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AVERAGING ALGEBRAS, REWRITING SYSTEMS AND GR OBNER-SHIRSHOV
BASES

XING GAO AND TIANJIE ZHANG

Asstract. In this paper, we study the averaging operator by assigaingwriting system to it.
We obtain some basic results on the kind of rewriting systesmuged. In particular, we obtain a
suficient and necessary condition for the confluence. We supplselationship between rewriting
systems and Grobner-Shirshov bases based on brackeyewpuiéls. As an application, we give
a basis of the free unitary averaging algebra on a non-erspsty
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1. INTRODUCTION

There is an extensive literature on averaging operatorsrwadious contexts, motivated largely
by the fact that they are generalizations of conditionaleexation in probability theory. Let us
recall briefly. As early as 1895, O. Reynolds in a famous papédurbulence theonpf] already
studied the averaging operator because of the closedomdaip between averaging operators
and Reynolds operators—an idempotent operator is an aagragerator if and only if it is a
Reynolds operator. Kolmogoffoand Kampé de Fériet defined explicitly the averaging dpera
in 1930s P4, £9] and began their study on it in a series of papers. G. Biftkbontinued the
study of averaging operators using the method of functianalysisff]. S. T.C. Moy discussed
the relationship of averaging operators with conditiongleetation in probability theory and
studied the connection between averaging operators aegdration theory in probability 0.

J. L. Kelley [24] characterized the idempotent averaging operators on #émaéh algebra of all
real valued continuous functions vanishing at the infinityaolocally compact Hausddrspace.
G. C. Rota[Bg] in 1964 showed that a continuous Reynolds operator on gebeadl * (S, =, m) of
bounded measurable functions on a measure si@&&er() is an averaging operator if and only
if it has closed range.

In the above literatures, most studies on averaging opsrate for various special algebras
and the topics are largely analytic. The algebraic study\araging operators has also been
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deepened and generalized. W. Cag] studied averaging operators in the general context from an
algebraic point of view. He gave the explicit constructidfree commutative averaging algebras
and investigated the Lie algebra structures induced rtdram averaging operators. By way
of analogy with the associative algebra as the envelopiggoah of the Lie algebra, J. L. Loday
defined the diassociative algebra as the enveloping algélina Leibniz algebrgdd]. M. Aguiar
showed that a diassociative algebra can be derived fromenaging associative algebfd [ A
further algebraic and combinatorial study of averagingatees was carried out ifZ]]].

The averaging operators are interested also because thelpsaely related to Reynolds opera-
tors, symmetric operators and Rota-Baxter operafigid3g, [LQ]. It is worth mentioning that the
Rota-Baxter operator has broad connections with many ameasthematics and mathematical
physics [, @, E0]. In particular, L. Guo and J. Pei in a recent paf&}] [obtained a connection
between averaging operators and Rota-Baxter operatasalgiebraic structures resulted from
the actions of the two operators are Koszul dual to each .othehat paperf]], L. Guo and J.
Pei also gave a basis of the free nonunitary (honcommujatixeraging algebra on a non-empty
set. It is natural to consider the case of the free unitarm¢ommutative) averaging algebra on a
non-empty set, our main object of study in the present paper.

Grobner and Grobner-Shirshov bases theory was initistédpendently by Shirsho@a]],
Hironaka B3] and Buchbergerf[]]. It has been proved to be very useful iffdrent branches
of mathematics, including commutative algebras and coatbiial algebras, se@l,[g, . Ab-
stract rewriting system is a branch of theoretical compstence, combining elements of logic,
universal algebra, automated theorem proving and funatiprogrammingfll, B1]. The theories
of Grobner-Shirshov bases and rewriting systems are ssftdly applied to study operators and
operator polynomial identitiefL[j, £7].

In the present paper along this line, using the theories obGar-Shirshov bases and rewriting
systems, we construct a basis of the free unitary (noncomtiae} averaging algebra on a non-
empty set. Terminating and confluence are essential andabsiproperties of a rewriting
system. To use the tools of Grobner-Shirshov bases andireysystems, we obtain a ficient
and necessary condition for the confluence of the kind ofitewgrsystem we used. We supply
the relationship between Grobner-Shirshov bases andtiregwsystems based on bracketed poly-
nomials. Applying the method we obtained for checking caeilte, we successfully prove that
the rewriting system associated to the averaging opemtmrifluent and then convergent with a
suitable order. Let us emphasize that there are a lot of fartkee process of checking confluence.
We handle technically most of them in a unified way. Thesertiggles can also be used to study
other operators. It is well known that in the category of aiweqg algebraic structure, the free
objects play a central role in study other objects. Thus aspgfication, we give a basis of the
free unitary (honcommutative) averaging algebra on a mopte set.

Our characterization of averaging operators in terms @b@er-Shirshov bases and rewriting
systems reveals the power of this approach. It would beésteg to further study operators and
operator polynomial identities by making use of the twoterdlaheories: Grobner-Shirshov bases
and rewriting systems.

Thelayout of the papers as follows. In Sectiof, we first recall the concepts of averaging
algebras and free operated algebras. We next recall sonessaay backgrounds of Grobner-
Shirshov bases and rewriting systems. We obtain some besitts on the kind of rewriting
system we used. In particular, we obtain #isient and necessary condition to characterize the
confluence (Theorefd.3g). We end this section by supplying the relationship betwtbertwo
powerful tools—Grdbner-Shirshov bases and rewritingesys (Theorenfg.4]). Sectionfj is
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devoted to a basis of the free unitary averaging algebra ameempty set. In order to achieve
this purpose, we assign a rewriting system to the averagiegator (Eq. [[9)). We show this
rewriting system is convergent (Theor@i(). We end this section by giving a basis of the free
unitary (honcommutative) averaging algebra on a non-ersgttyTheorenf.T]).

Some remark onotation We fix a domairk and a non-empty set. Denote byk* := k \ {0}
the subset of nonzero elements. We denotéthpan of a seY by kY. For an algebra, we mean
a unitary associative noncommutatikealgebra, unless specified otherwise. For anyYsdéet
M(Y) be the free monoid oM with identity 1. We useJ for disjoint union.

2. (GROBNER-SHIRSHOV BASES AND REWRITING SYSTEMS

In this section, we first recall the definition of averagingeddras and characterize free av-
eraging algebras as quotients of free operated algebrasth&kerecall some backgrounds on
Grobner-Shirshov bases and rewriting systems.

2.1. Free averaging algebras.An averaging algebra in the noncommutative context is gagen
follows.

Definition 2.1. A linear operatoA on ak-algebraRis called anaveraging operatorif
A(up)A(u,) = A(A(uup) = A(uA(up)) forall ug,u, € R
A k-algebraRtogether with an averaging operatdon Ris called amaveraging algebra
To characterize the free averaging algebra, let us reafrée operated algebrg, [L9, P71

Definition 2.2. An operated monoid(resp.operated k-algebrg resp.operated k-module is
a monoid (resp k-algebra, respk-module)U together with a map (resgk-linear map, resp.
k-linear map)Py : U — U. A morphism from an operated monoid (resk-algebra, resp.
k-module) U, Py) to an operated monoid (resk-algebra, respk-module) ¥, Py) is a monoid
(resp.k-algebra, respk-module) homomorphism : U — V such thatf o Py = Py o f.

For any set, define
LYl :={lyllyeY}
which is a disjoint copy ofY. The following is the construction of the free operated mdram
the setX, proceeding via the finite stag®,(X) recursively defined as follows. Define

Mo(X) := M(X) and M1 (X) := M(X Lt [Mo(X)]).
Then the inclusiorX < X LI [9Mg] induces a monomorphism
o 1 Mo(X) = M(X) — M1(X) = M(X L [Mo])

of monoids through which we identif{fio(X) with its image inmi,(X). Suppose thabi,_,(X) has
been defined and the embedding

in2n-17 Mp_2(X) = Mp_1(X)
has been obtained for> 2 and consider the case f Define
Mn(X) = M(X U [Dp1(X)]).
SinceNiy_1(X) = M(X U [M,_2(X)]) is the free monoid on the st [, >(X)], the injection
XU [M2(X)] = X [Mn_1(X)]
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induces a monoid embedding
MWin-1(X) = MX U [Dn2(X)]) = Mn(X) = MX L [M-1(X))).

Finally we define the monoid

M(X) := lim Min(X) = U Min(X).
n=0
The elements iMi(X) are called bracketed worder bracketed monomials on.XWhenX is
finite, we may also just list its elements, aglit{xy, %) if X = {Xg, Xo}. For anyu € M(X) \ {1}, u
can be written uniquely as a product:

(1) U=U---Uy, forsomen>1, ue X [M(X)], 1<i<n

Thebreadthof u, denoted byu, is defined to be. If u = 1, defingju| = 0.

Let kM(X) be the free module with the basiB(X). Using k-linearity, the concatenation
product or)i(X) can be extended to a multiplication &Wwi(X), turningkMi(X) into ak-algebra.
Define an operatdr] : M(X) — M(X) by assigning

u Lul, ue M(X).

By k-linearly, the operatot | : M(X) — M(X) can be extended to a linear operatqr :
kKM(X) — kIMM(X), turning kNi(X), | ]) into an operated-algebra. The elements ki(X)
are calledbracketed polynomialgr operated polynomialsn X.

Lemma 2.3. [[L3, Coro. 3.6, 3.7With structures as above,
(a) the (M(X), | ]) together with the natural embedding iX — 9(X) is the free operated
monoid on X; and

(b) the (kM(X), | ]) together with the natural embedding X — kMi(X) is the free operated
k-algebra on X.

Definition 2.4. Let (R, P) be an operatek-algebra.
(@) Anelementp(Xy, ..., %) € kKM(X) (or ¢(Xq, ..., X) = 0) is called anoperated polynomial
identity (OPI), wherek > 1 andxy, ..., X € X.

(b) Letp = ¢(Xq,..., %) € kIM(X) be an OPI. Given any,,...,Us € R, there is a set map
f:x e u,1l<i<kandwe define

GUs, ..., W) = F(P(Xas - -, X)),

wheref : kWi(x., ..., %) — Ris the unique morphism of operated algebras that extends
the set mag, using the universal property kfJi(xy, . . ., X) as the free operatddalgebra
oNn{Xy, ..., X}. Informally, ¢(uy, .. ., uy) is the element oR obtained fromp(x, . . ., Xx) by
replacing eachx; by u;, 1<i < k.

(c) Let®d C kM(X) be a set of OPIs. We calt is satisfiedby R if

d(Ug,...,u) =0, Vo(Xg,..., %) € @, Yuy,...,Uuk € R

In this case, we speak thRtis a ®-algebraandP is a®-operator.
(d) LetS c kM(X) be a set. Theperated ideald(S) of kMi(X) generated b is the smallest
operated ideal containirg.

Let us proceed some examples.
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Example 2.5. The diferential operator as an algebraic abstraction of derivati@nalysis leads
to the diferential algebra, which is an algebraic study dfeatiential equations and has been
largely successful in many important are@§, [, B4]. The differential operatod = | | fulfils
the following OPI

P(X1, X2) = [XaXe] — [ XX — Xa %ol
Example 2.6. The Rota-Baxter operatét = | | of weightA has played important role in mathe-
matics and physicd[ 20, B4, satisfying the OPI
(X1, X2) = [X]LX2] = [Xa[ X)) = [LX1]X2] — AL X1 Xz,
whereA € k is a fixed constant.

Example 2.7. From DefinitionZ.], the averaging operatdx = | | (hnoncommutative) is defined
by the OPIs

(X1, Xo) = [Xe][X2] = LLX2 %2,

(2) WX, %) = [xalxe)] — LLXa)%e).

Example 2.8. 0. Reynolds[B3] introduced the concept of Reynolds operators into fluidashgn
ics, and Kampé de Férieflf] named it in his study on the various spaces of functions. The
Reynolds operator is defined by the OPI

(X1, X2) = LLXe ][ X)) + [Xe ][ %] = [Xal X)) = [LXe %]
Definition 2.9.  (a) Let¢ = ¢(Xy, ..., X) € kM(X) be an OPI withk > 1. Define

3) Sp(X) == {1, ..., U) | Ug, ..., U € M(X)}.
(b) Let ® be a set of OPIs. Define
(4) So(X) == |_JSy(¥).
Pped

It is well-known that

Proposition 2.10. [[[3, Prop. 1.3.6]Let ® C kM(X) a set of OPIs. Then the quotient operated
algebrakMi(X)/1d(Se (X)) is the freed-algebra on X.

In particular, we have

Proposition 2.11. Let ¢(X1, X2), (X1, X2) defined in Eq.H). Then the quotient operated algebra
kMi(X)/1d(S4(X) U Sy (X)) is the free averaging algebra on X.

2.2. Grobner Shirshov bases.In this subsection, we provide some backgrounds on Grébner
Shirshov based][ [[§, B7).

Definition 2.12. Let x be a symbol not il andX* = X LI {x}.

(a) By a x-bracketed wordbn X, we mean any bracketed word 4i(X*) with exactly one
occurrence ok, counting multiplicities. The set of ak-bracketed words oK is denoted
by M*(X).

(b) Forqg € M*(X) andu € M(X), we defineq|, := gl to be the bracketed word ox
obtained by replacing the symbslin q by u.
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(c) Forg e M*(X) ands = 3; ciu; € kMi(X), wherec; € k andu; € 9t(X), we define

dls := Zciqlui.

|
(d) A bracketed wordi € 9t(X) is a subwordof another bracketed wora € Mi(X) if w = q|,
for someq € M*(X).
Generally, withkq, % distinct symbols not ixX, setX*? := X LI {4, %2}.

(e) We define an%1, x»)-bracketed word on Xo be a bracketed word i(X*2) with exactly
one occurrence of each &f, i = 1,2. The set of all 1, x,)-bracketed words oiX is
denoted by)i*1*2(X).

() Forqg e M*+*2(X) andug, up € kNi*1*2(X), we define

qu]_,Uz = q|*1+—>u1,*2+—>uz

to be obtained by replacing the lettexsin g by u; fori = 1, 2.

Remark 2.13. Recall 7 that qly,.u, = (@*u,)l, = (9*?ly,)l,, Whereg*: is viewed as ax;-
bracketed word olX LI {x,} andg*? as ax,-bracketed word oiX LI {*4}.

We record the following obvious properties of subwords,alihwill be used later.

Lemma 2.14.Let u v, w € M(X).

(@) If uis a subword ofv], then either u= |v] or u is a subword of v.
(b) If Lu] is a subword of vw, then eith¢u] is a subword of v otu] is a subword of w.

Proof. (g) Supposas # |v]. Sinceu is a subword ofv], then|v] = g|, for someq € M*(X) by
DefinitionZ.I7 (). Sinceu # |v], it follows thatg # *. Thusq = | p] for somep € MVi*(X) by
Lv] = qlu. Thereforelv| = qly = |pl.] and sov = p|, as required.

(B). This is followed by the breadth ¢fi] is 1. O

The operated ideals kt)i(X) can be characterized ybracketed wordgj, 7).
Lemma 2.15. ([P3, Lem. 3.2])Let S C kM(X). Then

n
(5) Id(S) = {Zciqﬂs ‘n >1andc € k*,g € M*(X),s e Sforl<i< n}.
i=1

Definition 2.16. A monomial order oi(X) is a well-order< onMi(X) such that
U<v=0lu<dy, Yu,veM(X),VYqeM*(X).

Definition 2.17. Let s € k9i(X) and< a linear order oi(X).

(a) Let s¢ k. Theleading monomiabf s, denoted by, is the largest monomial appearing in

s. The leading cogicient of s denoted by, is the coéficient ofSin s.

(b) If s € k, we define theleading monomial of $0 be 1 and theleading cogicient of sto
becs = s.

(c) sis called monic with respect t& if s ¢ k andcs = 1. A subsetS C k9i(X) is called
monic with respect t« if every s € S is monic with respect t&.

(d) DefineR(s) := csS—s. Sos = csS— R(S).
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We will not need the precise definition of Grobner-Shirsbages for our construction. So we
will not recall it for now and the authors are refereed[pgdnd references therein. fhiges it to
say that we need the Composition-Diamond Lemma, the cotaee ®f Grobner-Shirshov basis
theories.

Lemma 2.18. (Composition-Diamond Lemmd][ 7)) Let < a monomial order oi(X) and
S C k(X)) monic with respect te. Then the following conditions are equivalent.
(a) S is a Grobner-Shirshov basis ki(X).
(b) n(Irr(S)) is ak-basis ofkM(X)/1d(S), wheren: kI(X) — kMi(X)/1d(S) is the canonical
homomorphism df-modules and

(6) Irr(S) := M(X) \ {dls| s€ S}.
More precisely ag-modules,
kM(X) = Kklrr(S) @ 1d(S).

2.3. Term-rewriting systems. In this subsection, we give a method for checking confluerice o
term-rewriting systems. Let us recall some basic notatimmkresultsfL7).

Definition 2.19. Let V be a freek-module with a giverk-basisW andf,g e V.

(8) ThesupportSupp(f) of f is the set of monomials (with non-zero d¢beients) off. Here
we use the convention that Suppy.

(b) We write f + g to indicate that Supg( N Supp@) = 0 and sayf + gis a direct sumof f
andg. If this is the case, we also uget g for the sumf + g.

(c¢) Forw e Supp() with the codficientc,, we defineR,(f) := c,w— f € V and sof =

CuW + (—Ry()).

Lemma 2.20. [}, Lem. 2.12]Let V be a fre&k-module with &-basis W and fge V. If f + g,
then cf+ dg for any ¢d € k.

Remark 2.21. Using the notationt, the equatiors = ¢S — R(s) in Definition .17 (d) can be
written in more detail as = ¢S+ (—R(9)).

The following is the concept of term-rewriting systems.

Definition 2.22. Let V be a freek-module with ak-basisW. A term-rewriting systenil on
V with respect to Ws a binary relatiodl € W x V. An element{,v) € II is called a(term)
rewriting rule of I1, denoted by — v. The term-rewriting syster is called simpleif t + v for
allt - vell

Remark 2.23. Now we explain the requirement that the term-rewriting egsil is simple.
SupposdI is not simple. Then by Definitio.23, there is a rewriting rulé — v such that
t € Suppy). Assumev = ct + (—R(v)) for somec € k*. Then

t - v=ct+ (-R(f)) =sncv-R(V) = Gt + (—c— DR(V) = -+ .

So as long as is not a nilpotent element] is not terminating. In the remainder of this paper, we
always assume that the term-rewriting system is simpleessrgpecified otherwise.

Definition 2.24. Let V be a freek-module with ak-basisW, IT a simple term-rewriting system
onV with respect toV andf,g € V.
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(a) We speak that rewritesto g in one-stepdenoted byf —; gor f @m g, if
f =ct+ (-R(f)) and g = ¢v — R(f) for somec, € k* andt — v e IL

(b) The reflexive-transitive closure of the binary relaties; on V is denoted by>y. If

f 5 g(resp.f £n g), we speak thatf rewrites (resp. doesn't rewrite ) to g with respect
to I1.
(c) We call f andg are joinable denoted byf |y g, if there existsh € V such thatf = h

andg S5p h.
(d) We sayf a normal formif no more rewriting rules can apply.
Remark 2.25. Let f,ge V.
(a) By DefinitionP23 (@), f = f and

f5ge= f=fyonfion-—nfni=gforsomen>0,feV,0<i<n.

(b) If f 5 g, thenf | gbyg > g. Inparticular,f | f by f 5 f.

The following definitions are adapted from abstract rewgtsystemsf, f.

Definition 2.26. Let V be a freek-module with ak-basisW, I1 a simple term-rewriting system
onV with respect tow.
(a) ITis terminatingif there is no infinite chain of one-step rewriting
fo—n f1 —p f2- -
(b) f e Vislocally confluenif for every local fork ;< f —1; g), we haveg | h.

(c) f € Vis confluentf for every fork (& f =p g), we haveg | h.
(d) ITislocally confluent (resp. confluentevery f € V is locally confluent (resp. confluent).
(e) ITis convergentf it is both terminating and confluent.

A well-known result on rewriting systems is Newman’s Lemma.

Lemma 2.27. ([g, Lem. 2.7.2])A terminating rewriting system is confluent if and only ifst i
locally confluent.

The following result will be used later.
Lemma 2.28. ([L7, Thm. 2.20])Let V be a freek-module with ak-basis W andT a simple

term-rewriting system on V with respect to W. IKis confluent, then, for all m> 1 and
fl’---, fm’gls---3gmevs

m m
filng (A<i<m), anngi -0 = (Z fi] 54 0.
i=1 i=1
Remark 2.29. If T is confluent and |y g, thenf —g = 0 by —g | —g and Lemmd§Z.2%

The following is a concept strong than locally confluence amdilar to Buchberger'sS-
polynomials.

Definition 2.30. Let V be a freek-module with ak-basisW, IT a simple term-rewriting system
onV with respect tow.
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(@) A local base-forks a fork v ;< ct —p; CV,), wherec € k* andt — vy, t — v, € IT are
rewriting rules.

(b) The term-rewriting systerfl is calledlocally base-confluerif for every local base-fork
(CVa ¢ Ct —p1 CW), we havec(v; — Vo) =y 0.

(c) I is compatiblewith a linear ordexk onW if v < t for eacht — v € I1.

Lemma 2.31. (L7, Lem. 2.22])Let V be a freek-module with ak-basis W and lefl be a
simple term-rewriting system on V which is compatible withedl order< on W. IfI1 is locally
base-confluent, then it is locally confluent.

The following concept is followed from general abstractrniéng systemsfj, Def. 1.1.6].

Definition 2.32. LetV be a freek-modules with &-basiswW and letlT be a simple term-rewriting
system orV with respect toV. LetY € W andIly := IT N (Y x KY). We callIlxy asub-term-
rewriting systenof IT onkY with respect tor, denoted bylyy < II, if KY is closed undefl, i.e.,
foranyf e kY and anyg e V, f - gimpliesg € kY.

Remark 2.33. Sincell is simple Iy is also simple. Indeed, lé¢t— v € I,y be a rewriting rule
witht € Y andv € kY. Thent — v e IT by Iy C I1. Sincell is simple, we havé ¢ Supp{) by
DefinitionZ-Z2and sdliy is simple.

We record the following properties.
Lemma 2.34. Let V be a fre&k-module with &k-basis W, and lell be a simple term-rewriting

system on V with respect to W.

(a) Ift € Supp€f) withte W, ce k* and f € V, then te Supp().

(b) If cf - gwithce k* and f,g € V, then g= cg for some e V.
(¢) Ifcf =0withce k*and fe V, then f=0.

(d) Force k*and f,ge V with f # g, f - gifand only if cf— cg.

Proof. (d) Suppose for a contrary that¢ Supp(f). SinceW is a k-basis ofV, by Defini-
tion2.19(H), we may writef = 3 ; ciw;, where eaclg; € k* andw; € W\ {t}. Thencf = }; cow;.
Sincew, # t for eachi, we have ¢ Supp€f), a contradiction.

(B) Suppose f (—t’v>)H gfor somet — v € I1. Thent € Supp€f) and sa € Supp(f) by Item @).
Write f = ¢t + (-Ri(f)) with ¢; € kX. Then by Lemm§.2(),
. (tv)
of = cat + (~eR(f)) —n cav - cR(f) = c(ev - R(f)) = g.

as required.

(@) SinceW is ak-basis ofV, we may writef = 3}, ciw; with ¢; € k andw; € W for eachi.
Thencf = };ccgw; = 0 and socg = O for eachi. Sincek is a domain by our hypothesis and
c # 0, we have; = O for eachi, that is,f = 0.

(@) Supposd ﬂn g for somet — v € I1. By DefinitionP.24(d), we may write
f = dt+ (-R(f)) andg = dv- R(f) for somed € k*.
Then by Lemm§.20,
cf = cdt+ (-cR(f)) and cg = cdv— cR(f)



10 XING GAO AND TIANJIE ZHANG

and socf ﬁﬁ)n cg. Conversely, supposef ﬂ»)n cgfor somet — v e I1. Thent € Supp€f) and
sot € Supp(f) by Item @). Write f = ¢t + (-R(f)) with ¢, € k*. Then from Lemm§_.20),

cf =cat + (-cR(f)) ﬂ»)n cqVv - cR(f) = cg.
Sincec € k*, we getc,v — R(f) = g by Item @) and sof —; g. |

Lemma 2.35. Let V be a fre&k-module with &k-basis W, and lell be a simple term-rewriting
system on V with respect to W. Legf V and ce k*. Then f5; g if and only if cf 5 cg.

Proof. (=) If f = g, thencf = cgandcf 5 cgby RemarkZ.2%(H). Suppose # g. Letn> 1
be the least number such thatewrites tog in n steps. Then

(7) f=foonfi-on---—-nfi=9
for some distinctf; € V, 0< i < nand so by Lemm&.34(Q),
(8) Cf:Cfo - Cfl = Cfn:Cg.

Hencecf 5y cg.

() If cf = cg, thenf = g by LemmaZ.34([d) and sof Sngby RemarlZ.Z5 (H). Suppose
cf # cg. Letn > 1 be the least number such that rewrites tocg in n steps. Then by
LemmaP.34 (0), Eq @) holds for some distinctfi € V, 0 < i < n. Using Lemm&Z.34 (),
f, € V are distinct for 0< i < n. From LemmaZ33(f), Eq. () is valid and sof = g. o

Theorem 2.36.Let V be a freek-module with ak-basis W and lefl be a simple terminating
term-rewriting system on V with respect to W. Supposea well-order on W compatible with
I1. ThenIl is confluent if and only if w is locally confluent for anyaiV.

Proof. (=) Sincell is confluentI1 is locally confluent by Definitioff.Z§, that is, every element
in V is locally confluent. FronW C V, wis locally confluent for anyv € W.

(&) To showlIl is confluent, it is enough to shol is locally confluent by Lemmf.27. In
view of Lemmal.3], we are left to prove thdi is locally base-confluent, that is, for any local
base-fork ¢v; ;< cw —y; cv,), we havecv; — cv; 55 0. Suppose for a contrary thHtis not
locally base-confluent. Then the set

C={weW ' there is a local fork base-fork, ;< cw —p Cw)

for somec € kX, vy, v, € V such thatv; — cw, £y 0}

is non-empty. Sincg is a well-order€ has the least elementwith respect to<. Thus there is
a local base-fork

(9) (CVi g CW —p CVp) Withw — v, w — v, e 1
such that

(10) cv — ¢V, by 0 for somec € k¥, vy, v, € V.
Let

()] Y ={ye W|y<w} and Iy =IIN (Y xKY).

Since< is compatible withll, we have Suppf), Supp{,) € Y and soY # 0. Furthermore,
ITyy < ITis a sub-term-rewriting system &f. Indeed, letf Sn g with f € kY, since< is
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compatible withl, we getg < f < wand sog € kY. ThusII,y is closed undef and sdlyy < II
by DefinitionZ-37.

For any local base-forkd{y, ey & dy —p,, dw) of ITyy with d € kX, y € Y andu,, u; € kY,
it induces a local base-forkl(y ;< dy —p dw) by Iy C I1. Sincey € Y, we havey < w and

y ¢ € by the minimality ofw. Sodu, — du, 51; 0 by the definition of¢. Claim
(12) f Sng= f S5p,, g for f,gekY.

Sincedu; —duw, € KY by ug, u, € kY, we havedu; —du, i>HkY 0 by the Claim. Thu$lyy is locally
base-confluent and so is locally confluent by Lenfifal. Sincell is terminating andIy < I,
Iyy is terminating. Therefor8y is confluent by Lemmg.ZT.

For the local fork in Eq.{), it induces a local forky; ;< W —p; ;) by Lemm&Z.34(d). Since

w € W is confluent by our hypothesis, it follows that | ; V». So there is1 € V such that, im u
andv, 5 u by Definitiong-23 (f). From LemmdZ.3%,

cV =y cu and cw, 5y cu.
Fromcw;, € kY andIlyy < ITis closed undell, we havecu € kY. So by the Claim of Eq{IQ),
CV1 =, CU and cv, =, CU.

This means thatv; |p,, CV.. Sincellyy is confluentcv; — cv, —*mky 0 by RemarkZ.Z9 Hence
cvi — % -y 0 by Iy C 11, contradicting Eq.[[Q). We are left to prove the Claim. m|

proof of Claim.We want to show Eq[I{}). Supposef = g with f,g € kY. If f = g, then
f Sn. g by RemarkZZ5(B). Assumef # gand letn > 1 be least number such that

f=fygonfion - —n f,:=g with f e Vare distinct0 < i < n.
Sincefy = f € kY andlIl is compatible withg, we havef; € kY for 0 < i < n. We prove the
Claim by induction om > 1. For the initial step oh = 1, supposd = f (t’—v>)n f, = g for some

t —» v e Il. Thent € Supp() € Y. This follows thatt < w by Eq. {{I). Sincell is compatible

with <, we havey < t < wand sov € KY. Thust — v e YxkY and sa — v e IIN(YxKY) = Ily.
This implies thatf = fo 3. f1 = gby fo, f € kY and fo "%, f,. For the induction step,
we havef = f, Sp,, fpandf; Sp,, f, = g by induction hypothesis and sb 5y, g, as
required. m|

2.4. Term-rewriting systems and Grobner-Shirshov bases.In this subsection, we supply the
relationship between Grobner-Shirshov bases and tenmtireg systems based on bracketed
polynomials. A term-rewriting system can be assigned tosargsetS of OPIs [ 7).

Definition 2.37. Let < be a linear order ofi(X) andS C k%i{(X) monic with respect t&. Define
a term-rewriting system associated3@s

(13) s = {ds — dlry | S=5+ (-R(9) € S, g€ NM*(X) } € M(X) x kM(X).
For notation clarify, we denotes;;, (resp. =, resp. ln;) by —s (resp. s, resp. ls). In
more detail when a specifie S is used in one step rewriting, we replaeg by —. If <isa

monomial order ofi(X), we haver|re = g < dls by R(S) < 5. Solls is compatible with< in
the sense in DefinitioE.30 ().

Remark 2.38. Let f, g € kMi(X).
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(@) If f -5 g, then we can writd = cqs+ f’ andg = cqre + f’ for somec € k*, g € Ni*(X),
se Sandf’ e kWM(X) by Definition2.24 ). Sof — g = cqsrey = cds € 1d(S) by
Lemmal.Th

(b) If f 55 g, thenf =: fy —»g f1 -5 --- > fy 1= g for somen > 0, f; € kM(X),0<i < n.
If n=0, thenf = gandf —geId(S). If n> 1, then by ltemf),

f-g=(fo- fi) +(fa— f2) +--- + (fr-r — fn) € 1d(S).

Lemma 2.39.1f u + v, then ¢, + g|, for any qe M*(X) and u v € kN(X).

Proof. Write u = 3’; ciu; andv = }; d;v;, where eaclt;, d; € k* andu;, v; € M(X). Then

Au = Z cqly, andqly = Z dquVj'
[ j

Suppose for a contrary thek, + gy fails. Theng|, = qly, by Definition.I9for somei, j. This
implies thatu; = v; € Supp(1) N Suppg), contradicting thati 4 v. O

The following results are characterized [if}]. For completeness, we record the proof here.

Lemma 2.40. Let< be a linear order ori(X) and SC ki(X) monic with respect t&.
(a) If Is is confluent, then, & Id(S) if and only if uins 0.
(b) If Is is confluent, theid(S) N klirr(S) = 0.
(o) If IIs is terminating andd(S) N klrr(S) = 0, thenIIs is confluent.
(d) If Is is terminating, therkMi(X) = 1d(S) + klrr(S),
wherelrr(S) = M(X) \ {gls| s€ S}.

Proof. Note thatklrr(S) is precisely the set of normal forms Of.

@) If u Sy 0, thenu € 1d(S) by RemarkZ-33 (F). Conversely, leti € Id(S). By Eq. @), we
have

n
u= Zciqils, wherec, e k*,5 € S,q € M*(X),1<i<n.
i=1

For eachs = § + (-R(s)) with 1 < i < n, it follows from Lemmag2.2Qandp.39that
CiGils = Glils + (—Citilrs)) —ns Cillilres) — Cillilrs) = 0 and sociqgils dng O

by RemarkZ-2%(B). Sincells is confluentu = Y, Gitils —mng 0 by LemmaZ 2%

@) If 1d(S) nklrr(S) # 0, let 0+ w e 1d(S) N klrr(S). Sincew € klrr(S), wis of normal form.
On the other hand, fromw € 1d(S) and Item f), we havew 5, 0. Sow has two normal forms
w and 0, contradicting thdls is confluent.

(8) Suppose for a contrary thHg is not confluent. SincHs is terminating, there i& € kI(X)
such thatv has two distinct normal forms, sayandv. Thusu, v € kirr(S) and sau—v € klrr(S).
Sincew 5 uandw = vi;, we havew — u,w— v € 1d(S) by RemarkZ-33 (). Hence 0+ u—v e
Id(S) N klrr(S), a contradiction.

@) Let w e kM(X), sincells is terminatingw has a normal fornu € klrr(S) andw Shu.
From Remarl.33([), we havew — u € 1d(S) and sow € 1d(S) + Kklrr(S). |

Theorem 2.41.Let < be a monomial order ofi(X) and S C k®i(X) monic with respect t&.
Then the followings are equivalent.
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(a) Ils is convergent.

(b) TIs is confluent.

(c) 1d(S) nklrr(S) = 0.

(d) Id(S) @ klIrr(S) = kIM(X).

(e) S is a Grobner-Shirshov basis ki(X),
wherelrr(S) = M(X) \ {gls| s€ S}.

Proof. Since< is a monomial order o®i(X), I1s is terminating [[{]. So Item ) and Item [j)
are equivalent. The equivalence of Itel}) and Item [}) is followed from Items[f) and @) in

LemmaZ.40.
Clearly, Item[) implies Item f}). The converse is employed Itef) (n LemmaP.40Q. At last,
the equivalence of Itenflf and Item B) is obtained from Lemm@.1& O

3. A BASIS OF THE FREE AVERAGING ALGEBRA
In this section, we give a basis of the free averaging algabeabegin with a lemma.

Lemma 3.1. Let S C kM(X), g € M*(X) and< a linear order oni(X). Then

(@) If u S5 v with uv e kM(X), then dy —s .
(b) Ifu |lsv,thend, |s gl.

Proof. (@) If u=v, thenq|, = gy andq|, Ss qly by RemarkZ.Z% (). Supposer # v. Letm> 1
be the least number such thatewrites tov in m steps. We prove the result by induction ion
For the initial stepmn = 1, sinceu —s v, we may write

u=cps+U andv=cpgyg + U forsomecek”,se S, peM*(X),u e kM(X).
Then from Lemm§.39,

qlu = C(qlp)|§ + q|u/ —s C(qlp)|R(s) + q|u/ = qlcle(s)+u/ = qlv
Assume the result is true fon < n and consider the case of= n+ 1 > 2. Then we can write
U —s W —g vfor someu # w € kM(X). By the minimality ofm, we havew # v. Using induction
hypothesis, we g&il, —s gl andglw —s qlv. This implies thag], —s qlv, as required.
@ Sinceu |s v, we may suppose by DefinitighZ3 () thatu =5 w andv 55 w for some
w e kM(X). Then by Item @), we haveq), s glw andgly —s glw- S04l s gl. This completes
the proof. m|

The following is a concept finer than subwords, includingittfermation of placement$].

Definition 3.2. Letw € 9t(X) such that
(14) Quly, = W = Qly, for someuy, u, € M(X), 1, G € M*(X).

The two placementsu(, ;) and (5, g,) are called
(a) separatedf there existp € M*+*2(X) anda, b € M(X) such thaty|,, = Pluybs Colx, =
Pla, x,, ANAW = Pla b;
(b) nestedf there existg) € M*(X) such that eitheq, = qilq Or g1 = Galg;
(o) intersectingf there existg € Mi*(X) anda, b, c € M(X)\{1} such thatv = g|,pc and either
(l) 0L = q|*c anqu = q|a*; or
(“) aL = q|a* anqu = ql*c-
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Lemma 3.3. [B9 Thm. 4.11]Let w e M(X). For any two placement&i;, q;) and (U, gz) in w,
exactly one of the following is true

(@) (u1,q1) and(uz, g) are separated
(b) (u1,q1) and(ug, g2) are nested
(©) (ug, ) and(uy, gp) are intersecting.

Now we fix some notations which will be used through out theaieer of the paper. For
anyu € M(X), define recursivelyu]® := [u] and|u]®? := [|u|®¥] for k > 1. Recall from
ExampleZ.T] that

(X1, Xo) = [Xa[[Xo] = [LXa]%2] and yr(Xa, Xo) := [ X1 X2 ] — L[ X1 /X2 ]

are the OPIs defining the averaging operator.<4.be a well-order orX such thatx; < X,. Then
< can be extended to the monomial ordgp on Mi(X) [[L7], which will be used through out in
the remainder of the paper. With respecktg, we have

(X1, X2) =[ X[ X2],  R(@(X1, X2)) = [ X%},

(X1, %) =[x1[X%]], R (X1, X2)) = LX) %]

The term-rewriting system associatedi, o), (X1, X2) is not confluent. For example, for the
element | X, [ X2]] € M(X), on the one hand,

LLXaILX )] = o) LLLX0)Xel] = LX) %2]@,
which is in normal form. On the other hand,
Xl )] =y LLLXal1X2) = LX) %a),

which is in normal form. So the elemehix; || X»|] is not confluent. For the desired confluence,
we need more rewriting rules. Let

(16) (X1, %) := L[ X)%2]@ = [1x1 1@ x%2] and @ := {p(X1, %), Y(X1, X2), (X1, X2)}-
With respect to<q,, We have
(17) o(X1, %) = L1x)%]® and R(p(x1, %)) = x4 ]@x .
Let uy, uy € M(X). Then by Eq.f@),
¢(ug, Up) = [Up]lUz] — [LUr]uz] € Sy(X),

(15)

and by Lemm#.15,

LLugJluz]] = LLueJuz]® = L] louuy € 1d(S4(X)) € 1d(S4(X) U S,(X)).
With the same argument,

LLugILuz]] = LLua)Puz] = g(lug ], Up) € Sy(X) € 1d(Sy(X)) S 1d(Sy(X) U Sy(X)).

This implies that

o(Ug, Up) = [[U1Jup|® — | [ug]Pup]

=[LugJlu]] = LLue /Pus) — (LLulluz]] = LLug Ju2|®) € 1d(Sy(X) U Sy(X))

and so 1d§,(X)) ¢ 1d(S4(X) U S,(X)). Hence by Eqsf) and [L4),
(18) 1d(S(X)) = 1d(S4(X) U Sy(X).
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Remark 3.4. If u, = 1, theny(uy, uy) degenerates to

(U, Up) = L1 Jup @ = [[un[Pua] = (W @ — [ ]® = 0.
So we always assumg # 1 in ¢(uy, Up). This is our running hypothesis in the remainder of the
paper.

Remark 3.5. From Egs.[[§) and {{7]), we have
(@) for anya(xy, x) € ® anduy, up € M(X), R(a(uy, Up)) € M(X) is a monomial.
(b) for anyuy, u, € M(X), the breadthp(uy, Uy)| = 2 andy(uy, )| = |e(ug, Up)| = 1.

Recall @ is fixed in Eq. [[§). In Eq. {[3J), takingS = Sy(X) defined in Eq. ), we get a
term-rewriting system associated®awith respect tc<qyp)
(19) o 1= sy = { Uy = URewuw) | (X, X2) € @, g€ M*(X), ug, Uz € M(X)}.

For notation clarity, we abbreviate ., 4, as—,. Now we are in the position to consider the
confluence of the term-rewriting systeify,. By TheoremP.34 we only need to consider the
confluence of basis elements. Take a local fork of a basisezieme 9i(X):

(IR o Nz = W = Rlsamy 8 RIREew)
where

(X1, X2), B(X1, X2) € @, Ui, v € M(X), i = 1,2

According to Lemmd.3, the two placementsy(uy, Uy), ;) and B(v1, V»), gp) are separated, or
intersecting, or nested. We consider firstly the former tases.

Lemma 3.6. Let a(xq, %), B(X1, %) € @ and Gl;g 5y = Qg for some g, g € M*(X) and

u,Vi € M(X), i = 1,2. If the placementéa(uy, Uy), 1) and (B(vy, V2), z) are separated, then
Q1R (i) Lo RlREwLv)-

Proof. In view of DefinitionB.2 (f), there existp € M*+*2(X) such that
iy, = pl*l,ﬁ(vl,vz) and Qalx, = p|a(U1,U2), *2°

On the one hand,

(20) qllR(w(ULUz)) = p|R(a(u1,uz)),ﬁ(v1,vz) —B p|R(d(U1,U2))a R(B(v1,v2))»

where the last step employs the facts tR@i(u;, u,)) is a monomial by RemarR.5 (g) and so is
PlR(u.w). By - ON the other hand,

(21) O2lRrpv2) = Plam). Rvav) e PIR@(uLw), RBLLv:)-
Comparing Eqs{() and £1), we conclude that|re(u.u)) Lo G2lREww)- O
Lemma 3.7. Let a(X1, X2), B(X1, X2) € ® and Gl = Gelgmy fOr some g, g2 € M*(X) and

u, Vi € M(X), i = 1,2. If the placementéa(uy, Uy), q;) and (B(vi, V2), gz) are intersecting, then
O1lR@(unw) Lo Qelr@EmLy)-
Proof. If the two placementsa((uy, Up), g;) and (B(vq, V»), Qp) are intersecting, by symmetry, we

may assume that Itenfi)( (i) in Definition B3 holds. Theng, # o, because ifj; = gy, then
*C = ax, a contradiction. So

(22) Wrwre = Nlairm = Pliwg = Yagmrvg = Alabe
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and

a(uy, Up) ¢ = aB(vi, Vo) = abc
This implies that
(23) a(ug, Up) = ab and B(vy, v») = bc.

If the breadthia(uy, Uy)] = 1, thena = 1 orb = 1, both contradicting that, b # 1 in Defini-
tion B2 (. Similarly, if the breadthg(v,, v2)| = 1, thenb = 1 orc = 1, again a contradiction. So
la(ug, )| # 1 and|B(va, v2)| # 1. Hence by Remark3 (),

(X1, X2) = B(X1, X2) = P(X1, X2) = [ Xe)[X2] = L X1 ]%2].
From Eqg. £3), we have
a(ug, Up) = U1 ]lU| = ab and (v, Vo) = [V1]|V2] = bc
and sdu;] = a, [Uz] = b =[vi], U = vy and|Vv,] = c. From Egs.[(§) and [L7),
R(a(u1, Uz))C = R(¢(U1, Uz))C = [[Ug|uz]lVa] =4 LLLU1]U2]V2]
and
aR(B(v1, V2)) = aR@(v1, V2)) = aR(@(Uz, V2)) = [Ur][LU2 V2] —4 LLU1]LU2]V2] —4 LLLULJU2]V2].
SoR(a(u, W))c Lo aR(B(v1, V»)). This follows from Eq. and Lemmd3.7 ([@) that
Q1R ) = AR@uLw)c Lo dar@uiv.) = A2lREwv)),
as required. O

Next, let us turn to consider the nested case. We need tlosvialy lemmas. The first is on the
leading monomials of OPIs id.

Lemma 3.8. Let a(Xy, X2), B(X1, X2) € ® anda(uy, Up) = B(vy, Vo) for some uv; € M(X), i =1, 2.
Then exactly one of the following is true:

(@) a(X1, X2) = B(X1, X2), U1 = V1, Up = Vo;

(0) a(x1, X2) = (X1, X2), B(X1, X2) = (X1, X2), Up = 1, Up = [V1Vo;

(©) a(x1, %) = (X1, %), B(X1, %) = Y(X1, %), Vi = 1, Vo = [ Uy U

Proof. According to whethew andg are equal, we have the following cases to consider.

Case 1.a(x3, X2) = B(X1, X2). Then Items|f) and ) fail. We show Item[f) is valid. Consider
firstly thata(xs, X2) = ¢(Xq, X2). Then

LuzJ[Uz2] = a(uy, Uz) = B(V1, Vo) = [Vi][V2].
By the unique decomposition of bracketed words in fj.\We have u,| = |v4| and|us] = [ V).
This impliesu; = v; andu, = v,. Consider secondly that(x;, Xo) = ¥(X1, X2). Thenlu;|lUp]] =
a(Ug, Up) = B(Ve, Vo) = [V1|Vo]] and sous|Uy| = V4| Vo). This also impliesu; = vy, [Ux] = [Vo]
andu, = V,. At last, consider(xi, X)) = (X1, %2). Then|[uyJuz]® = a(ug, Up) = B(vi, Vo) =
[LveV2]@ and sol|ug Juy| = [[V4]V2]. Thuslugu, = [v4]Ve and sou; = v; andu, = Vs.
Case 2.a(Xy, X2) # B(X1, X2). Then Item [f) fails.

Suppose firstly that one af(x, Xo) and B(xg, X2) IS ¢(X1, X2). By symmetry, we may let
a(X1, X2) = ¢(X1, X2). ThenB(Xy, X2) # ¢(X1, X2). From Remarig. 3 (f), la(us, U2)| = |p(uy, U2)| = 2
and|B(vi, v2)| = 1. This implies thaty(uy, up) # B(v1, V2), contradicting our hypothesis. Suppose
a(Xy, X2), B(X1, X2) # ¢(X1, X2). Then we have the following two subcases.
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Case 2.1a(X1, X2) = ¥(X1, X2) andB(x1, X2) = ¢(X1, X2). Then Item [ fails and

L1l Uz]] = ¥(Us, Up) = (U, Up) = B(V1, Vo) = p(V1, V2) = [[V1V2]@.

Sous|Uy] = [[V1]V2]. This implies thau; = 1, [Uz] = [[V1]V2] andu, = |[v1]V, and so Item[f) is
valid.

Case 2.2a(x1, X2) = ¢(X1, X2) andB(Xa, X2) = ¥(X1, X2). Then Item [f) fails and
LUz 2] = (U, Up) = Uy, Up) = B(Va, V2) = ¥(Ve, Vo) = [valVal .
This follows that| [u; Juy | = V1|V ]. Sov; = 1, Vs = |ug|up, and Item ) is valid. O

Lemma 3.9. Let a(X1, X2), B(X1, X2) € ® and Gl = Gelgmy for some g, g2 € M*(X) and
Ui, vi € M(X), i = 1,2. If g2 = q1lq for some ge N*(X) andB(v1, v2) is a subword of yor uy,
then qlreuw) Lo Qelr@Eww))-
Proof. For clarity, write

a = a(u, Up) andp = B(vy, Vo).
By symmetry we may assume thais a subword o), and sou; = Iz for someq’ € M*(X).
As a(X1, X2) is linear on each variable af{a(u;, U)) is a monomial by Remaif3j (B), we may
write
(24) @ = a(Ug, Up) = Plu.y, and R(a) = R(a(ug, Up)) = p'lu,.u, for somep, p’ € M*(X).
Sinced, = il by our hypothesis, we have

Qulz = Gelz = Galay

and so

q|,E =@ = Plugy, = plq’ll;,uz = (p|q/,uz)|ﬁ-
Hence
(25) q= p|C|’,U2 = Cy(q,’ UZ)’

where the second equation employs Eg) (So on the one hand, we have
(26) Gulr@) = Qalpluye, = Atlpigy o, =8 Glpigiggy.on

where the first step is followed from EdZ4). On the other hand, we have
(27) Qlre) = Ailaing = Alagirg ) e QiR irg. 1) = Alpigg o

where the first step is followed from the hypothesis= 0il4, the second from EqEf) and the
last from Eq. [£4). Comparing Eqsd) and 1), we obtaingilre) Lo O2lr@-. This completes the
proof.

i

As an application of Theorefa 36 we have
Theorem 3.10. The term-rewriting systeiii, defined in Eq.[[9) is convergent.

Proof. Since <4, We used is a monomial order o#i(X), Il is terminating [[4. By Defini-
tionZ.Z6(B), we are left to show thdi, is confluent. From Theorefh3g, it is suficient to prove
thatIly, is locally confluent for any basis element. Let

(AlRee(urw) o < Nlzmmy = W = Gelsmmy —o lrEviv))
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be an arbitrary local fork of a basis eleme&ntwhere
a(Xy, X2), B(Xg, X2) € @, Ui, v € M(X), i = 1,2
We only need to show that

(28) Q1lR(e(uw) do TlrEL,))-

According to Lemmg3.3, the two placementsa(uy, Up), q;) and B(vi, V»), @p) are separated,
or nested, or intersecting. If they are separated or intérgg then by Lemmag.§ and[B.7,
Eqg. @9) holds. If the two placements(u;, U), 01) and B(vi, Vz), Gz) are nested, by symmetry in
Definition B2 (), we may assume thap = qilq. If B(v1,V2) is a subword oy, or u,, then by
LemmaB.9 Eq. holds.

Supposes(vy, Vo) is not a subword ofl; andu,. Note

(29) sy = %elsmvy = dilg and sax(us, ) = Alzgv-

'Blv1.v2)

Sinceq, = a1lq, EQ. is equivalent to

OlRGe(urw) Lo Olargpu v,y
So to prove Eq.fd), by Lemmd3.1 ([), it is enough to show that
(30) R (U1, U2)) Lo dir@mm.vs)-

If g = %, thena(uy, Uy) = B(v1, Vo). By Lemma3.g, exactly one of the three items there holds.
If Item (@) holds, therR(a(us, Up)) = R(B(v1, v2)) and Eq. BJ) is valid byq = %. Since Iltem[f)
and Item [f) are symmetric, we consider that Iteff) folds. Then
a(X1, X2) = (X1, X2), B(X1, X2) = (X1, X2), Uy = L, Up = [ Vi ]Vo.
This follows from Egs.[[3) and {{7]) that

R(a(ug, Up)) = [LurJuz] = L[]V Vo] =4 LLLTIVLIVS]

and
AREew) = * lv@v = LVa Vo] = [[1vi]IVa] =y LLLLIVa]V2].
Hence Eq.[§0) is valid.
Summing up, we are left to consider the case of that

(31) 02 = Ol @(Us, W) = Gy wy» @ # * and B(vy, V) is not a subword ofi, andu,.
Then
(32) G # G2 and a(Uy, Up) # B(va, Vo).

We have the following cases to consider.
Case l.a(xq, X2) = ¢(X1, X2). Thena(ug, Uy) = [ui]lu.] by Eq. {[3).
If B(X1, X2) = ¢(X1, X2), then
LusllUz] = @(Us, Uz) = Algrrgy = Alivaiivals

thatis,| vy ]| V2] is a subword ofu, JLuz]. By EqQ. B2), [v1]lV2] # [ui]lUz]. Solvy]l V2] is a subword
of Luy] or [up]. Sincelvy]lV2] # Luil, LlUp] by comparing the breadthy; || v,] is a subword ofi;
or u, by LemmaZ.I3 (), contradicting Eq.RJ). SoB(x1, X2) # ¢(X1, X2).

Subcase 1.18(x1, X2) = ¥(X1, X2). In this subcase, we have

(33) LusllUz] = @(Us, Uz) = Algrrgy = Alvatves
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that is,| v1|v-]] is a subword ofuy || up]. By LemmaP.T4 (), either|v|Vv,]] is a subword ofuy |
or |vi|V»]] is a subword ofu,|. Note thatB(vy, Vo) = [vilV2]] is not a subword ofi; andu, by
Eqg. @1). From Lemmd.14 (@) and Eq. BJ), either

(34) Vil V2] = [u1] and g = x| U],
or
(35) [VilVo]] = [Uz] @and g = [ug] x .

For the former case of EQ3{), we have

R(p(uy, Up)) = [Lug]uz] = [[ValVa]lUz] =y [LLV1]V2]us]

and
AR = OcLU2) vy = LLValva]luz] =g [LLViIV2]ug].

HenceR(¢(uy, Uo)) Lo dlryviw)y) and Eq.[BJ) holds, as needed. For the later case of Ef), (we
haveu, = vi|Vv»|. SO

R(p(uy, Up)) = [Lug]uz] = [Lug]valVo]] =y [LLUL V1 V2]
and

ARwviv)) = (LULIH*) ivijve) = LULILLVAIV2] =4 [LUL]LVaIV2] = LLLUL VL V2.

HenceR(¢(u1, Uo)) Lo Qlrymy)) and Eqg. BQ) holds, as needed.
Subcase 1.28(x1, X2) = ¢(X1, X2). In this subcase, we have

(36) LugJltz2] = e(Us, Uz) = Alggy = Aliivaivaol@s

that is, || vi]v,]® is a subword ofu,]|u,|. By LemmaPR.13 (@), either||v;]v,|® is a subword
of Lug] or [[v1]v2]® is a subword of otu,]. Since|[vi]v,|® is not a subword ou; andu, by
Eqg. 1), from LemmaZ2.14(F) and Eq B9), either

(37) Lvilv2]@ = |uy] and g = *|u,)
or
(38) Lvilv2]@ = [up] and g = [uy] * .

Consider firstly the former case of E@.4. We have
R(p(Uy, Up)) = LLUrlup] = [LLVe V2 PUp| -, LLLV2]PVa U]
and
ARy =(KLU2)) i@ = LVa]PValluz] —4 LLLV2IPVv2 Uz ).

HenceR(¢(ui, U2)) lo dlreiw) and Eq. holds. For the later case of EY), we have
Uy = ||[Vv1]V2]. Then

R(#(u, Up)) = [Luzuz] = [Lug|[LValval] =4 LLLUL]LVeIV2]] = LLug)LVeva]® >y [LLugvi v, |@
= LUV ]PV,] -, LLLUa]PVs Ve
and
AlRewvaw) = (LULIX) [y @y, = LULILLVAI OS] =4 LLug]va]@Ve ] =4 LLLug]Lvi] V2]
g LLLLULIVLIIV2 | = [LLug Vi IOVa] >, LLLug [Py Vs .
HenceR(¢(u1, U)) Lo Alree.y,) and Eq. holds, as needed.
Case 2.a(Xq, X2) = ¥(X1, X2). Thena(uy, W) = Uil Up]] by Eq. 3.
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Case 2.18(x1, X2) = ¢(X1, X2). In this subcase, we have

(39) LulUz]] = a(u, Up) = Ay = Aivalivals
that is,| v1]| V-] is a subword ofu;|u,]]. Sincelvi]lvo] # Lusiluz]] by Eq. 83), it follows from
LemmaZ.14(f) that| v, || v»] is a subword ofi | u,]|. Note|v; || V-] is not a subword ofi; or u, by
Eq. B1). Soalvi]|V2] = u|uy] for somea € M(X) andqg = |ax] by Eq. 89). Thenalv,] = uy,
Vo] = [U2], Vo = Up. This follows that
R(y(u1, Uz)) = [Lu]up] = [lalvi]]uz] —y LLla]vi]uz]

and

Alr@ve) = (Lak]) i) = Lallvalval]l = [allvi]uz]] —y Llallvaluz] —4 LLLalva]ua].
HenceR(y(u1, U2)) Lo Glrpeiy)) and Eq. Q) holds, as needed.
Case 2.28(x1, X2) = (X1, X2). In this subcase, we have

(40) Lusluz]] = a(Us, Uz) = Az = Alvatves
that is, [va|v2]] is a subword oflu;|u,|]. By LemmaZ.T4 (H) and[vi|V2]] # [uiluz]] from
Eq. G7), Lvalv2]] is a subword ofi| u,|. Note|vi|V]] is not a subword ofi; andu, by Eq. 7).
So by LemmdZ. T4 (), LvilV2l] is a subword ofu,]. From Lemmd. 14 ({), we havelvi| V.|| =
LUo], V1| V2] = U andq = Luix | by Eq. @0). Thus
R(y(ug, Up)) = LLusJuz] = [Lug]valVa]] =y LLLULIVLIV2]

and

ARrwvavs) = (LUrx ) lvaive) = LULLLVAIV2]] =y LLudd[ValVa] =4 [LLULIVL V2]
HenceR(y(ui, U2)) Lo Alry.yv,)) and Eq. holds, as needed.
Case 2.38(X1, X2) = ¢(X1, X2). In this subcase, we have

(41) Lusluz]] = a(Us, Uz) = gy = Al i@
that is, | |v1]v»]®@ is a subword ofu;|u,]]. By LemmaZ.14 (H) and|[v1|V2]?® # [ui|up]] from
Eq. B2, [Lvi]v2]® is a subword ofu;|u,]. Note from Eq. ), |[v1]v2]® is not a subword
of u; andu,. So by LemmaZ.13 (@), LLv1lv»]@ is a subword ofiu,|. By LemmaP.13 (H),
LLv1]v2]®@ = |u,] and themy = [u;x | by Eq. @1). This implies|[vi V2] = W,. Thus
RW(u, Up)) = [LU]uz] = [Lug]LLVaIV2]] = LLLULILVAIV2 1] = LU JLVev2]@
= LLLULIV1IV2 [P = (LU Va]OVa] =, LLLUs ] Py v
and
Olreeva = LUk 1) [y vy = LUal v Vo]l =y [LUllva Vel = [LLUgLva Ve ]

= LLLLULVL] V2] = LLLUa Vi ]PVa] = LLLUL VeV, ).
HenceR(y(u, Uz)) Lo Alrew.v,)) a@nd Eq.[BJ) holds, as needed.
Case 3.a(Xy, X2) = (X1, %2). Thena(uy, W) = [Lu;]u,]@ by Eq. 7).
Subcase 3.13(X1, X2) = ¢(X1, X2). In this subcase,
(42) LLupJu2)® = a(Uy, Up) = Alrsy = Alvaiivas

that is,|v1][Vv2] is @ subword of [u; Jup]®. As |vi]lV2] # [LUi]uz]® by Eq. BT, Lvillva] is a
subword of{ [u; Ju,| by LemmaR. 14 H). Again using Lemm&.14 (H), Lv1]| V-] is a subword of
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LugJuz by [v1]lV2] # [Lui]uz]. From Eq. BT), B(v1, Vo) = [Vva]lVv2] is not a subword ofl; andus.
Hence|vi]|Vz]a = Lui]u, for somea € M(X) and soq = [*a|® by Eq. @2J). This implies that
[vi] = [u], v» = u; and|v»]a = u,. Hence

Re(uz, W) = [Lur/PUz| = [Lua]P|v2la) =4 [LLULPV2]al
and

Alrenam) = ((%a1P) [, = LLLViIv2]al® = [[Lui)vz]a)®

>, LLLulvo]®al -, (LU PV, ]al.

HenceR(¢ (U1, Uz)) Lo Qrpwy)) and EQ. holds, as needed.
Subcase 3.28(x1, X2) = ¥(X1, X2). In this subcase,

(43) LLugJuz)® = a(Uy, Up) = Al = Alvatvals
that is,| vi| V2] | is a subword of [u Ju,]®. Since|vi|Va]] # [Lui]u2]@ by Eq. B2), [vilVv2]] is a
subword off | u; Ju,] by LemmaZ.T4(H). Again using Lemm&.14 (), either[vi|V2]] = [[u]us]
or [vi| Vo] is a subword of uq |us.
For the former case df1|v.]] = [Lu1]u.|, we haveq = | x| by Eq. @3) andvi| V2] = [ug]u;.

This implies thaw, = [u;]v; andu, = u;|v,| for somev;, U, € M(X). Then

LUt ViLVo] = Vil V] = [UgJup = [UgJup| Vo] @and sov; = U, =t a.
Thenv, = |uiJaandu, = alVv»|. This follows that

Rle(U1, Up)) = [Lun]PUz] = [Lus]Palva]] =y LLLulPa)vo]

and

ARy = Dx) e = LLVaIVall = LLValva]® = [l Jajvz @

—, LLLU1]a]®Vy] —, [LLun]Palv, ).

HenceR(¢(us, Uz)) Lo Alryry and Eq. BJ) holds, as needed.

Consider the latter case that|v-]] is a subword ofu, Ju,. By Eq. 1), B(v1,V2) = [[V1]Val
is not a subword of; andu,. So from LemmdZ.14 (), [vilVv2]] is a subword ofu;]. Using

LemmaP.13 (g), we havelvi|vo]] = [ui] and soq = [*Ux]@ by Eq. @3). Thenvy|v,| = u;. So
we have
R(Us, Up)) = [LU [Pz = [LValValIPUp| -y LLLViIV2]DU2) = LLLVLIOV, Us )
and
Ulrwea) = ((FU2]@) ey = LLLVLIV2IUR] @ = LLVa v P ] — [LLVa] P2 ]up).

HenceR(p(u1, U)) Lo Olryviw) and Eq. Q) holds, as needed.
Subcase 3.38(X1, X2) = ¢(Xq, X). In this subsection, we have

(44) LLupJU2]® = a(Uy, Up) = Al = Aiivaes@s

that is, [ [v1]v2]@ is a subword of [u;Ju,]®. By Eq. §2), Llvalv2]® # [[ui]u,]®. So from
LemmapP13 (B), LLvilv2]® is a subword ofi[uiJu,]. Again using LemmdZ.1% (), either
[LVeV2]@ = [Lug]uz] or [[V1]v2]@ is a subword ofuy |u,.

For the former case, we haee= |x] by Eq. #4) and|[|vi]vo] = [uiJu. This implies that
U, =1, [[Vi]Vo] = [uy] and|vi Vo = u;. Then

R(p(u1, U)) = [Lur]®Pup] = [ug]® = [[Vi V2 ]® -, [[V1]Pv,]@ -, [ [v1]®v,]
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and
Areeva) = Lx ] lpv@vy = LV PVval] = [1va]Pva]@ —, [[vi]®va].

HenceR(¢ (U1, Up)) Lo Qlrevw) @nd EQ. holds, as needed.

Consider the later case of thgt; [v,|@ is a subword oflus Ju,. By Eq. BT), B(vi, Vo) =
LLv1]v2]®@ is not a subword ofy; andu,. So from LemmdZ 14 (), LLvi]v2]®@ is a subword of
Luy]. Using Lemm&2.14 (H), we havel [v; V2@ = [u| and soq = [xU,|@ by Eq. @4). Thus we
have

R(p(u, Up)) = [Lur]Puy] = [LIvalval®uz] =, [LIVva]PV2]@uy] =, [LLv1]®v2]ug]
and
Areri) = (FU2]P) [vevy = LLVAIOV2 ual@ —, [Lvi]®Pva @uy| —, [LLva]®V2Jug)

HenceR(¢ (U1, Uz)) Lo Qlrevw)) @nd EQ. holds, as needed. This completes the proof.
m|

Recall from Remar.4thatu, # 1 in ¢(us, Uy). So we define

':{Cﬂm’ Oy | G € M*(X), Uy, U € MK},
={ gy | 6 € M (X), by € M(X), Up € MX) \ {1})
=0l | 4 € M*(X), Uy, Up € M(X)},

={dlg | 4 € M (X), u € M(X)}.

ThenN = N; \ No. From Egs.[[3) and {7,

(45)

A = Ay = i@ = dgamy € M
and soN, € M. Thus
MUN=MU(N;\Ny) =MUN;.

Hence

{dls | g € M*(X), s € So(X)}

={dls | g € M*(X), s € Sy(X) U Sy(X)} U {dls | g € M*(X), s € Sy(X)}
=MUN=MUN;
={ Al uwiwags Autezss Apugu@ |9 € M*(X), ug, Uz € M(X)},
where the second step employs Remfark Now we are ready to give our main result. From
PropositiorP.T1and Eq. [[9), kM(X)/1d(Se(X)) is the free averaging algebra &n

Theorem 3.11.Thelrr(Se (X)) is ak-basis of the free (unitary) averaging algetk@i(X)/1d(Sq (X))
on X. More precisely,

(46)

k(X)) = 1d(Se(X)) @ kirr(Se (X)),
where

Irr(So (X)) = M) \ {ugjiuag> Alustuags Aiuui@ |9 € M*(X), ug, Uz € M(X)}.
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Proof. By TheoremB.T0), I1, = Ils,(x) is convergent. Using Theorer@sd1to S = Sq(X), we
have

kM(X) = 1d(Se(X)) & Kirr(Se (X)),
where
Irr(So (X)) =M(X) \ {dls | g € M*(X), s € So(X)}
=MX) \ { el Aiusteelss Aoy )@ |9 € DF(X), U, Uz € M(X)}
by Eq. £8). m|
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