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Abstract

The recently introduced concept of dynamic communicability is a valuable tool for ranking the importance of nodes in a
temporal network. Two metrics, broadcast score and receive score, were introduced to measure the centrality of a node
with respect to a model of contagion based on time-respecting walks. This article examines the temporal and structural
factors influencing these metrics by considering a versatile stochastic temporal network model. We analytically derive
formulae to accurately predict the expectation of the broadcast and receive scores when one or more columns in a
temporal edge-list are shuffled. These methods are then applied to two publicly available data-sets and we quantify how
much the centrality of each individual depends on structural or temporal influences. From our analysis we highlight
two practical contributions: a way to control for temporal variation when computing dynamic communicability, and
the conclusion that the broadcast and receive scores can, under a range of circumstances, be replaced by the row and
column sums of the matrix exponential of a weighted adjacency matrix given by the data.

1 Introduction

Epidemics, viral marketing, cultural diffusion, the distribu-
tion of food in ant colonies, and the flow of information
within the human brain, are amongst a growing number of
applications of network theory which currently reside at the
forefront of modern science [1–5]. Advances in technology
continue to promote the accumulation of data, providing
an optimistic light in the quest to understand these hugely
complex systems. The task then, for researchers across a
range of disciplines, is to find optimal ways to measure,
model, analyze, and present the vast information at their
disposal.

Network theory has proved to be an invaluable resource to
exploit data on a large scale. Its great utility comes partly
from the its ability to translate problems into a language
independent of the particular subject of study. Hence, a
“node” can represent entities as diverse as a human, a pro-
tein or a word [6–8]. “Edges” can represent any sort of
interaction between the nodes, and concepts such as perco-
lation, diffusion, paths and walks can all serve as models for
various processes observed in the real world.

It is remarkable whenever the methods developed for the
analysis of one subject matter are applied to seemingly un-
related problems. This occurs frequently when networks are
involved. For example, the preferential attachment model
can explain the distribution of citations in scientific liter-
ature as well as the distribution of popularity in a social
network [9, 10], the PageRank algorithm was developed to
rank websites but can also measure the risk of cancer in
humans [11]. These universalities motivate us to search for

ways to measure networks and classify them by their prop-
erties; if we have a good description of the network, then
we have potentially described a part of the “real world”
which we would like to understand, moreover, we also have
the entirety of past research and all the accompanying tools
developed to help attack the problem.

1.1 Motivation for “dynamic communica-

bility”

Transmissible disease is possibly the best example to
demonstrate the versatility of network analysis. Ultimately
the theoretical considerations of network epidemiology in-
volve nodes, edges and some knowledge of the disease it-
self such as the transmission probability, recovery rate and
so on. Transmission could occur from one person to an-
other, from one location to another (e.g. connected by air
travel), or between species, but in each case the models em-
ployed remain well within the confines of the network frame-
work [12–14]. This also extends to computer viruses [15],
Twitter hashtags and internet memes [16, 17], and possi-
bly even cultural transmission on an archeological time-
scale [18]. Clearly there is much to be gained from having
a grounded understanding of how things spread through a
network regardless of what that particular network repre-
sents.

The work we present here concerns a scenario where we
are given a database containing a set of distinct individ-
uals, a set of pairwise interactions, and the exact time at
which each interaction happened (see Fig.1a). Additionally
it is assumed that some transmissible agent was, or poten-
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tially could have been, spreading through the network. A
practical question which often arises is: “which node is po-
tentially the most significant when it comes to the spread
of a transmissible agent?”.
To find the most influential spreader, given data of past
interactions, there are several options to consider: the sim-
plest method would be to find the individual with the high-
est node degree (this could be defined as either number of
interactions that person had, or the number of people they
interacted with). Alternatively we could use global network
properties such as the betweenness centrality or closeness
centrality of a node, both of which are defined on tempo-
ral networks [19]. The most extensive approach currently
being used is to build a computational model of the pro-
cess, adding as many factors into the model as one sees fit;
where uncertainty is present, random variables can be used;
and the centrality of an individual can be computed by run-
ning the model repeatedly and counting the proportion of
simulations in which they are infected [12, 20].
Dynamic communicability, which was introduced in [21] and
is described in detail here in Section 2, offers a balance be-
tween the approach of modeling an epidemic-like process
on a network, and simply measuring the size and shape of
a network. Here we determine the influence of a node by
counting the number of time-respecting walks that began at
the node in question. In essence, we are using a model which
assumes that a transmissible agent moves from one node to
another at the exact time that an interaction takes place
(which is known from the data) and with a given transmis-
sion probability. The fact that it is a walk (as opposed to a
path) means that the agent can revisit previously infected
nodes. Assuming this, and supposing that the pathogen
is administered at node i, the broadcast score of i tells us
how large the expected outbreak will be. Supposing the
pathogen is administered to a random unknown node, the
receive score of i tells us how likely that pathogen is to reach
i.

1.2 Separating dependencies

In this paper we interrogate the two dynamic communicabil-
ity metrics: broadcast score and its opposite, receive score.
Through theoretical approaches we will examine how these
centrality measures respond to different temporal network
structures. Further, we derive methods to deconstruct the
dynamic communicability measures into “time dependent”
and “structure dependent” components. The formulae we
derive achieve the same result as “shuffling” (randomly per-
muting) either the structural or temporal columns of the
temporal edge-list respectively. This is an increasingly com-
mon technique used to determine the importance of various
relationships within a database [20,22–24]. Here we employ
this technique to unpick, from the information available,
the factors most relevant to determining the outcome of a
contagion-like process.
The following section explains in detail the dynamic com-
municability metrics. In Section 3 we describe a stochastic

model which can be tuned to reproduce various properties
of the data. The main results from the model are a set of
“shortcut formulae” for decomposing the dynamic commu-
nicability metrics into time dependent and structure depen-
dent elements in an efficient way. We demonstrate these
results on two publicly available data sets, which are de-
scribed in Section 4, and the results are presented in Section
5. Section 6 summarizes the findings from this work which
we consider most significant.

2 Definitions of “Broadcast score”

and “Receive score”

Dynamic communicability, as introduced in [21], comprises
of two measures of centrality in a network. Underpinning
both measures is the concept of “walking” on a network.
A walk is any sequence of nodes in which one entry may
only follow another if there is an edge in the network which
connects them (if the network is directed then consecutive
entries must follow the direction of the edge). When dealing
with temporal edges, i.e. those which exist only at speci-
fied temporal instances, we consider node sequences where
consecutive nodes are connected by an edge and, the time
of that edge is later than (or at the same time as) its pre-
decessor. These are referred to here as “time-respecting”
walks.
Based on this premise it is possible to quantify the relation-
ship between any two nodes: the “dynamic communicabil-
ity” from node i to node j, denoted Qi,j , is a measure of the
relative likelihood that a random walker injected into the

network at i will eventually pass through j. If we let θ
(k)
i,j be

the number of time-respecting walks of length k that begin
at i and end at j, then

Qi,j =

∞
∑

k=0

αkθ
(k)
i,j . (1)

The value α here is analogous to the probability of trans-
mission (accross an edge) in an epidemic spreading process.
When chosen to be sufficiently small, it ensures that long
walks are discounted heavily while short walks contribute
more to the dynamic communicability metric.
For the first centrality measure, known as the “Broadcast
score” of a node i, we compute the sum of all the discounted
walks that begin at i (bi =

∑

j∈N Qi,j). Similarly, to com-
pute the second centrality measure, known as the “Receive
score” of a node i, we sum all of the discounted walks that
end at i (ci =

∑

j∈N Qj,i).

3 The model

We use a simple yet versatile stochastic model to generate
temporal networks. The parameters of the model can be
manipulated to create synthetic data with properties sim-
ilar to a wide range of temporal networks including those

2



(a) The left panel shows the network at each time-step (above) and its corresponding adjacency matrix (below). On the right the same infor-
mation is represented as a list of temporal edges. Shown also are the different possible ways to randomize (or shuffle) the columns. Notice that
simultaneously shuffling any two columns yields the completely shuffled edge-list shown in (iv).
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(b) Each marker corresponds to a node in the example network. Each
node is given a rank according to its broadcast score (left) and receive
score (right). These rankings are plotted against the outgoing and in-
coming degree ranks respectively. The diagonal line divides the nodes
into those that acheive higher broadcast (or receive) scores than ex-
pected, and those that are lower.
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(c) The expectation values for each shuffling are calculated and the cor-
responding rank is plotted (we have chosen only to consider the target
shuffling for broadcast score and source shuffling for receive score). The
actual scores are shown by the darkness of the markers.

Figure 1: A simple example of a directed temporal network. This example has been designed to illustrate the core concepts
of this work. In Fig.(1b) it is apparent that the dynamic communicability of a node is not necessarily determined by its
overall activity. Fig.(1c) demonstrate how the dynamic communicability metrics can be broken down into temporal and
structural elements. We apply the same visualization method to two real-world data-sets in Figs. (4) and (5).

observed in many real interactive systems. Let there be N
nodes, the model proceeds over a series of discreet time-
steps τ ∈ {t0, t0 + 1, ..., tend} by the following rule:

At time τ , with probability ρi,j(τ), a directed
edge exists from node i to node j.

The adjacency matrix at time τ , Aτ , will have a 1 in lo-
cation i, j with probability ρi,j(τ) and be 0 otherwise (it
might often be the case that Aτ will be a matrix of zeros).
We define t to be the number of time-steps for which the
network is sampled. The dynamic communicability matrix,
as introduced in [21], over the sample (starting at t0 and
ending at tend) is given in general by

Q = (I − αAt0)
−1(I − αAt0+1)

−1 . . . (I − αAtend )
−1. (2)

But, as suggested in [25], we do not want to count paths
that take multiple moves in a single time-step, so we will

instead look at the variant definition

Q = (I + αAt0)(I + αAt0+1)...(I + αAtend ). (3)

Eqns. (2) and (3) are equivalent when A2
τ = 0 for all τ (as

this is the only way (I −αAτ )
−1 = (I +αAτ ) can be true).

We are effectively assuming that no walks of length 2 can
exist within any one time-slice. The time-dependent matrix

P (τ) =











ρ1,1(τ) ρ1,2(τ) · · · ρ1,N(τ)
ρ2,1(τ) ρ2,2(τ) · · · ρ2,N(τ)

...
...

. . .
...

ρN,1(τ) ρN,2(τ) · · · ρN,N(τ)











, (4)

to a large extent, describes the entire structure of the net-
work and its evolution over time. Our approach to ex-
ploring dynamic communicability of networks generated by
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this model involves considering the various forms that P
can take; then examining the expectation of Q as we itera-
tively increase the number of terms on the right hand side
of Eq.(3).

3.1 Receive score

If we think about constructing Q iteratively i.e. starting at
time t0 with Q0 = (I+αAt0), then multiplying on the right
by (I+αAt0+1), then again by the next term, then the next
etc., then

Qt = Qt−1 × (I + αAt0+t), (5)

where t indexes the number of times the iteration has been
performed. After t = tend−t0 iterations we have the desired
Qt = Q. The effect of one iteration can be seen on a 3 × 3
example:





q1,1 q1,2 q1,3
q2,1 q2,2 q2,3
q3,1 q3,2 q3,3









1 0 0
0 1 α

0 0 1



 =





q1,1 q1,2 q1,3 + αq1,2
q2,1 q2,2 q2,3 + αq2,2
q3,1 q3,2 q3,3 + αq3,2



 .

(6)

In general, provided A2
τ = 0 for all t0 < τ ≤ tend, if the

i, jth entry of Aτ is 1 then the ith column is multiplied by
α and added to the jth column. Since the receive score af-
ter t iterations is equal to the (row) vector of column sums
of Qt,

c(t) = (c1(t), c2(t), ..., cN (t)), (7)

we can describe its evolution as t increases as follows: at
each iteration choose i and j with probability ρi,j(t0 + t)
and update by setting

c(t+ 1) = (c1(t), c2(t), ..., cj(t) + αci(t), ..., cN (t)). (8)

In matrix notation this is

c(t+ 1) = c(t)(I + αAt0+t). (9)

3.2 Expectation of receive score

The receive score is dependent on t. To examine this depen-
dence, we focus on the looking for the expectation of c(t),
denoted ĉi(t), which is computed by taking the mean over
many networks generated by the described model for some
given P . For analytical considerations we assume that all
of the ci(t) are well approximated by their mean. A sim-
ilar approach is found in [26]. The growth of ĉi(t) is then
described by

ĉi(t+ 1) = ĉi(t) + α

N
∑

j=1

ρj,i(t0 + t)ĉj(t). (10)

The right hand side here equation sums over all possible
changes that can happen to cj and their associated proba-
bilities. This is equivalent to replacing At0+t in Eq.(9) with
the expectation of At0+t, which happens to be P (t0 + t).
We have

ĉ(t+ 1) = ĉ(t)[I + αP (t0 + t)]. (11)

For large time-scales, we can say that ĉj(t + 1) − ĉj(t) ≈
∂ĉj/∂t, giving

∂ĉ(t)

∂t
= αĉ(t)P (t0 + t). (12)

An almost identical derivation can be performed to find a
similar expression for b̂. In this case, instead of starting the
iterative process at t0 and multiplying on the right, as in
Eq.(5), we start at time tend withQ0 = (I+αAtend ) and iter-
ate by multiplying on the left, i.eQt = (I+αAtend−t)×Qt−1.
Following similar steps we arrive at

∂b̂(t)

∂t
= αP (tend − t)b̂(t) (13)

where b̂(t) is a column vector of the expectation of the
broadcast scores. Our theoretical results stem from these
two equations, solutions can be found for various forms of
P (τ), here we mention a few simple cases.

3.3 Time-independent P matrix

When P is a constant matrix, the (well known) general so-
lution to Eq.(12) is

ĉ(t) = ĉ(t0)e
αPt (14)

where

eαPt =

∞
∑

k=0

1

k!
(αPt)k. (15)

3.3.1 Equivalence to shuffling the time column

Consider a temporal edge-list where the “time” column has
been shuffled as shown in part (iii) of Fig.(1a). The over-
all number of interaction events between each pair of nodes
is unchanged, however each of these events now occurs at
some random point in time. The time-series of interac-
tion events from node i to node j can be modeled by a
Bernoulli process, i.e. at each discreet time-step there is a
fixed probability that an edge from i to j will exist. If we
have a sufficiently large amount of data then the matrix of
these time-independent probabilities, which happens to be
P , can be approximated easily as we show in this section.
The above result can then be used to predict the dynamic
communicability metrics of the time-shuffled edge-list.
We can infer P from the data by constructing a weighted
adjacency matrix W where Wi,j the total number of times
each edge appears in the temporal edge-list. To infer a time-
independent probability ρi,j that an edge exists at time τ
(for any t0 ≤ τ < tend) we normalize by the number of time
steps in the sample:

ρi,j =
Wi,j

tend − t0
. (16)

Since t0 lies outside the time for which data is sampled, At0

is a zero matrix, giving ĉ(t0) = 1 where 1 is a row vec-
tor of length N and all entries are 1. Substituting the P
matrix associated with Eq.(16) into Eq.(14), and into the
equivalent result for b̂, we arrive at the concise formulae
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for computing the expectation of the broadcast and receive
scores of a time-shuffled network,

b̂ = eαW1 (17)

and
ĉ = 1T eαW (18)

respectively. A very fast open-source algorithm for solv-
ing the matrix exponential for large matrices has recently
been developed [27]. Applying this method gives a predic-
tion for the outcome of averaging a large number of shuffled
temporal edge-lists where the “time” column has been shuf-
fled. The comparison between the prediction and the actual
shuffled data is shown in Fig.(2).

3.3.2 Heterogenous “send” and “receive” model

Consider a temporal edge list for which all three columns
have been shuffled as in part (iv) of Fig.(1a). While much
of the relational information will be lost, the number of
times each node is found in the “source” column will be un-
changed and therefore the outgoing degree of each node is
retained, similarly the incoming degree is unchanged by the
shuffling of the “Target” column. This process bears much
resemblance to the configuration model of [28] in which each
node has a given degree but the pairwise connections are
randomized. Related models, which replace the exact de-
gree sequence with a sequence of fitness variables (giving
the propensity of each node to attract edges), have been
studied [29]; this happens to be a case where Eqs.(18) and
(17) can be solved analytically. Let si be the probability
that node i has an outgoing edge in any given time-step
(we have chosen the letter s as this represents the ‘send-
ing’ of information), and let ri be the probability that i
has an incoming edge in any given time-step (r to represent
the ‘receiving’ of information). With the vector notation,
s = [s1, s2, . . . , sN ]T and r = [r1, r2, . . . , rN ]T , we have

P = srT . (19)

We add the condition that
∑

i si =
∑

i ri = 1 then the ex-
pected number of edges per time-step is 1 (meaning that
when comparing to data we can treat t as the total num-
ber of interactions). Under these conditions the solution to
Eq.(12) (see Appendix A.1) is

ĉ(t) = 1+
eα[r

T
s]t − 1

rT s
rT . (20)

Two main conclusions come from this result: firstly, the re-
ceive score of a node is proportional its propensity to attract
incoming edges (for broadcast score it is the outgoing edges,
see Appendix A.1). Second, as the sample size t increases
the score increases exponentially.

3.4 Time-dependent P matrix

A general solution to Eq.(12) for any P (τ) does not exist,
we instead incorporate a limited amount of temporal infor-
mation by expanding the “send” and “receive” model of the

previous section. Suppose we have the model from Section
3.3.2 with the modification that the “receive” vector r is
now a function of time r(τ), then Eq.(12) reduces to

∂ĉ(t)

∂t
= αr(t0 + t)eαs

T
∫

t

0
r(t0+t′)dt′ (21)

(see Appendix A.2). Eq.(21) allows us to examine special
cases where the order in which messages are sent affects the
receive score of each node.

3.4.1 Simple time-dependent example

To demonstrate time-dependence we consider the case
where each node is active only once during the duration
of the sample. Suppose node i receives ri edges at time τi.
We can write the corresponding r vector using the Dirac δ:

ri(τ) = riδ(τ − τi). (22)

The justification for this choice of r(τ) is that the expected
number of messages received by i over some interval will
be ri if the time interval includes τi. For convenience
we suppose, without loss of generality, that τi = i for all
i ∈ 1, 2, ..., N . Solving Eq.(20) with this form of r(τ) we get

ĉi(N) = 1 + αri exp



α
i
∑

j=0

rjsj



 . (23)

This result shows that nodes which interact later in the
sample will have, on average, exponentially higher receive
scores. In a similar way, it can be shown that a node which
acts earlier in the sample has an exponentially higher broad-
cast score.

3.4.2 Incorporating empirical data

Suppose that for each node i we know the time of every
received edge but do not know where the edge originated
from (this corresponds to the source shuffled network). We
can achieve this by choosing

ri(τ) =
∑

k∈Ki

δ(τ − τ
(k)
i ) (24)

where Ki is the set of edges for which i is the target and

τ
(k)
i is the time at which edge k was present. More impor-
tantly, however, is the function Ri(τ) which we define as the
number of messages that have been received by i between
t0 and τ , and can be expressed as

Ri(τ) =

∫ τ

t0

ri(t
′)dt′. (25)

To achieve the correct normalization (for the expectation of
the total number of edges to agree with the data) we choose
si to be the probability that any given edge is sent from i,
this is inferred using

si =

∑

j Wi,j
∑

i,j Wi,j

. (26)
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The solution to Eq.(12), which we derive in Appendix A.4,
is

ĉi = 1 + α
∑

k∈Ki

exp



α
∑

j∈N

sjRj(τ
(k)
i )



 . (27)

This formula predicts the average of the Receive score over
many networks generated by shuffling the Source column
in the original data. The analytical prediction and average
shuffling results are shown in Fig.(2). In our data analysis
we also use an equivalent formula to predict the outcome of
shuffling the target column and calculating the broadcast
score. The derivation is similar to that of Eq.(27). We get

b̂i = 1 + α
∑

k∈Ki

exp



α
∑

j∈N

rjSj(τ
(k)
i )



 (28)

where Sj(τ) is the number of messages that have been re-
ceived by i between τ and tend, rj is the time-independent
probability that j receives a message in any given time-step.
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Figure 2: A demonstration of the accuracy of the derived
formulae using a sample of 23 nodes from the Enron data-
set (all of which have at least one outgoing edge within the
sample) and a total of 312 emails. Each marker represents
an employee. In both plots the x-axis shows the receive
score computed by shuffling one column of the edge-list, as
shown in Fig.(1a), and averaged over 100 shuffles. In the
left hand plot the time column was subjected to shuffling
and y-axis shows the receive score as predicted by formula
Eq.(18), in the right the target column was subjected to
shuffling and y-axis shows the receive score as predicted by
formula Eq.(27). α = 0.02.

4 Data

4.1 Enron

We downloaded the entire Enron email corpus that was
made publicly available during an investigation by the Fed-
eral Energy Regulatory Commission into the events lead-
ing to its bankruptcy [30]. The data contains the mailing
history of 150 Enron employees between 1999 and 2003. A
folder exists for each of the named employees, each of which
contain a number sub-folders, and each subfolder contains a

number of text files; the text files contain the emails them-
selves and some meta-data. The naming of the folders is
not consistent across employees; most sent emails belong to
a folder labelled “sent”, “sent email”, or something similar
but there are also many exceptions. A consistent format
was found across all the text files with the time-stamp lo-
cated on the first line, the “From” field appearing on the
second, and the “To” field starting on the third line and
often extending over several lines where emails have been
sent to multiple recipients.
We crawled every text file within sub-folders named “sent”,
“sent items” and “ sent mail’, reading the specific lines
which correspond to the “From” field, the “To” field and
the time-stamp. Within the “From” and “To” lines we
found all substrings which resemble a distinct email address
i.e. bound on either side by blank spaces and contain the
“@” symbol. From these data we constructed a tempo-
ral edge list of the form shown in Fig.(1a) where the node
IDs are email addresses. Multiple edges were created for
emails with multiple recipients. In several cases the email
addresses found in the “From” field, across the emails of an
individual employee, would not always be identical. Usually
this was because of the use of email aliases although on a
small number of occasions this was clearly not the case. At
our own discretion, we replaced the node ID of all aliases
relating to an employee with a single node ID.
Many of the emails were sent to addresses outside of the cor-
poration, these were removed from our data. We also found
that some employees in the data-set had very little or no
activity; we therefore reduced the sample to only those who
have both sent, and received, at least one email to other
users within the sample. After trimming, the network has
141 nodes and a total of 21, 303 temporal edges.
We also incorporated information regarding the roles of
each employee according to enron.org [31]. The fol-
lowing abbreviations have been used for the legend in
Fig.(4a): EMP=employee, TRA=trader, LAW=lawyer,
MAN=manager, DIR=director, VP=vice president,
MD=managing director, PRE=president, CEO=chief ex-
ecutive, ???=unknown.
The sample of emails we have chosen to use is by no means
complete, however, it is our belief that the methods used to
sample this data avoid introducing any biases which would
compromise the results we present.

4.2 Sociopatterns hospital ward

We downloaded the Hospital ward dynamic contact network
from the Sociopatterns website (refer to [32] for details).
The data was collected using proximity sensors attached
to each participant. In the original data, every instance
(instances are recorded every 20 seconds) in which two par-
ticipants are “interacting” (i.e. within a given proximity of
each other) is presented in a temporal edge list of the form
shown in Fig.(1a). Consequently, interactions which occur
for a prolonged duration appear in the data multiple times
so we performed the following reduction: where the same
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Figure 3: Each marker (short horizontal line) represents an Enron employee or participant in the Sociopatterns experi-
ment. The broadcast score, computed by Eq.(30), is displayed on the y-axis in (3a) and similarly the receive score in (3b)
from Eq.(32) with α = 0.01 and α = 0.005 respectively. In both the employees (or participants) are divided into distinct
categories shown along the x-axis. Abbreviations are given in Section 4.

pair of participants were found to be interacting on multi-
ple consecutive time-steps, all but one of the corresponding
rows in the edge list were removed, leaving only the first
of such instances. For each remaining row we create two
edges in the processed temporal edge-list, one in each di-
rection between the pair of participants interacting, both
edges have the same time-stamp. Our analysis therefore
considers transmission to occur at the first moment an in-
teraction begins and does not depend on its duration. After
processing, the network has 75 nodes and a total of 28, 076
temporal edges.

4.3 Algorithms

Much of the related literature formulates the problem of
computing a dynamic communicability matrix using a se-
ries of linear algebra operations [21]. This approach utilizes
the adjacency matrix for the network at each time step (see
Fig.(1a)) and assumes that within each time-slice the hypo-
thetical random walker can traverse edges instantaneously,
i.e. without requiring that time move forward for them to
perform the movement. Consequently, if there is any cy-
cle within a single time-slice (including for example an edge
from i to j and another from j to i) then there will be paths
of infinite length, meaning that α must be restricted to a
particular range of values to guarantee convergence [33].

In this work we remove the assumption that a walk can
traverse more than one edge per time slice (as suggested
in [25]). Moreover, we suggest the following recursive ap-
proach to computing the dynamic communicability metrics
which avoids the need to perform any matrix operations.
Suppose we have a network G with each temporal edge de-
noted by a triple (i, j, t) where i is the source node, j is the

target node and t is the time, we define

f(i, τ) = 1 + α
∑

(i,j,t)∈G:
tend>t>τ

f(j, t). (29)

Then the broadcast score for node i computed between time
t0 and tend is given by

bi = f(i, t0). (30)

Similarly, for the receive score we define

g(i, τ) = 1 + α
∑

(j,i,t)∈G:
τ>t>t0

g(j, t). (31)

Then the receive score for node i computed between time
t0 and tend is given by

ci = g(i, tend). (32)

These methods allow for the score for a single node to be
computed without wasting unnecessary time computing the
score for every other node. When computing the scores of
the whole sample we relied on memoization to avoid repeat-
ing a large number of calls to the functions f and g.

5 Results

5.1 Modeling

In Section 3 we derived formulae which predict the out-
come of calculating the broadcast score for a large num-
ber of shuffled temporal edge-lists. The amount of error in
these predictions is illustrated in Fig.(2) where we see that
Eq.(18) gives accurate results regarding temporal edge lists
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Figure 4: The rank according to broadcast score (left, computed by Eq.(30)) and receive score (right, computed by
Eq.(32)), with α = 0.01 and α = 0.005 respectively, plotted against the out-degree (left) and in-degree (right). Each
individual in the network is represented by a data point, their classification is given by their shape. The abbreviations in
the legend are explained in Section 4. The one-to-one line is plotted as a visual aid to partition the nodes into two groups;
those which have higher than expected scores (top left), and those who have lower than expected (bottom right).

with the time-column shuffled. The corresponding result,
Eq.(27), appears to be less reliable however, owing to the
computational cost of calculating the receive score multi-
ple times, we chose only to test a very small sample. This
contradicts the assumptions of the analytical model; par-
ticularly the assumption made in Section 3.2 that the score
ci(t) in an individual generation of the probabilistic model
is well approximated by its mean, at time t, over many gen-
erations. It is likely that in a small data-set that there is
a high variance in the distribution of receive scores and we
expect the prediction to improve as the number of inter-
actions increases. The creation of these “shortcut” formu-
lae allowed us to perform data analysis on two large scale
temporal edge-lists which would have otherwise taken an
inconvenient amount of computation.

5.2 Data analysis

Using the method described in Section 2 we calculated the
broadcast score for the Enron email corpus and the receive
score for the Sociopatterns hospital ward experiment. We
have chosen values of α that produce visually interesting
figures; when too small the calculation broadcast and re-
ceive scores are dominated by the contribution from walks of
length 1 and therefore become equivalent to the out-degree
and in-degree respectively. Conversely, when α is too large,
long walks dominate the scores and the edges with early
timestamps determine the outcome. The results are pre-
sented first in Fig.(3). In Fig.(4) we compare the result of
each individual with their overall activity.
We note two observations from Fig.(4): one Enron employee
(a director) stands out as having an unusually high broad-

cast score when compared to a low amount of overall activ-
ity (broadcast rank 50, degree rank 125), and that patients
in the hospital ward tend to have large receive scores con-
sidering their overall activity.

Fig.(5) shows the expected results of performing various
shufflings, we can think of the y-axis in these plots as
a measure of how much the score of each individual de-
pends on temporal properties, and the x-axis for structural
properties. We see that the outlier from the Enron data-
set is, remarkably, unremarkable regarding both of these
measures and neither predicts their high broadcast score
(time-shuffled rank 86 and target-shuffled rank 104, both
lower than the actual broadcast rank of 25). We specu-
late that the individual in question was feeding informa-
tion into the network which was consequently being dis-
seminated through the network in a way that inflates their
broadcast score (although similar results are not found for
the CEOs who we would expect to be influential in the
same way). The individual in question was a lobbyist for
the corporation, after a very brief investigation we did not
determine a particular reason why they should be signifi-
cantly influencial.

From Fig.(5b) it is apparent that shuffling the time column
can cause large changes to the receive rank of a partici-
pant whereas the source-shuffling appears to be less effec-
tive. This is because the temporal activity of the partici-
pants deviates significantly from a Bernoulli process (that
is assumed in the time-independent model). More specifi-
cally, nodes exist which are inactive towards the beginning
of the sampling period but have a lot of activity at later
time-steps. The receive score of these nodes is amplified
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Figure 5: As demonstrated in Fig.(1c). On the x-axis we show the ranking of each node according to expectation of the
broadcast score (left, computed using Eq.(28)) and receive score (right, computed with Eq.(27)) for the expected outcomes
of the source (left) and target (right) shuffled networks (with α = 0.01 and α = 0.005 respectively). The y-axes show
the expected scores for a time-shuffled network computed with Eqs.(17) and (18). The actual broadcast score computed
with Eqs. (30) and (32) is shown by the darkness of the markers. Different roles are indicated by the marker shapes, the
abbreviations are explained in Section 4. These results are also presented in a table in Appendix B.

by the exponential increase over time that was shown in
Section 3.4.1. Those which are active early on in the sam-
pling period but have little or no activity at later times will
have lower receive scores. When such effects dominate the
outcome the effect of time-shuffling is significant.

6 Discussion

When we look at the simple example of Fig.(1a), we can
compute the broadcast scores and find that node A is ranked
number one. We can then ask why A is the most influential
broadcaster and find that it is not because it was the most
active (C was in fact the most active), but because of a com-
plex interplay of temporal and structural factors; A was the
first to communicate, and importantly, one of those early
edges was received by C who was subsequently the most
active node. Looking at large data-sets it is tedious to try
to deconstruct every sequence of contacts that caused each
individual to achieve its score. Instead, we have introduced
meaningful statistics, i.e. the results of shuffling, that pro-
vide insight into the interplay of temporal and structural
factors.

As data-driven industries increasingly find value in target-
ing the most central, most influential, individuals, it is im-
portant to scrutinize the methods and tools that network
science is promoting. The idea that there is one magic for-
mula which can produce a meaningful result regardless of
the system in question is firstly, wrong, and secondly, a
counter-productive way of thinking. Here we have scruti-

nized the dynamic communicability metrics and found that
temporal variation can have a stronger effect in some sys-
tems, like the hospital ward, than in others, like Enron. We
have found efficient shortcut formulae to quantify the tem-
poral component by randomizing the structural factors and
likewise quantify the structural component by randomizing
the temporal factors. Those who have data and wish to an-
alyze dynamic communicability should use these methods
to add more dimensions, and more depth, to their analysis.

A specific issue that ought to be considered when using the
dynamic communicability metrics is the effect of a bounded
sampling window. Take for example the simple example of
Fig.(1a). Here A has the highest broadcast score because it
is the first node to create outgoing edges. Had we observed
the system just one time-step earlier we might have found
one or more edges from C to A, thus making C the highest
ranked broadcaster above A. This is a general issue; our an-
alytical results tell us that the earlier interactions contribute
exponentially more than those which occur later; therefore
the first node involved in the first recorded interaction will,
by chance, receive an unduly high broadcast score. In the
case of the receive score, interactions that occur late in the
sample inflate the score of the involved nodes. The ad-
vancement of dynamic communicability presented in [25],
that assumes infectiousness decays in the time between in-
teractions, may mitigate these problems to some extent. We
conclude this paper by suggesting two possible alternative
solutions:
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6.1 Control for temporal variation

Eq.(27) gives the expectation of the receive score based on
temporal variation. It can therefore be considered as a con-
trol to compare to the actual score. Further, we suggest
that a normalized version of the receive score would be a
more appropriate measure to compare individuals in the
same network. The normalized version is the ratio of the
actual score, computed using Eq.(32), and its expectation,
computed using Eq.(27).

6.2 Remove temporal variation

Alternatively, we ignore temporal variation altogether; in
many circumstances this is sensible since the temporal vari-
ation over the duration of the sample is not usually expected
to be the same in the future (unless perhaps it is driven
by a cyclic process). Without knowledge of when each fu-
ture interaction will occur, the Bernoulli process used in
the time-independent model is a suitable choice. In such a

case, the past data provides an estimate of how active each
node will be, but the timing of their interactions remains
random. The matrix exponential in Eqs.(18) and (17), can
be computed very efficiently to give these approximations
to the receive score and broadcast score. Incidentally, the
matrix exponential has previously been proposed as a cen-
trality measure [34, 35].
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topology and burstiness slow down spreading,” Physical Review E, vol. 83, no. 2, p. 025102, 2011.

[25] P. Grindrod and D. J. Higham, “A matrix iteration for dynamic network summaries,” SIAM Review, vol. 55, no. 1, pp. 118–128,
2013.

[26] T. Rogers, “Null models for dynamic centrality in temporal networks,” Journal of Complex Networks, p. cnu014, 2014.

[27] A. H. Al-Mohy and N. J. Higham, “A new scaling and squaring algorithm for the matrix exponential,” SIAM Journal on

Matrix Analysis and Applications, vol. 31, no. 3, pp. 970–989, 2009.

[28] M. Molloy and B. Reed, “A critical point for random graphs with a given degree sequence,” Random structures & algorithms,
vol. 6, no. 2-3, pp. 161–180, 1995.

[29] F. Chung and L. Lu, “Connected components in random graphs with given expected degree sequences,” Annals of combinatorics,
vol. 6, no. 2, pp. 125–145, 2002.

[30] https://www.cs.cmu.edu/ ./enron/.

[31] http://enrondata.org/assets/edo enron-custodians data.html.

[32] P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton, N. Khanafer, C. Rgis, B.-a. Kim, B. Comte, and N. Voirin, “Estimating
potential infection transmission routes in hospital wards using wearable proximity sensors,” PLoS ONE, vol. 8, p. e73970, 09
2013.

[33] D. V. Greetham, Z. Stoyanov, and P. Grindrod, “Centrality and spectral radius in dynamic communication networks,” in
Computing and Combinatorics, pp. 791–800, Springer, 2013.

[34] E. Estrada and N. Hatano, “Communicability in complex networks,” Physical Review E, vol. 77, no. 3, p. 036111, 2008.

[35] M. Benzi and C. Klymko, “Total communicability as a centrality measure,” Journal of Complex Networks, vol. 1, no. 2,
pp. 124–149, 2013.

11



A Modeling

A.1 Heterogeneous “send” and “receive”

model

The Model:

In any given time-step, the probability that i
has an out going edge is si, the probability that
it has an incoming edge is ri.

Making no further assumptions about who communicates
with whom, letting r and s both be column vectors we have
the general stochastic model with

P = srT =











s1r1 s1r2 · · · s1rN
s2r1 s2r2 · · · s2rN
...

...
. . .

...
sNr1 sNr2 · · · sNrN











. (33)

There are at least two ways to find the expectation of broad-
cast and receive scores for this model. It is possible to
write down an expression for the P k which can then be
substituted into Eq.(15). An alternative method is to solve
Eq.(12) directly. First we express Eq.(12) in terms of our
new variables:

∂ĉ(t)

∂t
= αĉ(t)srT . (34)

Multipling both sides on the right by s gives

∂ĉ(t)s

∂t
= αĉ(t)srT s. (35)

which is a differential equation describing the time-
evolution of ĉ(t)s, a scalar variable. This has the solution

ĉ(t)s = eα[r
T
s]t. (36)

Substituting the result back into Eq.(34) we get

∂ĉ(t)

∂t
= αreα[r

T
s]t. (37)

Which has the solution

ĉ(t) = 1+

(

eα[r
T
s]t − 1

rT s

)

rT . (38)

In a similar way one can show that the expectation of the
broadcast score is

b̂(t) = 1T +

(

eα[r
T
s]t − 1

rT s

)

s. (39)

A.2 Time-dependent P matrix

The Model:

At time τ , the probability that i has an out go-
ing edge is si, the probability that it has an
incoming edge is ri(τ)

Eq.(12) now becomes

∂ĉ(t)

∂t
= αĉ(t)sr(t0 + t)T . (40)

Multiplying both sides on the right by s we get

∂ĉ(t)

∂t
s = αĉ(t)sr(t0 + t)T s

∂ĉ(t)s

∂t
= α[ĉ(t)s][sr(t0 + t)T ].

(41)

This equation now only includes scalar functions of t so we
can solve to get

ĉ(t)s = 1s exp

(

α

∫ t

0

sr(t0 + t′)T dt′
)

. (42)

Substituting this back into Eq.(40) we have

∂ĉ(t)

∂t
= αr(t0 + t)T exp

(

α

∫ t

0

sr(t0 + t′)Tdt′
)

(43)

Since 1s = 1.

A.3 Simple time-dependent example

The model:

At time τi person i is on the receiving end of ri
edges. As before, the number of outgoing edges
is determined by a time-independent probability
si.

Clearly, after N iterations the process will end so we use
t0 = 0 and tend = N as the initial and final conditions re-
spectively. To find the broadcast score of a node i we solve
Eq.(43) with

ri(τ) = riδ(τ − τi) (44)

where ri is a scalar and δ is the Dirac delta. The justifica-
tion for this version of ri(τ) is that the expected number of
messages sent by i over some time-interval will be ri if the
time interval includes τi. Without loss of generality we can
say τi = i meaning that node 1 sends first, then node 2 and
so on. First we focus on expressing s

∫ t

0
r(t0 + t′)T dt′ in a

simpler form. Since

∫ t

0

rjδ(t
′ − j)dt′ =

{

rj if j ≤ t

0 if j ≥ t
(45)

(This result derives from the fact that the integral of the
Dirac delta between −∞ and t is the Heaviside step function
H(t).) we have

s

∫ t

0

r(t0 + t′)Tdt′ =

N
∑

j=0

sj

∫ t

0

rjδ(t
′ − j)dt′

=

t
∑

j=0

rjsj .

(46)
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Substituting this into Eq.(43) then integrating over the
whole sample gives

[ĉi(t
′)]

N

0 =

∫ N

0

riδ(t
′ − i) exp



α
i
∑

j=0

rjsj



 dt′. (47)

The integral is solved by the translation property of the
Dirac delta and we have

ĉi(N) = 1 + αri exp



α

i
∑

j=0

rjsj



 . (48)

A.4 Incorporating empirical data

The model:

Let Ki be the set of edges for which i is the
target node, and τ (k) be the time at which
edge k was present. As before, si is the time-
independent probability for i to be the source
an edge.

We achieve this by choosing

ri(t) =
∑

k∈Ki

δ(t− τ
(k)
i ). (49)

We can choose the set Ki and the corresponding τ (k) in a
way that recreates exactly what is observed in the target
and time columns of an empirical temporal edge-list. We

introduce Ri(τ), the number of messages sent by i between
time t0 and time τ , this is expressed

Ri(τ) =

∫ τ

t0

ri(t
′)dt′, (50)

giving

Ri(t0 + t) =

∫ t

0

ri(t0 + t′)dt′, (51)

and therefore Eq.(43) can be expressed

∂ĉ(t)

∂t
= αr(t0 + t)T eα

∑N
j=1 sjRj(t0+t). (52)

Integrating over the entire duration of the sample gives

[ĉi(t
′)]

tend−t0
0

= α

∫ tend−t0

0

[

∑

k∈Ki

δ(t0 + t′ − τ (k))

]

exp



α

N
∑

j=1

sjRj(t0 + t′)



 dt′

= α
∑

k∈Ki

∫

∞

−∞

δ[t0 + t′ − τ (k)] exp



α

N
∑

j=1

sjRj(t0 + t′)



 dt′.

(53)

Finally, using the translation property of the Dirac delta
function we have

ĉi = 1 + α
∑

k∈Ki

exp



α
∑

j∈N

sjRj(τ
(k)
i )



 . (54)
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B Rankings

B.1 Sociopatterns hospital ward receive-rank
Rank None Time-shuffled Source-shuffled Time and Source

1 1115 (NUR) 1115 (NUR) 1115 (NUR) 1115 (NUR)
2 1210 (NUR) 1210 (NUR) 1210 (NUR) 1210 (NUR)
3 1190 (NUR) 1207 (NUR) 1295 (NUR) 1295 (NUR)
4 1295 (NUR) 1295 (NUR) 1157 (MED) 1207 (NUR)
5 1109 (NUR) 1109 (NUR) 1190 (NUR) 1157 (MED)
6 1629 (NUR) 1164 (NUR) 1629 (NUR) 1164 (NUR)
7 1149 (NUR) 1193 (NUR) 1149 (NUR) 1193 (NUR)
8 1157 (MED) 1157 (MED) 1109 (NUR) 1144 (MED)
9 1205 (NUR) 1658 (ADM) 1205 (NUR) 1109 (NUR)
10 1658 (ADM) 1190 (NUR) 1098 (ADM) 1149 (NUR)
11 1193 (NUR) 1098 (ADM) 1144 (MED) 1221 (MED)
12 1196 (NUR) 1144 (MED) 1193 (NUR) 1098 (ADM)
13 1098 (ADM) 1114 (NUR) 1196 (NUR) 1159 (MED)
14 1144 (MED) 1149 (NUR) 1181 (NUR) 1196 (NUR)
15 1181 (NUR) 1181 (NUR) 1221 (MED) 1181 (NUR)
16 1625 (NUR) 1221 (MED) 1658 (ADM) 1190 (NUR)
17 1164 (NUR) 1159 (MED) 1164 (NUR) 1260 (MED)
18 1221 (MED) 1625 (NUR) 1130 (MED) 1658 (ADM)
19 1130 (MED) 1365 (PAT) 1625 (NUR) 1205 (NUR)
20 1365 (PAT) 1196 (NUR) 1260 (MED) 1114 (NUR)
21 1383 (PAT) 1205 (NUR) 1159 (MED) 1191 (MED)
22 1114 (NUR) 1245 (NUR) 1114 (NUR) 1625 (NUR)
23 1260 (MED) 1260 (MED) 1365 (PAT) 1148 (MED)
24 1547 (PAT) 1191 (MED) 1207 (NUR) 1365 (PAT)
25 1159 (MED) 1378 (PAT) 1148 (MED) 1245 (NUR)
26 1702 (PAT) 1629 (NUR) 1660 (MED) 1130 (MED)
27 1207 (NUR) 1148 (MED) 1383 (PAT) 1202 (NUR)
28 1378 (PAT) 1179 (ADM) 1671 (ADM) 1179 (ADM)
29 1660 (MED) 1130 (MED) 1378 (PAT) 1629 (NUR)
30 1671 (ADM) 1383 (PAT) 1202 (NUR) 1378 (PAT)
31 1148 (MED) 1352 (PAT) 1352 (PAT) 1352 (PAT)
32 1401 (PAT) 1202 (NUR) 1702 (PAT) 1383 (PAT)
33 1352 (PAT) 1391 (PAT) 1401 (PAT) 1391 (PAT)
34 1307 (PAT) 1702 (PAT) 1142 (NUR) 1105 (NUR)
35 1362 (PAT) 1362 (PAT) 1547 (PAT) 1108 (NUR)
36 1391 (PAT) 1307 (PAT) 1391 (PAT) 1362 (PAT)
37 1232 (ADM) 1374 (PAT) 1485 (NUR) 1142 (NUR)
38 1469 (PAT) 1393 (PAT) 1307 (PAT) 1660 (MED)
39 1202 (NUR) 1105 (NUR) 1469 (PAT) 1485 (NUR)
40 1142 (NUR) 1401 (PAT) 1232 (ADM) 1307 (PAT)
41 1245 (NUR) 1363 (PAT) 1362 (PAT) 1702 (PAT)
42 1179 (ADM) 1660 (MED) 1245 (NUR) 1401 (PAT)
43 1108 (NUR) 1395 (PAT) 1179 (ADM) 1168 (MED)
44 1701 (PAT) 1142 (NUR) 1108 (NUR) 1100 (NUR)
45 1460 (PAT) 1168 (MED) 1460 (PAT) 1393 (PAT)
46 1168 (MED) 1108 (NUR) 1261 (NUR) 1374 (PAT)
47 1784 (PAT) 1547 (PAT) 1613 (NUR) 1613 (NUR)
48 1261 (NUR) 1320 (PAT) 1701 (PAT) 1363 (PAT)
49 1152 (MED) 1100 (NUR) 1168 (MED) 1395 (PAT)
50 1209 (ADM) 1671 (ADM) 1191 (MED) 1246 (NUR)
51 1485 (NUR) 1327 (PAT) 1769 (PAT) 1261 (NUR)
52 1191 (MED) 1701 (PAT) 1784 (PAT) 1671 (ADM)
53 1769 (PAT) 1232 (ADM) 1152 (MED) 1327 (PAT)
54 1416 (PAT) 1469 (PAT) 1209 (ADM) 1701 (PAT)
55 1100 (NUR) 1385 (PAT) 1416 (PAT) 1547 (PAT)
56 1374 (PAT) 1209 (ADM) 1100 (NUR) 1385 (PAT)
57 1105 (NUR) 1399 (PAT) 1385 (PAT) 1232 (ADM)
58 1385 (PAT) 1460 (PAT) 1105 (NUR) 1460 (PAT)
59 1395 (PAT) 1152 (MED) 1363 (PAT) 1469 (PAT)
60 1393 (PAT) 1116 (NUR) 1374 (PAT) 1209 (ADM)
61 1363 (PAT) 1261 (NUR) 1395 (PAT) 1152 (MED)
62 1613 (NUR) 1769 (PAT) 1393 (PAT) 1320 (PAT)
63 1535 (ADM) 1377 (PAT) 1327 (PAT) 1238 (NUR)
64 1327 (PAT) 1485 (NUR) 1320 (PAT) 1769 (PAT)
65 1320 (PAT) 1323 (PAT) 1373 (PAT) 1116 (NUR)
66 1373 (PAT) 1416 (PAT) 1535 (ADM) 1416 (PAT)
67 1525 (ADM) 1613 (NUR) 1525 (ADM) 1377 (PAT)
68 1246 (NUR) 1305 (PAT) 1246 (NUR) 1399 (PAT)
69 1238 (NUR) 1246 (NUR) 1238 (NUR) 1305 (PAT)
70 1116 (NUR) 1784 (PAT) 1377 (PAT) 1784 (PAT)
71 1399 (PAT) 1373 (PAT) 1116 (NUR) 1323 (PAT)
72 1377 (PAT) 1238 (NUR) 1399 (PAT) 1373 (PAT)
73 1305 (PAT) 1535 (ADM) 1305 (PAT) 1535 (ADM)
74 1323 (PAT) 1332 (PAT) 1323 (PAT) 1332 (PAT)
75 1332 (PAT) 1525 (ADM) 1332 (PAT) 1525 (ADM)

B.2 Enron email broadcast rank
Rank None Time-shuffled Target-shuffled Time and Target

1 tana.jones (???) tana.jones (???) tana.jones (???) tana.jones (???)
2 mark.taylor (EMP) sara.shackleton (???) sara.shackleton (???) jeff.dasovich (EMP)
3 sara.shackleton (???) mark.taylor (EMP) jeff.dasovich (EMP) sara.shackleton (???)
4 carol.clair (LAW) carol.clair (LAW) mark.taylor (EMP) bill.williams (???)
5 jeff.dasovich (EMP) marie.heard (???) chris.germany (EMP) mike.grigsby (MAN)
6 eric.bass (TRA) jeff.dasovich (EMP) eric.bass (TRA) chris.germany (EMP)
7 steven.kean (VP) mark.haedicke (MD) carol.clair (LAW) mark.taylor (EMP)
8 mark.haedicke (MD) d..steffes (VP) susan.scott (???) eric.bass (TRA)
9 elizabeth.sager (EMP) elizabeth.sager (EMP) scott.neal (VP) john.arnold (VP)
10 mary.hain (LAW) eric.bass (TRA) drew.fossum (VP) scott.neal (VP)
11 richard.sanders (VP) steven.kean (VP) mike.grigsby (MAN) phillip.love (???)
12 phillip.allen (???) louise.kitchen (PRE) david.delainey (CEO) phillip.allen (???)
13 susan.scott (???) richard.sanders (VP) phillip.allen (???) susan.scott (???)
14 bill.williams (???) bill.williams (???) sally.beck (EMP) debra.perlingiere (???)
15 chris.germany (EMP) mike.grigsby (MAN) debra.perlingiere (???) kimberly.watson (???)
16 mike.grigsby (MAN) mary.hain (LAW) john.arnold (VP) steven.kean (VP)
17 sally.beck (EMP) kim.ward (???) bill.williams (???) louise.kitchen (PRE)
18 drew.fossum (VP) phillip.love (???) elizabeth.sager (EMP) sally.beck (EMP)
19 david.delainey (CEO) chris.germany (EMP) richard.sanders (VP) david.delainey (CEO)
20 matthew.lenhart (EMP) gerald.nemec (???) gerald.nemec (???) carol.clair (LAW)
21 gerald.nemec (???) phillip.allen (???) mark.haedicke (MD) mary.hain (LAW)
22 phillip.love (???) matthew.lenhart (EMP) matthew.lenhart (EMP) drew.fossum (VP)
23 scott.neal (VP) kay.mann (EMP) phillip.love (???) d..steffes (VP)
24 d..steffes (VP) sally.beck (EMP) steven.kean (VP) gerald.nemec (???)
25 kay.mann (EMP) john.arnold (VP) mary.hain (LAW) matthew.lenhart (EMP)
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Rank None Time-shuffled Target-shuffled Time and Target

26 debra.perlingiere (???) david.delainey (CEO) darron.giron (EMP) darron.giron (EMP)
27 john.arnold (VP) susan.scott (???) mike.mcconnell (???) john.lavorato (CEO)
28 darron.giron (EMP) debra.perlingiere (???) kay.mann (EMP) kay.mann (EMP)
29 jane.tholt (VP) scott.neal (VP) kate.symes (EMP) richard.sanders (VP)
30 mike.mcconnell (???) drew.fossum (VP) john.lavorato (CEO) marie.heard (???)
31 john.lavorato (CEO) darron.giron (EMP) dan.hyvl (EMP) kate.symes (EMP)
32 kimberly.watson (???) barry.tycholiz (VP) jane.tholt (VP) elizabeth.sager (EMP)
33 lynn.blair (???) kimberly.watson (???) kimberly.watson (???) lynn.blair (???)
34 louise.kitchen (PRE) john.lavorato (CEO) d..steffes (VP) mark.haedicke (MD)
35 dan.hyvl (EMP) jane.tholt (VP) jeffrey.shankman (PRE) errol.mclaughlin (EMP)
36 kim.ward (???) dan.hyvl (EMP) errol.mclaughlin (EMP) mike.mcconnell (???)
37 errol.mclaughlin (EMP) mike.mcconnell (???) louise.kitchen (PRE) kevin.presto (VP)
38 marie.heard (???) kevin.presto (VP) hunter.shively (VP) kim.ward (???)
39 jeffrey.shankman (PRE) errol.mclaughlin (EMP) marie.heard (???) dan.hyvl (EMP)
40 kate.symes (EMP) lynn.blair (???) lynn.blair (???) michelle.lokay (EMP)
41 barry.tycholiz (VP) michelle.cash (???) michelle.lokay (EMP) rod.hayslett (VP)
42 kevin.presto (VP) kam.keiser (EMP) kim.ward (???) jane.tholt (VP)
43 tracy.geaccone (EMP) rod.hayslett (VP) rob.gay (???) tracy.geaccone (EMP)
44 hunter.shively (VP) stacy.dickson (EMP) kevin.presto (VP) barry.tycholiz (VP)
45 darrell.schoolcraft (???) michelle.lokay (EMP) chris.dorland (EMP) mark.whitt (???)
46 michelle.lokay (EMP) kenneth.lay (CEO) fletcher.sturm (VP) john.forney (MAN)
47 rod.hayslett (VP) tracy.geaccone (EMP) robin.rodrigue (???) chris.dorland (EMP)
48 rob.gay (???) jeffrey.shankman (PRE) tracy.geaccone (EMP) jeffrey.shankman (PRE)
49 robin.rodrigue (???) fletcher.sturm (VP) rod.hayslett (VP) darrell.schoolcraft (???)
50 robert.badeer (DIR) kate.symes (EMP) andrea.ring (???) kam.keiser (EMP)
51 tori.kuykendall (TRA) susan.bailey (???) barry.tycholiz (VP) hunter.shively (VP)
52 greg.whalley (VP) mark.whitt (???) greg.whalley (VP) kenneth.lay (CEO)
53 kenneth.lay (CEO) tori.kuykendall (TRA) tori.kuykendall (TRA) bill.rapp (???)
54 fletcher.sturm (VP) hunter.shively (VP) john.forney (MAN) lindy.donoho (EMP)
55 chris.dorland (EMP) martin.cuilla (MAN) michelle.cash (???) fletcher.sturm (VP)
56 peter.keavey (EMP) james.derrick (LAW) peter.keavey (EMP) shelley.corman (VP)
57 bill.rapp (???) jeffrey.hodge (MD) mark.guzman (TRA) martin.cuilla (MAN)
58 michelle.cash (???) jeff.skilling (CEO) darrell.schoolcraft (???) tori.kuykendall (TRA)
59 daren.farmer (MAN) andy.zipper (VP) kenneth.lay (CEO) kevin.hyatt (DIR)
60 lindy.donoho (EMP) darrell.schoolcraft (???) larry.may (DIR) andrea.ring (???)
61 mark.whitt (???) chris.dorland (EMP) daren.farmer (MAN) rob.gay (???)
62 larry.may (DIR) bill.rapp (???) martin.cuilla (MAN) andy.zipper (VP)
63 benjamin.rogers (???) greg.whalley (VP) mark.whitt (???) greg.whalley (VP)
64 john.forney (MAN) dutch.quigley (???) jeff.skilling (CEO) dutch.quigley (???)
65 martin.cuilla (MAN) lindy.donoho (EMP) rick.buy (MAN) jeff.skilling (CEO)
66 andy.zipper (VP) shelley.corman (VP) james.derrick (LAW) rick.buy (MAN)
67 shelley.corman (VP) patrice.mims (???) patrice.mims (???) t..lucci (EMP)
68 jeff.skilling (CEO) monique.sanchez (???) dutch.quigley (???) robin.rodrigue (???)
69 monique.sanchez (???) peter.keavey (EMP) shelley.corman (VP) james.derrick (LAW)
70 kam.keiser (EMP) rick.buy (MAN) benjamin.rogers (???) jonathan.mckay (DIR)
71 dutch.quigley (???) rob.gay (???) lindy.donoho (EMP) jim.schwieger (TRA)
72 mark.guzman (TRA) robin.rodrigue (???) bill.rapp (???) larry.may (DIR)
73 rick.buy (MAN) thomas.martin (VP) kam.keiser (EMP) monique.sanchez (???)
74 kevin.hyatt (DIR) kevin.hyatt (DIR) mike.carson (EMP) michelle.cash (???)
75 james.derrick (LAW) larry.may (DIR) dana.davis (???) mark.guzman (TRA)
76 andrea.ring (???) joe.parks (???) andy.zipper (VP) thomas.martin (VP)
77 stacy.dickson (EMP) john.forney (MAN) monique.sanchez (???) teb.lokey (MAN)
78 patrice.mims (???) jim.schwieger (TRA) kevin.ruscitti (TRA) patrice.mims (???)
79 jim.schwieger (TRA) john.zufferli (EMP) judy.hernandez (???) diana.scholtes (TRA)
80 jonathan.mckay (DIR) daren.farmer (MAN) jim.schwieger (TRA) peter.keavey (EMP)
81 kevin.ruscitti (TRA) t..lucci (EMP) stacy.dickson (EMP) john.zufferli (EMP)
82 t..lucci (EMP) jonathan.mckay (DIR) larry.campbell (???) daren.farmer (MAN)
83 sandra.brawner (DIR) richard.ring (EMP) kevin.hyatt (DIR) stacy.dickson (EMP)
84 geir.solberg (EMP) andrea.ring (???) t..lucci (EMP) sandra.brawner (DIR)
85 jeffrey.hodge (MD) judy.townsend (EMP) jonathan.mckay (DIR) matt.smith (???)
86 geoff.storey (DIR) robert.badeer (DIR) thomas.martin (VP) danny.mccarty (VP)
87 thomas.martin (VP) teb.lokey (MAN) sandra.brawner (DIR) cara.semperger (EMP)
88 teb.lokey (MAN) mark.guzman (TRA) jeffrey.hodge (MD) larry.campbell (???)
89 matt.smith (???) doug.gilbert-smith (MAN) judy.townsend (EMP) dana.davis (???)
90 john.zufferli (EMP) diana.scholtes (TRA) matt.smith (???) benjamin.rogers (???)
91 judy.townsend (EMP) geoff.storey (DIR) john.zufferli (EMP) jeffrey.hodge (MD)
92 danny.mccarty (VP) danny.mccarty (VP) jason.williams (???) ryan.slinger (TRA)
93 diana.scholtes (TRA) sandra.brawner (DIR) diana.scholtes (TRA) joe.parks (???)
94 jay.reitmeyer (EMP) jay.reitmeyer (EMP) teb.lokey (MAN) sean.crandall (DIR)
95 holden.salisbury (EMP) charles.weldon (???) sean.crandall (DIR) jason.williams (???)
96 frank.ermis (DIR) matt.smith (???) paul.thomas (???) paul.thomas (???)
97 ryan.slinger (TRA) benjamin.rogers (???) charles.weldon (???) jay.reitmeyer (EMP)
98 larry.campbell (???) ryan.slinger (TRA) danny.mccarty (VP) geoff.storey (DIR)
99 joe.parks (???) cara.semperger (EMP) ryan.slinger (TRA) mike.carson (EMP)
100 dana.davis (???) geir.solberg (EMP) geir.solberg (EMP) geir.solberg (EMP)
101 sean.crandall (DIR) sean.crandall (DIR) geoff.storey (DIR) kevin.ruscitti (TRA)
102 cara.semperger (EMP) kevin.ruscitti (TRA) susan.pereira (EMP) judy.hernandez (???)
103 mike.carson (EMP) jason.wolfe (???) frank.ermis (DIR) charles.weldon (???)
104 paul.y’barbo (???) scott.hendrickson (???) robert.badeer (DIR) judy.townsend (EMP)
105 andrew.lewis (DIR) holden.salisbury (EMP) joe.parks (???) holden.salisbury (EMP)
106 charles.weldon (???) keith.holst (DIR) jay.reitmeyer (EMP) theresa.staab (EMP)
107 jason.williams (???) susan.pereira (EMP) cara.semperger (EMP) paul.y’barbo (???)
108 paul.thomas (???) frank.ermis (DIR) holden.salisbury (EMP) vladi.pimenov (???)
109 jason.wolfe (???) albert.meyers (EMP) jeff.king (MAN) don.baughman (TRA)
110 susan.pereira (EMP) dana.davis (???) paul.y’barbo (???) jeff.king (MAN)
111 mike.swerzbin (TRA) paul.y’barbo (???) theresa.staab (EMP) susan.pereira (EMP)
112 judy.hernandez (???) larry.campbell (???) andrew.lewis (DIR) doug.gilbert-smith (MAN)
113 theresa.staab (EMP) mike.swerzbin (TRA) scott.hendrickson (???) jason.wolfe (???)
114 scott.hendrickson (???) theresa.staab (EMP) jason.wolfe (???) harry.arora (VP)
115 mike.maggi (DIR) mike.carson (EMP) vince.kaminski (MAN) frank.ermis (DIR)
116 keith.holst (DIR) don.baughman (TRA) don.baughman (TRA) john.griffith (MD)
117 jeff.king (MAN) jason.williams (???) tom.donohoe (???) eric.saibi (TRA)
118 vladi.pimenov (???) john.griffith (MD) vladi.pimenov (???) mike.swerzbin (TRA)
119 don.baughman (TRA) paul.thomas (???) mike.maggi (DIR) scott.hendrickson (???)
120 richard.shapiro (VP) vladi.pimenov (???) mike.swerzbin (TRA) keith.holst (DIR)
121 vince.kaminski (MAN) judy.hernandez (???) harry.arora (VP) richard.ring (EMP)
122 harry.arora (VP) mike.maggi (DIR) eric.saibi (TRA) vince.kaminski (MAN)
123 susan.bailey (???) pam.butler (???) john.griffith (MD) susan.bailey (???)
124 doug.gilbert-smith (MAN) jeff.king (MAN) keith.holst (DIR) mike.maggi (DIR)
125 john.griffith (MD) andrew.lewis (DIR) doug.gilbert-smith (MAN) robert.badeer (DIR)
126 eric.saibi (TRA) vince.kaminski (MAN) susan.bailey (???) tom.donohoe (???)
127 richard.ring (EMP) harry.arora (VP) cooper.richey (MAN) albert.meyers (EMP)
128 tom.donohoe (???) eric.saibi (TRA) richard.ring (EMP) clint.dean (TRA)
129 clint.dean (TRA) richard.shapiro (VP) joe.stepenovitch (VP) andrew.lewis (DIR)
130 albert.meyers (EMP) tom.donohoe (???) clint.dean (TRA) cooper.richey (MAN)
131 cooper.richey (MAN) clint.dean (TRA) joe.quenet (TRA) joe.stepenovitch (VP)
132 pam.butler (???) cooper.richey (MAN) albert.meyers (EMP) pam.butler (???)
133 joe.stepenovitch (VP) joe.stepenovitch (VP) pam.butler (???) steven.merris (???)
134 joe.quenet (TRA) stephanie.panus (EMP) richard.shapiro (VP) richard.shapiro (VP)
135 stephanie.panus (EMP) joe.quenet (TRA) steven.merris (???) monika.causholli (EMP)
136 stanley.horton (PRE) brad.mckay (EMP) phillip.platter (EMP) mark.fisher (???)
137 steven.merris (???) stanley.horton (PRE) stanley.horton (PRE) phillip.platter (EMP)
138 brad.mckay (EMP) phillip.platter (EMP) mark.fisher (???) stephanie.panus (EMP)
139 phillip.platter (EMP) steven.merris (???) monika.causholli (EMP) stanley.horton (PRE)
140 monika.causholli (EMP) monika.causholli (EMP) brad.mckay (EMP) joe.quenet (TRA)
141 mark.fisher (???) mark.fisher (???) stephanie.panus (EMP) brad.mckay (EMP)
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