In order to achieve
this purpose, we assign a rewriting system to the averaging operator (Eq. (19)). We show this
rewriting system is convergent (Theorem3.10). We end this section by giving a basis of the free
unitary (noncommutative) averaging algebra on a non-emptyset (Theorem3.11).

Some remark onnotation. We fix a domaink and a non-empty setX. Denote byk× := k \ {0}
the subset of nonzero elements. We denote thek-span of a setY by kY. For an algebra, we mean
a unitary associative noncommutativek-algebra, unless specified otherwise. For any setY, let
M(Y) be the free monoid onY with identity 1. We use⊔ for disjoint union.

2. Gröbner-Shirshov bases and rewriting systems

In this section, we first recall the definition of averaging algebras and characterize free av-
eraging algebras as quotients of free operated algebras. Wethen recall some backgrounds on
Gröbner-Shirshov bases and rewriting systems.

2.1. Free averaging algebras.An averaging algebra in the noncommutative context is givenas
follows.

Definition 2.1. A linear operatorA on ak-algebraR is called anaveraging operatorif

A(u1)A(u2) = A(A(u1)u2) = A(u1A(u2)) for all u1, u2 ∈ R.

A k-algebraR together with an averaging operatorA on R is called anaveraging algebra.

To characterize the free averaging algebra, let us recall the free operated algebra [9, 19, 27].

Definition 2.2. An operated monoid(resp.operated k-algebra, resp.operated k-module) is
a monoid (resp.k-algebra, resp.k-module)U together with a map (resp.k-linear map, resp.
k-linear map)PU : U → U. A morphism from an operated monoid (resp.k-algebra, resp.
k-module) (U,PU ) to an operated monoid (resp.k-algebra, resp.k-module) (V,PV) is a monoid
(resp.k-algebra, resp.k-module) homomorphismf : U → V such thatf ◦ PU = PV ◦ f .

For any setY, define
⌊Y⌋ := {⌊y⌋ | y ∈ Y},

which is a disjoint copy ofY. The following is the construction of the free operated monoid on
the setX, proceeding via the finite stageMn(X) recursively defined as follows. Define

M0(X) := M(X) andM1(X) := M(X ⊔ ⌊M0(X)⌋).

Then the inclusionX ֒→ X ⊔ ⌊M0⌋ induces a monomorphism

i0 : M0(X) = M(X) ֒→M1(X) = M(X ⊔ ⌊M0⌋)

of monoids through which we identifyM0(X) with its image inM1(X). Suppose thatMn−1(X) has
been defined and the embedding

in−2,n−1 : Mn−2(X) ֒→ Mn−1(X)

has been obtained forn > 2 and consider the case ofn. Define

Mn(X) := M
(
X ⊔ ⌊Mn−1(X)⌋

)
.

SinceMn−1(X) = M
(
X ⊔ ⌊Mn−2(X)⌋

)
is the free monoid on the setX ⊔ ⌊Mn−2(X)⌋, the injection

X ⊔ ⌊Mn−2(X)⌋ ֒→ X ⊔ ⌊Mn−1(X)⌋



4 XING GAO AND TIANJIE ZHANG

induces a monoid embedding

Mn−1(X) = M
(
X ⊔ ⌊Mn−2(X)⌋

)
֒→ Mn(X) = M

(
X ⊔ ⌊Mn−1(X)⌋

)
.

Finally we define the monoid

M(X) := lim
−→
Mn(X) =

⋃

n>0

Mn(X).

The elements inM(X) are called bracketed wordsor bracketed monomials on X. WhenX is
finite, we may also just list its elements, as inM(x1, x2) if X = {x1, x2}. For anyu ∈ M(X) \ {1}, u
can be written uniquely as a product:

(1) u = u1 · · ·un, for somen > 1, ui ∈ X ⊔ ⌊M(X)⌋, 1 6 i 6 n.

Thebreadthof u, denoted by|u|, is defined to ben. If u = 1, define|u| = 0.
Let kM(X) be the free module with the basisM(X). Using k-linearity, the concatenation

product onM(X) can be extended to a multiplication onkM(X), turningkM(X) into ak-algebra.
Define an operator⌊ ⌋ : M(X)→ M(X) by assigning

u 7→ ⌊u⌋, u ∈ M(X).

By k-linearly, the operator⌊ ⌋ : M(X) → M(X) can be extended to a linear operator⌊ ⌋ :
kM(X) → kM(X), turning (kM(X), ⌊ ⌋) into an operatedk-algebra. The elements inkM(X)
are calledbracketed polynomialsor operated polynomialson X.

Lemma 2.3. [19, Coro. 3.6, 3.7]With structures as above,

(a) the (M(X), ⌊ ⌋) together with the natural embedding i: X → M(X) is the free operated
monoid on X; and

(b) the (kM(X), ⌊ ⌋) together with the natural embedding i: X → kM(X) is the free operated
k-algebra on X.

Definition 2.4. Let (R,P) be an operatedk-algebra.

(a) An elementφ(x1, . . . , xk) ∈ kM(X) (or φ(x1, . . . , xk) = 0) is called anoperated polynomial
identity(OPI), wherek > 1 andx1, . . . , xk ∈ X.

(b) Let φ = φ(x1, . . . , xk) ∈ kM(X) be an OPI. Given anyu1, . . . , uk ∈ R, there is a set map
f : xi 7→ ui, 1 6 i 6 k and we define

φ(u1, . . . , uk) := f̃ (φ(x1, . . . , xk)),

where f̃ : kM(x1, . . . , xk) → R is the unique morphism of operated algebras that extends
the set mapf , using the universal property ofkM(x1, . . . , xk) as the free operatedk-algebra
on {x1, . . . , xk}. Informally,φ(u1, . . . , uk) is the element ofRobtained fromφ(x1, . . . , xk) by
replacing eachxi by ui, 16 i 6 k.

(c) LetΦ ⊆ kM(X) be a set of OPIs. We callΦ is satisfiedby R if

φ(u1, . . . , uk) = 0, ∀φ(x1, . . . , xk) ∈ Φ, ∀u1, . . . , uk ∈ R.

In this case, we speak thatR is a Φ-algebraandP is aΦ-operator.
(d) Let S ⊆ kM(X) be a set. Theoperated idealId(S) of kM(X) generated byS is the smallest

operated ideal containingS.

Let us proceed some examples.
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Example 2.5.The differential operator as an algebraic abstraction of derivation in analysis leads
to the differential algebra, which is an algebraic study of differential equations and has been
largely successful in many important areas [26, 32, 34]. The differential operatord = ⌊ ⌋ fulfils
the following OPI

φ(x1, x2) = ⌊x1x2⌋ − ⌊x1⌋x2 − x1⌊x2⌋.

Example 2.6.The Rota-Baxter operatorP = ⌊ ⌋ of weightλ has played important role in mathe-
matics and physics[4, 20, 36], satisfying the OPI

φ(x1, x2) = ⌊x1⌋⌊x2⌋ − ⌊x1⌊x2⌋⌋ − ⌊⌊x1⌋x2⌋ − λ⌊x1x2⌋,

whereλ ∈ k is a fixed constant.

Example 2.7. From Definition2.1, the averaging operatorA = ⌊ ⌋ (noncommutative) is defined
by the OPIs

(2)
φ(x1, x2) = ⌊x1⌋⌊x2⌋ − ⌊⌊x1⌋x2⌋,

ψ(x1, x2) = ⌊x1⌊x2⌋⌋ − ⌊⌊x1⌋x2⌋.

Example 2.8.O. Reynolds [33] introduced the concept of Reynolds operators into fluid dynam-
ics, and Kampé de Fériet [14] named it in his study on the various spaces of functions. The
Reynolds operator is defined by the OPI

φ(x1, x2) = ⌊⌊x1⌋⌊x2⌋⌋ + ⌊x1⌋⌊x2⌋ − ⌊x1⌊x2⌋⌋ − ⌊⌊x1⌋x2⌋.

Definition 2.9. (a) Let φ = φ(x1, . . . , xk) ∈ kM(X) be an OPI withk > 1. Define

(3) Sφ(X) := { φ(u1, . . . , uk) | u1, . . . , uk ∈ M(X) }.

(b) LetΦ be a set of OPIs. Define

(4) SΦ(X) :=
⋃

φ∈Φ

Sφ(X).

It is well-known that

Proposition 2.10. [13, Prop. 1.3.6]LetΦ ⊆ kM(X) a set of OPIs. Then the quotient operated
algebrakM(X)/Id(SΦ(X)) is the freeΦ-algebra on X.

In particular, we have

Proposition 2.11. Let φ(x1, x2), ψ(x1, x2) defined in Eq. (2). Then the quotient operated algebra
kM(X)/Id(Sφ(X) ∪ Sψ(X)) is the free averaging algebra on X.

2.2. Gröbner Shirshov bases.In this subsection, we provide some backgrounds on Gröbner-
Shirshov bases [9, 18, 22].

Definition 2.12. Let⋆ be a symbol not inX andX⋆ = X ⊔ {⋆}.

(a) By a ⋆-bracketed wordon X, we mean any bracketed word inM(X⋆) with exactly one
occurrence of⋆, counting multiplicities. The set of all⋆-bracketed words onX is denoted
byM⋆(X).

(b) For q ∈ M⋆(X) andu ∈ M(X), we defineq|u := q|⋆ 7→u to be the bracketed word onX
obtained by replacing the symbol⋆ in q by u.
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(c) Forq ∈ M⋆(X) ands=
∑

i ciui ∈ kM(X), whereci ∈ k andui ∈ M(X), we define

q|s :=
∑

i

ciq|ui .

(d) A bracketed wordu ∈ M(X) is a subwordof another bracketed wordw ∈ M(X) if w = q|u
for someq ∈ M⋆(X).

Generally, with⋆1, ⋆2 distinct symbols not inX, setX⋆2 := X ⊔ {⋆1, ⋆2}.

(e) We define an (⋆1, ⋆2)-bracketed word on Xto be a bracketed word inM(X⋆2) with exactly
one occurrence of each of⋆i, i = 1, 2. The set of all (⋆1, ⋆2)-bracketed words onX is
denoted byM⋆1,⋆2(X).

(f) Forq ∈ M⋆1,⋆2(X) andu1, u2 ∈ kM⋆1,⋆2(X), we define

q|u1,u2 := q|⋆1 7→u1,⋆2 7→u2

to be obtained by replacing the letters⋆i in q by ui for i = 1, 2.

Remark 2.13. Recall [22] that q|u1,u2 = (q⋆1|u1)|u2 = (q⋆2|u2)|u1, whereq⋆1 is viewed as a⋆1-
bracketed word onX ⊔ {⋆2} andq⋆2 as a⋆2-bracketed word onX ⊔ {⋆1}.

We record the following obvious properties of subwords, which will be used later.

Lemma 2.14.Let u, v,w ∈ M(X).

(a) If u is a subword of⌊v⌋, then either u= ⌊v⌋ or u is a subword of v.
(b) If ⌊u⌋ is a subword of vw, then either⌊u⌋ is a subword of v or⌊u⌋ is a subword of w.

Proof. (a) Supposeu , ⌊v⌋. Sinceu is a subword of⌊v⌋, then⌊v⌋ = q|u for someq ∈ M⋆(X) by
Definition 2.12(d). Sinceu , ⌊v⌋, it follows thatq , ⋆. Thusq = ⌊p⌋ for somep ∈ M⋆(X) by
⌊v⌋ = q|u. Therefore⌊v⌋ = q|u = ⌊p|u⌋ and sov = p|u, as required.

(b). This is followed by the breadth of⌊u⌋ is 1. �

The operated ideals inkM(X) can be characterized by⋆-bracketed words [9, 22].

Lemma 2.15. ([22, Lem. 3.2])Let S⊆ kM(X). Then

(5) Id(S) =


n∑

i=1

ciqi |si

∣∣∣∣ n > 1 andci ∈ k×, qi ∈ M
⋆(X), si ∈ S for 1 6 i 6 n

 .

Definition 2.16. A monomial order onM(X) is a well-order6 onM(X) such that

u < v =⇒ q|u < q|v, ∀u, v ∈ M(X),∀q ∈ M⋆(X).

Definition 2.17. Let s ∈ kM(X) and6 a linear order onM(X).

(a) Let s < k. Theleading monomialof s, denoted bys, is the largest monomial appearing in
s. The leading coefficient of s, denoted bycs, is the coefficient ofs in s.

(b) If s ∈ k, we define theleading monomial of sto be 1 and theleading coefficient of sto
becs = s.

(c) s is called monic with respect to6 if s < k andcs = 1. A subsetS ⊆ kM(X) is called
monic with respect to6 if every s ∈ S is monic with respect to6.

(d) DefineR(s) := css− s. Sos= css− R(s).
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We will not need the precise definition of Gröbner-Shirshovbases for our construction. So we
will not recall it for now and the authors are refereed to [7] and references therein. Suffices it to
say that we need the Composition-Diamond Lemma, the corner stone of Gröbner-Shirshov basis
theories.

Lemma 2.18. (Composition-Diamond Lemma [9, 22]) Let 6 a monomial order onM(X) and
S ⊆ kM(X) monic with respect to6. Then the following conditions are equivalent.

(a) S is a Gröbner-Shirshov basis inkM(X).
(b) η(Irr(S)) is a k-basis ofkM(X)/Id(S), whereη : kM(X) → kM(X)/Id(S) is the canonical

homomorphism ofk-modules and

(6) Irr(S) :=M(X) \ {q|s | s ∈ S}.

More precisely ask-modules,

kM(X) = kIrr(S) ⊕ Id(S).

2.3. Term-rewriting systems. In this subsection, we give a method for checking confluence of
term-rewriting systems. Let us recall some basic notationsand results [17].

Definition 2.19. Let V be a freek-module with a givenk-basisW and f , g ∈ V.
(a) ThesupportSupp(f ) of f is the set of monomials (with non-zero coefficients) of f . Here

we use the convention that Supp(0)= ∅.
(b) We write f ∔ g to indicate that Supp(f ) ∩ Supp(g) = ∅ and sayf + g is a direct sumof f

andg. If this is the case, we also usef ∔ g for the sumf + g.
(c) For w ∈ Supp(f ) with the coefficient cw, we defineRw( f ) := cww − f ∈ V and sof =

cww∔ (−Rw( f )).

Lemma 2.20. [17, Lem. 2.12]Let V be a freek-module with ak-basis W and f, g ∈ V. If f ∔ g,
then c f∔ dg for any c, d ∈ k.

Remark 2.21. Using the notation∔, the equations = css− R(s) in Definition 2.17(d) can be
written in more detail ass= css∔ (−R(s)).

The following is the concept of term-rewriting systems.

Definition 2.22. Let V be a freek-module with ak-basisW. A term-rewriting systemΠ on
V with respect to Wis a binary relationΠ ⊆ W × V. An element (t, v) ∈ Π is called a(term)
rewriting rule of Π, denoted byt → v. The term-rewriting systemΠ is called simpleif t ∔ v for
all t → v ∈ Π.

Remark 2.23. Now we explain the requirement that the term-rewriting system Π is simple.
SupposeΠ is not simple. Then by Definition2.22, there is a rewriting rulet → v such that
t ∈ Supp(v). Assumev = ct∔ (−Rt(v)) for somec ∈ k×. Then

t →Π v = ct∔ (−Rt( f ))→Π cv− Rt(v) = c2t ∔ (−c− 1)Rt(v)→Π · · · .

So as long asc is not a nilpotent element,Π is not terminating. In the remainder of this paper, we
always assume that the term-rewriting system is simple, unless specified otherwise.

Definition 2.24. Let V be a freek-module with ak-basisW, Π a simple term-rewriting system
on V with respect toW and f , g ∈ V.
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(a) We speak thatf rewritesto g in one-step, denoted byf →Π g or f
(t,v)
−→Π g, if

f = ctt ∔ (−Rt( f )) and g = ctv− Rt( f ) for somect ∈ k× and t → v ∈ Π.

(b) The reflexive-transitive closure of the binary relation→Π on V is denoted by
∗
→Π. If

f
∗
→Π g (resp. f 6

∗
→Π g), we speak thatf rewrites (resp. doesn’t rewrite ) to g with respect

toΠ.
(c) We call f andg are joinable, denoted byf ↓Π g, if there existsh ∈ V such thatf

∗
→Π h

andg
∗
→Π h.

(d) We sayf a normal formif no more rewriting rules can apply.

Remark 2.25. Let f , g ∈ V.

(a) By Definition2.24(b), f
∗
→Π f and

f
∗
→ g⇐⇒ f =: f0→Π f1→Π · · · →Π fn := g for somen > 0, fi ∈ V, 0 6 i 6 n.

(b) If f
∗
→Π g, then f ↓Π g by g

∗
→Π g. In particular,f ↓Π f by f

∗
→Π f .

The following definitions are adapted from abstract rewriting systems [2, 5].

Definition 2.26. Let V be a freek-module with ak-basisW, Π a simple term-rewriting system
on V with respect toW.

(a) Π is terminatingif there is no infinite chain of one-step rewriting
f0→Π f1→Π f2 · · · .

(b) f ∈ V is locally confluentif for every local fork (h
Π
← f →Π g), we haveg ↓Π h.

(c) f ∈ V is confluentif for every fork (hΠ
∗
← f

∗
→Π g), we haveg ↓Π h.

(d) Π is locally confluent (resp. confluent)if every f ∈ V is locally confluent (resp. confluent).
(e) Π is convergentif it is both terminating and confluent.

A well-known result on rewriting systems is Newman’s Lemma.

Lemma 2.27. ([2, Lem. 2.7.2])A terminating rewriting system is confluent if and only if it is
locally confluent.

The following result will be used later.

Lemma 2.28. ([17, Thm. 2.20])Let V be a freek-module with ak-basis W andΠ a simple
term-rewriting system on V with respect to W. IfΠ is confluent, then, for all m> 1 and
f1, . . . , fm, g1, . . . , gm ∈ V,

fi ↓Π gi (1 6 i 6 m), and
m∑

i=1

gi = 0 =⇒


m∑

i=1

fi


∗
→Π 0.

Remark 2.29. If Π is confluent andf ↓Π g, then f − g
∗
→Π 0 by−g ↓Π −g and Lemma2.28.

The following is a concept strong than locally confluence andsimilar to Buchberger’sS-
polynomials.

Definition 2.30. Let V be a freek-module with ak-basisW, Π a simple term-rewriting system
on V with respect toW.
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(a) A local base-forkis a fork (cv1 Π← ct→Π cv2), wherec ∈ k× andt → v1, t → v2 ∈ Π are
rewriting rules.

(b) The term-rewriting systemΠ is calledlocally base-confluentif for every local base-fork
(cv1 Π← ct→Π cv2), we havec(v1 − v2)

∗
→Π 0.

(c) Π is compatiblewith a linear order6 onW if v < t for eacht → v ∈ Π.

Lemma 2.31. ([17, Lem. 2.22])Let V be a freek-module with ak-basis W and letΠ be a
simple term-rewriting system on V which is compatible with awell order6 on W. IfΠ is locally
base-confluent, then it is locally confluent.

The following concept is followed from general abstract rewriting systems [5, Def. 1.1.6].

Definition 2.32. Let V be a freek-modules with ak-basisW and letΠ be a simple term-rewriting
system onV with respect toW. Let Y ⊆ W andΠkY := Π ∩ (Y × kY). We callΠkY a sub-term-
rewriting systemof Π onkY with respect toY, denoted byΠkY 6 Π, if kY is closed underΠ, i.e.,
for any f ∈ kY and anyg ∈ V, f →Π g impliesg ∈ kY.

Remark 2.33. SinceΠ is simple,ΠkY is also simple. Indeed, lett → v ∈ ΠkY be a rewriting rule
with t ∈ Y andv ∈ kY. Thent → v ∈ Π byΠkY ⊆ Π. SinceΠ is simple, we havet < Supp(v) by
Definition2.22and soΠkY is simple.

We record the following properties.

Lemma 2.34. Let V be a freek-module with ak-basis W, and letΠ be a simple term-rewriting
system on V with respect to W.

(a) If t ∈ Supp(c f) with t ∈W, c∈ k× and f ∈ V, then t∈ Supp(f ).
(b) If c f →Π g with c∈ k× and f, g ∈ V, then g= cg′ for some g′ ∈ V.
(c) If c f = 0 with c ∈ k× and f ∈ V, then f= 0.
(d) For c ∈ k× and f, g ∈ V with f , g, f →Π g if and only if c f→Π cg.

Proof. (a) Suppose for a contrary thatt < Supp(f ). SinceW is a k-basis ofV, by Defini-
tion 2.19(a), we may writef =

∑
i ciwi, where eachci ∈ k× andwi ∈W\ {t}. Thenc f =

∑
i cciwi.

Sincewi , t for eachi, we havet < Supp(c f), a contradiction.

(b) Supposec f
(t,v)
−→Π g for somet → v ∈ Π. Thent ∈ Supp(c f) and sot ∈ Supp(f ) by Item (a).

Write f = ctt ∔ (−Rt( f )) with ct ∈ k×. Then by Lemma2.20,

c f = cctt ∔ (−cRt( f ))
(t,v)
−→Π cctv− cRt( f ) = c(ctv− Rt( f )) = g,

as required.
(c) SinceW is a k-basis ofV, we may write f =

∑
i ciwi with ci ∈ k andwi ∈ W for eachi.

Thenc f =
∑

i cciwi = 0 and socci = 0 for eachi. Sincek is a domain by our hypothesis and
c , 0, we haveci = 0 for eachi, that is, f = 0.

(d) Supposef
(t,v)
−→Π g for somet → v ∈ Π. By Definition2.24(a), we may write

f = dt∔ (−Rt( f )) and g = dv− Rt( f ) for somed ∈ k×.

Then by Lemma2.20,

c f = cdt∔ (−cRt( f )) and cg= cdv− cRt( f )
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and soc f
(t,v)
−→Π cg. Conversely, supposec f

(t,v)
−→Π cg for somet → v ∈ Π. Thent ∈ Supp(c f) and

sot ∈ Supp(f ) by Item (a). Write f = ctt ∔ (−Rt( f )) with ct ∈ k×. Then from Lemma2.20,

c f = cctt ∔ (−cRt( f ))
(t,v)
−→Π cctv− cRt( f ) = cg.

Sincec ∈ k×, we getctv− Rt( f ) = g by Item (c) and sof →Π g. �

Lemma 2.35. Let V be a freek-module with ak-basis W, and letΠ be a simple term-rewriting
system on V with respect to W. Let f, g ∈ V and c∈ k×. Then f

∗
→Π g if and only if c f

∗
→Π cg.

Proof. (⇒) If f = g, thenc f = cg andc f
∗
→Π cg by Remark2.25(a). Supposef , g. Let n > 1

be the least number such thatf rewrites tog in n steps. Then

(7) f = f0→Π f1→Π · · · →Π fn = g

for some distinctfi ∈ V, 06 i 6 n and so by Lemma2.34(d),

(8) c f = c f0→Π c f1→Π · · · →Π c fn = cg.

Hencec f
∗
→Π cg.

(⇐) If c f = cg, then f = g by Lemma2.34(c) and sof
∗
→Π g by Remark2.25(a). Suppose

c f , cg. Let n > 1 be the least number such thatc f rewrites tocg in n steps. Then by
Lemma2.34 (b), Eq (8) holds for some distinctc fi ∈ V, 0 6 i 6 n. Using Lemma2.34 (c),
fi ∈ V are distinct for 06 i 6 n. From Lemma2.34(d), Eq. (7) is valid and sof

∗
→Π g. �

Theorem 2.36.Let V be a freek-module with ak-basis W and letΠ be a simple terminating
term-rewriting system on V with respect to W. Suppose6 is a well-order on W compatible with
Π. ThenΠ is confluent if and only if w is locally confluent for any w∈W.

Proof. (⇒) SinceΠ is confluent,Π is locally confluent by Definition2.26, that is, every element
in V is locally confluent. FromW ⊆ V, w is locally confluent for anyw ∈W.

(⇐) To showΠ is confluent, it is enough to showΠ is locally confluent by Lemma2.27. In
view of Lemma2.31, we are left to prove thatΠ is locally base-confluent, that is, for any local
base-fork (cv1 Π← cw→Π cv2), we havecv1 − cv2

∗
→Π 0. Suppose for a contrary thatΠ is not

locally base-confluent. Then the set

C = {w ∈W
∣∣∣∣ there is a local fork base-fork (cv1 Π← cw→Π cv2)

for somec ∈ k×, v1, v2 ∈ V such thatcv1 − cv2 6
∗
→Π 0}

is non-empty. Since6 is a well-order,C has the least elementw with respect to6. Thus there is
a local base-fork

(9) (cv1 Π← cw→Π cv2) with w→ v1,w→ v2 ∈ Π

such that

(10) cv1 − cv2 6
∗
→Π 0 for somec ∈ k×, v1, v2 ∈ V.

Let

(11) Y := {y ∈W | y < w} andΠkY = Π ∩ (Y × kY).

Since6 is compatible withΠ, we have Supp(v1),Supp(v2) ⊆ Y and soY , ∅. Furthermore,
ΠkY 6 Π is a sub-term-rewriting system ofΠ. Indeed, letf

∗
→Π g with f ∈ kY, since6 is
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compatible withΠ, we getg 6 f < w and sog ∈ kY. ThusΠkY is closed underΠ and soΠkY 6 Π

by Definition2.32.
For any local base-fork (du1 ΠkY

← dy→ΠkY du2) of ΠkY with d ∈ k×, y ∈ Y andu1, u2 ∈ kY,
it induces a local base-fork (du1 Π← dy→Π du2) by ΠkY ⊆ Π. Sincey ∈ Y, we havey < w and

y < C by the minimality ofw. Sodu1 − du2
∗
→Π 0 by the definition ofC. Claim

(12) f
∗
→Π g =⇒ f

∗
→ΠkY g for f , g ∈ kY.

Sincedu1−du2 ∈ kY by u1, u2 ∈ kY, we havedu1−du2
∗
→ΠkY 0 by the Claim. ThusΠkY is locally

base-confluent and so is locally confluent by Lemma2.31. SinceΠ is terminating andΠkY 6 Π,
ΠkY is terminating. ThereforeΠkY is confluent by Lemma2.27.

For the local fork in Eq. (9), it induces a local fork (v1 Π← w→Π v2) by Lemma2.34(d). Since

w ∈W is confluent by our hypothesis, it follows thatv1 ↓Π v2. So there isu ∈ V such thatv1
∗
→Π u

andv2
∗
→Π u by Definition2.24(c). From Lemma2.35,

cv1
∗
→Π cu and cv2

∗
→Π cu.

Fromcv1 ∈ kY andΠkY 6 Π is closed underΠ, we havecu ∈ kY. So by the Claim of Eq. (12),

cv1
∗
→ΠkY cu and cv2

∗
→ΠkY cu.

This means thatcv1 ↓ΠkY cv2. SinceΠkY is confluent,cv1 − cv2
∗
→ΠkY 0 by Remark2.29. Hence

cv1 − cv2
∗
→Π 0 byΠkY ⊆ Π, contradicting Eq. (10). We are left to prove the Claim. �

proof of Claim.We want to show Eq. (12). Supposef
∗
→Π g with f , g ∈ kY. If f = g, then

f
∗
→ΠkY g by Remark2.25(a). Assumef , g and letn > 1 be least number such that

f =: f0→Π f1→Π · · · →Π fn := g with fi ∈ V are distinct, 0 6 i 6 n.

Since f0 = f ∈ kY andΠ is compatible with6, we havefi ∈ kY for 0 6 i 6 n. We prove the

Claim by induction onn > 1. For the initial step ofn = 1, supposef = f0
(t,v)
→Π f1 = g for some

t → v ∈ Π. Thent ∈ Supp(f ) ⊆ Y. This follows thatt < w by Eq. (11). SinceΠ is compatible
with 6, we havev < t < w and sov ∈ kY. Thust → v ∈ Y×kY and sot → v ∈ Π∩(Y×kY) = ΠkY.

This implies thatf = f0
(t,v)
−→ΠkY f1 = g by f0, f1 ∈ kY and f0

(t,v)
−→Π f1. For the induction step,

we have f = f0
∗
→ΠkY f1 and f1

∗
→ΠkY fn = g by induction hypothesis and sof

∗
→ΠkY g, as

required. �

2.4. Term-rewriting systems and Gröbner-Shirshov bases.In this subsection, we supply the
relationship between Gröbner-Shirshov bases and term-rewriting systems based on bracketed
polynomials. A term-rewriting system can be assigned to a given setS of OPIs [17].

Definition 2.37. Let6 be a linear order onM(X) andS ⊆ kM(X) monic with respect to6. Define
a term-rewriting system associated toS as

(13) ΠS := { q|s→ q|R(s) | s= s∔ (−R(s)) ∈ S, q ∈ M⋆(X) } ⊆ M(X) × kM(X).

For notation clarify, we denote→ΠS (resp.
∗
→ΠS, resp.↓ΠS) by→S (resp.

∗
→S, resp.↓S). In

more detail when a specifics ∈ S is used in one step rewriting, we replace→S by→s. If 6 is a
monomial order onM(X), we haveq|R(s) = q|R(s) < q|s by R(s) < s. SoΠS is compatible with6 in
the sense in Definition2.30(c).

Remark 2.38. Let f , g ∈ kM(X).
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(a) If f →S g, then we can writef = cq|s∔ f ′ andg = cq|R(s)+ f ′ for somec ∈ k×, q ∈ M⋆(X),
s ∈ S and f ′ ∈ kM(X) by Definition 2.24(a). So f − g = cq|s−R(s) = cq|s ∈ Id(S) by
Lemma2.15.

(b) If f
∗
→S g, then f =: f0→S f1→S · · · →S fn := g for somen > 0, fi ∈ kM(X), 0 6 i 6 n.

If n = 0, then f = g and f − g ∈ Id(S). If n > 1, then by Item (a),

f − g = ( f0 − f1) + ( f1 − f2) + · · · + ( fn−1 − fn) ∈ Id(S).

Lemma 2.39. If u ∔ v, then q|u ∔ q|v for any q∈ M⋆(X) and u, v ∈ kM(X).

Proof. Write u =
∑

i ciui andv =
∑

j d jvj, where eachci , d j ∈ k× andui, vj ∈ M(X). Then

q|u =
∑

i

ciq|ui and q|v =
∑

j

d jq|vj .

Suppose for a contrary thatq|u ∔ q|v fails. Thenq|ui = q|vj by Definition2.19for somei, j. This
implies thatui = vj ∈ Supp(u) ∩ Supp(v), contradicting thatu∔ v. �

The following results are characterized in [16]. For completeness, we record the proof here.

Lemma 2.40.Let6 be a linear order onM(X) and S⊆ kM(X) monic with respect to6.

(a) If ΠS is confluent, then, u∈ Id(S) if and only if u
∗
→ΠS 0.

(b) If ΠS is confluent, thenId(S) ∩ kIrr(S) = 0.
(c) If ΠS is terminating andId(S) ∩ kIrr(S) = 0, thenΠS is confluent.
(d) If ΠS is terminating, thenkM(X) = Id(S) + kIrr(S),

whereIrr(S) = M(X) \ {q|s | s ∈ S}.

Proof. Note thatkIrr(S) is precisely the set of normal forms ofΠS.
(a) If u

∗
→ΠS 0, thenu ∈ Id(S) by Remark2.38(b). Conversely, letu ∈ Id(S). By Eq. (5), we

have

u =
n∑

i=1

ciqi |si , whereci ∈ k×, si ∈ S, qi ∈ M
⋆(X), 1 6 i 6 n.

For eachsi = si ∔ (−R(si)) with 1 6 i 6 n, it follows from Lemmas2.20and2.39that

ciqi |si = ciqi |si ∔ (−ciqi |R(si ))→ΠS ciqi |R(si ) − ciqi |R(si ) = 0 and sociqi |si ↓ΠS 0

by Remark2.25(b). SinceΠS is confluent,u =
∑n

i=1 ciqi |si

∗
→ΠS 0 by Lemma2.28.

(b) If Id(S)∩ kIrr(S) , 0, let 0, w ∈ Id(S)∩ kIrr(S). Sincew ∈ kIrr(S), w is of normal form.
On the other hand, fromw ∈ Id(S) and Item (a), we havew

∗
→ΠS 0. Sow has two normal forms

w and 0, contradicting thatΠS is confluent.
(c) Suppose for a contrary thatΠS is not confluent. SinceΠS is terminating, there isw ∈ kM(X)

such thatw has two distinct normal forms, sayu andv. Thusu, v ∈ kIrr(S) and sou−v ∈ kIrr(S).
Sincew

∗
→Π u andw

∗
→ vΠ, we havew− u,w− v ∈ Id(S) by Remark2.38(b). Hence 0, u− v ∈

Id(S) ∩ kIrr(S), a contradiction.
(d) Let w ∈ kM(X), sinceΠS is terminating,w has a normal formu ∈ kIrr(S) andw

∗
→Π u.

From Remark2.38(b), we havew− u ∈ Id(S) and sow ∈ Id(S) + kIrr(S). �

Theorem 2.41.Let 6 be a monomial order onM(X) and S⊆ kM(X) monic with respect to6.
Then the followings are equivalent.
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(a) ΠS is convergent.
(b) ΠS is confluent.
(c) Id(S) ∩ kIrr(S) = 0.
(d) Id(S) ⊕ kIrr(S) = kM(X).
(e) S is a Gr obner-Shirshov basis inkM(X),

whereIrr(S) = M(X) \ {q|s | s ∈ S}.

Proof. Since6 is a monomial order onM(X), ΠS is terminating [17]. So Item (a) and Item (b)
are equivalent. The equivalence of Item (b) and Item (c) is followed from Items (b) and (c) in
Lemma2.40.

Clearly, Item (d) implies Item (c). The converse is employed Item (d) in Lemma2.40. At last,
the equivalence of Item (d) and Item (e) is obtained from Lemma2.18. �

3. A basis of the free averaging algebra

In this section, we give a basis of the free averaging algebra. We begin with a lemma.

Lemma 3.1. Let S⊆ kM(X), q ∈ M⋆(X) and6 a linear order onM(X). Then

(a) If u
∗
→S v with u, v ∈ kM(X), then q|u

∗
→S q|v.

(b) If u ↓S v, then q|u ↓S q|v.

Proof. (a) If u = v, thenq|u = q|v andq|u
∗
→S q|v by Remark2.25(a). Supposeu , v. Let m> 1

be the least number such thatu rewrites tov in m steps. We prove the result by induction onm.
For the initial stepm= 1, sinceu→S v, we may write

u = cp|s ∔ u′ and v = cp|R(s) + u′ for somec ∈ k×, s ∈ S, p ∈ M⋆(X), u′ ∈ kM(X).

Then from Lemma2.39,

q|u = c(q|p)|s ∔ q|u′ →S c(q|p)|R(s) + q|u′ = q|cp|R(s)+u′ = q|v.

Assume the result is true form 6 n and consider the case ofm = n+ 1 > 2. Then we can write
u→S w

∗
→S v for someu , w ∈ kM(X). By the minimality ofm, we havew , v. Using induction

hypothesis, we getq|u
∗
→S q|w andq|w

∗
→S q|v. This implies thatq|u

∗
→S q|v, as required.

(b) Sinceu ↓S v, we may suppose by Definition2.24(c) thatu
∗
→S w andv

∗
→S w for some

w ∈ kM(X). Then by Item (a), we haveq|u
∗
→S q|w andq|v

∗
→S q|w. Soq|u ↓S q|v. This completes

the proof. �

The following is a concept finer than subwords, including theinformation of placements [39].

Definition 3.2. Let w ∈ M(X) such that

(14) q1|u1 = w = q2|u2 for someu1, u2 ∈ M(X), q1, q2 ∈ M
⋆(X).

The two placements (u1, q1) and (u2, q2) are called

(a) separatedif there existp ∈ M⋆1,⋆2(X) anda, b ∈ M(X) such thatq1|⋆1 = p|⋆1, b, q2|⋆2 =

p|a, ⋆2, andw = p|a, b;
(b) nestedif there existsq ∈ M⋆(X) such that eitherq2 = q1|q or q1 = q2|q;
(c) intersectingif there existq ∈ M⋆(X) anda, b, c ∈ M(X)\{1} such thatw = q|abc and either

(i) q1 = q|⋆c andq2 = q|a⋆; or
(ii) q1 = q|a⋆ andq2 = q|⋆c.
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Lemma 3.3. [39, Thm. 4.11]Let w ∈ M(X). For any two placements(u1, q1) and (u2, q2) in w,
exactly one of the following is true:

(a) (u1, q1) and(u2, q2) are separated;
(b) (u1, q1) and(u2, q2) are nested;
(c) (u1, q1) and(u2, q2) are intersecting.

Now we fix some notations which will be used through out the remainder of the paper. For
any u ∈ M(X), define recursively⌊u⌋(1) := ⌊u⌋ and ⌊u⌋(k+1) := ⌊⌊u⌋(k)⌋ for k > 1. Recall from
Example2.7that

φ(x1, x2) := ⌊x1⌋⌊x2⌋ − ⌊⌊x1⌋x2⌋ and ψ(x1, x2) := ⌊x1⌊x2⌋⌋ − ⌊⌊x1⌋x2⌋

are the OPIs defining the averaging operator. Let6 be a well-order onX such thatx1 < x2. Then
6 can be extended to the monomial order6db onM(X) [17], which will be used through out in
the remainder of the paper. With respect to6db, we have

(15)
φ(x1, x2) =⌊x1⌋⌊x2⌋, R(φ(x1, x2)) = ⌊⌊x1⌋x2⌋,

ψ(x1, x2) =⌊x1⌊x2⌋⌋, R(ψ(x1, x2)) = ⌊⌊x1⌋x2⌋.

The term-rewriting system associated toφ(x1, x2), ψ(x1, x2) is not confluent. For example, for the
element⌊⌊x1⌋⌊x2⌋⌋ ∈ M(X), on the one hand,

⌊⌊x1⌋⌊x2⌋⌋ →φ(x1,x2) ⌊⌊⌊x1⌋x2⌋⌋ = ⌊⌊x1⌋x2⌋
(2),

which is in normal form. On the other hand,

⌊⌊x1⌋⌊x2⌋⌋ →ψ(x1,x2) ⌊⌊⌊x1⌋⌋x2⌋ = ⌊⌊x1⌋
(2)x2⌋,

which is in normal form. So the element⌊⌊x1⌋⌊x2⌋⌋ is not confluent. For the desired confluence,
we need more rewriting rules. Let

(16) ϕ(x1, x2) := ⌊⌊x1⌋x2⌋
(2) − ⌊⌊x1⌋

(2)x2⌋ andΦ := {φ(x1, x2), ψ(x1, x2), ϕ(x1, x2)}.

With respect to6db, we have

(17) ϕ(x1, x2) = ⌊⌊x1⌋x2⌋
(2) and R(ϕ(x1, x2)) = ⌊⌊x1⌋

(2)x2⌋.

Let u1, u2 ∈ M(X). Then by Eq. (3),

φ(u1, u2) = ⌊u1⌋⌊u2⌋ − ⌊⌊u1⌋u2⌋ ∈ Sφ(X),

and by Lemma2.15,

⌊⌊u1⌋⌊u2⌋⌋ − ⌊⌊u1⌋u2⌋
(2) = ⌊⋆⌋ |φ(u1,u2) ∈ Id(Sφ(X)) ⊆ Id(Sφ(X) ∪ Sψ(X)).

With the same argument,

⌊⌊u1⌋⌊u2⌋⌋ − ⌊⌊u1⌋
(2)u2⌋ = ψ(⌊u1⌋, u2) ∈ Sψ(X) ⊆ Id(Sψ(X)) ⊆ Id(Sφ(X) ∪ Sψ(X)).

This implies that

ϕ(u1, u2) = ⌊⌊u1⌋u2⌋
(2) − ⌊⌊u1⌋

(2)u2⌋

=⌊⌊u1⌋⌊u2⌋⌋ − ⌊⌊u1⌋
(2)u2⌋ − (⌊⌊u1⌋⌊u2⌋⌋ − ⌊⌊u1⌋u2⌋

(2)) ∈ Id(Sφ(X) ∪ Sψ(X))

and so Id(Sϕ(X)) ⊆ Id(Sφ(X) ∪ Sψ(X)). Hence by Eqs. (4) and (16),

(18) Id(SΦ(X)) = Id(Sφ(X) ∪ Sψ(X)).
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Remark 3.4. If u2 = 1, thenϕ(u1, u2) degenerates to

ϕ(u1, u2) = ⌊⌊u1⌋u2⌋
(2) − ⌊⌊u1⌋

(2)u2⌋ = ⌊u1⌋
(3) − ⌊u1⌋

(3) = 0.

So we always assumeu2 , 1 in ϕ(u1, u2). This is our running hypothesis in the remainder of the
paper.

Remark 3.5. From Eqs. (15) and (17), we have

(a) for anyα(x1, x2) ∈ Φ andu1, u2 ∈ M(X), R(α(u1, u2)) ∈ M(X) is a monomial.
(b) for anyu1, u2 ∈ M(X), the breadth|φ(u1, u2)| = 2 and|ψ(u1, u2)| = |ϕ(u1, u2)| = 1.

RecallΦ is fixed in Eq. (16). In Eq. (13), taking S = SΦ(X) defined in Eq. (4), we get a
term-rewriting system associated toΦ (with respect to6db)

(19) ΠΦ := ΠSΦ(X) = { q|α(u1,u2) → q|R(α(u1,u2)) | α(x1, x2) ∈ Φ, q ∈ M⋆(X), u1, u2 ∈ M(X)}.

For notation clarity, we abbreviate→α(u1,u2) as→α. Now we are in the position to consider the
confluence of the term-rewriting systemΠΦ. By Theorem2.36, we only need to consider the
confluence of basis elements. Take a local fork of a basis elementw ∈ M(X):

(q1|R(α(u1,u2)) α←q1|α(u1,u2) = w = q2|β(v1,v2) →β q2|R(β(v1,v2))),

where
α(x1, x2), β(x1, x2) ∈ Φ, ui , vi ∈ M(X), i = 1, 2.

According to Lemma3.3, the two placements (α(u1, u2), q1) and (β(v1, v2), q2) are separated, or
intersecting, or nested. We consider firstly the former two cases.

Lemma 3.6. Let α(x1, x2), β(x1, x2) ∈ Φ and q1|α(u1,u2) = q2|β(v1,v2) for some q1, q2 ∈ M
⋆(X) and

ui, vi ∈ M(X), i = 1, 2. If the placements(α(u1, u2), q1) and (β(v1, v2), q2) are separated, then
q1|R(α(u1,u2)) ↓Φ q2|R(β(v1,v2)).

Proof. In view of Definition3.2(a), there existsp ∈ M⋆1,⋆2(X) such that

q1|⋆1 = p|⋆1, β(v1,v2) and q2|⋆2 = p|α(u1,u2), ⋆2
.

On the one hand,

(20) q1|R(α(u1,u2)) = p|R(α(u1,u2)), β(v1,v2) →β p|R(α(u1,u2)),R(β(v1,v2)),

where the last step employs the facts thatR(α(u1, u2)) is a monomial by Remark3.5(a) and so is
p|R(α(u1,u2)), β(v1,v2). On the other hand,

(21) q2|R(β(v1,v2)) = p|α(u1,u2),R(β(v1,v2)) →α p|R(α(u1,u2)),R(β(v1,v2)).

Comparing Eqs (20) and (21), we conclude thatq1|R(α(u1,u2)) ↓Φ q2|R(β(v1,v2)). �

Lemma 3.7. Let α(x1, x2), β(x1, x2) ∈ Φ and q1|α(u1,u2) = q2|β(v1,v2) for some q1, q2 ∈ M
⋆(X) and

ui, vi ∈ M(X), i = 1, 2. If the placements(α(u1, u2), q1) and (β(v1, v2), q2) are intersecting, then
q1|R(α(u1,u2)) ↓Φ q2|R(β(v1,v2)).

Proof. If the two placements (α(u1, u2), q1) and (β(v1, v2), q2) are intersecting, by symmetry, we
may assume that Item (c) (i) in Definition 3.2 holds. Thenq1 , q2, because ifq1 = q2, then
⋆c = a⋆, a contradiction. So

(22) q|α(u1,u2) c = q1|α(u1,u2) = q2|β(v1,v2) = q|aβ(v1,v2) = q|abc
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and
α(u1, u2) c = aβ(v1, v2) = abc.

This implies that

(23) α(u1, u2) = ab and β(v1, v2) = bc.

If the breadth|α(u1, u2)| = 1, thena = 1 or b = 1, both contradicting thata, b , 1 in Defini-
tion 3.2(c). Similarly, if the breadth|β(v1, v2)| = 1, thenb = 1 orc = 1, again a contradiction. So
|α(u1, u2)| , 1 and|β(v1, v2)| , 1. Hence by Remark3.5(b),

α(x1, x2) = β(x1, x2) = φ(x1, x2) = ⌊x1⌋⌊x2⌋ − ⌊⌊x1⌋x2⌋.

From Eq. (23), we have

α(u1, u2) = ⌊u1⌋⌊u2⌋ = ab and β(v1, v2) = ⌊v1⌋⌊v2⌋ = bc

and so⌊u1⌋ = a, ⌊u2⌋ = b = ⌊v1⌋, u2 = v1 and⌊v2⌋ = c. From Eqs. (15) and (17),

R(α(u1, u2))c = R(φ(u1, u2))c = ⌊⌊u1⌋u2⌋⌊v2⌋ →φ ⌊⌊⌊u1⌋u2⌋v2⌋

and

aR(β(v1, v2)) = aR(φ(v1, v2)) = aR(φ(u2, v2)) = ⌊u1⌋⌊⌊u2⌋v2⌋ →φ ⌊⌊u1⌋⌊u2⌋v2⌋ →φ ⌊⌊⌊u1⌋u2⌋v2⌋.

SoR(α(u1, u2))c ↓Φ aR(β(v1, v2)). This follows from Eq. (22) and Lemma3.1(b) that

q1|R(α(u1,u2)) = q|R(α(u1,u2)) c ↓Φ q|a R(β(v1,v2)) = q2|R(β(v1,v2)),

as required. �

Next, let us turn to consider the nested case. We need the following lemmas. The first is on the
leading monomials of OPIs inΦ.

Lemma 3.8. Letα(x1, x2), β(x1, x2) ∈ Φ andα(u1, u2) = β(v1, v2) for some ui, vi ∈ M(X), i = 1, 2.
Then exactly one of the following is true:

(a) α(x1, x2) = β(x1, x2), u1 = v1, u2 = v2;
(b) α(x1, x2) = ψ(x1, x2), β(x1, x2) = ϕ(x1, x2), u1 = 1, u2 = ⌊v1⌋v2;
(c) α(x1, x2) = ϕ(x1, x2), β(x1, x2) = ψ(x1, x2), v1 = 1, v2 = ⌊u1⌋u2.

Proof. According to whetherα andβ are equal, we have the following cases to consider.
Case 1.α(x1, x2) = β(x1, x2). Then Items (b) and (c) fail. We show Item (a) is valid. Consider
firstly thatα(x1, x2) = φ(x1, x2). Then

⌊u1⌋⌊u2⌋ = α(u1, u2) = β(v1, v2) = ⌊v1⌋⌊v2⌋.

By the unique decomposition of bracketed words in Eq. (1), we have⌊u1⌋ = ⌊v1⌋ and⌊u2⌋ = ⌊v2⌋.
This impliesu1 = v1 andu2 = v2. Consider secondly thatα(x1, x2) = ψ(x1, x2). Then⌊u1⌊u2⌋⌋ =

α(u1, u2) = β(v1, v2) = ⌊v1⌊v2⌋⌋ and sou1⌊u2⌋ = v1⌊v2⌋. This also impliesu1 = v1, ⌊u2⌋ = ⌊v2⌋

andu2 = v2. At last, considerα(x1, x2) = ϕ(x1, x2). Then⌊⌊u1⌋u2⌋
(2) = α(u1, u2) = β(v1, v2) =

⌊⌊v1⌋v2⌋
(2) and so⌊⌊u1⌋u2⌋ = ⌊⌊v1⌋v2⌋. Thus⌊u1⌋u2 = ⌊v1⌋v2 and sou1 = v1 andu2 = v2.

Case 2.α(x1, x2) , β(x1, x2). Then Item (a) fails.
Suppose firstly that one ofα(x1, x2) and β(x1, x2) is φ(x1, x2). By symmetry, we may let

α(x1, x2) = φ(x1, x2). Thenβ(x1, x2) , φ(x1, x2). From Remark3.5(b), |α(u1, u2)| = |φ(u1, u2)| = 2
and|β(v1, v2)| = 1. This implies thatα(u1, u2) , β(v1, v2), contradicting our hypothesis. Suppose
α(x1, x2), β(x1, x2) , φ(x1, x2). Then we have the following two subcases.
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Case 2.1.α(x1, x2) = ψ(x1, x2) andβ(x1, x2) = ϕ(x1, x2). Then Item (c) fails and

⌊u1⌊u2⌋⌋ = ψ(u1, u2) = α(u1, u2) = β(v1, v2) = ϕ(v1, v2) = ⌊⌊v1⌋v2⌋
(2).

Sou1⌊u2⌋ = ⌊⌊v1⌋v2⌋. This implies thatu1 = 1, ⌊u2⌋ = ⌊⌊v1⌋v2⌋ andu2 = ⌊v1⌋v2 and so Item (b) is
valid.

Case 2.2.α(x1, x2) = ϕ(x1, x2) andβ(x1, x2) = ψ(x1, x2). Then Item (b) fails and

⌊⌊u1⌋u2⌋
(2) = ϕ(u1, u2) = α(u1, u2) = β(v1, v2) = ψ(v1, v2) = ⌊v1⌊v2⌋⌋.

This follows that⌊⌊u1⌋u2⌋ = v1⌊v2⌋. Sov1 = 1, v2 = ⌊u1⌋u2 and Item (c) is valid. �

Lemma 3.9. Let α(x1, x2), β(x1, x2) ∈ Φ and q1|α(u1,u2) = q2|β(v1,v2) for some q1, q2 ∈ M
⋆(X) and

ui, vi ∈ M(X), i = 1, 2. If q2 = q1|q for some q∈ M⋆(X) andβ(v1, v2) is a subword of u1 or u2,
then q1|R(α(u1,u2)) ↓Φ q2|R(β(v1,v2)).

Proof. For clarity, write
α := α(u1, u2) and β := β(v1, v2).

By symmetry we may assume thatβ is a subword ofu1 and sou1 = q′|β for someq′ ∈ M⋆(X).
As α(x1, x2) is linear on each variable andR(α(u1, u2)) is a monomial by Remark3.5(a), we may
write

(24) α = α(u1, u2) = p|u1,u2 and R(α) = R(α(u1, u2)) = p′|u1,u2 for some p, p′ ∈ M⋆(X).

Sinceq2 = q1|q by our hypothesis, we have

q1|α = q2|β = q1|q|
β
,

and so
q|β = α = p|u1,u2 = p|q′ |

β
,u2 = (p|q′,u2)|β.

Hence

(25) q = p|q′,u2 = α(q′, u2),

where the second equation employs Eq. (24). So on the one hand, we have

(26) q1|R(α) = q1|p′ |u1,u2
= q1|p′|q′ |

β
,u2
→β q1|p′|q′ |R(β) ,u2

,

where the first step is followed from Eq. (24). On the other hand, we have

(27) q2|R(β) = q1|q|R(β) = q1|α(q′ |R(β), u2) →α q1|R(α(q′ |R(β), u2)) = q1|p′ |q′|R(β) ,u2
,

where the first step is followed from the hypothesisq2 = q1|q, the second from Eq. (25) and the
last from Eq. (24). Comparing Eqs (26) and (27), we obtainq1|R(α) ↓Φ q2|R(β). This completes the
proof.

�

As an application of Theorem2.36, we have

Theorem 3.10.The term-rewriting systemΠΦ defined in Eq. (19) is convergent.

Proof. Since6db we used is a monomial order onM(X), ΠΦ is terminating [17]. By Defini-
tion 2.26(e), we are left to show thatΠΦ is confluent. From Theorem2.36, it is sufficient to prove
thatΠΦ is locally confluent for any basis element. Let

(q1|R(α(u1,u2)) Φ←q1|α(u1,u2) = w = q2|β(v1,v2) →Φ q2|R(β(v1,v2)))
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be an arbitrary local fork of a basis elementw, where

α(x1, x2), β(x1, x2) ∈ Φ, ui , vi ∈ M(X), i = 1, 2.

We only need to show that

(28) q1|R(α(u1,u2)) ↓Φ q2|R(β(v1,v2)).

According to Lemma3.3, the two placements (α(u1, u2), q1) and (β(v1, v2), q2) are separated,
or nested, or intersecting. If they are separated or intersecting, then by Lemmas3.6 and3.7,
Eq. (28) holds. If the two placements (α(u1, u2), q1) and (β(v1, v2), q2) are nested, by symmetry in
Definition 3.2 (b), we may assume thatq2 = q1|q. If β(v1, v2) is a subword ofu1 or u2, then by
Lemma3.9, Eq. (28) holds.

Supposeβ(v1, v2) is not a subword ofu1 andu2. Note

(29) q1|α(u1,u2) = q2|β(v1,v2) = q1|q|
β(v1,v2)

and soα(u1, u2) = q|β(v1,v2).

Sinceq2 = q1|q, Eq. (28) is equivalent to

q1|R(α(u1,u2)) ↓Φ q1|q|R(β(v1,v2)).

So to prove Eq. (28), by Lemma3.1(b), it is enough to show that

(30) R(α(u1, u2)) ↓Φ q|R(β(v1,v2)).

If q = ⋆, thenα(u1, u2) = β(v1, v2). By Lemma3.8, exactly one of the three items there holds.
If Item (a) holds, thenR(α(u1, u2)) = R(β(v1, v2)) and Eq. (30) is valid byq = ⋆. Since Item (b)
and Item (c) are symmetric, we consider that Item (b) holds. Then

α(x1, x2) = ψ(x1, x2), β(x1, x2) = ϕ(x1, x2), u1 = 1, u2 = ⌊v1⌋v2.

This follows from Eqs. (15) and (17) that

R(α(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊1⌋⌊v1⌋v2⌋ →φ ⌊⌊⌊1⌋v1⌋v2⌋

and
q|R(β(v1,v2)) = ⋆ |⌊⌊v1⌋

(2)v2⌋ = ⌊⌊v1⌋
(2)v2⌋ = ⌊⌊1⌊v1⌋⌋v2⌋ →ψ ⌊⌊⌊1⌋v1⌋v2⌋.

Hence Eq. (30) is valid.
Summing up, we are left to consider the case of that

(31) q2 = q1|q, α(u1, u2) = q|β(v1,v2), q , ⋆ and β(v1, v2) is not a subword ofu1 andu2.

Then

(32) q1 , q2 and α(u1, u2) , β(v1, v2).

We have the following cases to consider.

Case 1.α(x1, x2) = φ(x1, x2). Thenα(u1, u2) = ⌊u1⌋⌊u2⌋ by Eq. (15).
If β(x1, x2) = φ(x1, x2), then

⌊u1⌋⌊u2⌋ = α(u1, u2) = q|β(v1,v2) = q|⌊v1⌋⌊v2⌋,

that is,⌊v1⌋⌊v2⌋ is a subword of⌊u1⌋⌊u2⌋. By Eq. (32), ⌊v1⌋⌊v2⌋ , ⌊u1⌋⌊u2⌋. So⌊v1⌋⌊v2⌋ is a subword
of ⌊u1⌋ or ⌊u2⌋. Since⌊v1⌋⌊v2⌋ , ⌊u1⌋, ⌊u2⌋ by comparing the breadth,⌊v1⌋⌊v2⌋ is a subword ofu1

or u2 by Lemma2.14(a), contradicting Eq. (31). Soβ(x1, x2) , φ(x1, x2).

Subcase 1.1.β(x1, x2) = ψ(x1, x2). In this subcase, we have

(33) ⌊u1⌋⌊u2⌋ = α(u1, u2) = q|β(v1,v2) = q|⌊v1⌊v2⌋⌋,
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that is,⌊v1⌊v2⌋⌋ is a subword of⌊u1⌋⌊u2⌋. By Lemma2.14(b), either⌊v1⌊v2⌋⌋ is a subword of⌊u1⌋

or ⌊v1⌊v2⌋⌋ is a subword of⌊u2⌋. Note thatβ(v1, v2) = ⌊v1⌊v2⌋⌋ is not a subword ofu1 andu2 by
Eq. (31). From Lemma2.14(a) and Eq. (33), either

(34) ⌊v1⌊v2⌋⌋ = ⌊u1⌋ and q = ⋆⌊u2⌋,

or

(35) ⌊v1⌊v2⌋⌋ = ⌊u2⌋ and q = ⌊u1⌋ ⋆ .

For the former case of Eq. (34), we have

R(φ(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊v1⌊v2⌋⌋u2⌋ →ψ ⌊⌊⌊v1⌋v2⌋u2⌋

and
q|R(ψ(v1,v2)) = (⋆⌊u2⌋) |⌊⌊v1⌋v2⌋ = ⌊⌊v1⌋v2⌋⌊u2⌋ →φ ⌊⌊⌊v1⌋v2⌋u2⌋.

HenceR(φ(u1, u2)) ↓Φ q|R(ψ(v1,v2)) and Eq. (30) holds, as needed. For the later case of Eq. (35), we
haveu2 = v1⌊v2⌋. So

R(φ(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊u1⌋v1⌊v2⌋⌋ →ψ ⌊⌊⌊u1⌋v1⌋v2⌋

and
q|R(ψ(v1,v2)) = (⌊u1⌋⋆) |⌊⌊v1⌋v2⌋ = ⌊u1⌋⌊⌊v1⌋v2⌋ →φ ⌊⌊u1⌋⌊v1⌋v2⌋ →φ ⌊⌊⌊u1⌋v1⌋v2⌋.

HenceR(φ(u1, u2)) ↓Φ q|R(ψ(v1,v2)) and Eq. (30) holds, as needed.
Subcase 1.2.β(x1, x2) = ϕ(x1, x2). In this subcase, we have

(36) ⌊u1⌋⌊u2⌋ = α(u1, u2) = q|β(v1,v2) = q|⌊⌊v1⌋v2⌋
(2),

that is,⌊⌊v1⌋v2⌋
(2) is a subword of⌊u1⌋⌊u2⌋. By Lemma2.14(b), either⌊⌊v1⌋v2⌋

(2) is a subword
of ⌊u1⌋ or ⌊⌊v1⌋v2⌋

(2) is a subword of or⌊u2⌋. Since⌊⌊v1⌋v2⌋
(2) is not a subword oru1 andu2 by

Eq. (31), from Lemma2.14(a) and Eq (36), either

(37) ⌊⌊v1⌋v2⌋
(2) = ⌊u1⌋ and q = ⋆⌊u2⌋

or

(38) ⌊⌊v1⌋v2⌋
(2) = ⌊u2⌋ and q = ⌊u1⌋ ⋆ .

Consider firstly the former case of Eq. (37). We have

R(φ(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊⌊v1⌋v2⌋
(2)u2⌋ →ϕ ⌊⌊⌊v1⌋

(2)v2⌋u2⌋

and

q|R(ϕ(v1,v2)) =(⋆⌊u2⌋) |⌊⌊v1⌋
(2)v2⌋ = ⌊⌊v1⌋

(2)v2⌋⌊u2⌋ →φ ⌊⌊⌊v1⌋
(2)v2⌋u2⌋.

HenceR(φ(u1, u2)) ↓Φ q|R(ϕ(v1,v2)) and Eq. (30) holds. For the later case of Eq. (38), we have
u2 = ⌊⌊v1⌋v2⌋. Then

R(φ(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊u1⌋⌊⌊v1⌋v2⌋⌋ →φ ⌊⌊⌊u1⌋⌊v1⌋v2⌋⌋ = ⌊⌊u1⌋⌊v1⌋v2⌋
(2) →φ ⌊⌊⌊u1⌋v1⌋v2⌋

(2)

→ϕ ⌊⌊⌊u1⌋v1⌋
(2)v2⌋ →ϕ ⌊⌊⌊u1⌋

(2)v1⌋v2⌋

and

q|R(ϕ(v1,v2)) = (⌊u1⌋⋆) |⌊⌊v1⌋
(2)v2⌋ = ⌊u1⌋⌊⌊v1⌋

(2)v2⌋ →φ ⌊⌊u1⌋⌊v1⌋
(2)v2⌋ →φ ⌊⌊⌊u1⌋⌊v1⌋⌋v2⌋

→φ ⌊⌊⌊⌊u1⌋v1⌋⌋v2⌋ = ⌊⌊⌊u1⌋v1⌋
(2)v2⌋ →ϕ ⌊⌊⌊u1⌋

(2)v1⌋v2⌋.

HenceR(φ(u1, u2)) ↓Φ q|R(ϕ(v1,v2)) and Eq. (30) holds, as needed.

Case 2.α(x1, x2) = ψ(x1, x2). Thenα(u1, u2) = ⌊u1⌊u2⌋⌋ by Eq. (15).
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Case 2.1.β(x1, x2) = φ(x1, x2). In this subcase, we have

(39) ⌊u1⌊u2⌋⌋ = α(u1, u2) = q|β(v1,v2) = q|⌊v1⌋⌊v2⌋,

that is,⌊v1⌋⌊v2⌋ is a subword of⌊u1⌊u2⌋⌋. Since⌊v1⌋⌊v2⌋ , ⌊u1⌊u2⌋⌋ by Eq. (32), it follows from
Lemma2.14(a) that⌊v1⌋⌊v2⌋ is a subword ofu1⌊u2⌋. Note⌊v1⌋⌊v2⌋ is not a subword ofu1 or u2 by
Eq. (31). Soa⌊v1⌋⌊v2⌋ = u1⌊u2⌋ for somea ∈ M(X) andq = ⌊a⋆⌋ by Eq. (39). Thena⌊v1⌋ = u1,
⌊v2⌋ = ⌊u2⌋, v2 = u2. This follows that

R(ψ(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊a⌊v1⌋⌋u2⌋ →ψ ⌊⌊⌊a⌋v1⌋u2⌋

and

q|R(φ(v1,v2)) = (⌊a⋆⌋) |⌊⌊v1⌋v2⌋ = ⌊a⌊⌊v1⌋v2⌋⌋ = ⌊a⌊⌊v1⌋u2⌋⌋ →ψ ⌊⌊a⌋⌊v1⌋u2⌋ →φ ⌊⌊⌊a⌋v1⌋u2⌋.

HenceR(ψ(u1, u2)) ↓Φ q|R(φ(v1,v2)) and Eq. (30) holds, as needed.

Case 2.2β(x1, x2) = ψ(x1, x2). In this subcase, we have

(40) ⌊u1⌊u2⌋⌋ = α(u1, u2) = q|β(v1,v2) = q|⌊v1⌊v2⌋⌋,

that is, ⌊v1⌊v2⌋⌋ is a subword of⌊u1⌊u2⌋⌋. By Lemma2.14 (a) and ⌊v1⌊v2⌋⌋ , ⌊u1⌊u2⌋⌋ from
Eq. (32), ⌊v1⌊v2⌋⌋ is a subword ofu1⌊u2⌋. Note⌊v1⌊v2⌋⌋ is not a subword ofu1 andu2 by Eq. (31).
So by Lemma2.14(b), ⌊v1⌊v2⌋⌋ is a subword of⌊u2⌋. From Lemma2.14(a), we have⌊v1⌊v2⌋⌋ =

⌊u2⌋, v1⌊v2⌋ = u2 andq = ⌊u1⋆⌋ by Eq. (40). Thus

R(ψ(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊u1⌋v1⌊v2⌋⌋ →ψ ⌊⌊⌊u1⌋v1⌋v2⌋

and
q|R(ψ(v1,v2)) = (⌊u1⋆⌋) |⌊⌊v1⌋v2⌋ = ⌊u1⌊⌊v1⌋v2⌋⌋ →ψ ⌊⌊u1⌋⌊v1⌋v2⌋ →φ ⌊⌊⌊u1⌋v1⌋v2⌋.

HenceR(ψ(u1, u2)) ↓Φ q|R(ψ(v1,v2)) and Eq. (30) holds, as needed.

Case 2.3.β(x1, x2) = ϕ(x1, x2). In this subcase, we have

(41) ⌊u1⌊u2⌋⌋ = α(u1, u2) = q|β(v1,v2) = q|⌊⌊v1⌋v2⌋
(2),

that is,⌊⌊v1⌋v2⌋
(2) is a subword of⌊u1⌊u2⌋⌋. By Lemma2.14(a) and⌊⌊v1⌋v2⌋

(2)
, ⌊u1⌊u2⌋⌋ from

Eq. (32), ⌊⌊v1⌋v2⌋
(2) is a subword ofu1⌊u2⌋. Note from Eq. (31), ⌊⌊v1⌋v2⌋

(2) is not a subword
of u1 and u2. So by Lemma2.14 (b), ⌊⌊v1⌋v2⌋

(2) is a subword of⌊u2⌋. By Lemma2.14 (a),
⌊⌊v1⌋v2⌋

(2) = ⌊u2⌋ and thenq = ⌊u1⋆⌋ by Eq. (41). This implies⌊⌊v1⌋v2⌋ = u2. Thus

R(ψ(u1, u2)) = ⌊⌊u1⌋u2⌋ = ⌊⌊u1⌋⌊⌊v1⌋v2⌋⌋ →φ ⌊⌊⌊u1⌋⌊v1⌋v2⌋⌋ = ⌊⌊u1⌋⌊v1⌋v2⌋
(2)

→φ ⌊⌊⌊u1⌋v1⌋v2⌋
(2)→ϕ ⌊⌊⌊u1⌋v1⌋

(2)v2⌋ →ϕ ⌊⌊⌊u1⌋
(2)v1⌋v2⌋

and

q|R(ϕ(v1,v2)) = (⌊u1⋆⌋) |⌊⌊v1⌋
(2)v2⌋ = ⌊u1⌊⌊v1⌋

(2)v2⌋⌋ →ψ ⌊⌊u1⌋⌊v1⌋
(2)v2⌋ →φ ⌊⌊⌊u1⌋⌊v1⌋⌋v2⌋

→φ ⌊⌊⌊⌊u1⌋v1⌋⌋v2⌋ = ⌊⌊⌊u1⌋v1⌋
(2)v2⌋ →ϕ ⌊⌊⌊u1⌋

(2)v1⌋v2⌋.

HenceR(ψ(u1, u2)) ↓Φ q|R(ϕ(v1,v2)) and Eq. (30) holds, as needed.

Case 3.α(x1, x2) = ϕ(x1, x2). Thenα(u1, u2) = ⌊⌊u1⌋u2⌋
(2) by Eq. (17).

Subcase 3.1.β(x1, x2) = φ(x1, x2). In this subcase,

(42) ⌊⌊u1⌋u2⌋
(2) = α(u1, u2) = q|β(v1,v2) = q|⌊v1⌋⌊v2⌋,

that is,⌊v1⌋⌊v2⌋ is a subword of⌊⌊u1⌋u2⌋
(2). As ⌊v1⌋⌊v2⌋ , ⌊⌊u1⌋u2⌋

(2) by Eq. (31), ⌊v1⌋⌊v2⌋ is a
subword of⌊⌊u1⌋u2⌋ by Lemma2.14(a). Again using Lemma2.14(a), ⌊v1⌋⌊v2⌋ is a subword of
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⌊u1⌋u2 by ⌊v1⌋⌊v2⌋ , ⌊⌊u1⌋u2⌋. From Eq. (31), β(v1, v2) = ⌊v1⌋⌊v2⌋ is not a subword ofu1 andu2.
Hence⌊v1⌋⌊v2⌋a = ⌊u1⌋u2 for somea ∈ M(X) and soq = ⌊⋆a⌋(2) by Eq. (42). This implies that
⌊v1⌋ = ⌊u1⌋, v1 = u1 and⌊v2⌋a = u2. Hence

R(ϕ(u1, u2)) = ⌊⌊u1⌋
(2)u2⌋ = ⌊⌊u1⌋

(2)⌊v2⌋a⌋ →φ ⌊⌊⌊u1⌋
(2)v2⌋a⌋

and

q|R(φ(v1,v2)) = (⌊⋆a⌋(2)) |⌊⌊v1⌋v2⌋ = ⌊⌊⌊v1⌋v2⌋a⌋
(2) = ⌊⌊⌊u1⌋v2⌋a⌋

(2)

→ϕ ⌊⌊⌊u1⌋v2⌋
(2)a⌋ →ϕ ⌊⌊⌊u1⌋

(2)v2⌋a⌋.

HenceR(ϕ(u1, u2)) ↓Φ q|R(φ(v1,v2)) and Eq. (30) holds, as needed.
Subcase 3.2.β(x1, x2) = ψ(x1, x2). In this subcase,

(43) ⌊⌊u1⌋u2⌋
(2) = α(u1, u2) = q|β(v1,v2) = q|⌊v1⌊v2⌋⌋,

that is,⌊v1⌊v2⌋⌋ is a subword of⌊⌊u1⌋u2⌋
(2). Since⌊v1⌊v2⌋⌋ , ⌊⌊u1⌋u2⌋

(2) by Eq. (32), ⌊v1⌊v2⌋⌋ is a
subword of⌊⌊u1⌋u2⌋ by Lemma2.14(a). Again using Lemma2.14(a), either⌊v1⌊v2⌋⌋ = ⌊⌊u1⌋u2⌋

or ⌊v1⌊v2⌋⌋ is a subword of⌊u1⌋u2.
For the former case of⌊v1⌊v2⌋⌋ = ⌊⌊u1⌋u2⌋, we haveq = ⌊⋆⌋ by Eq. (43) andv1⌊v2⌋ = ⌊u1⌋u2.

This implies thatv1 = ⌊u1⌋v′1 andu2 = u′2⌊v2⌋ for somev′1, u
′
2 ∈ M(X). Then

⌊u1⌋v
′
1⌊v2⌋ = v1⌊v2⌋ = ⌊u1⌋u2 = ⌊u1⌋u

′
2⌊v2⌋ and sov′1 = u′2 =: a.

Thenv1 = ⌊u1⌋a andu2 = a⌊v2⌋. This follows that

R(ϕ(u1, u2)) = ⌊⌊u1⌋
(2)u2⌋ = ⌊⌊u1⌋

(2)a⌊v2⌋⌋ →ψ ⌊⌊⌊u1⌋
(2)a⌋v2⌋

and

q|R(ψ(v1,v2)) = ⌊⋆⌋ |⌊⌊v1⌋v2⌋ = ⌊⌊⌊v1⌋v2⌋⌋ = ⌊⌊v1⌋v2⌋
(2) = ⌊⌊⌊u1⌋a⌋v2⌋

(2)

→ϕ ⌊⌊⌊u1⌋a⌋
(2)v2⌋ →ϕ ⌊⌊⌊u1⌋

(2)a⌋v2⌋.

HenceR(ϕ(u1, u2)) ↓Φ q|R(ψ(v1,v2)) and Eq. (30) holds, as needed.
Consider the latter case that⌊v1⌊v2⌋⌋ is a subword of⌊u1⌋u2. By Eq. (31), β(v1, v2) = ⌊⌊v1⌋v2⌋

is not a subword ofu1 andu2. So from Lemma2.14(b), ⌊v1⌊v2⌋⌋ is a subword of⌊u1⌋. Using
Lemma2.14(a), we have⌊v1⌊v2⌋⌋ = ⌊u1⌋ and soq = ⌊⋆u2⌋

(2) by Eq. (43). Thenv1⌊v2⌋ = u1. So
we have

R(ϕ(u1, u2)) = ⌊⌊u1⌋
(2)u2⌋ = ⌊⌊v1⌊v2⌋⌋

(2)u2⌋ →ψ ⌊⌊⌊v1⌋v2⌋
(2)u2⌋ →ϕ ⌊⌊⌊v1⌋

(2)v2⌋u2⌋

and

q|R(ψ(v1,v2)) = (⌊⋆u2⌋
(2)) |⌊⌊v1⌋v2⌋ = ⌊⌊⌊v1⌋v2⌋u2⌋

(2)→ϕ ⌊⌊⌊v1⌋v2⌋
(2)u2⌋ →ϕ ⌊⌊⌊v1⌋

(2)v2⌋u2⌋.

HenceR(ϕ(u1, u2)) ↓Φ q|R(ψ(v1,v2)) and Eq. (30) holds, as needed.
Subcase 3.3.β(x1, x2) = ϕ(x1, x2). In this subsection, we have

(44) ⌊⌊u1⌋u2⌋
(2) = α(u1, u2) = q|β(v1,v2) = q|⌊⌊v1⌋v2⌋

(2),

that is, ⌊⌊v1⌋v2⌋
(2) is a subword of⌊⌊u1⌋u2⌋

(2). By Eq. (32), ⌊⌊v1⌋v2⌋
(2)
, ⌊⌊u1⌋u2⌋

(2). So from
Lemma 2.14 (a), ⌊⌊v1⌋v2⌋

(2) is a subword of⌊⌊u1⌋u2⌋. Again using Lemma2.14 (a), either
⌊⌊v1⌋v2⌋

(2) = ⌊⌊u1⌋u2⌋ or ⌊⌊v1⌋v2⌋
(2) is a subword of⌊u1⌋u2.

For the former case, we haveq = ⌊⋆⌋ by Eq. (44) and⌊⌊v1⌋v2⌋ = ⌊u1⌋u2. This implies that
u2 = 1, ⌊⌊v1⌋v2⌋ = ⌊u1⌋ and⌊v1⌋v2 = u1. Then

R(ϕ(u1, u2)) = ⌊⌊u1⌋
(2)u2⌋ = ⌊u1⌋

(3) = ⌊⌊v1⌋v2⌋
(3)→ϕ ⌊⌊v1⌋

(2)v2⌋
(2)→ϕ ⌊⌊v1⌋

(3)v2⌋
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and

q|R(ϕ(v1,v2)) = ⌊⋆⌋ |⌊⌊v1⌋
(2)v2⌋ = ⌊⌊⌊v1⌋

(2)v2⌋⌋ = ⌊⌊v1⌋
(2)v2⌋

(2)→ϕ ⌊⌊v1⌋
(3)v2⌋.

HenceR(ϕ(u1, u2)) ↓Φ q|R(ϕ(v1,v2)) and Eq. (30) holds, as needed.
Consider the later case of that⌊⌊v1⌋v2⌋

(2) is a subword of⌊u1⌋u2. By Eq. (31), β(v1, v2) =
⌊⌊v1⌋v2⌋

(2) is not a subword ofu1 andu2. So from Lemma2.14(b), ⌊⌊v1⌋v2⌋
(2) is a subword of

⌊u1⌋. Using Lemma2.14(a), we have⌊⌊v1⌋v2⌋
(2) = ⌊u1⌋ and soq = ⌊⋆u2⌋

(2) by Eq. (44). Thus we
have

R(ϕ(u1, u2)) = ⌊⌊u1⌋
(2)u2⌋ = ⌊⌊⌊v1⌋v2⌋

(3)u2⌋ →ϕ ⌊⌊⌊v1⌋
(2)v2⌋

(2)u2⌋ →ϕ ⌊⌊⌊v1⌋
(3)v2⌋u2⌋

and

q|R(ϕ(v1,v2)) = (⌊⋆u2⌋
(2)) |⌊⌊v1⌋

(2)v2⌋ = ⌊⌊⌊v1⌋
(2)v2⌋u2⌋

(2)→ϕ ⌊⌊⌊v1⌋
(2)v2⌋

(2)u2⌋ →ϕ ⌊⌊⌊v1⌋
(3)v2⌋u2⌋

HenceR(ϕ(u1, u2)) ↓Φ q|R(ϕ(v1,v2)) and Eq. (30) holds, as needed. This completes the proof.
�

Recall from Remark3.4thatu2 , 1 in ϕ(u1, u2). So we define

(45)

M :={q|φ(u1,u2), q|ψ(u1,u2) | q ∈ M
⋆(X), u1, u2 ∈ M(X)},

N :={q|ϕ(u1,u2) | q ∈ M
⋆(X), u1 ∈ M(X), u2 ∈ M(X) \ {1}},

N1 :={q|ϕ(u1,u2) | q ∈ M
⋆(X), u1, u2 ∈ M(X)},

N2 :={q|ϕ(u1,1) | q ∈ M
⋆(X), u1 ∈ M(X)}.

ThenN = N1 \ N2. From Eqs. (15) and (17),

q|ϕ(u1,1) = q|⌊u1⌋
(3) = q|⌊1⌊u1⌋

(2)⌋ = q|ψ(1, ⌊u1⌋)
∈ M

and soN2 ⊆ M. Thus

M ∪ N = M ∪ (N1 \ N2) = M ∪ N1.

Hence

(46)

{q|s | q ∈ M
⋆(X), s ∈ SΦ(X)}

={q|s | q ∈ M
⋆(X), s ∈ Sφ(X) ∪ Sψ(X)} ∪ {q|s | q ∈ M

⋆(X), s ∈ Sϕ(X)}

=M ∪ N = M ∪ N1

={q|⌊u1⌋⌊u2⌋, q|⌊u1⌊u2⌋⌋, q|⌊⌊u1⌋u2⌋
(2) | q ∈ M⋆(X), u1, u2 ∈ M(X)},

where the second step employs Remark3.4. Now we are ready to give our main result. From
Proposition2.11and Eq. (18), kM(X)/Id(SΦ(X)) is the free averaging algebra onX.

Theorem 3.11.TheIrr(SΦ(X)) is ak-basis of the free (unitary) averaging algebrakM(X)/Id(SΦ(X))
on X. More precisely,

kM(X) = Id(SΦ(X)) ⊕ kIrr(SΦ(X)),

where

Irr(SΦ(X)) = M(X) \ {q|⌊u1⌋⌊u2⌋, q|⌊u1⌊u2⌋⌋, q|⌊⌊u1⌋u2⌋
(2) | q ∈ M⋆(X), u1, u2 ∈ M(X)}.
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Proof. By Theorem3.10, ΠΦ = ΠSΦ(X) is convergent. Using Theorems2.41to S = SΦ(X), we
have

kM(X) = Id(SΦ(X)) ⊕ kIrr(SΦ(X)),

where

Irr(SΦ(X)) =M(X) \ {q|s | q ∈ M
⋆(X), s ∈ SΦ(X)}

=M(X) \ {q|⌊u1⌋⌊u2⌋, q|⌊u1⌊u2⌋⌋, q|⌊⌊u1⌋u2⌋
(2) | q ∈ M⋆(X), u1, u2 ∈ M(X)}

by Eq. (46). �
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