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HÖLDER CONTINUITY OF THE LIOUVILLE QUANTUM GRAVITY
MEASURE

KENNETH FALCONER AND XIONG JIN

ABSTRACT. We show that for certain Hölder continuously parameter-
ized families of measures νt on a regular plane domain D, the total
‘Liouville quantum’ masses of the random measures ν̃t obtained as
limits of the circle averages of the Gaussian free field on the νt vary
Hölder continuously with the parameter t . In particular, this implies
that if the Liouville quantum gravity measure µ on D has Hausdorff di-
mension larger than 1 then almost surely the orthogonal projections
of µ in all directions are simultaneously absolutely continuous with
respect to Lebesgue measure. As a consequence, almost surely µ has
positive Fourier dimension. We give further applications to the Hölder
continuity of the Liouville quantum masses of self-similar measures,
and the Liouville quantum lengths of planar curves.

1. INTRODUCTION

1.1. Overview. Random multiplicative cascades were introduced by Man-
delbrot [12] as a model to explain energy dissipation and intermittency in
Kolmogorov’s model of fully developed turbulance. These random cas-
cade measures and the consequences of their martingale structure were
studied in detail by Kahane and Peyrière [10, 17]. Whilst random cascade
measures, with their underlying self-similarity, have been widely used,
they are to some extent artificial in that their construction depends on a
preferred range of scales and they are intrinsically non-isotropic and not
translation invariant.

In 1985, Kahane [9] constructed what he termed ‘Gaussian multiplica-
tive chaos’ with analogous properties but which overcame these draw-
backs, with the lognormal hierarchy of multiplicative cascades replaced
by correlated exponentials of a Gaussian process. The construction has
two stages. First a log-correlated Gaussian field is defined on a domain
D, that is a random distribution Γ with a logarithmic covariance struc-
ture. The Gaussian multiplicative chaos (GMC) measure is then defined
as a normalized exponential of Γ. There are technical difficulties in the
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construction of the GMC measure since Γ is a random Schwartz distri-
bution rather than a random function, and this is generally addressed
using continuous approximations to Γ. Kahane used the partial sums
of a sequence of independent Gaussian processes to approximate Γ and
showed the uniqueness of the measure, i.e., the law of the GMC does not
depend on the choice of the approximating sequence. More recently, Du-
plantier and Sheffield constructed the measure [3] by using a circle av-
erage approximation of Γ where Γ is the Gaussian Free Field (GFF) on
a plane domain D with a regular boundary. They also pointed out that
two-dimensional Gaussian multiplicative chaos, which depends on a pa-
rameter γ (0 < γ< 2), may be regarded as giving a rigorous interpretation
of the Liouville measure that occurs in Liouville quantum gravity (LQG)
and this name has become attached to the two-dimensional case. Full
surveys of this area may be found in [2, 3, 18].

Recently, there has been renewed interest in geometrical properties of
classes of deterministic or random fractal sets and measures. This in-
cludes investigation the Hausdorff dimensions of sections or projections
of sets and measures, the absolute continuity of projections and Hölder
continuity of their intersection with families of lines or curves.

A version of Marstrand’s projection theorem [13] states that if a fractal
measure µ in the plane has Hausdorff dimension dimH µ larger than 1,
then its orthogonal projection πθµ in direction θ is absolutely continuous
with respect to Lebesgue measure except for a set of θ of Lebesgue mea-
sure 0. There has been considerable interest of late in identifying classes
of measure for which there are no exceptional directions, or at least for
which the set of exceptional directions is very small.

Peres and Shmerkin [16] and Hochman and Shmerkin [8], showed that
for self-similar measures with dimH µ > 1 such that the rotations under-
lying the defining similarities are dense in the rotation group, the pro-
jected measures have dimension 1 in all directions, and Shmerkin and
Solomyak [20] showed that they are absolutely continuous except for a
set of directions of Hausdorff dimension 0. Falconer and Jin [6, 7] ob-
tained similar results for random self-similar measures and in particu-
lar their analysis included Mandelbrot’s random cascade measures [12].
Shmerkin and Suomala [21] have studied such problems for other classes
of random sets.

It is natural to ask similar questions concerning the geometry of the
LQG measure µ which has Hausdorff dimension dimH µ = 2−γ2/2. For
any measure ν on D we denote by ν̃ the limit of the circle averages of the
GFF onν and write ‖ν̃‖ for its total mass, which might be thought of as the
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‘quantum mass’ of ν. Our main result, Theorem 1.6, shows that for a fam-
ily of measures {νt : t ∈T } on D with a Hölder continuous parameteriza-
tion by a metric space T , almost surely ‖ν̃t‖ varies Hölder continuously
with the parameter t . This has many applications. Firstly Theorem 2.1
asserts that if dimH µ > 1 (0 < γ<

p
2) then almost surely the orthogonal

projections of µ in all directions are simultaneously absolutely continu-
ous with respect to Lebesgue measure. A consequence, Corollary 2.5, is
that, almost surely, the measure µ has positive Fourier dimension. An-
other application, Theorem 2.6, is that the quantum mass of self-similar
measures is Hölder continuous in the underlying similarities. Further-
more, Theorem 2.8 concludes that if we define the LQG measure simul-
taneously on certain parametreized families of Jordan curves in D, their
mass, which in a sense is the Liouville quantum length of the curves, is
Hölder continuous. We also show in Theorem 1.7 that if ν is a measure
that satisfies a density bound with exponent α, so in particular is at least
α-dimensional, then ν̃ has Hausdorff dimension at least α−γ2/2.

The proof of Hölder continuity of {‖ν̃t‖ : t ∈ T } is inspired by the pa-
per [21] of Shmerkin and Suomala on Hölder properties of ‘compound
Poisson cascades’ types of random measures. The difference here is that
the circle average of the GFF dose not have the spatial independence and
the uniform bounded density properties needed in [21]. Hence we have
to use a different approach (Lemma 1.2 and Lemma 1.3) to estimate the
convergence speed, and the Kolmogorov continuity type argument in our
case is more complicated (Proposition 1.4). Nevertheless it seems possi-
ble to relax some of the conditions in [21] using our approach.

1.2. Gaussian Free Fields. Let D be a regular planar domain, namely a
simply-connected open subset of R2 with a regular boundary, that is, for
every point x ∈ ∂D there exists a continuous path u(t ), 0 ≤ t ≤ 1, such that
u(0) = x and u(t ) ∈ Dc for 0 < t ≤ 1. The Green function GD on D ×D is
given by

GD (x, y) = log
1

|x − y |
−E

x

(
log

1

|Wτ− y |

)
,

where the expectation E
x is taken with respect to the probability measure

P x under which W is a planar Brownian motion started from x, and τ is
the first exit time of W in D, i.e., τ= inf{t ≥ 0 : Wt 6∈ D}. The Green func-
tion is conformally invariant in the sense that if f : D 7→ D ′ is a conformal
mapping, then

GD (x, y) =G f (D)( f (x), f (y)).

Let M
+ be the set of finite measures supported in D such that

∫

D

∫

D
GD (x, y)dµ(x)dµ(y) <∞.
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Let M be the vector space of signed measures µ+−µ−, where µ+,µ− ∈
M

+. Let (Γ(µ),µ ∈M ) be a centered Gaussian process on M with covari-
ance function

E(Γ(µ)Γ(ν)) =
∫

D
GD (x, y)dµ(x)dν(y).

Then Γ is called a Gaussian free field (GFF) on D.
Let O be a regular subdomain of D. Then Γ may be decomposed into a

sum:

(1.1) Γ= Γ
O +ΓO,

where Γ
O and ΓO are two independent Gaussian processes on M with

covariance functions GO and GD −GO respectively. Moreover, there is a
version of the process such thatΓO vanishes on all measures supported in
D \ O, and ΓO restricted to O is harmonic, that is there exists a harmonic
function hO on O such that for any measure µ supported in O,

ΓO(µ) =
∫

O
hO(x)µ(d x).

In fact hO(x) = Γ(µO,x ) for x ∈ O, where µO,x is the exit distribution of
O for a Brownian motion started from x. Furthermore, if we denote by
FD\O the σ-algebra generated by all Γ(µ) for which µ ∈ M is supported
by D \O, then Γ

O is independent of FD\O .
For more details on Gaussian free fields, see, for example, [2, 18, 19, 23].

1.3. Liouville quantum gravity. For x ∈ D and ǫ > 0 let ρx,ǫ be normal-
ized Lebesgue measure on {y ∈D : |x−y | = ǫ}, the circle centered at x with
radius ǫ in D. Fix γ ∈ [0,2). For ǫ> 0 let

(1.2) µǫ(d x) = ǫγ
2/2eγΓ(ρx ,ǫ) d x, x ∈D.

Then almost surely the weak limitµ= w-limǫ→0µǫ exists and the measure
µ is called Liouville quantum gravity (LQG) on D, see [3]. Since Γ(ρx,ǫ) is
centered Gaussian,

E
(
eγΓ(ρx ,ǫ))= e

γ2

2 Var(Γ(ρx ,ǫ)).

Using the conformal invariance of GFF it may be shown that, provided
that B(x,ǫ) ⊂ D, where B(x,ǫ) is the open ball of centre x and radius ǫ,

(1.3) Var(Γ(ρx,ǫ)) =− logǫ+ log R(x,D),

where R(x,D) is the conformal radius of x in D, given by R(x,D) = | f ′(0)|
where f : D 7→ D is a conformal mapping from the unit disc D onto D with
f (0) = x. (It is well-known, for example using the Schwarz lemma and the
Koebe 1/4 theorem, that

(1.4) dist(x,∂D) ≤ R(x,D) ≤ 4 dist(x,∂D),
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where dist(x,∂D) is the Euclidean distance from x to the boundary of D.)
This gives

(1.5) E
(
eγΓ(ρx ,ǫ))= ǫ−γ

2/2R(x,D)γ
2/2d x,

and so
E(µ(d x)) = R(x,D)γ

2/2d x, x ∈ D.

For more details on LQG, see for example [2, 3].

1.4. Assumptions and main results. We assume that the domain D is
bounded. Let (T ,d) be a compact metric space. Let ν be a positive fi-
nite measure on a measurable space (E ,E ). For each t ∈ T we assign a
measurable set It and a measurable function ft ,

It ∈ E , ft : It 7→ ft (It ) ⊂ D ,

and define the push-forward measure on D by

νt := ν◦ f −1
t ,

with the convention that νt is the null measure if ν(It ) = 0.
To help fix ideas, It may typically be a real interval with ft a continuous

injection, so that ft (It ) is a curve in D that supports the measure νt .
For t ∈ T and r > 0 denote open balls in (T ,d) by Bd (t ,r ) = {s ∈ T :

d(s, t ) < r }. Throughout the paper we make the following three assump-
tions

(A1) There exist constants C1,α1 > 0 such that for all x ∈R
2 and r > 0,

sup
t∈T

νt (B(x,r )) ≤C1rα1 ;

(A2) There exist constants C2,r2,α2,α′
2 > 0 such that for all s, t ∈ T

with d(s, t ) ≤ r2 and Is ∩ It 6= ;,

sup
u∈Is∩It

| fs (u)− ft (u)| ≤C2d(s, t )α2

and
ν(Is∆It ) ≤C2d(s, t )α

′
2

(A3) There exist an increasing sequence of sets of points T1 ⊂T2 ⊂ ·· ·
in T and constants C3,α3 > 0 such that for each n ≥ 1, #Tn ≤
C32nα3 and {Bd (t ,2−n) : t ∈ Tn} forms a covering of T such that
each point in T is covered by at most C3 balls. In particular T∗ :=⋃∞

n=1 Tn forms a countable dense subset of T . Furthermore, for
all s, t ∈T with d(s, t )≤C32−n , and all m ≥ n+1 there exist sm, tm ∈
Tm such that d(s, sm) ≤ 2−m , d(t , tm) ≤ 2−m and d(sm , tm) ≤C32−n .
By increasing α3 if necessary, we may further assume that (α2

2 ∧
α′

2) ≤α3.



6 KENNETH FALCONER AND XIONG JIN

Remark 1.1. Condition (A3) may seem a little cumbersome, but it holds,

for example, for metric spaces that can be bi-Lipschitz embedded into a

finite dimensional Euclidean space, and in particular for spaces parame-

terizing translations and rotations in a natural way.

For t ∈T and n ≥ 1 define circle averages of Γ on νt by

(1.6) ν̃t ,n (d x) = 2−nγ2/2eγΓ(ρx ,2−n )νt (d x), x ∈ D,

and let

(1.7) Yt ,n := ‖ν̃t ,n‖
be the total mass of ν̃t ,n . Let ν̃t = w-limn→∞ ν̃t ,n be γ-LQG on νt and
Yt = ‖ν̃t‖ be its total mass if it exists.

The following two lemmas, which will be proved in Sections 3.1 and
3.2, concern the expected convergence speed of Yt ,n and the Hölder ex-
ponents of Yt ,n , respectively.

Lemma 1.2. For 1 ≤ p ≤ 2 there exists a constant Cp such that for all t ∈T

and n ≥ 1,

(1.8) E(|Yt ,n+1 −Yt ,n |p ) ≤Cp 2−n(α1−γ2

2 p)(p−1).

Lemma 1.3. For q > 1 and 0 < η < 1/2 there exists a constant Cq,η such

that for all 0< r < r2 and s, t ∈T with d(s, t ) ≤ r and all n ≥ 1,

(1.9) E

(
max

1≤k≤n
|Ys,k −Yt ,k |q

)
≤Cq,ηr q((ηα2)∧α′

2)2nq( 1
2+

γ2

2 (q−1)).

Using Lemma 1.2 and Lemma 1.3 we will show the uniform Hölder reg-
ularity of t 7→ Yt ,n , obtaining a bound for the Hölder exponent. The proof,
given in Section 1.4, is reminiscent of that of the Kolmogorov-Chentsov
theorem.

Proposition 1.4. If α1 − γ2

2 > 0 then there are numbers C ,β > 0 such that

almost surely there exists a (random) integer N such that for all s, t ∈ T

with d(s, t ) ≤ 2−N ,

(1.10) sup
n≥1

|Ys,n −Yt ,n | ≤C d(s, t )β.

In particular, the exponent β can be any number satisfying 0 < β < β0

where

(1.11) β0 :=




α2
2 ∧α′

2

p
α3 +

√
α3 + (α2

2 ∧α′
2)

(
(2α1+1)

γ2 − 2
p

2α1
γ

)




2
(√

2α1

γ2
−1

)2

.
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Remark 1.5. If γ→ 0, corresponding to dimH µ→ 2, then β0 →
2(

α2
2 ∧α′

2)α1

2α1+1 .

We can now quickly deduce our main result from Proposition 1.4.

Theorem 1.6. If α1 − γ2

2 > 0, then almost surely the sequence of mappings

{t 7→ Yt ,n }∞n=1 converges uniformly on (T ,d) to a limit t 7→ Yt . Moreover, Yt

is β-Hölder continuous in d, for all 0<β<β0, where β0 is given by (1.11).

Proof. Proposition 1.4 implies that for each β < β0, almost surely the se-
quence ofβ-Hölder continuous functions {t 7→ Yt ,n }∞n=1 is uniformly bounded

and equicontinuous. Taking p > 1 such that α1 − γ2

2 p > 0 in Lemma 1.2
and using the Borel-Cantelli lemma, almost surely for all t ∈ T∗ the se-
quence {Yt ,n }∞n=1 is Cauchy and so convergent. Since T∗ is dense in T ,
this pointwise convergence together with the equicontinuity implies that
{t 7→ Yt ,n }∞n=1 converges uniformly to some function t 7→ Yt which must
be β-Hölder continuous since the {t 7→ Yt ,n }∞n=1 are uniformly β-Hölder,
as required. �

We will give a range of applications of Theorem 1.6 in Section 2.
The next theorem gives a lower bound for the Hausdorff dimension of

a single LQG measure. Recall that the Hausdorff dimension of a measure
τ is defined by dimH τ= inf{dimH E : τ(E )> 0}.

Theorem 1.7. Let ν be a positive Borel measure on D satisfying (A1) in

the sense that for some C1 > 0 and α1 > γ2/2, ν(B(x,r )) ≤ C1rα1 when

B(x,r )∩D 6= ;. Define the γ-LQG measure of ν via the circle averages

(1.12) ν̃n(d x) = 2−nγ2/2eγΓ(ρx ,2−n ) dν(x), x ∈ D,

and ν̃= w-limn→∞ ν̃n . Then, almost surely,

dimH ν̃≥α1 −
γ2

2
.

Remark 1.8. It is tempting to hope that for suitable T , almost surely,

(1.13) dimH ν̃t ≥α1 −
γ2

2
for all t ∈T

under the assumptions (A1)-(A3), but we are unable to show this. The dif-

ficulty comes from the fact that the random integer N in Proposition 1.4 for

Yt ,n = ν̃t ,n (D) may become larger even if we replace D by a subset S ⊂ D. If

one could estimate the Hölder regularity of ν̃t ,n (S) as in Proposition 1.4 si-

multaneously for, say, all dyadic squares S ⊂ D, then it is not hard to show

that (1.13) follows. But this may require further assumptions.
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2. APPLICATIONS

2.1. Absolute continuity of projections. We first apply Theorem 1.6 to
show that, almost surely, the orthogonal projections of the Liouville quan-
tum gravity measure µ in all directions are absolutely continuous pro-
vided that dimH µ > 1, and then use this to show this implies that the
Fourier transform of the LQG measure decays polynomialy. We write πθ

for the orthogonal projection onto the line through the origin in direction
perpendicular to the unit vector θ, and πθτ= τ◦π−1

θ
for the projection of

a measure τ on R
2 in the obvious way.

We prove the theorem for a rotund convex domain D ⊂ R
2. We call

a bounded open convex D rotund if its boundary ∂D has continuously
varying radius of curvature that is bounded away from 0 and ∞.

Theorem 2.1. Let 0 < γ <
p

2 and let µ be γ-LQG on a rotund convex do-

main D, so that almost surely, dimH µ = 2− γ2

2 > 1. Then, almost surely,

for all θ ∈ [0,π) the projected measure πθµ is absolutely continuous with

respect to Lebesgue measure with a β-Hölder continuous Radon-Nikodym

derivative for all 0 < β < β0, where β0 is given by (1.11) with α1 = α2 = 1,

α′
2 =

1
2 and α3 = 2.

Remark 2.2. Note that, with these values, β0 → 1
3 as γց 0.

For (θ,u) ∈ [0,π)×R let l(θ,u) be the straight line in R
2 in direction θ and

perpendicular distance u from the origin. We identify these lines l(θ,u)

with the parameters (θ,u) and define a metric d by

(2.1) d(l(θ,u), l(θ′,u′)) ≡ d
(
(θ,u), (θ′,u′)

)
= |u−u′|+min

{
|θ−θ′|,π−|θ−θ′|

}
.

We write L(l ) for the length of the chord l∩D provided the line l intersects
D. We require a geometrical lemma on the Hölder continuity of chord
lengths of plane convex sets.

Lemma 2.3. Let D ⊂R
2 be a rotund convex domain. There is a constant c0

depending only on D such that for all l , l ′ that intersect D

(2.2)
∣∣L(l )−L(l ′)

∣∣ ≤ c0d(l , l ′)1/2.

Proof. It is convenient to work with an alternative geometrical interpre-
tation of the metric d . Given a line l and ǫ > 0 let S∞(l ,ǫ) be the infinite
strip {x ∈ R

2 : |x − y | ≤ ǫ for some y ∈ l }. For M > 0 let RM (l ,ǫ) be the rec-
tangle {x ∈ S∞(l ,ǫ) : |x ·θ| ≤ M} where here we regard θ as a unit vector
in the direction of l and ‘·’ denotes the scalar product. Fix M sufficiently
large so that for all lines l and ǫ> 0,

S∞(l ,ǫ)∩D = RM (l ,ǫ)∩D .
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Write

EM (l ,ǫ) =
{
l ′ : l ′∩∂RM (l ,ǫ) = {x−, x+} where x±·θ =±M

}
,

for the set of lines that enter and exit the rectangle RM (l ,ǫ) across its two
‘narrow’ sides.

RM (l ,ǫ)
D θ

d∥(l )

l
l ′

FIGURE 1

It is easy to see that there are constants ǫ0,λ> 0 depending only on D

(taking into account M and the position of D relative to the origin) such
that if d(l , l ′) ≤ λǫ≤ λǫ0 then l ′ ∈ EM (l ,ǫ). Thus (2.2) will follow if there is
a constant c1 such that for all l that intersect D and all sufficiently small
ǫ,

(2.3) if l ′ ∈ EM (l ,ǫ) then
∣∣L(l )−L(l ′)

∣∣ ≤ c1ǫ
1/2.

Write 0 < ρmin ≤ ρmax <∞ for the minimum and maximum radii of cur-
vature of ∂D. For a line l that intersects D let d∥(l ) denote the perpendic-
ular distance between l and the closest parallel tangent to ∂D, see Figure
1. We consider two cases.

(a) ǫ ≤ 1
4ρmin, 1

2 d∥(l ) ≤ ǫ. Here both of the ‘long’ sides of the rectan-
gle RM (l ,ǫ) are within distance d∥ + ǫ ≤ 3ǫ < ρmin of the tangent to ∂D

parallel to l , so that if l ′ ∈ EM (l ,ǫ) then d∥(l ′) ≤ 3ǫ. By simple geometry,
L(l ),L(l ′) ≤ (2ρmax)1/2(3ǫ)1/2, so (2.3) holds with c1 = (2ρmax)1/231/2.

(b) ǫ ≤ 1
4ρmin, 1

2 d∥(l ) ≥ ǫ. In this case, all l ′ ∈ EM (l ,ǫ) are distance at

least d∥(l )− ǫ ≥ 1
2ǫ from their parallel tangents to ∂D. In particular, the

angles between every l ′ ∈ EM (l ,ǫ) and the tangents to ∂D at either end
of l ′ are at least φ where cosφ =

(
ρmax − 1

2ǫ
)/
ρmax. Both l , l ′ ∈ EM (l ,ǫ)

intersect ∂D at points on each of its arcs of intersection with RM (l ,ǫ), so
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that l and l ′ intersect each of these arcs at points within distance

2ǫ

sinφ
≤ 2ǫ

(
1−

(
1− 1

2
ǫ

ρmax

)2
)1/2

≤ 2(2ρmax)1/2ǫ1/2

of each other, where we have used ǫ/ρmax ≤ 1
2 in the second estimate.

Applying the triangle inequality (twice) to the points of l ∩∂D and l ′∩∂D

inequality (2.3) follows with c1 = 4(2ρmax)1/2. �

Remark 2.4. Note that (2.2) remains true taking d to be any reasonable

metric on the lines. Moreover, it is easy to obtain a Hölder exponent of 1 if

we restrict to lines that intersect D \ (∂D)δ for given δ > 0, where (∂D)δ is

the δ-neighbourhood of the boundary of D.

Proof of Theorem 2.1. Fix some point of D as origin and choose R such
that D ⊂ B(0,R). Let ν be Lebesgue measure on the interval E = [−R ,R]
Let T =

{
(θ,u) ∈ [0,π)×R : l(θ,u) ∩D 6= ;

}
. For (θ,u) ∈T let

I(θ,u) =πθ+π/2(l(θ,u) ∩D)

where πθ+π/2 denotes orthogonal projection onto the line through 0 in
direction θ, which we identify with R in the natural way. Let

f(θ,u)(v)= uei (θ+π/2) +veiθ, v ∈ I(θ,u),

where we identify R
2 with C. Then

ν(θ,u) := ν◦ f −1
(θ,u)

is just 1-dimensional Lebesgue measure on the chord l(θ,u)∩D of D, with
the convention that ν(θ,u) is the null measure when l(θ,u) is tangent to D.
It is easy to see that (T ,d) is compact and satisfies (A3) for α3 = 2, and
also that {ν(θ,u) : (θ,u) ∈T } satisfies (A1) for C1 = 1 and α1 = 1.

For condition (A2), for (θ,u), (θ′,u′) ∈T and v ∈ E ,
∣∣ f(θ,u)(v)− f(θ′,u′)(v)

∣∣ ≤
(
|v |+ |u|

)∣∣1−ei (θ−θ′)∣∣+|u −u′|
≤ 2

p
2R

∣∣1−cos(θ−θ′)
∣∣1/2 +|u −u′|

≤ 2
p

2R
(

min
{
|θ−θ′|,π−|θ−θ′|

}
+|u −u′|

)
,

where R is such that D ⊂ B(0,R). Also, by Lemma 2.3,

ν
(
I(θ,u)∆I(θ′,u′)

)
=

∣∣L
(
l(θ,u)

)
−L

(
l(θ′,u′)

)∣∣ ≤ c0d
(
l(θ,u), l(θ′,u′)

)1/2
.

This gives (A2) for C2 = max{2
p

2R ,c0}, α2 = 1 and α′
2 =

1
2 .

For (θ,u) ∈ T and n ≥ 1 let ν̃(θ,u),n and Y(θ,u),n be given as in (1.6) and
(1.7). The conclusions of Theorem 1.6 hold in this setting, with β0 given
by (1.11) with these α1,α2,α′

2,α3. In particular, for β < β0, we may as-
sume that, as happens almost surely, Y(θ,u),n converges uniformly on T
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to a β-Hölder continuous Y(θ,u), and for all n the measure µ2−n , given by
(1.2) is absolutely continuous and coverges weakly to µ.

Now fix θ and let (u, v) ∈ R
2 be coordinates in directions θ+ π

2 and θ.
Let φ(u, v) ≡ φ(u) be continuous on R

2 and independent of the second
variable. Since ν̃(θ,u),n are absolutely continuous measures, using (1.2),
(1.6) and Fubini’s theorem,∫

(u,v)∈D
φ(u)dµ2−n (u, v) =

∫

(u,v)∈D
φ(u)2−nγ2/2eγΓ(ρ(u,v),2−n )d v du

=
∫

(u,v)∈D
φ(u)2−nγ2/2eγΓ(ρ(u,v),2−n )dν(θ,u)(v)du

=
∫u+(θ)

u−(θ)
φ(u)‖ν̃(θ,u),n‖ du

=
∫u+(θ)

u−(θ)
φ(u)Y(θ,u),n du,

where u−(θ) and u+(θ) are the values of u corresponding to the tangents
to D in direction θ. Letting n → ∞ and using the weak convergence of
µ2−n and the uniform convergence of Y(θ,u),n ,
(2.4)∫u+(θ)

u−(θ)
φ(u)d(πθµ)(u) =

∫

(u,v)∈D
φ(u)dµ(u, v)=

∫u+(θ)

u−(θ)
φ(u)Y(θ,u)du.

Thus d(πθµ)(u) = Y(θ,u)du on [u−(θ),u+(θ)], so as Y(θ,u) is β-Hölder con-
tinuous on [u−(θ),u+(θ)] we conclude that πθµ is absolutely continuous
with a β-Hölder Radon-Nikodym derivative. ✷

Theorem 2.1 leads to a bound on the rate of decay of the Fourier trans-
form µ̂ of µ, or equivalently on the Fourier dimension of the measure (see
[4, 14] for recent discussions on Fourier dimensions).

Corollary 2.5. Let γ <
p

2, let µ be γ-LQG on a rotund convex domain D

and let 0<β<β0 where β0 is as in Theorem 2.1. Then, almost surely, there

is a random constant C such that

(2.5) |µ̂(ξ)| ≤C |ξ|−β, ξ ∈R
2,

so in particular µ has Fourier dimension at least 2β0.

Proof. We use the same notation as in the proof of Theorem 2.1. Almost
surely, T ∋ (θ,u) 7→ Y(θ,u) isβ-Hölder continuous, that is, for some Cβ > 0,

|Y(θ,u) −Y(θ′,u′)| ≤Cβd
(
(θ,u), (θ′,u′)

)β
.

For θ ∈ [0,π) and j ∈ {u−(θ),u+(θ)},

E
(

lim
u→ j

Y(θ,u)
)
≤ lim

u→ j
E
(
Y(θ,u)

)
= lim

u→ j
E
(
‖ν̃(θ,u)‖

)
= 0,
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since limu→ j ‖ν(θ,u)‖ = 0. As limu→ j Y(θ,u) ≥ 0, this implies that almost
surely limu→ j Y(θ,u) = 0. By taking a countable dense subset of [0,π) and
applying Hölder continuity, we have that almost surely Y(θ, j ) = 0 for all
θ ∈ [0,π) and j ∈ {u−(θ),u+(θ)}. This means that we can extend Y(θ,u) to all
u ∈Rby letting Y(θ,u) = 0 for u ∉ [u−(θ),u+(θ)], with the extended function
is still β-Hölder continuous with the same constant Cβ.

Write the transform variable ξ= ξ̃θ where here we regard θ ∈ [0,π) as a
unit vector and ξ̃ ∈R. From (2.4)
(2.6)

µ̂(ξ̃θ) =
∫

D
ei(ξ̃θ)·xµ(d x) =

∫u+(θ)

u−(θ)
eiξ̃ud(πθµ)(u) =

∫u+(θ)

u−(θ)
eiξ̃uY(θ,u)du.

Let M > max
{
|u−(θ)|, |u+(θ)|

}
+1. Then Y(θ,u) is supported in [u−(θ),u+(θ)] ⊂

[−M , M]. Using an argument attributed to Zygmund, for
∣∣ξ̃

∣∣>π,
∫M

−M
eiξ̃uY(θ,u)du =

∫M

−M
eiξ̃(u+π/ξ̃)Y(θ,u+π/ξ̃)du =−

∫M

−M
eiξ̃uY(θ,u+π/ξ̃)du.

The first and third integrals both equal the transform, so

∣∣µ̂(ξ̃θ)
∣∣=

1

2

∣∣∣
∫M

−M
eiξ̃u

[
Y(θ,u) −Y(θ,u+π/ξ̃)

]
du

∣∣∣≤ MCβ

(π
ξ̃

)β

by the Hölder condition, giving (2.5). �

2.2. Liouville quantum gravity on families of self-similar sets. Let m ≥
2 be an integer. Let S = (0,1)m ×SO(R,2)m × (R2)m be endowed with the
product metric d . For each t = (~r ,~O,~x) ∈S the set of m mappings

It =
{

g t
i (·) = ri Oi (·)+xi : 1 ≤ i ≤ m

}

forms an iterated function system (IFS) of contracting similarity map-
pings. Such an IFS defines a unique non-empty compact set Ft ⊂R

2 that
satisfies Ft =

⋃m
i=1 g t

i
(Ft ), known as a self-similar set, see, for example, [5]

for details of IFSs and self-similar sets and measures. Let E = {1, . . . ,m}N

be the symbolic space endowed with the standard product topology and
Borel σ-algebra E . In the usual way, the points of Ft are coded by the
canonical projection ft : E → Ft given by

ft (i ) = ft (i1i2 · · · ) = lim
n→∞

g t
i1
◦ · · · ◦ g t

in
(x0),

which is independent of the choice of x0 ∈R
2.

Let ν be a Bernoulli measure on E with respect to a probability vector
p = (p1, . . . , pm). For t ∈S let νt = ν◦ f −1

t ; then νt is a self-similar proba-
bility measure on R

2 in the sense that νt =
∑m

i=1 pi νt ◦ (g t
i

)−1.

Let D ⊂ R
2 be a bounded regular domain. Let T be a compact subset

of S such that for all t ∈ T , Ft ≡ ft (E ) ⊂ D and the open set condition
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(OSC) is satisfied, that is there exists a non-empty open set Ut such that
Ut ⊃

⋃m
i=1 g t

i
(Ut ) with this union disjoint. Take It = E for all t ∈ T . We

claim that
{
(g t

i
, It ) : t ∈T

}
satisfies assumptions (A1)-(A3).

A standard estimate using OSC shows that

(2.7) νt (B(x,r )) ≤C1rα1 , x ∈R
2,r > 0,

where α1 = mint∈T ,1≤i≤m log pi /logrt ,i and C1 > 0 for (A1). Moreover,

| fs (i )− ft (i )| ≤ lim
n→∞

|g s
i1
◦ · · · ◦ g s

in
(x0)− g t

i1
◦ · · · ◦ g t

in
(x0)|

≤ lim
n→∞

{∣∣(g s
i1
− g t

i1
)◦ g s

i2
◦ · · · ◦ g s

in
(x0)

∣∣+
∣∣g t

i1
◦ (g s

i2
− g t

i2
)◦ g s

i3
◦ · · · ◦ g s

in
(x0)

∣∣

+·· ·+
∣∣g t

i1
◦ · · · ◦ (g s

in
− g t

in
)(x0)

∣∣
}

≤
∞∑

n=0
r n
+c0d(s, t ) =C2d(s, t ),

using that the g t
i

are uniformly Lipschitz on T and their contraction ra-
tios are bounded by r+ = maxt∈T ,1≤i≤m {ri } < 1. Triviallyν(Is∆It ) = ν(;) =
0, so (A2) is satisfied. Condition (A3) holds as T is a compact subset of
the locally Euclidean 4m-dimensional manifold S .

Hence the assumptions (A1)-(A3) are satisfied. Thus, in this context,
Theorem 1.6 yields the following theorem.

Theorem 2.6. Let γ<
p

2α1 where α1 = mint∈T ,1≤i≤m log pi /logri and let

{ν̃t : t ∈ T } be γ-LQG on D for the family of self-similar measures {νt : t ∈
T }. Then almost surely the function

L : T ∋ t 7→ ‖ν̃t‖
is β-Hölder continuous for all 0 < β< β0, where β0 is given by (1.11) with

α2 = 1, α′
2 arbitrary and α3 = 4m.

Remark 2.7. One might hope that Theorem 2.6 would hold with α1 =
mint∈T dimH νt , that is where α1 = mint∈T

∑m
i=1 p

q

i
log pi

/∑m
i=1 p

q

i
logri ,

see [5], where γ <
p

2α1 corresponds to dimH νt > 2−dimH µ. This is the

case if for all t ∈T , ri = p1/s
i

for all i , when dimH νt = dimH Ft = s and νt

is a constant multiple of the restriction of s-dimensional Hausdorff mea-

sure to Ft .

However, in general, inequality (2.7) holds only for νt -almost all x when

α1 = dimH νt , with C1 dependent on x, and this is not enough to apply

Theorem 1.6. With some effort it can be shown that Lemma 1.2 still holds

under the weaker assumption (A1′): There exist constants C1,α1,ǫ1 > 0
such that for all n ≥ 1 and q ∈ (1,1+ǫ1),

sup
t∈T

∑

S∈Sn

νt (S)q ≤C12−nα1(q−1),
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where Sn is any dyadic square partition of D of side length 2−n. This would

give the best value α1 = mint∈T dimH νt .

2.3. Liouville quantum length on families of curves. Let D be a bounded
regular domain. Let T = [0,T ] and let d be Euclidean distance on T . Let
ν be a positive Borel measure on a bounded interval E = [L,R] and let
φ : E 7→ D be a measurable function. Let {g t : t ∈ T } be a family of map-
pings from D to D . For t ∈ T let It = [Lt ,Rt ] be a subinterval of E ; let
ft = g t ◦φ and νt = ν◦ f −1

t . Trivially (A3) is satisfied in this setting, and we
also assume (A1) and (A2), that is, there exist constants C1,α1 > 0 such
that

(2.8) νt (B(x,r )) ≤C1rα1

for all B(x,r ) ⊂ D, and there exist C2,r2,α2,α′
2 > 0 such that for all |s− t | ≤

r2 with s, t ∈T and Is ∩ It 6= ;,

(2.9) sup
u∈Is∩It

| fs (u)− ft (u)| ≤C2|s − t |α2

and

(2.10) |Ls −Lt |+ |Rs −Rt | ≤C2|s − t |α
′
2 .

We may apply Theorem 1.6 in this context to obtain the following theo-
rem.

Theorem 2.8. Let γ <
p

2α1 and let
{
ν̃t : t ∈ [0,T ]

}
be γ-LQG in D for the

family of measures
{
νt : t ∈ [0,T ]

}
. Then almost surely, for some β > 0 the

function

L : [0,T ] ∋ t 7→ ‖ν̃t‖
is β-Hölder continuous.

If { ft (It ) : t ∈ [0,T ]} is a curve in D parameterized by t , and ν is the
Lebesgue measure on [0,T ], then L(t )= ‖ν̃t‖becomes the ‘Liouville quan-
tum length’ of ft (It ). By chosing a countable dense subset T∗ of T and
applying Lemma 1.2, Theorem 2.8 implies that almost surely L is strictly
increasing and Hölder continuous in t .

Remark 2.9. It is not difficult to verify (2.8), (2.9) and (2.10) in various

situations, such as when φ is an algebraic curve or a Hölder continuous

function, and ft is smooth. It may also be possible to verify these inequal-

ities for certain Loewner chains, and in particular for SLE curves, as long

as the curve is independent of the GFF.

Remark 2.10. A challenge would be to extend Theorem 2.8 to families of

random curves depending on GF F but with a coupling property, such as

the flow lines of the GFF introduced in [15]. These flow lines are locally
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SLE curves with parameter κ= γ2, hence the Hausdorff dimension is α1 =
1+ κ

8 = 1+ γ2

8 . Our assumption α1 − γ2

2 > 0 now becomes 1− 3γ2

8 > 0, i.e.

γ<
√

8
3 , or κ< 8

3 . It would be of great interest if one could simultaneously

define the limit of the circle average of the GFF along its flow lines in this

case.

3. PROOFS

We shall need the following modification theorem.

Proposition 3.1. [11, Proposition 2.1] The circle average process

F : D × (0,1]∋ (x,ǫ) 7→ Γ(ρx,ǫ) ∈R

has a modification F̃ such that for every 0 < η < 1/2 and η1,η2 > 0 there

exists M = M(η,η1,η2) such that

∣∣F̃ (x,ǫ1)− F̃ (y,ǫ2)
∣∣≤ M

(
log

1

ǫ1

)η1 |(x,ǫ1)− (y,ǫ2)|η

ǫ1
η+η2

for all x, y ∈ D and ǫ1,ǫ2 ∈ (0,1] with 1/2≤ ǫ1/ǫ2 ≤ 2.

From now on we shall always use the above modification version of

the process, so in particular all the functions x 7→ 2−nγ2/2eγΓ(ρx ,2−n ) that
we integrate against are continuous.

3.1. Proof of Lemma 1.2. The proof follows the same lines as the proof
of [1, Proposition 3.1], using the following von Bahr-Esseen inequality.

Theorem 3.2. [22, Theorem 2] Let {Xm : 1 ≤ m ≤ n} be a sequence of ran-

dom variables satisfying

E
(
Xm+1

∣∣X1 + . . .+Xm

)
= 0, 1 ≤ m ≤ n −1.

Then for 1 ≤ p ≤ 2

E

(∣∣∣
n∑

m=1
Xm

∣∣∣
p)

≤ 2
n∑

m=1
E
(
|Xm |p

)
.

Proof of Lemma 1.2 Let n ≥ 1 be fixed. Let Sn be the family of regions in
R

2 obtained as non-empty intersections of D with the dyadic squares of
side-lengths 2−n . For S ∈ Sn denote by S̃ = {x ∈ D : dist(x,S) < 2−n} the
2−n-neighborhood of S in D. From (1.1) for S ∈Sn we can write

(3.1) Γ= Γ
S̃ +ΓS̃ ,

where Γ
S̃ and ΓS̃ are two independent Gaussian processes on M with

covariance function GS̃ and GD −GS̃ respectively. We can also choose a

version of the process such that ΓS̃ vanishes on all measures supported
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in D \ S̃, and ΓS̃ restricted to S̃ is harmonic, that is for any measure τ sup-
ported in S̃,

ΓS̃(τ) =
∫

S̃
hS̃(x)τ(d x),

where hS̃(x) = Γ(µS̃,x ), x ∈ S̃, is harmonic, where µS̃,x is the exit distri-

bution of S̃ by a Brownian motion started from x. In particular, by har-
monicity,

(3.2) Γ(ρx,2−n ) = Γ
S̃(ρx,2−n )+Γ(µS̃,x ), x ∈ S,

where
{
Γ

S̃(ρx,2−n ) : x ∈ S
}

and
{
Γ(µS̃,x ) : x ∈ S

}
are independent.

There exists an integer N independent of n such that the family Sn

can be decomposed into N subfamilies S
1

n , . . . ,S N
n such that for each

j = 1, . . . , N , the closures of S̃ and S̃ ′ are disjoint for all S,S ′ ∈ S
j

n . From
(1.6) and (1.7),

Yt ,n+1 −Yt ,n =
∫

D

(
2−(n+1)

γ2

2 eγΓ(ρx ,2−n−1 ) −2−n
γ2

2 eγΓ(ρx ,2−n ) )νt (d x)

=
N∑

j=1

∑

S∈S
j

n

∫

S

(
2−(n+1)

γ2

2 eγΓ(ρ
x ,2−n−1 ) −2−n

γ2

2 eγΓ(ρx ,2−n ) )νt (d x)

=
N∑

j=1

∑

S∈S
j

n

∫

S
US(x)VS (x)νt (d x),(3.3)

where

US(x) = 2−n
γ2

2 eγΓ(µS̃,x )

and

VS (x) = 2−γ2

2 eγΓ
S̃ (ρx ,2−n−1 ) −eγΓ

S̃ (ρx ,2−n )

using (3.2). SInce the families of regions
{
S

j
n

}N

j=1 are disjoint, we may

choose a version of the process such that the decompositions in (3.1) and

(3.2) hold simultaneously for all S ∈ S
j

n . Thus
{
{US(x) : x ∈ S} : S ∈ S

j
n

}

and
{
{VS (x) : x ∈ S} : S ∈ S

j
n

}
are independent for each j = 1, . . . , N , and{

{VS(x) : x ∈ S} : S ∈ S
j

n

}
are mutually independent and centred. By first

applying Hölder’s inequlity to the sum over j in (3.3), then taking condi-

tional expectation with respect to
{
{VS (x) : x ∈ S} : S ∈S

j
n

}
, then applying

Theorem 3.2 (the von Bahr-Esseen inequality), and finally taking the ex-
pectation, we get for 1≤ p ≤ 2,

(3.4) E
(
|Yt ,n+1 −Yt ,n |p

)
≤ 2N p−1

N∑

j=1

∑

S∈S
j

n

E

(∣∣∣
∫

S
US(x)VS (x)νt (d x)

∣∣∣
p
)

.
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Using Hölder’s inequality and Fubini’s theorem,

(3.5) E

(∣∣∣
∫

S
US(x)VS (x)νt (d x)

∣∣∣
p
)
≤ νt (S)p−1

∫

S
E
(
US(x)p |VS (x)|p

)
νt (d x).

Using Hölder’s inequality, (1.5) and (3.2), for x ∈ S,

E
(
US(x)p |VS (x)|p

)

= E

(
2−n

γ2 p
2 eγpΓ(µS̃,x )

∣∣∣2−γ2

2 eγΓ
S̃ (ρx ,2−n−1 ) −eγΓ

S̃ (ρx ,2−n )
∣∣∣

p
)

≤ 2p−1
E

(
2−n

γ2 p
2 eγpΓ(µS̃,x )

(
2−γ2p

2 eγpΓS̃ (ρx ,2−n−1 ) +eγpΓS̃ (ρx ,2−n )
))

= 2p−1
E

(
2−(n+1)

γ2 p
2 eγpΓ(ρx ,2−n−1 ) +2−n

γ2 p
2 eγpΓ(ρx ,2−n )

)

= 2p−1
(
2(n+1)

γ2

2 (p2−p)R(x,D)
γ2p2

2 +2n
γ2

2 (p2−p)R(x,D)
γ2p2

2

)

= 2p−1(2
γ2

2 (p2−p) +1
)
2n

γ2

2 (p2−p)R(x,D)
γ2p2

2 .

Combining this with (3.4) and (3.5) and noting that, from (A1), νt (S)p−1 ≤
C

p−1
1 |S|α1(p−1) ≤ (C12α1/2)p−12−nα1(p−1), we conclude that

E
(
|Yt ,n+1 −Yt ,n |p

)
≤ C ′

p 2−nα1(p−1)2n
γ2

2 (p2−p)
N∑

j=1

∑

S∈S
j

n

∫

S
R(x,D)

γ2p2

2 νt (d x)

≤ C ′
p 2−n(α1−γ2

2 p)(p−1)
∫

D
R(x,D)

γ2p2

2 νt (d x),

≤ C ′
p 2−n(α1−γ2

2 p)(p−1) max
x∈D

R(x,D)
γ2p2

2 ‖ν‖

where C ′
p = 2p (NC12α1/2)p−1

(
2

γ2

2 (p2−p) + 1
)
, noting that x 7→ R(x,D) is

bounded on the compact set D and maxt∈T ‖νt‖ ≤ ‖ν‖. The lemma fol-

lows with Cp =C ′
p maxx∈D R(x,D)

γ2 p2

2 ‖ν‖. ✷

3.2. Proof of Lemma 1.3.

Proof. For n ≥ 1 and x ∈D define

F n(x) = γΓ(ρx,2−n )− γ2

2
n log2.

For a given x ∈ D the random variables X1 := F 1(x), Xk := F k (x)−F k−1(x),

k = 2,3, . . . are independent. Since E
(
eF n (x)

)
= R(x,D)γ

2/2 is a constant

in n, and F n(x) = X1 + ·· · + Xn is a sum of n independent random vari-

ables, the sequence {eF n (x) : n ≥ 1} is a positive martingale with respect
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to the filtration {σ(X1, . . . , Xn) : n ≥ 1}. Using Doob’s martingale maximal
inequality,

E

(
max

1≤k≤n
eqF k (x)

)
≤

( q

q −1

)q
E

(
eqF n (x)

)

=
( q

q −1

)q
2n

γ2

2 (q2−q)R(x,D)
γ2 q2

2

≤ Cq 2n
γ2

2 (q2−q),(3.6)

where Cq =
( q

q−1

)q
maxx∈D R(x,D)γ

2q2/2.

For s, t ∈T with d(s, t ) ≤ r ≤ r2, (A2) implies

(3.7) sup
u∈Is∩It

| fs (u)− ft (u)| ≤C2rα2

and

(3.8) max
{
ν(Is \ It ),ν(It \ Is )

}
≤ ν(Is∆It ) ≤ C2rα′

2 .

We need to estimate the difference between

Ys,n =
∫

Is

eF n ( fs (u)) ν(du) and Yt ,n =
∫

It

eF n ( ft (u))ν(du).

For u ∈ Is ∩ It and n ≥ 1 let tu,n ∈Bd (t ,r ) be such that

F n( ftu,n (u)) = inf
s∈Bd (t ,r )

F n( fs (u)).

Define

Y ∗
s,n =

∫

Is∩It

eF n ( fs (u)) ν(du), Y ∗
t ,n =

∫

Is∩It

eF n ( ft (u)) ν(du)

and

Y ∗
n =

∫

Is∩It

eF n ( ftu,n (u))ν(du).

Then

|Ys,n −Yt ,n | ≤
∫

Is \It

eF n ( fs (u))ν(du)+
∫

It \Is

eF n ( ft (u)) ν(du)

+|Y ∗
s,n −Y ∗

n |+ |Y ∗
t ,n −Y ∗

n |.(3.9)

Firstly, using Jensen’s inequality, Fubini’s theorem, (3.6) and (3.8),

E

(
max

1≤k≤n

(∫

Is \It

eF k ( fs (u)) ν(du)
)q

)
≤ Cq 2n

γ2

2 (q2−q)ν(Is \ It )q

≤ C
q
2 Cq r qα′

2 2n
γ2

2 (q2−q),(3.10)
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and similarly

(3.11) E

(
max

1≤k≤n

(∫

It \Is

eF k ( ft (u))ν(du)
)q

)
≤ C

q

2 Cq r qα′
2 2n

γ2

2 (q2−q).

Secondly,

∣∣Y ∗
s,n −Y ∗

n

∣∣ =
∫

Is∩It

(
eF n ( fs (u)) −eF n ( ftu,n (u))

)
ν(du)

=
∫

Is∩It

eF n ( fs (u))
(
1−e−(F n ( fs (u))−F n ( ftu,n (u)))

)
ν(du).

From (3.7) 0 ≤ fs(u)− ftu,n (u)≤C2rα2 , so by Proposition 3.1, given 0< η<
1/2 and η1,η2 > 0, we can find constants M ≡ M(η,η1,η2) such that

F n( fs(u))−F n( ftu,n (u)) ≤C
η
2 M(n log2)η12n(η+η2)r ηα2 .

Since 1−e−x ≤ x,

∣∣Y ∗
s,n −Y ∗

n

∣∣≤C
η
2 M(n log2)η1 2n(η+η2)r ηα2Y ∗

s,n .

By using similar estimates to (3.10) and (3.11) for Y ∗
s,n and Y ∗

t ,n we get

(3.12) E

(
max

1≤k≤n

∣∣∣Y ∗
s,k −Y ∗

k

∣∣∣
q
)
≤C ′

q,η(n log2)qη1 2qn(η+η2)r qηα2 2n
γ2

2 (q2−q),

and

(3.13) E

(
max

1≤k≤n

∣∣∣Y ∗
t ,k −Y ∗

k

∣∣∣
q
)
≤C ′

q,η(n log2)qη1 2qn(η+η2)r qηα2 2n
γ2

2 (q2−q).

where C ′
q,η =CqC

qη
2 M q‖ν‖q <∞.

Finally, using Hölder’s inequality in (3.9) and incorporating (3.10), (3.11)
(3.12) and (3.13),

E

(
max

1≤k≤n
|Ys,k −Yt ,k |q

)
≤4q−1

(
2CqC

q
2 r qα′

2 2n
γ2

2 (q2−q)

+2C ′
q,η(n log2)qη1 2qn(η+η2)r qηα2 2n

γ2

2 (q2−q)
)
,

so by taking η1, η2 close to 0 there exists a constant Cq,η such that

E

(
max

1≤k≤n
|Ys,k −Yt ,k |q

)
≤Cq,ηr q((ηα2)∧α′

2)2nq( 1
2+

γ2

2 (q−1)).

�
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3.3. Proof of Proposition 1.4. The proof is along the lines of that of the
Kolmogorov-Chentsov continuity theorem: we invoke Lemma 1.3 to con-
trol Yt ,n as t ∈ T varies and Lemma 1.2 to compare the approximations
to Yt given by Yt ,n for consecutive circle averages of radii 2−n .

Proof. Take p > 1 close enough to 1 so that α1 − γ2

2 p > 0 then take an

integer ℓ large enough so that ℓ(α1− γ2

2 p)(p −1)−α3 := δ1 > 0. From (A3)
and 1.2, for j = 0, . . . ,ℓ−1,

E

(
max
t∈Tn

|Yt , j+(n+1)ℓ −Yt , j+nℓ|p
)

≤
∑

t∈Tn

(
ℓ−1∑

k=0

E
(
|Yt , j+nℓ+k+1 −Yt , j+nℓ+k |p

)1/p

)p

≤C32nα3ℓpCp

ℓ−1∑

k=0

2−( j+nℓ+k)(α1−γ2

2 p)(p−1)

≤C 2−nδ1 ,(3.14)

where C =C3ℓ
pCp

(
1−2−(α1−γ2

2 p)(p−1)
)−1

.
Fix 0 < η< 1/2 and write η′ = (ηα2)∧α′

2. Choose q > 1 large enough so

that η′q −α3 > 0, then choose an integer ζ large enough such that 2ζ ≥C3

and ζ(η′q −α3)−ℓq
(1

2 +
γ2

2 (q −1)
)

:= δ2 > 0. For n ≥ 1 let

Pn =
{
(s, t ) ∈Tn ×Tn : d(s, t )≤ 2ζ2−n

}
.

From (A3) there exists a constant Cζ such that #Pn ≤Cζ2nα3 . By Lemma

1.2, for n ≥ 1 satisfying 2−ζ(n−1) ≤ r2 and taking r = 2−ζ(n−1) in (1.9),

E

(
max

(s,t)∈Pnζ

max
1≤k≤nℓ

|Ys,k −Yt ,k |q
)

≤Cζ2nζα3Cq,η2−ζqη′2−nζqη′2nℓq( 1
2+

γ2

2 (q−1))

≤C ′2−nδ2 ,(3.15)

where C ′ =CζCq,η2−ζqη′ .
Chooseβ> 0 such that both δ1−βp > 0 andδ2−βq > 0. Using Markov’s

inequality and (3.14) and (3.15),

P

(
max

j=0,...,ℓ−1
max
t∈Tn

|Yt , j+(n+1)ℓ −Yt , j+nℓ | > 2−nβ

)
≤ ℓC 2−n(δ1−βp)

and

P

(
max

(s,t)∈Pnζ

max
1≤k≤nℓ

|Ys,k −Yt ,k | > 2−nβ

)
≤C ′2−n(δ2−βq),
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provided 2−ζ(n−1) ≤ r2. By the Borel-Cantelli lemma, with probability 1
there exists a random integer N such that, for all n ≥ N , both

(3.16) max
j=0,...,ℓ−1

max
t∈Tn

|Yt , j+(n+1)ℓ −Yt , j+nℓ | ≤ 2−nβ

and

(3.17) max
(s,t)∈Pnζ

max
1≤k≤nℓ

|Ys,k −Yt ,k | ≤ 2−nβ.

Fixing such an N and n ≥ N +1, as well as j ∈ {0, . . . ,ℓ−1}, we will prove
by induction on M that for all M ≥ n, and all s, t ∈ TMζ with d(s, t ) ≤
C32−nζ,

(3.18) max
0≤k≤M−1

|Ys, j+kℓ−Yt , j+kℓ| ≤ 2−nβ+2
M−1∑

k=n

(2−(k+1)β+2−kβ).

To start the induction, if s, t ∈ Tnζ then (s, t ) ∈ Pnζ (as C3 ≤ 2ζ), so by
(3.17),

max
0≤k≤n−1

|Ys, j+kℓ−Yt , j+kℓ| ≤ 2−nβ,

which is (3.18) when M = n (with the summation null).
Now suppose that (3.18) holds for some M ≥ n. Let s, t ∈ T(M+1)ζ with

d(s, t ) ≤ C32−nζ. By (A3), there exist s∗, t∗ ∈ TMζ with d(s, s∗) ≤ 2−Mζ =
2ζ2−(M+1)ζ and d(t , t∗) ≤ 2−Mζ = 2ζ2−(M+1)ζ, as well as d(s∗, t∗) ≤ C32−nζ.
Thus (s, s∗), (t , t∗) ∈ P (M+1)ζ. This gives, by considering the cases 1 ≤ k ≤
M −1 and k = M in the maximum separately, for all j ∈ {0, . . . , l −1},

max
0≤k≤M

|Ys, j+kℓ−Yt , j+kℓ |

≤ max
0≤k≤M−1

|Ys∗, j+kℓ−Yt∗, j+kℓ|

+ max
0≤k≤M

|Ys, j+kℓ−Ys∗, j+kℓ|+ max
0≤k≤M

|Yt∗ , j+kℓ−Yt , j+kℓ|

+ |Ys∗ , j+Mℓ−Ys∗, j+(M−1)ℓ|+ |Yt∗ , j+Mℓ−Yt∗ , j+(M−1)ℓ|

≤ 2−nβ+2
M−1∑

k=n

(2−(k+1)β+2−kβ)+2 ·2−(M+1)β +2 ·2−Mβ,

using (3.17) and (3.16). Thus (3.18) is true with M replaced by M + 1,
completing the induction.

Letting M →∞ in (3.18) and summing the geometric series we get that
for all s, t ∈T∗ =

⋃
n≥1 Tn with d(s, t ) ≤C32−nζ,

sup
k≥1

|Ys,k −Yt ,k | ≤C ′′2−nβ,

where C ′′ depends only on ℓ and β.
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For s, t ∈ T∗ with d(s, t ) ≤ C32−(N+1)ζ there exists a least n ≥ N + 1
such that C32−(n+1)ζ ≤ d(s, t ) ≤ C32−nζ. Noting that 2−nζ = 2ζ2−(n+1)ζ ≤
2ζC−1

3 d(s, t ),

(3.19) sup
k≥1

|Ys,k −Yt ,k | ≤C ′′2−nβ =C ′′(2−nζ)β/ζ ≤C ′′′d(s, t )β
′
,

where β′ =β/ζ and C ′′′ =C ′′(2ζC−1
3 )β

′
. Finally, to extend (3.19) from T∗ to

T , we use the continuity of t 7→ Yt ,n for n ≥ 1 and the fact that T∗ is dense
in T . Inequality (1.10) follows by renaming constants appropriately.

It remains to estimate the Hölder exponent β. From the requirements
in the proof on δ1,δ2 > 0, β′ in (3.19) can be taken arbitrarily close to
min{β1,β2} where

β1 = η′− α3

q
−
ℓ
(1

2 +
γ2

2 (q −1)
)

ζ
and β2 =

ℓ
(
α1 − γ2

2 p
)
(p −1)−α3

pζ
,

for any valid choice of p, q,ζ and ℓ, that is subject to 1 < p < 2α1

γ2 and 1 ≤
α3
η′ < q with ζ and ℓ sufficiently large. Imposing the constraint ζ = q2 γ2ℓ

2α3

for some such q ,

β1 = η′−2
α3

q
+

(
1− 1

γ2

)α3

q2
and β2 =

α3

q2

(2α1

γ2 −p
)
(p −1)

p
−
α2

3

q2

1

pℓ
γ2

2

.

Letting ℓ→∞, so that also ζ→∞ ensuring that 2ζ >C3,

β1 = η′−2
α3

q
+

(
1− 1

γ2

)α3

q2
and β2 =

α3

q2

(2α1

γ2 −p
)
(p −1)

p
.

With the further constraint p =
√

2α1

γ2 > 1,

β1 = η′−2
α3

q
+

(
1− 1

γ2

)α3

q2
and β2 =

α3

q2

(√
2α1

γ2
−1

)2

.

Thenβ1 րα2 andβ2 ց 0 as 1< q →∞, hence the maximum of min{β1,β2}
subject to these constraints occurs when q is such that β1 = β2, that is
when

q2 η′

α3
−2q +

(
1−

1

γ2

)
=

(√
2α1

γ2
−1

)2

.

This yields

q =
α3 +

√
α2

3 +η′α3

(
(2α1+1)

γ2 − 2
p

2α1
γ

)

η′
,
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giving

β1 =β2 =




η′

p
α3 +

√
α3 +η′

(
(2α1+1)

γ2 − 2
p

2α1
γ

)




2
(√

2α1

γ2
−1

)2

.

So the exponent β′ can be any number smaller than this common value
with η′ = (ηα2)∧α′

2 for η arbitrarily close to 1/2. �

3.4. Proof of Theorem 1.7. Theorem 1.7 follows easily from the following
lemma which is proved afterwards. As in the proof of Lemma 1.2 ,let Sn

be the family of regions in R
2 obtained as non-empty intersections of D

with the dyadic squares of side-lengths 2−n .

Lemma 3.3. For p > 1 such that α1 − γ2

2 p > 0 there exists a constant Cp

such that for all S ∈Sn ,

E
(
ν̃(S)p

)
≤Cp 2−n(α1−γ2

2 p)(p−1)ν(S).

Proof of Theorem 1.7 For κ> 0 define

En(κ) := {S ∈Sn : ν̃(S) > 2−nκ}.

Then

ν̃(En(κ)) =
∑

S∈Sn

1{ν̃(S)>2−nκ}ν̃(S)

≤
∑

S∈Sn

2nκ(p−1)ν̃(S)(p−1)ν̃(S)

= 2nκ(p−1)
∑

S∈Sn

ν̃(S)p .

From Lemma 3.3,

E
(
ν̃(En(κ))

)
≤Cpν(D)2−n(α1−γ2

2 p−κ)(p−1).

For all κ<α1 − γ2

2 p, the Borel-Cantelli lemma implies that, almost surely
ν̃(Sn(x)) ≤ 2−nκ for all sufficiently large n for ν̃-almost all x, where Sn(x)
is the dyadic square in Sn containing x. Thus, almost surely,

dimH ν̃≥ κ,

for all κ<α1 − γ2

2 p. ✷

Proof of Lemma 3.3 Recall the identity from (3.2), that

(3.20) Γ(ρx,2−n ) = Γ
S̃(ρx,2−n )+Γ(µS̃,x ), x ∈ S,
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for S ∈Sn , whereΓ
S̃ is a GFF on S̃ = {x ∈D : dist(x,S) < 2−n}, and {ΓS̃(ρx,2−n ) :

x ∈ S} and {Γ(µS̃,x ) : x ∈ S} are independent. This implies

ν̃(d x) = eγΓ(µS̃,x ) ν̃S̃ (d x), x ∈ S,

where ν̃S̃ is the Liouville quantum measure obtained from Γ
S̃ acting on

ν|S̃ . By Hölder’s inequality and independence we have

E(ν̃(S)p ) = E

((∫

S
eγΓ(µS̃,x ) ν̃S̃(d x)

)p
)

≤ E

(
ν̃S̃(S)p−1

∫

S
epγΓ(µS̃ ,x ) ν̃S̃(d x)

)

= E

(
ν̃S̃(S)p−1

∫

S
E
(
epγΓ(µS̃ ,x )) ν̃S̃ (d x)

)

≤ max
x∈S

E
(
epγΓ(µS̃,x ))

E
(
ν̃S̃(S)p

)
.(3.21)

From (3.20), independence and (1.5),

E
(
epγΓ(µS̃,x ))=

(R(x,D)

R(x, S̃)

)γ2p2

2
,

Recall (1.4), that

(3.22) dist(x,∂D) ≤ R(x,D) ≤ 4 dist(x,∂D).

Since dist(x, S̃) ≥ 2−n ,

(3.23) max
x∈S

E
(
epγΓ(µS̃ ,x ))≤ (4|D|)

γ2 p2

2 2n
γ2p2

2 .

To estimate the second term in (3.21), for m ≥ n write

Y S̃
m =

∫

S
2−m

γ2

2 eγΓ
S̃ (ρx ,2−m )ν(d x).

By Minkowski’s inequality,

(3.24) E
(
ν̃S̃(S)p

) 1
p ≤ E

(
(Y S̃

n )p
) 1

p +
∞∑

m=n

E
(
|Y S̃

m+1 −Y S̃
m |p

) 1
p .

To estimate the first term of (3.24), we use Hölder’s inequality, (1.5) and
assumption on the measures of balls, to get

E
(
(Y S̃

n )p
)

≤ 2−n
γ2 p

2 ν(S)p−1
E

(∫

S
epγΓS̃ (ρx ,2−n )ν(d x)

)

≤ 2−n
γ2 p

2 C
(p−1)
1 |S|α1(p−1)2n

γ2 p2

2

∫

S
R(x, S̃)

γ2p2

2 ν(d x)

≤ C
p−1
1 2−n(α1−γ2

2 p)(p−1)
∫

S
R(x, S̃)

γ2p2

2 ν(d x)
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≤ C
p−1
1 2−n(α1−γ2

2 p)(p−1) max
x∈S

R(x, S̃)
γ2p2

2 ν(S).

For the summed terms in (3.24), by following the same lines as in the
proof of Lemma 1.2 (working with the domain S̃ instead of the domain
D), we have for m ≥ n,

E
(
|Y S̃

m+1 −Y S̃
m|p

)
≤ Cp 2−m(α1−γ2

2 p)(p−1)
∫

S
R(x, S̃)

γ2p2

2 ν(d x)

≤ Cp 2−m(α1−γ2

2 p)(p−1) max
x∈S

R(x, S̃)
γ2p2

2 ν(S),

where Cp = 2p (NC1)p−1
(
2

γ2

2 (p2−p) +1
)
. Thus, from (3.24),

E
(
ν̃S̃(S)p

) 1
p ≤ E

(
(Y S̃

n )p
) 1

p +
∞∑

m=n

[
Cp 2−m(α1−γ2

2 p)(p−1) max
x∈S

R(x, S̃)
γ2p2

2 ν(S)
] 1

p

≤ C ′
p

[
2−n(α1−γ2

2 p)(p−1) max
x∈S

R(x, S̃)
γ2p2

2 ν(S)
] 1

p

where C ′
p =C

(p−1)/p
1 +C

1/p
p

/(
1−2−(α1−γ2

2 p)(p−1)/p
)
. Noting that dist(x, S̃) ≤

(
p

2/2+1)2−n and applying (3.22) again, we deduce that

(3.25) E
(
ν̃S̃(S)p

)
≤C

′′
p 2−n(α1−γ2

2 p)(p−1)2−n
γ2p2

2 ν(S),

where C
′′
p = C

′
p 2−(α1−γ2

2 p)(p−1)/p (
p

2/2 + 1)
γ2p2

2 . Incorporating estimates
(3.23) and (3.25) in (3.21) we conclude that

E
(
ν̃(S)p

)
≤C

′′
p (4|D|)

γ2 p2

2 2−n(α1−γ2

2 p)(p−1)ν(S).

✷

Acknowledgement The authors are most grateful to the Isaac Newton In-
situte, Cambridge, for hospitality and support during the Random Geom-
etry Programme where part of this work was done.

REFERENCES

[1] J. Barral, X. Jin and B. Mandelbrot, Uniform convergence for complex [0,1]-
martingales. Ann. App. Probab. 20(4): 1205–1218, 2010.

[2] N. Berestycki. Introduction to the Gaussian Free Field and Liouville Quantum Grav-
ity. Lecture notes, 2015.

[3] B. Duplantier and S. Sheffield. Liouville quantum gravity and KPZ. Invent. Math.

185: 333–393, 2011.
[4] F. Ekström, T. Persson and J. Schmeling. On the Fourier dimension and a modifica-

tion. arXiv:1406.1480, 2014.
[5] K. Falconer. Fractal Geometry - Mathematical Foundations and Applications. John

Wiley, 3rd Ed., 2014.

http://arxiv.org/abs/1406.1480


26 KENNETH FALCONER AND XIONG JIN

[6] K. Falconer and X. Jin. Exact dimensionality and projections of random self-similar
measures and sets. J. Lond. Math. Soc. (2) 90(2): 388–412, 2014.

[7] K. Falconer and X. Jin. Dimension Conservation for Self-Similar Sets and Fractal
Percolation. Int. Math. Res. Not. doi:10.1093/imrn/rnv103, 2015.

[8] M. Hochman and P. Shmerkin. Local entropy averages and projections of fractal
measures, Ann. of Math.(2) 175: 1001–1059, 2012.

[9] J.-P. Kahane . Sur le chaos multiplicatif. Ann. Sci. Math. Québec. 9(2): 105–150, 1985.
[10] J.-P. Kahane and J. Peyrière. Sur certaines martingales de B. Mandelbrot. Adv. Math.

22: 131–145, 1976.
[11] X. Hu, J. Miller and Y. Peres. Thick points of the Gaussian free field. Ann. Probab.

38(2): 896–926, 2010.
[12] B. B. Mandelbrot. Intermittent turbulence in self-similar cascades, divergence of

high moments and dimension of the carrier. J. Fluid. Mech. 62: 331–358, 1974.
[13] J. M. Marstrand. Some fundamental geometrical properties of plane sets of frac-

tional dimensions. Proc. London Math. Soc.(3) 4: 257–302, 1954.
[14] P. Mattila. Fourier Analysis and Hausdorff Dimension. Cambridge University Press,

Cambridge (2015).
[15] J. Miller and S. Sheffield. Imaginary Geometry I: Interacting SLEs. arXiv:1201.1496,

2012.
[16] Y. Peres and P. Shmerkin. Resonance between Cantor sets. Ergodic Theory Dynam.

Systems. 29: 201–221, 2009.
[17] J. Peyrière. Turbulence et dimension de Hausdorff. C. R. Acad. Sc. Paris. 278: 567-

569, 1974.
[18] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review.

Probab. Surv. 11: 315–392, 2014.
[19] S. Sheffield. Gaussian free fields for mathematicians. Probab. Theory Relat. Fields,

139:521–541, 2007.
[20] P. Shmerkin and B. Solomyak. Absolute continuity of self-similar measures, their

projections and convolutions. arXiv:1406.0204, 2014.
[21] P. Shmerkin and V. Suomala. Spatially independent martingales, intersections, and

applications. arXiv:1409.6707, 2014.
[22] B. von Bahr and C. Esseen. Inequalities for the r th absolute moment of a sum of

random variables, 1 ≤ r ≤ 2. Ann. Math. Statist. 36(1): 299–303, 1965.
[23] W. Werner. Topics on the two-dimensional Gaussian Free Field. Lecture Notes from

ETH Zürich, 2014.

MATHEMATICAL INSTITUTE, UNIVERSITY OF ST ANDREWS, NORTH HAUGH, ST AN-
DREWS, FIFE, KY16 9SS, SCOTLAND

E-mail address: kjf@st-andrews.ac.uk

SCHOOL OF MATHEMATICS, UNIVERSITY OF MANCHESTER, OXFORD ROAD, MANCH-
ESTER M13 9PL, UNITED KINGDOM

E-mail address: xiong.jin@manchester.ac.uk

http://arxiv.org/abs/1201.1496
http://arxiv.org/abs/1406.0204
http://arxiv.org/abs/1409.6707

	1. Introduction
	1.1. Overview
	1.2. Gaussian Free Fields
	1.3. Liouville quantum gravity
	1.4. Assumptions and main results

	2. Applications
	2.1. Absolute continuity of projections
	2.2. Liouville quantum gravity on families of self-similar sets
	2.3. Liouville quantum length on families of curves

	3. Proofs
	3.1. Proof of Lemma 1.2
	3.2. Proof of Lemma 1.3
	3.3. Proof of Proposition 1.4
	3.4. Proof of Theorem 1.7

	References

