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A simple invisible structure made of two anisotropic layers is analyzed theoretically in temporal
regime. The frequency dispersion is introduced and analytic expression of the transient part of
the field is derived for large times when the structure is illuminated by a causal excitation. This
expression shows that the limiting amplitude principle applies with transient fields decaying as the
power −3/4 of the time. The quality of the cloak is then reduced at short times and remains
preserved at large times. The one-dimensional theoretical analysis is supplemented with full-wave
numerical simulations in two-dimensional situations which confirm the effect of dispersion.

I. INTRODUCTION

In 2006, Pendry et al. [1] and Leonhardt [2] indepen-
dently showed the possibility of designing an invisibil-
ity cloak for electromagnetic radiation by blowing up a
hole in optical space and hiding an object inside this in-
visible region. These proposals have been validated by
microwave experiments [3]. However, these cloaks suffer
from on an inherent narrow bandwidth as their trans-
formational optics design leads to singular tensors with
values on the frontier of the invisibility region. To remove
the cloak’s singularity, Kohn et al. proposed to blow up
a small ball instead of a point [4], and in this way the
cloak’s singularity is removed, at the cost of adding a
medium inside the invisibility region [4].

In the present letter, this regularized version of
Pendry’s transform is implemented for the design of
the most simple system of invisible layers in the time-
harmonic framework. In this way, infinities are avoided in
the material parameters of the cloak which consists of two
homogeneous anisotropic slabs. In addition frequency
dispersion is considered, which is a required model for
metamaterials whenever the permittivity (or permeabil-
ity) is lower than that of vacuum (i.e. when the phase
velocity is greater than c or negative). The effect of dis-
persion is analyzed with electromagnetic sources with si-
nusoidal time dependence that are switched on at an ini-
tial time. Such illumination has been originaly used by L.
Brillouin [5] in homogeneous dispersive media, and more
recently in the case of the negative index flat lens [6–8].
Dispersion in metamaterials has already been addressed
not only in the case of the flat lens [6–10], but also in the
case of cylindrical invisibility cloaks [11].

The originality of the present approach is to consider a
simple invibility system made of two layers allowing ana-
lytic calculations. In addition, a new method is presented
in detail in order to investigate the transient regime in
this situation. The main idea is to exploit an integral ex-
pression of the time dependent electromgnetic field with
no branch cut. The derivation of the transient regime
shows that the electromagnetic field includes contribu-
tions generated by the singular values of the permittivity
and permeability (zeros and infinities). Next, the limiting

amplitude principle is considered to show that cloaking
can be addressed in temporal regime after the transient
regime. These results are supplemented by numerical
simulations in the case of a two-dimensional cylindrical
cloak, where the presence of additional modes is con-
firmed in the transient regime.

II. A SYSTEM OF INVISIBLE LAYERS

We start with the definition of a system of invisible
layers. Let (x1, x2, x3) be a cartesian coordinate system
which specifies each vector x in the space R3. At the
oscillating frequency ω, the electric field amplitude E(x)
is governed in free space by the Helmholtz equation

−∇×∇×E(x) + ω2µ0ε0 E(x) = 0 , (1)

where ε0 and µ0 are the vacuum permittivity and perme-
ability. The invisible layered structure is then deduced
using the one dimensional coordinate transform x → x′

defined by (see Fig. 1)

x′1 =
a

α
x1 0 ≤ x1 ≤ α ,

x′1 = a+
b− a
b− α

(x1 − α) α ≤ x1 ≤ b ,
x′1 = x1 x1 ≤ 0 , b ≤ x1 ,

(2)
where a < α < b are positive numbers, x′2 = x2 and
x′3 = x3 being invariant. The effect of this geometric
transform is to map the layer 0 ≤ x1 ≤ α onto the layer
0 ≤ x′1 ≤ a (denominated hereafter as layer A), and the
layer α ≤ x1 ≤ b onto a ≤ x′1 ≤ b (denominated as layer
B). Note that such geometric transform, adapted from
[12], regularizes the original transform for an invisibility
cloak proposed in [1]. The corresponding transformation
is applied to the Helmholtz equation (1) which becomes

−∇′ × µ−1(x′1)∇′ ×E′(x′) + ε(x′1)ω2µ0ε0 E
′(x′) = 0 ,

(3)
where it is obtained that the tensors of relative per-
mittivity and permeability are both equal to the tensor
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FIG. 1. Coordinate transform for invisible layers. Left:
change of coordinate x1 → x′1. Center: free space before
coordinate transform. Right: invisible set of layers after co-
ordinate transform.

ν ≡ ε = µ taking constant values in each layer: ε(x′1) = µ(x′1) = ν(x′1) = νa if 0 ≤ x′1 ≤ a ,
ε(x′1) = µ(x′1) = ν(x′1) = νb if a ≤ x′1 ≤ b ,
ε(x′1) = µ(x′1) = ν(x′1) = 1 if x′1 ≤ 0 , b ≤ x′1 .

(4)
The constant values in layers A abd B are given by

νa,b =

ν
⊥
a,b 0 0

0 ν
‖
a,b 0

0 0 ν
‖
a,b

 , (5)

where the components parallel and perpendicular to the
plane interfaces, respectively denoted by the superscripts
‖ and ⊥, are

ν⊥a = 1/ν‖a = a/α , ν⊥b = 1/ν
‖
b = (b−a)/(b−α) . (6)

The transformed Helmholtz equation (3) can be reduced
to a set of two independent scalar equations using the
invariances under the translations and rotations in the
plane (x′2, x

′
3), namely the symmetries of the geometry.

After a Fourier decomposition from (x′2, x
′
3) to (k′2, k

′
3),

equation (3) becomes

∂

∂x

1

ν‖(x)

∂U

∂x
(x)− k2

ν⊥(x)
U(x)+

ω2

c2
ν‖(x)U(x) = 0 , (7)

for U(x), the (Fourier transformed) electric field compo-
nent along direction (−k3, k2). Here, x denotes x′1, k2

is k22 + k23 (with k2 = k′2 and k3 = k′3), c is the light
velocity in vacuum 1/

√
ε0µ0, and functions ν‖(x) and

ν⊥(x) are the components of ν(x) respectively parallel
and perpendicular to the plane interfaces. Notice that,
since ε = µ, the second scalar equation derived from the
Helmholtz equation is fully identical to (7), except that
U(x) should be the (Fourier transformed) magnetic field
component along direction (−k′3, k′2) [or (−k3, k2)].

In this letter, the system is analyzed using a transfer
matrix formalism [13]. The equation (7) is formulated as

∂

∂x
F (x) = −iM(x)F (x) , (8)

where

F =

[
U

i

ν‖
∂U

∂x

]
, M =

 0 ν‖

ω2

c2
ν‖ − k2

ν⊥
0

 . (9)

The transfer matrices Ta and Tb, associated to layers A
and B, defined by F (a) = TaF (0) and F (b) = TbF (a),
are given by

Ta = exp[−iM0α] , Tb = exp[−iM0(b− α)] , (10)

the matrix M0 being the value taken by the matrix M(x)
in vacuum, i.e. when ν‖(x) = ν⊥(x) = 1. This implies
that the transfer matrix TbTa = exp[−iM0b], associated
with layers A and B, is exactly the same as the one of a
vacuum layer of thickness b. Hence the system of layers
A and B is invisible.

Nevertheless, as pointed out by V. Veselago when he
introduced negative index materials [14], causality prin-
ciple and passivity require for permittivity and perme-
ability to be frequency dispersive when they take relative
value below unity [15, 16]. According to this requirement,
frequency dispersion is introduced in the components of
νa and νb with value below unity, assuming the simple
Drude-Lorentz model [16]:

ν⊥a (ω) = 1− Ω2
a

ω2 − ω2
a

, Ω2
a =

α− a
α

(ω2
0 − ω2

a) ,

ν
‖
b (ω) = 1− Ω2

b

ω2 − ω2
b

, Ω2
b =

α− a
b− a

(ω2
0 − ω2

b ) .

(11)

Under this assumption, the functions ν⊥a (ω) and ν
‖
b (ω)

take the appropriate values for the invisibility require-
ment at ω = ω0. Notice that the resonance frequencies
ωa and ωb must be smaller than the operating frequency
ω0 in order to ensure that the oscillator strengths Ω2

a

and Ω2
b are positive. For frequencies different from ω0,

the system has no reason to be invisible.

III. ANALYSIS IN TEMPORAL REGIME

The effect of dispersion is analyzed using illumination
with sinusoidal time-dependence oscillating at ω0 and
switched on at an initial time. Such a “causal” incident
field, originaly used by L. Brillouin [5] and more recently
in [6–8], is assumed to be in normal incidence for the
sake of simplicity. Hence the following current source is
considered:

S(x, t) = S0 δ(x− x0)θ(t) sin[ω0t] , (12)

where δ is the Dirac function, θ(t) the step function (it
equals 0 if t < 0 and 1 otherwise), and S0 the constant
component of the source parallel to the field component
U(x). In the domain of complex frequencies z = ω + iη,
the electric field radiated in vacuum by this source is

U0(x, z) =
S0µ0c

2

ω0

z2 − ω2
0

exp
[
iz|x− x0|/c

]
. (13)

Note that the positive imaginary part η has been added
to the frequency ω in order to ensure a correct defini-
tion of the Fourier transform with respect to time of the



3

S(x, t)

t

x
bax0

S0

ct ct

::::
::::
::::
::::

::::
::::
::::
::::

ε0
µ0

ε0
µ0

εa

µa

εb

µb

FIG. 2. Excitation of the system. Top: Causal current source
with sinusoidal time dependence. Bottom: Field radiated by
the causal source and illuminating the invisible layers.

source (12). The time dependent incident field radiated
in vacuum is, with z = ω + iη,

E0(x, t)=
1

2π

∫
R
dω exp[−izt]U0(x, z)

= −S0µ0c

2
θ(t− |x− x0|/c) sin[ω0(t− |x− x0|/c)] .

(14)
The next steps are to compute the time dependent field
transmitted throught the system, and to analyze the be-
havior of the filed when the time t tends to infinity. Ac-
cording to the limiting amplitude principle, the solution
has an asymptotic behavior corresponding to the time
harmonic frame oscillating at the frequency ω0. Let T (ω)
be the transmission coefficient of the system made of lay-
ers A and B. Then, the time dependent electric field is,
for x > b,

ET (x, t) =
1

2π

∫
R
dω exp[−izt]U0(0, z)T (z) exp[iz(x−b)/c] .

(15)
At this stage, it is stressed that, for a fixed incident angle,
the transmission coefficient T (z) does not contain any
square root of the permittivities and permeabilities of
the layered system and of the complex frequency z. This
remarkable property is the key of the present technique,
since it removes all branch cuts in the evaluation of the
integral of the transmitted field. This is a breakthrough
in comparison with the method used by L. Brillouin for
the analysis of wave propagation in dispersive media [5].
The expression of the transmitted field is thus given by
the sum of the contributions from all the poles in the
function f(z) under the integral in (15) (using residus).

The poles of the factor U0(0, z) at z = ±ω0 [see Eq.
(13)] provide the contribution at the operating frequency
ω0,

E
(0)
T (x, t) =−S0µ0c

2
θ(t− {x− x0 + α− a}/c)

× sin[ω0(t− {x− x0}/c)] ,
(16)

corresponding to the time harmonic solution for which

the system is invisible. Note that this contribution van-
ishes for times such that ct is smaller than x−x0+α−a =
x+|x0|+α−a > x+|x0|, instead of x−x0 = x+|x0|. This
is not suprising since the dispersion has not been taken
into account in both parallel permittivity and permeabil-

ity ε
‖
a = µ

‖
a = ν

‖
a > 1 of layer A: hence the corresponding

delay (α− a)/c is retrieved in the expression above.
The poles of the transmission coefficient are deter-

mined via

T (z) = exp[iz{α+ (b− a)ν
‖
b (z)}/c] . (17)

The resulting expression of the transmission coefficient
is relatively simple since there perfect impedance match-
ing holds at every interface in the structure defined from
transformation optics. Indeed, the permittivity and per-
meability take the same values in each layer. Replacing

ν
‖
b (z) by the dispersive model (11) yields

T (z) = exp[iz(α+ b− a)/c] exp

[
−i z(b− a)

c

Ω2
b

z2 − ω2
b

]
.

(18)
Thus the transmission coefficient has two isolated singu-
larities at z = ±ωb. The resulting contribution can be
estimated for large values of the relative time

τ = t− x− x0 + α− a
c

� β =
(b− a)Ω2

b

2ω2
b c

. (19)

In appendix, it is shown that

E
(b)
T (x, t) ≈

τ/β→∞
− 2S0µ0πc

ω0ωb
ω2
b − ω2

0

√
β/τ θ(τ)

×J1(2ωbβ
√
τ/β) cos[ωb(τ + 2β)

]
,
(20)

where J1 is the Bessel function given by (A9). Using the

asymptotic form J1(u) ≈
√

2/(πu) cos[u − 3π/4] of the
Bessel function provides an explicite expression for large
τ � β. The resulting contribution in the electric field is

E
(b)
T (x, t) ≈

τ/β→∞
− 2S0µ0c

ω0ωb
√
π

ω2
b − ω2

0

(ωbβ)1/4 θ(τ) (ωbτ)−3/4

× cos
[
2ωbβ

√
τ/β − 3π/4] cos[ωb(τ + 2β)

]
.

(21)
This expression shows that the second contribution has
a first factor oscillating at the frequency ωb and a sec-
ond factor with more complex oscillating behavior with
argument Ωb

√
2(b− a)τ/c. More importantly, the am-

plitude of this contribution decreases like (ωbτ)−3/4, and
thus the total transmitted electric field

ET (x, t) ≈
τ/β→∞

−S0µ0c

2
θ(τ) sin[ω0(τ+{α−a}/c)] (22)

tends to the field radiated in vacuum (14) for time quan-
tity τ long enough. Hence the limiting amplitude princi-
ple applies here, unlike for the perfect lens [6, 8].

The situation where small absorption is included can
be considered. In this case the resonance frequencies ±ωb
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are replaced by ±ωb − iγ with γ > 0 in (11) while Ωb re-
mains positive. Then, the main change in the second
contribution (21) is the presence of the additional factor
exp[−γτ ] which makes the permanent regime (purely os-
cillating at the operating frequency ω0) easier to handle.
Notice that the argument of the Bessel function, inde-
pendent of ωb, remains purely real and thus absorption
does not affect the behavior governed by this function.
Finally, it is stressed that the introduction of small ab-
sorption affects the transmission coefficient at the oper-
ating frequency ω0 by an attenuation of exp[−γ(b−a)/c],
which results in a signature of the “invisible” structure.

In non normal incidence, expressions become much
more complicated since reflections occur at the different
interfaces. However, it is clear that the term −k2/ν⊥a in
(9) leads to a singularity at the frequency ωp for which
ν⊥a vanishes:

ν⊥a (ωp) = 0 , ωp =
√
ω2
a + Ω2

a . (23)

This singularity generates an additional contribution at
the frequency ωp, as well as the singularity at ωb. It is
found that both singularities ν → 0 and ν → ∞ lead to
additional contributions of the field in temporal regime.
This result confirms the well-known difficulties associated
with cloak’s singularities [12].

IV. TWO-DIMENSIONAL CYLINDRICAL
CLOAK

The analytical results obtained in this paper are nu-
merically tested in the case of a cylindrical cloak designed
using homogenization techniques [17, 18]. The considered
cloak is a concentric multi-layered structure of inner ra-
dius R1 and outer radius R2 = 2R1, consisting of 20
homogeneous layers of equal thickness R1/20 and made
of non dispersive dielectrics (see table I in Supplemental
Material for the values of the relative permittivities, the
relative permeability being unity).

The left panel of Fig. 3 shows that the cylindrical
cloak perfectly works in time harmonic regime oscillating
at the frequency ω0 = 2πc/λ0, where λ0 = R2/2. It is
stressed that a purely dielectric structure is used for this
2D cloak, and thus the interfaces between the different
concentric layers are subject to reflections which produce
effective dispersion. Hence, it is expected to observe an
effect of dispersion even if all the dielectric layers are
non dispersive [13]. The right panel of Fig. 3 shows the
longitudinal magnetic field amplitude when the cloak is
illuminated by the causal incident field given by Eq. (12)
and Fig. 2.

The cloaking effect appears to be of similar quality in
both panels of Fig. 3. However, we would now like to an-
alyze the magnetic field at short times. In Fig. 4, one can
see that cylindrical modes are exited in the multi-layers
when the incident front wave reaches the cloak (left),
what produces a superluminal concentric wave. Notice
that these modes can propagate in the cloak faster than

FIG. 3. Magnetic field in the presence of the cylindrical cloak
when illuminated by a time harmonic plane wave (left) and by
the causal incident field given by Eq. (12) and Fig. 2 (right).

the front wave in vacuum since the frequency dispersion
is not introduced in the dielectrics, especially those with
index values below unity. The cylindrical modes excited
in the multi-layers then radiate cylindrical waves out-
side the cloak, as evidenced by the right panel in Fig.
4, which explains the tiny perturbation of the field ob-
served on right panel of Fig. 3 (the field perturbation is
smoothed down at long times, in agreement with the an-
alytical part). In addition, Fig. 4 shows a picture of the

FIG. 4. Magnetic field in the presence of the cylindrical cloak
when illuminated by the causal incident field at two time steps
in the transient regime. Cylindrical modes inside the cloak
generate a supraluminal concentric wave.

transient part of the field produced by the causal source.
Here, we take benefit of the supra-luminal propagation
of the modes in the cloak to observe that the radiated
transient part is almost isotropic. It can be deduced that
the radial dependence of this transient part resembles
the Hankel function H0, which does not correspond to
the function J1 found by A. Sommerfeld and L. Brillouin
[5], and exhibited in the present Eqs. (A8,A10). It is
stressed that there is no contradiction since the J1 de-
pendence is clearly related to the Drude-Lorentz model
of the dispersion, while the transient field around the 2D
cloak is related to the effective dispersion produced by
the multilayered geometry. Nevertheless, one can con-
clude that both situations considered in this letter show
that the quality of cloaking is reduced at short times un-
der illumination by a causal incident field.

V. CONCLUSION

A new method to analyze propagation of electromag-
netic waves in dispersive media has been proposed. The
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major ideas are to consider a layered structure to elimi-
nate branch cuts, and an invisible structure (with ε = µ)
to eliminate reflections in normal incidence. In this situ-
ation, the transient regime can be highlighted and, espe-
cially, an explicit expression is obtained in the long time
limit. As a result the amplitude of the transient part de-
creases like (t− x/c)−3/4. Hence the technique proposed
in this letter brings new elements to the method used
by Brillouin [5], where wavefronts (forerunners) can be
simply exhibited.

The analysis of the transient regime in the situation
of the invisible structure has shown that the singular-
ities of the permittivity and permeability generate ad-
ditional contributions to the electric field. However, in
normal incidence, the contributions vanish in the long
time limit, thus cloaking can be addressed after the tran-
sient regime. Finally, numerical simulations for a two-
dimensional cylindrical layered cloak confirm the effect of

dispersion, which affects the quality of cloaking at short
times when it is illuminated by a causal incident field.

The proposed method opens new possibilities for in-
vestigating transient regime of dispersive systems, no-
tably structures designed from transformation optics like
cloaks, concentrators and rotators.
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Appendix A: Estimate of the transient field

The contribution E
(b)
T (x, t) of the two isolated singu-

larities at z = ±ωb in the integral expression (15) is es-
timated for large values of the relative time τ [given by
(19)] after the front wave. These two singularities are
present in the transmission coefficient T (z) given by (18).
Decomposing the ratio z/(z2 − ω2

b ) in simple poles, the
whole function under the integral in (15) can be formu-
lated as

f(z) = f±(z) exp

[
−i (b− a)Ω2

b/(2c)

z − (±ωb)

]
, (A1)

where f±(z) are analytic around ±ωb. Let ξ = z−(±ωb),
then the functions f± and exponential can be expanded
in power series around ξ = 0:

f(z) =
∑
q∈N

f
(q)
± (±ωb)
q!

ξq
∑
p∈N

[(b− a)Ω2
b/(2ic)]

p

p!
ξ−p ,

(A2)
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where f
(q)
± (±ωb) is the derivative of order q of f±(z) eval-

uated at ±ωb. Thanks to the convergence of the series,
the terms of this product can be arranged in order to ob-
tain the coefficients of the poles ξ−1, and thus the residus
Res(±ωb) of the function f(z) at z = ±ωb:

Res(±ωb) =
∑

p∈N\{0}

f
(p−1)
± (±ωb)
(p− 1)!

[(b− a)Ω2
b/(2ic)]

p

p!
.

(A3)
Notice that it can be checked that the series above con-
verges as well as the series expansion of the exponential
function. Hence the residus Res(±ωb) are well-defined.

Using that the complex conjugated of f(z) is f(z) =
f(−z), the contribution of the singularities at ±ωb in the
time dependent transmitted field is

E
(b)
T (x, t) = θ(t−{x−x0 +α−a}/c) Imag

{
4πRes(ωb)

}
.

(A4)
The exact calculation of this second contribution, corre-
sponding to the transient regime, cannot be performed in
general. However, the (x, t) dependence can be analyzed
from the one of f±(z) which can be expressed as

f±(z) = g±(z) exp[−izτ ] , τ = t− (x− x0 + α− a)/c .
(A5)

where the functions g±(z) are (x, t) independent, and
the time quantity τ defines the arrival of the signal (from
τ = 0). Denoting β = (b − a)Ω2

b/(2ω
2
b c) and recalling

that ξ = z − (±ωb), the function (A1) becomes

f(z) = g±(ξ ± ωb) exp[−i(±ωb)τ ] exp[−i(τξ + ω2
bβ/ξ)].

(A6)
Then the residus can be expressed as

Res(±ωb) =
1

2iπ

∫
|ξ|=d

dξ f(ξ ± ωb) (A7)

as soon as the functions g±(z) are analytic in the disks
of radius d and centered at ±ωb. In particular, this ex-
pression can be estimated for τ tending to infinity. Let
the radius of the disks set to d = ωb

√
β/τ and the com-

plex number ξ = ωb
√
β/τ exp[iφ]. For τ/β → ∞, the

functions g±(ξ ± ωb) ≈ g±(±ωb) and the residus can be
approached by

Res(±ωb)≈
1

2iπ
g±(±ωb) exp[−i(±ωb)τ ] iωb

√
β/τ

×
∫
[0,2π]

dφ exp[iφ− i2ωb
√
βτ cosφ] .

(A8)
Using the integral representation of the Bessel function

J1(u) = − 1

2iπ

∫
[0,2π]

dφ exp[iφ− iu cosφ] , (A9)

it is deduced that, for τ/β →∞,

Res(±ωb) ≈ −ig±(±ωb) exp[−i(±ωb)τ ]
√
β/τ J1(2ωb

√
βτ) .

(A10)
Appendix B: Opto-geometric parameters of the

layered cloak

Table I gives the values of dielectric permittivity of
layers which are non-magnetic and of identical thickness
R1/20. Note that, according to causality principle, all
layers with relative permittivity lower than 1 are nec-
essarily dispersive. This requirement is not considered
in the numerical simulations, which explains the supra-
luminal propagation of the electromagnetic field.

layer 1 2 3 4 5 6 7

ε/ε0 0.0012 8.0 0.02 8.0 0.07 8.0 0.12

layer 8 9 10 11 12 13 14

ε/ε0 8.0 0.18 8.0 0.24 8.0 0.3 8.0

layer 15 16 17 18 19 20

ε/ε0 0.38 8.0 0.44 8.0 0.5 8.0

TABLE I. Relative permittivity values of the layered cloak
from the inside (layer 1) to the outside (layer 20). One layer
in two has the constant value 8.0.
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