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NILSYSTEMS AND ERGODIC AVERAGES ALONG PRIMES

TANJA EISNER

Dedicated to Vitaly Bergelson on the occasion of his 65th birthday

Abstract. A celebrated result by Bourgain and Wierdl states that ergodic
averages along primes converge almost everywhere for Lp-functions, p > 1,
with a polynomial version by Wierdl and Nair. Using an anti-correlation result
for the von Mangoldt function due to Green and Tao we observe everywhere
convergence of such averages for nilsystems and continuous functions.

1. Introduction

Nilsystems enjoy remarkable algebraic and ergodic properties making them an im-
portant class of systems in the classical ergodic theory, see Auslander, Green, Hahn
[1], Green [16], Parry [29, 30] and Leibman [24]. During the years, their relevance
for norm convergence of multiple ergodic averages was noted by many authors such
as Conze, Lesigne [8], Furstenberg, Weiss [10], Host, Kra [21], Lesigne [27], Ziegler
[35]. When finally, motivated by Gowers’ uniformity norms introduced in [15], the
structure theory of characteristic factors for multiple ergodic averages was developed
by Host and Kra [22] and later by Ziegler [36] via an alternative method, nilsystems
became fundamental in modern ergodic theory. For further developments involving
nilsystems and nilsequences we refer to e.g. Bergelson, Host, Kra [2], Bergelson,
Leibman, Lesigne [4], Bergelson, Leibman [3], Leibman [25, 26], Frantzikinakis [11],
Host, Kra [23], Chu [7], Eisner, Zorin-Kranich [9], Zorin-Kranich [38].

In their study of arithmetic progressions in the primes, Green and Tao [18, 19,
17], partially together with Ziegler [20], have developed a powerful quantitative
theory of Gowers’ uniformity norms, nilsequences and their orthogonality to the
von Mangoldt and Möbius functions. Their results have found applications back
in ergodic theory, see e.g. Frantzikinakis, Host, Kra [13, 14], Wooley, Ziegler [34],
Bergelson, Leibman, Ziegler [5], Frantzikinakis, Host [12]. This note is one more
example of such an application.

An important ergodic property of nilsystems is that single and multiple ergodic aver-
ages converge everywhere for such systems. We extend this property to polynomial
ergodic averages along primes, motivated by the celebrated result on almost ev-
erywhere convergence of ergodic averages along primes by Bourgain [6] and Wierdl
[32], see also Thouvenot [31] and Zorin-Kranich [37], and its polynomial generalisa-
tion by Wierdl [33] and Nair [28]. For the definition of a polynomial sequence see
Section 2.
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Theorem 1.1. Let G/Γ be a nilmanifold, g : N → G be a polynomial sequence and
F ∈ C(G/Γ). Then the averages

1

π(N)

∑

p∈P,p≤N

F (g(p)x)

converge for every x ∈ G/Γ. Moreover, if G is connected and simply connected,
g(n) = gn and the system (G/Γ, µ, g) is ergodic, then the limit equals

∫
X Fdµ and

is uniform in x.

Our argument is similar to (but simpler than) the one in Wooley, Ziegler [34] in
the context of the norm convergence of multiple polynomial ergodic averages along
primes.

Acknowledgement. The author thanks Vitaly Bergelson for correcting the refer-
ences.

2. Preliminaries and the W -trick

Let G be an s-step Lie group and Γ be a discrete cocompact subgroup of G. The
homogeneous space G/Γ together with the Haar measure µ is called an s-step
nilmanifold. For every g ∈ G, the left multiplication by g is an invertible µ-
preserving transformation on G/Γ, and the triple (G/Γ, µ, g) is called a nilsystem.
For a continuous function F on G/Γ, the sequence (F (gnx))n∈N is called a (basic
linear) nilsequence as introduces by Bergelson, Host, Kra [2]. A nilsequence in
their definition is a uniform limit of basic nilsequences (being allowed to come from
different systems and functions). Note that the property of Cesáro summability
along primes is preserved by uniform limits, so Theorem 1.1 implies in particular
that every nilsequence is Cesáro summable along primes.

Rather than linear sequences (gn), following Leibman [24], Green, Tao [17] and
Green, Tao, Ziegler [20], we will consider polynomial sequences (g(n)), where g :

N → G is called a polynomial sequence if it is of the form g(n) = g
p1(n)
1 · . . . · g

pm(n)
m

for some m ∈ N, g1, . . . , gm ∈ G and some integer polynomials p1, . . . , pm. For
an abstract equivalent definition see [17]. A sequence of the form (F (g(n)x)) for
a continuous function F on G/Γ is called a polynomial nilsequence. Although this
notion seems to be more general than the one of linear basic nilsequences, it is not,
see the references at the beginning of the proof of Theorem 1.1 in the following
section.

Note that a nilsequence does not determine G, Γ, F etc. uniquely, giving room for
reductions. For example, we can assume without loss of generality that x = idGΓ.
Moreover, denoting by G0 the connected component of the identity in G, since we
are only interested in the orbit of x under g(n), we can assume without loss of
generality that G = 〈G0, g1, . . . , gm〉.

We use the notations oa,b(1) and Oa,b(1) to denote a function which converges to
zero or is bounded, respectively, for fixed parameters a, b uniformly in all other
parameters.
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We now introduce the W -trick as in Green and Tao [18]. Consider

Λ′(n) :=

{
logn if n ∈ P,

0 otherwise.

For ω ∈ N define

W = Wω :=
∏

p∈P,p≤ω

p

and for r < W coprime to W define the modified Λ′-function by

Λ′
r,ω(n) :=

φ(W )

W
Λ′(Wn+ r), n ∈ N,

where φ denotes the Euler totient function.

The key to our result is the following anti-correlation property of Λ′
r,ω with nilse-

quences due to Green and Tao [18] conditional to the “Möbius and nilsequences
conjecture” proven by them later in [19]. Here, ω : N → N is an arbitrary function
with limN→∞ ω(N) = ∞ satisfying ω(N) ≤ 1

2 log logN for all large N ∈ N. Note

that the corresponding function W : N → N is then O(log1/2 N).

Theorem 2.1. (Green-Tao [18, Prop. 10.2]) Let ω(·) and W (·) be as above, G/Γ
be an s-step nilmanifold with a smooth metric, G being connected and simply con-
nected, and let F (gnx) be a bounded nilsequence on G/Γ with Lipschitz constant
M . Then

max
r<W (N),(r,W (N))=1

1

N

N∑

n=1

(Λ′
r,ω(N)(n)− 1)F (gnx) = oM,G/Γ,s(1)

as N → ∞.

An immediate corollary is the following, cf. [14, p. 5].

Corollary 2.2. Let G/Γ be an s-step nilmanifold with a smooth metric, G being
connected and simply connected, and let F (gnx) be a bounded nilsequence on G/Γ
with Lipschitz constant M . Then

max
r<W,(r,W )=1

∣∣∣∣∣
1

N

N∑

n=1

(Λ′
r,ω(n)− 1)F (gnx)

∣∣∣∣∣ = oM,G/Γ,s(1),

where one first takes lim supN→∞ and then limω→∞.

Proof. Define for ω,N ∈ N

aω(N) := max
r∈W,(r,W )=1

∣∣∣∣∣
1

N

N∑

n=1

(Λ′
r,ω(n)− 1)F (gnx)

∣∣∣∣∣

and assume that the claimed convergence does not hold. Then there exist ε > 0
and a subsequence (ωj) of N so that

lim sup
N→∞

aωj
(N) > ε for all j ∈ N.

In particular there exists a subsequence (Nj) of N such that aωj
(Nj) > ε for every

j ∈ N.
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Define now the function ω : N → N by

ω(N) := ωj if N ∈ [Nj , Nj+1)

which grows sufficiently slowly if (Nj) grows sufficiently fast. Then we have

aω(Nj)(Nj) = aωj
(Nj) > ε

contradicting Theorem 2.1 which states limN→∞ aω(N)(N) = 0. Note that this
argument respects the claimed uniformity in F, g and x. �

3. Proof of Theorem 1.1

We first need several standard simple facts.

Lemma 3.1. (See, e.g., [13]) For a bounded sequence (an) ⊂ C one has

lim
N→∞

∣∣∣∣∣∣
1

π(N)

∑

p∈P,p≤N

ap −
1

N

N∑

n=1

Λ′(n)an

∣∣∣∣∣∣
= 0.

Lemma 3.2. Let (bn) ⊂ C satisfy bn = o(n) and let W ∈ N. Then the following
assertions hold.

(a) If
(

1
WN

∑WN
n=1 bn

)
N∈N

converges, then so does
(

1
N

∑N
n=1 bn

)
N∈N

.

(b) If (bn) is supported on the primes, then

(1)
1

WN

WN∑

n=1

bn =
1

W

∑

r<W,(r,W )=1

1

N

N∑

n=1

bWn+r + oW (1).

Proof. (a) is clear.

(b) The growth condition implies

1

WN

WN∑

n=1

bn =
1

WN

W∑

r=1

N−1∑

n=0

bWn+r =
1

W

W∑

r=1

1

N

N∑

n=1

bWn+r + oW (1).

If (bn) is supported on the primes, (1) follows. �

The following property of connected nilsystems is well known.

Lemma 3.3. Let X := G/Γ be a connected nilsystem with Haar measure µ and
g ∈ G. Then (X,µ, g) is ergodic if and only if (X,µ, g) is totally ergodic.

Proof. Since ergodicity of a nilsystem is equivalent to the ergodicity of its Kro-
necker factor (also called maximal factor-torus, or “horizontal” torus) G/([G,G]Γ),
see Leibman [24], we can assume without loss of generality that X is a compact
connected abelian group.

Let (X,µ, g) be ergodic, m ∈ N and let F ∈ L2(X,µ) be an gm-invariant function,
i.e., F (gmx) = F (x) for every x ∈ X . Consider the Fourier decomposition

F =
∑

χ∈X̂

cχχ.
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By the assumption we have

F =
∑

χ∈X̂

cχ(χ(g))
mχ.

By the uniqueness of the decomposition we obtain

cχ = cχ(χ(g))
m ∀χ ∈ X̂.

Assume that cχ 6= 0. Then (χ(g))m = 1, i.e., χ(g) is an mth root of unity. Since
(X,µ, g) is ergodic, {gn : n ∈ Z} is dense in X . Since χ is a character and X
is connected, χ(g) has to be equal to 1 - otherwise X would have two clopen

components {gn : m0|n} and {gn : m0 ∤ n}, where m0 is the smallest period of
χ(g). Thus F = c11 and (X,µ, g) is totally ergodic. �

Proof of Theorem 1.1. As mentioned above, we can assume that x = idGΓ ∈ G0,
whereG0 is the connected component of the identity inG, andG = 〈G0, g1, . . . , gm〉.

Every polynomial nilsequence can be represented as a linear nilsequence on a larger
nilmanifold, see Leibman [24, Prop. 3.14], Chu [7, Prop. 2.1 and its proof] and, in
the context of connected groups, Green, Tao, Ziegler [20, Prop. C.2]. Thus we can
assume that g(n) = gn for some g ∈ G.

By the argument in Wooley, Ziegler [34, p. 17], the nilsequence (F (gnx)) can be
written as a finite sum of (linear) nilsequences coming from a connected, simply
connected Lie group. Thus we can assume without loss of generality that G is
connected and simply connected.

We first assume that F is Lipschitz and define bn := Λ′(n)F (gnx). To show con-
vergence of

(2)
1

π(N)

∑

p∈P,p≤N

F (gpx),

by Lemmata 3.1 and 3.2(a) it is enough to find W ∈ N so that

(3)
1

WN

WN∑

n=1

bn

is a Cauchy sequence.
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Indeed, for every ω ∈ N

1

WN

WN∑

n=1

bn =
1

W

∑

r<W,(r,W )=1

1

N

N∑

n=1

bWn+r + oW (1)

=
1

φ(W )

∑

r<W,(r,W )=1

1

N

N∑

n=1

Λ′
r,ω(n)F (gWn+rx) + oW (1)

=
1

φ(W )

∑

r<W,(r,W )=1

1

N

N∑

n=1

(Λ′
r,ω(n)− 1)F (gWn+rx)

+
1

φ(W )

∑

r<W,(r,W )=1

1

N

N∑

n=1

F (gWn+rx) + oW (1)(4)

=: I(N) + II(N) + oW (1).

Let ε > 0 and take a large ω such that lim supN→∞ |I(N)| < ε which exists by
Corollary 2.2. Since the sequence (F (gWn+rx))n∈N is Cesáro convergent for every r,
see Leibman [24] and Parry [29, 30], there is N0 ∈ N such that |II(N1)−II(N2)| < ε
whenever N1, N2 > N0. Thus the averages (3) form a Cauchy sequence implying
convergence of (2).

Take now F ∈ C(G/Γ) arbitrary, x ∈ G/Γ and ε > 0. By the uniform continuity
of F there exists G ∈ C(G/Γ) Lipschitz with ‖F −G‖∞ ≤ ε. We then have

∣∣∣∣∣∣
1

π(N)

∑

p∈P,p≤N

F (gpx) −
1

π(M)

∑

p∈P,p≤M

F (gpx)

∣∣∣∣∣∣

≤

∣∣∣∣∣∣
1

π(N)

∑

p∈P,p≤N

F (gpx) −
1

π(N)

∑

p∈P,p≤N

G(gpx)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

π(N)

∑

p∈P,p≤N

G(gpx)−
1

π(M)

∑

p∈P,p≤M

G(gpx)

∣∣∣∣∣∣

+

∣∣∣∣∣∣
1

π(M)

∑

p∈P,p≤M

G(gpx)−
1

π(M)

∑

p∈P,p≤M

F (gpx)

∣∣∣∣∣∣

≤ 2ε+

∣∣∣∣∣∣
1

π(N)

∑

p∈P,p≤N

G(gpx) −
1

π(M)

∑

p∈P,p≤M

G(gpx)

∣∣∣∣∣∣

which is less than 3ε for large enough N,M by the above, finishing the argument.

The last assertion of the theorem follows analogously from the decomposition
(4) using Lemma 3.3, the fact that a nilsystem is ergodic if and only if it is
uniquely ergodic, see Parry [29, 30], and the uniform convergence of Birkhoff’s
ergodic averages to the space mean for uniquely ergodic systems. The last step
(for non-Lipschitz functions) should be modified by showing that the difference

1
π(N)

∑
p∈P,p≤N F (gpx)− 1

N

∑N
n=1 F (gnx) converges to zero. �
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