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Abstract

We investigate signed tilings of rectangles by ribbon L-shaped n-ominoes, n ≥ 6 even. We show that for
n = 6 a rectangle has a signed tiling by ribbon L-shaped hexominoes if and only if one of the sides of the
rectangle is divisible by 6. We show that a rectangle has a signed tiling by Tn, n ≥ 8 even, if and only if
both sides of the rectangle are even and one of them is divisible by n, or if one of the sides is odd and the
other side is divisible by n

(
n
2 − 2

)
. Our proofs are based on the exhibition of explicit Gröbner bases. In

particular, this paper shows that some of the regular tiling results in V. Nitica, Every tiling of the first
quadrant by ribbon L n-ominoes follows the rectangular pattern. Open Journal of Discrete Mathematics, 5,
(2015) 11–25, cannot be obtained from coloring invariants.

Keywords: polyomino; replicating tile; L-shaped polyomino; skewed L-shaped polyomino; signed tilings;
Gröbner basis; tiling rectangles; coloring invariants

1. Introduction

In this article we study tiling problems for regions in a square lattice by certain symmetries of an L-
shaped polyomino. Polyominoes were introduced by Golomb in [6] and the standard reference about this
subject is the book Polyominoes [8]. The L-shaped polyomino we study is placed in a square lattice and
is made out of n, n ≥ 3, unit squares, or cells. See Figure 1a. In an a × b rectangle, a is the height and b
is the base. We consider translations (only!) of the tiles shown in Figure 1b. They are ribbon L-shaped
n-ominoes. A ribbon polyomino [12] is a simply connected polyomino with no two unit squares lying along
a line parallel to the first bisector y = x. We denote the set of tiles by Tn.

(a) An L n-omino
with n cells.

(b) The set of tiles Tn.

Figure 1

Related papers are [3], [11], investigating tilings by Tn, n even. In [3] we look at tilings by Tn in the
particular case n = 4. The starting point was a problem from recreational mathematics. We recall that a
replicating tile is one that can make larger copies of itself. The order of replication is the number of initial
tiles that fit in the larger copy. Replicating tiles were introduced by Golomb in [7]. In [9] we study replication
of higher orders for several tiles introduced in [7]. In particular, we suggested that the skewed L-tetromino
showed in Figure 2a is not replicating of order k2 for any odd k. The question is equivalent to that of tiling
a k-inflated copy of the straight L-tetromino using only the ribbon orientations of an L-tetromino. The
question is solved in [3], where it is shown that the L-tetromino is not replicating of any odd order. This is a
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consequence of a stronger result: a tiling of the first quadrant by T4 always follows the rectangular pattern,
that is, the tiling reduces to a tiling by 4× 2 and 2× 4 rectangles, each tiled in turn by two tiles from T4.

(a) Skewed L-tetromino.

· ·
·

(b) Skewed L n-omino.

Figure 2: Skewed polyominoes

The results in [3] are generalized in [11] to Tn, n even. The main result shows that any tiling of the first
quadrant by Tn reduces to a tiling by 2× n and n× 2 rectangles. An application is the characterization of
all rectangles that can be tiled by Tn, n even: a rectangle can be tiled by Tn, n even, if and only if both sides
are even and at least one side is divisible by n. One shows that these results are valid for any odd n. The
rectangular pattern persists if one adds an extra 2 × 2 tile to Tn, n even. A rectangle can be tiled by the
larger set of tiles if and only if it has both sides even. The main result also implies that a skewed L-shaped
n-omino, n even, (see Figure 2b) is not a replicating tile of order k2 for any odd k.

The discussion above shows that the limitation of the orientations of the tiles used in a tiling problem
can be of interest, in particular when investigating tiling problems in a skewed lattice.

Signed tilings (see [4]) are also of interest. These are finite placements of tiles on a plane, with weights
+1 or -1 assigned to each of the tiles. We say that they tile a region R if the sum of the weights of the tiles
is 1 for every cell inside R and 0 for every cell elsewhere. The existence of a regular tiling clearly implies the
existence of a signed tiling. Many times solving a tiling problem can be reduced to a coloring argument. It
was shown in [4] that the most general argument of this type is equivalent to the existence of a signed tiling.
Consequently, different conditions for regular versus signed tilings can be used to show that certain tiling
arguments are stronger then coloring arguments. By looking at signed tilings of rectangles by Tn, n even, we
show that some of the hard results in [11] cannot be obtained via coloring arguments.

A useful tool in the study of signed tilings is a Gröbner basis associated to the polynomial ideal generated
by the tiling set. See Bodini and Nouvel [2]. One can associate to any cell in the square lattice a monomial
in two variable x, y. If the coordinates of the lower left corner of the cell are (α, β), one associates xαyβ . This
correspondence associates to any bounded tile a Laurent polynomial with all coefficients 1. The polynomial
associated to a tile P is denoted by fP . The polynomial associated to a tile translated by an integer vector
(γ, δ) is the initial polynomial multiplied by the monomial xγyδ. If the region we tile is bounded and the
tile set consists of bounded tiles, then the problem can be translated in the first quadrant via a translation
by an integer vector, and one can work only with regular polynomials in Z[X,Y ]. See Theorem 9 below.

Signed tilings by ribbon L n-ominoes, n odd are studied in [10], where we show that a rectangle can be
signed tiled by ribbon L n-ominoes, n odd, if and only if it has a side divisible by n.

The main results of the paper are the following:

Theorem 1. A rectangle can be signed tiled by T6 if and only if one of the sides is divisible by 6.

Due to the Gröbner basis that we find in Section 3, the proof of Theorem 1 is similar to the proof of [10,
Theorem 1]. Theorem 1 shows the results in [10] for n = 6 cannot be obtained by coloring arguments.

Due to the Gröbner basis that we exhibit for n = 6 we also have:

Proposition 2. A k-inflated copy of the ribbon L hexomino has a signed tiling by T6.

Theorem 3. A rectangle can be signed tiled by Tn, n ≥ 8 even, only in the following cases:

1. Both sides of the rectangle are even and one of them is is divisible by n.

2. One of the sides is odd and the other is divisible by n
(
n
2 − 2

)
.
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The proof of Theorem 3 is shown in Section 4. Examples for Case 1 of Theorem 3 can be obtained from
regular tilings that follows the rectangular pattern. An example for Case 2 is a signed tiling of a 16 × 1
rectangle by T8, shown in the Appendix.

Theorem 3 shows that some of the regular tiling results in [10] obtained for the tile set Tn, n ≥ 8 even,
cannot be discovered using coloring arguments.

Due to the Gröbner basis that we exhibit for n ≥ 8, n even, we also have:

Proposition 4. A k-inflated copy of the ribbon L n-omino, n ≥ 8 even, has a signed tiling by Tn if and
only if k is even.

The proof of Proposition 4 is shown in Section 5.

Remark 1. 1) We recall that it is shown in [3] that a rectangle is signed tiled by T4 if and only if both of
its sides are even and one side is divisible by 4.

2) The difference between the case n = 6 and the case n ≥ 8 even is due to different Gröbner basis that
can be used in each case.

2. Summary of Gröbner basis theory

Let R[X] = R[X1, . . . , Xk] be the ring of polynomials with coefficients in a principal ideal domain (PID)
R. A term in the variables x1, . . . , xk is a power product xα1

1 xα2
2 . . . xα`

` with αi ∈ N, 1 ≤ i ≤ `; in particular
1 = x01 . . . x

0
` is a term. A term with an associated coefficient from R is called monomial. We endow the set

of terms with the total degree-lexicographical order, in which we first compare the degrees of the monomials
and then break the ties by means of lexicographic order for the order x1 > x2 > · · · > x` on the variables.
If the variables are only x, y and x > y, this gives the total order:

1 < y < x < y2 < xy < x2 < y3 < xy2 < x2y < x3 < y4 < · · · . (1)

For P ∈ R[X] we denote by HT (P ) the leading term and by HM(P ) the highest monomial in P with respect
to the above order. We denote by HC(P ) the coefficient of the leading monomial in P . We denote by T (P )
the set of terms appearing in P and by M(P ) the set of monomials in P .

For a given ideal I ⊆ R[X] an associated Gröbner basis is introduced as in Chapters 5, 10 in [1]).
If G ⊆ R[X] is a finite set, we denote by I(G) the ideal generated by G in R[X].

Definition 1. Let f, g, p ∈ R[X]. We say that f D-reduces to g modulo p and write f →
p
g if there exists

m ∈ M(f) with HM(p)|m, say m = m′ ·HM(p), and g = f −m′p. For a finite set G ⊆ R[X], we denote

by
∗→
G

the reflexive-transitive closure of →
p
, p ∈ G. We say that g is a normal form for f with respect to G if

f
∗→
G
g and no further D-reduction is possible. We say that f is D-reducible modulo G if f

∗→
G

0.

If f
∗→
G

0, then f ∈ I(G). The converse is also true if G is a Gröbner basis.

Definition 2. A D-Gröbner basis is a finite set G of R[X] with the property that all D-normal forms modulo
G of elements of I(G) equal zero. If I ⊆ R[X] is an ideal, then a D-Gröebner basis of I is a D-Gröebner
basis that generates the ideal I.

Proposition 5. Let G be a finite set of R[X]. Then the following statements are equivalent:

1. G is a Gröebner basis.

2. Every f 6= 0, f ∈ I(G), is D-reducible modulo G.

We observe, nevertheless, that if R is only a (PID), the normal form associated to a polynomial f by a
finite set G ⊆ R[X] is not unique. That is, the reminder of the division of f by G is not unique.

We introduce now the notions of S-polynomial and G-polynomial that allows to check if a given finite set
G ⊆ R[X] is a Gröbner basis for the ideal it generates. As usual, lcm is the notation for the least common
multiple and gcd is the notation for the greatest common divisor.
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Definition 3. Let 0 6= gi ∈ R[X], i = 1, 2, with HC(gi) = ai and HT (gi) = ti. Let a = biai = lcm(a1, a2)
with bi ∈ R, and t = siti = lcm(t1, t2) with si ∈ T . The the S-polynomial of g1, g2 is defined as:

S(g1, g2) = b1s1g1 − b2s2g2. (2)

If c1, c2 ∈ R such that gcd(a1, a2) = c1a1 + c2a2. Then the G-polynomial of g1, g2 is defined as:

G(g1, g2) = c1s1g1 + c2s2g2. (3)

Theorem 6. Let G be a finite set of R[X]. Assume that for all g1, g2 ∈ G, S(g1, g2)
∗→
G

0 and G(g1, g2) is

top-D-reducible modulo G. Then G is a Gröbner basis.

Assume now that R is an Euclidean domain with unique reminders (see [1, p. 463]). This is the case for
the ring of integers Z if we specify reminders upon division by 0 6= m to be in the interval [0,m).

Definition 4. Let f, g, p ∈ R[X]. We say that f E-reduces to g modulo p and write f →
p
g if there exists

m = at ∈ M(f) with HM(p)|t, say t = s · HT (p), and g = f − qsp where 0 6= q ∈ R is the quotient of a
upon division with unique reminder by HC(p).

Proposition 7. E-reduction extends D-reduction, i.e., every D-reduction step in an E-reduction step.

Theorem 8. Let R be an Euclidean domain with unique reminders, and assume G ⊆ R[X] is a D-Gröbner
basis. Then the following hold:

1. f
∗→
G

0 for all f ∈ I(G), where
∗→
G

denotes the E-reduction modulo G.

2. E-reduction modulo G has unique normal forms.

The following result connect signed tilings and Gröbner bases. See [2] and [5] for a proof.

Theorem 9. A polyomino P admits a signed tiling by translates of prototiles P1, P2, . . . , Pk if and only if for
some (test) monomial xαyβ the polynomial xαyβfP is in the ideal generated in Z[X,Y ] by the polynomials
fP1

, . . . , fPk
.

Moreover, the set of test monomials T = {xα} can be chosen from any set T ⊆ Nn of multi-indices which
is cofinal in (Nn,≤).

3. Gröbner basis for Tn, n even

We show Gröbner bases for the ideals generated by T4, T6, as these are different from the general case.

Proposition 10. The set of polynomials:

C1(2) = x2 + x+ y + 1, C2(2) = y2 + x+ y + 1 (4)

form a Gröbner basis for the ideal of polynomials generated by T4.

Proof. The polynomials corresponding to tiles in T4 are

C1(2), C2(2), xy2 + xy + y2 + x, x2y + xy + x2 + y. (5)

The last two polynomials can be generated by C1(2), C2(2):

xy2 + xy + y2 + x = −C1(2) + (x+ 1)C2(2)

x2y + xy + x2 + y = −C2(2) + (y + 1)C1(2).
(6)

It remains to show that the S-polynomial associated to C1(2), C2(2) can be reduced. The leading term
in C1(2) is x2 and the leading term in C2(2) is y2. One has:

S(C1(2), C2(2)) = y2(x2 + x+ y + 1)− x2(y2 + y + 1 + x) = (x+ y + 1)C1(2) + (x+ y + 1)C2(2). (7)
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Proposition 11. The set of polynomials:

C1(3) = x3 + x2 + x+ y2 + y + 1, C2(3) = y3 + y2 + y + x2 + x+ 1, C3(3) = xy − 1 (8)

form a Gröbner basis for the ideal of polynomials generated by T6.

Proof. The polynomials associated to T6 are:

H1(k) = y4 + y3 + y2 + y + 1 + x

H2(k) = y4 + xy4 + xy3 + xy2 + xy + x

H3(k) = y + x4 + x3 + x2 + x+ 1

H4(k) = x4y + x3y + x2y + xy + y + x4.

(9)

− − − − −
−

(a) Step 1 (-)

− − − − 0
0 ++ + +

(b) Step 2 (+)

+
+
+

− 0 0 − 0
0 ++2 + +

(c) Step 3 (+)

+
+
0 −
−
−

− 0 − − 0
0 ++2 0 +

(d) Step 4 (-)

+
+
0 0

0
0

− 0 0 0 0
0 ++2 + +

(e) Step 5 (+)

0
+
0 0

0
0

− 0 0 0 0
0 0+ 0 0 −

(f) Step 6 (-)

+
+
0 0

0
+ + + +

− 0 0 0 0
0 0+ 0 0 0

(g) Step 7 (+)

0
0
0 0

0
0 0 0 0

− 0 0 0 0
0 0+ 0 0 0

(h) Step 8 (-)

Figure 3: The polynomial C3(6) is generated by {H1(6), H2(6), H3(6), H4(6)}.

Similar to what is done in [10], the presence of C3(3) in the Gröbner basis allows to reduce the algebraic
proofs to combinatorial considerations. We leave most of the details of this proof to the reader. The proof
that H1(3), H2(3), H3(3), H4(3) are in the ideal generated by C1(3), C2(3), C3(3) is similar to that of [10,
Proposition 5]. The proof that C1(3), C2(3), C3(3) are in the ideal generated by H1(3), H2(3), H3(3), H4(3)
is similar to that of [10, Proposition 6]. A step by step geometric proof that C3(3) belongs to the ideal
generated by H1(3), H2(3), H3(3), H4(3) is shown in Figure 3.

From now on n ≥ 8. It is convenient and simplifies the notation to write n = 2k, where k ≥ 3.
The polynomials (written in a condensed form) associated to the tiles in Tn are:

H1(k) =
y2k+1 − 1

y − 1
+ x, H2(k) = y2k +

x(y2k+1 − 1)

y − 1
, H3(k) = y +

x2k+1 − 1

x− 1
, H4(k) =

y(x2k+1 − 1)

x− 1
+ x2k.

(10)
We show in the rest of this section that a Gröebner basis for the ideal generated in Z[X,Y ] by H1(k),

H2(k), H3(k), H4(k), is given by the polynomials (written in condensed from):

C1(k) =
yk+1 − 1

y − 1
+ x · x

k−1 − 1

x− 1
+

⌊
k − 1

2

⌋
xy −

⌊
k − 1

2

⌋
C2(k) =

xk+1 − 1

x− 1
+ y · y

k−1 − 1

y − 1
+

⌊
k − 1

2

⌋
xy −

⌊
k − 1

2

⌋
C3(k) = x2y + xy − x− 1

C4(k) = xy2 + xy − y − 1

C5(k) = (k − 2)xy − (k − 2),

(11)
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+ + +
+
+

+
+

· · ·

·
·
·

0 k − 1

k

−
⌊
k−3
2

⌋
⌊
k−1
2

⌋

(a) C1(k)

+ + + +
+
+

+

· · ·

·
·
·

0 k

k − 1

−
⌊
k−3
2

⌋
⌊
k−1
2

⌋

(b) C2(k)

−
+
−

+

0

(c) C3(k)

−
+−
+

0

(d) C4(k)

0

−(k − 2)

k − 2

(e) C5(k)

Figure 4: The Gröbner basis {C1(k), C2(k), C3(k), C4(k), C5(k)}.

where bxc is the integer part of x.
It is convenient visualize at the elements of the basis as tiles with cells labeled by integers, see Figure 4.

Proposition 12. The polynomials H1(k), H2(k), H3(k), H4(k) belong to the ideal generated by C1(k), C2(k),
C3(k), C4(k), C5(k).

Proof. Due to the symmetry, it is enough to show that H1(k), H2(k) belong to the ideal. The polynomials
C3(k), C4(k) allow to translate a block consisting of two cells labeled by the same sign adjacent horizontally,
respectively adjacent vertically, along a vector parallel to the first bisector y = x. They also allow to translate
horizontally or vertically a block of two cells adjacent at a vertex and labeled by different signs into a similar
block. If the length of the translation is even, the signs stay the same. If the length of the translation is
odd, all signs are changed. See Figure 5.

+ +
0

+ =
+ +

0
−

+
−

+

0

(a) C3(k) + (1 + x) = xy + x2y

+
+

+
+

0

+ =

−
+−
+

0

(b) C4(k) + (y + 1) = xy + xy2

+
−

0

+ =

−
+

0
−

+
−

+

0

(c) C3(k) + (1− xy) = −x+ x2y

−
+

+
−

0

+ =

−
+−
+

0

(d) C4(k) + (1− xy) = −y + xy2

Figure 5: Tiles arithmetic.

We show how to build H1(k). There are two cases to be considered, k odd and k even.
The steps of a geometric constructions for k odd are shown in Figure 6. To reach Step 1, we add several

times multiples of C4(k), as in Figure 5, b). To reach Step 2, we add several times multiples of C3(k), as in
Figure 5, a). To reach Step 3, first we subtract C5(k), then add several times multiples of C3(k), C4(k) as in
Figure 5, c), d). To obtain now H1(k) in the initial position, we multiply the tile in Step 3 by xk−2, which
will translate the tile k − 2 cells up, and then add multiples on C3(k), C4(k), as in Figure 5, c), d).
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+ + +
+
+

+
+

· · ·

·
·
·

0 k − 1

k

−k−32

k−1
2

(a) Step 0

+ +
+
+
+

+

+
+

·
·
·

· · ·

0 k − 1

k

−k−12
k−1
2

(b) Step 1

+ +

+ +

+ +

· · ·

+
+
+

+

+
+

·
·
·

+

0 k − 1

k

−k−12

2k − 1

k−1
2

(c) Step 2

+

+
+

·

·
·

+
+
+

+

+
+

·
·
·

+

0 k − 1

k

2k − 1

(d) Step 3

Figure 6: Building H1(k), k odd, out of {C1(k), C2(k), C3(k), C4(k), C5(k)}.

The steps of a geometric constructions for k even are shown in Figure 7. To reach Step 1, we add several
times multiples of C4(k), as in Figure 5, b). To reach Step 2, we add several times multiples of C3(k), as in
Figure 5, a). To reach Step 3, first we subtract C5(k), then add several times multiples of C3(k), C4(k) as in
Figure 5, c), d). To obtain now H1(k) in the initial position, we multiply the tile in Step 3 by xk−2, which
will translate the tile k − 2 cells up, and then add multiples on C3(k), C4(k), as in Figure 5, c), d).

+ + +
+
+

+
+

· · ·

·
·
·

0 k − 1

k

−k−32

k−1
2

(a) Step 0

+ + +
+
+

+

+
+

·
·

·

· ··

0 k − 1

k

−k−12
k−1
2

(b) Step 1

+ +

+ +

+ +

· · ·

+
+
+

+

+
+

·
·

·

+

0 k − 1

k

−k−12

2k − 1

k−1
2

(c) Step 2

+

+
+

·

·
·

+
+
+

+

+
+

·
·
·

+

0 k − 1

k

2k − 1

(d) Step 3

Figure 7: Building H1(k), k even, out of {C1(k), C2(k), C3(k), C4(k), C5(k)}.

We show how to build H2(k). There are two cases to be considered, k odd and k even.
The steps of a geometric constructions for k odd are shown in Figure 8. To reach Step 1, we add several

times multiples of C4(k), as in Figure 5, b). To reach Step 2, we add several times multiples of C3(k), as in
Figure 5, a). To reach Step 3, first we subtract C5(k), then add several times multiples of C3(k), C4(k) as in
Figure 5, c), d). To obtain now H2(k) in the initial position, we multiply the tile in Step 3 by xk−2, which
will translate the tile k − 2 cells up, and then add multiples on C3(k), C4(k), as in Figure 5, c), d).

The steps of a geometric constructions for k even are shown in Figure 9. To reach Step 1, we add several
times multiples of C4(k), as in Figure 5, b). To reach Step 2, we add several times multiples of C3(k), as in
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+ + +
+
+

+
+

· · ·

·
·
·

0 k − 1

k

−k−42

k−2
2

(a) Step 0

+ + +
+
+

+

+
+

·
·
·

· · ·

0 k − 1

k

−k−22
k−2
2

(b) Step 1

+ +

+ +

+ +

· · ·

+
+
+

+

+
+

·
·
·

+

0 k − 1

k

−k−22

2k − 1

k−2
2

(c) Step 2

+
+ +

·
·
·

+
+
+

+

+
+

·
·
·

+

0 k − 1

k

2k − 1

(d) Step 3

Figure 8: Building H2(k), k odd, out of {C1(k), C2(k), C3(k), C4(k), C5(k)}.

Figure 5, a). To reach Step 3, first we subtract C5(k), then add several times multiples of C3(k), C4(k) as in
Figure 5, c), d). To obtain now H2(k) in the initial position, we multiply the tile in Step 3 by xk−2, which
will translate the tile k − 2 cells up, and then add multiples on C3(k), C4(k), as in Figure 5, c), d).

+ + +
+
+

+
+

· · ·

·
·
·

0 k − 1

k

−k−42

k−2
2

(a) Step 0

+ + + +
+

+

+
+

·
·
·

· ··

0 k − 1

k

−k−22
k−2
2

(b) Step 1

+ +

+ +

+ +

· · ·

+
+
+

+

+
+

·
·
·

+

0 k − 1

k

−k−22

2k − 1

k−2
2

(c) Step 2

+
+ +

·
·
·

+
+
+

+

+
+

·
·
·

+

0 k − 1

k

2k − 1

(d) Step 3

Figure 9: Building H2(k), k even, out of {C1(k), C2(k), C3(k), C4(k), C5(k)}.

Proposition 13. The polynomials C1(k), C2(k), C3(k), C4(k), C5(k) belong to the ideal generated by H1(k),
H2(k), H3(k), H4(k).

Proof. Due to the symmetry, it is enough to show that C1(k), C3(k) and C5(k) belong to the ideal. We
show how to generate C3(k), C5(k) (and consequently C4(k)). To generate C1(k) we can reverse the process
in Proposition 12.

For C3(k), one has the following formula:

C3(k) = (xy + x− 1)H3(k)− xH4(k). (12)
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· · ·
0
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+
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· · ·
· · ·

0

(c) Step 3 (+)
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− +

+
0 0000
· · ·
· · ·

0

(d) Step 4 (-)

Figure 10: Building C3(k) out of {H1(k), H2(k), H3(k), H4(k)}.

A geometric proof of (12) is shown in Figure 10.
To generate C5(k) we first show how to obtain a configuration in which all nontrivial cells, 4 of them, are

located on the main diagonal. See Figure 11. Then we use the tiles arithmetic shown in Figure 12 to pull
the cells in position (k − 1, k − 1) and (2k − 2, 2k − 2) in positions (1, 1) and (2, 2). This constructs C5(k).

Proposition 14. The sets {C1(k), C2(k), C3(k), C4(k), C5(k)} and {H1(k), H2(k), H3(k), H4(k)} generate
the same ideal in Z[X,Y ].

Proof. This follows from Propositions 12, 13.

Proposition 15. One has the following formulas:

S(C1(k), C2(k)) = −yk−1C1(k) + xk−1C2(k)− yk−1(1 + x2 + · · ·+ xk−3)C3(k)

+ xk−1(1 + y2 + · · ·+ yk−3)C4(k) + yk−1C5(k)− yk−1
⌊
k − 1

2

⌋
C4(k)

− xk−1C5(k) + xk−1
⌊
k − 1

2

⌋
C3(k), k odd

S(C1(k), C2(k)) = −yk−1C1(k) + xk−1C2(k)− yk−1(1 + x2 + · · ·+ xk−3)C3(k)

+ xk−1(1 + y2 + · · ·+ yk−3)C4(k) + yk−1C5(k)− yk−1
⌊
k − 1

2

⌋
C4(k)

− xk−1C5(k) + xk−1
⌊
k − 1

2

⌋
C3(k), k even

(13)

S(C1(k), C3(k)) = xC2(k)− yk−2C4(k) + yk−2C3(k) + (xyk−4 + xyk−6 + · · ·+ xy)C4(k)

− xC5(k) +

⌊
k − 1

2

⌋
xC3(k), k odd

S(C1(k), C3(k)) = xC2(k)− yk−2C4(k) + yk−2C3(k) + (xyk−4 + xyk−6 + · · ·+ xy2 + x)C4(k)

− xC5(k) +

⌊
k − 1

2

⌋
xC3(k), k even

(14)

S(C1(k), C4(k)) = C2(k) + (xk−4 + xk−6 + · · ·+ x)C4(k)− C5(k) +

⌊
k − 1

2

⌋
C3(k), k odd

S(C1(k), C4(k)) = C2(k) + (xk−4 + xk−6 + · · ·+ x2 + 1)C4(k)− C5(k) +

⌊
k − 1

2

⌋
C3(k), k even

(15)
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+
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· · · ·
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0
·
·

0
−

0
·
·

0
0

+ 0 0 0 0 0 0

0
·
·
0
0
0
·
·
0
0
+

0 0 0
− 0 0 0 00 0 00

· · · ·
· · · ·

0

(e) Step 5

Figure 11: Building C5(k) out of {H1(k), H2(k), H3(k), H4(k)}.

− −
+ ++
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+
−

0 0 0

+2

−
+ + =

+

0

Figure 12: Tiles arithmetic: x3 + y3 − x2yC4(k) + xyC3(k) = 2x2y2 − xy.
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S(C1(k), C5(k)) = (k − 2)C2(k) + (k − 2)C3(k)(1 + y2 + · · ·+ yk−3) + 2

⌊
k − 1

2

⌋
C5(k)

+ (k − 2)

⌊
k − 1

2

⌋
C3(k), k odd

S(C1(k), C5(k)) = (k − 2)C2(k) + (k − 2)C3(k)(y + y3 + · · ·+ yk−3) +

(
2

⌊
k − 3

2

⌋
+ 1

)
C5(k)

+ (k − 2)

⌊
k − 1

2

⌋
C3(k), k even

(16)

S(C2(k), C3(k)) = C1(k) + (yk−4 + yk−6 + · · ·+ y)C3(k)− C5(k) +

⌊
k − 1

2

⌋
C4(k), k odd

S(C2(k), C3(k)) = C1(k) + (yk−4 + yk−6 + · · ·+ y2 + 1)C3(k)− C5(k) +

⌊
k − 1

2

⌋
C4(k), k even

(17)

S(C2(k), C4(k)) = yC1(k)− xk−2C3(k) + xk−2C4(k) + (xk−4y + xk−6y + · · ·+ xy)C3(k)

− yC5(k) +

⌊
k − 1

2

⌋
yC4(k), k odd

S(C2(k), C4(k)) = yC1(k)− xk−2C3(k) + xk−2C4(k) + (xk−4y + xk−6y + · · ·+ x2y + y)C3(k)

− yC5(k) +

⌊
k − 1

2

⌋
yC4(k), k even

(18)

S(C2(k), C5(k)) = (k − 2)C1(k) + (k − 2)C4(k)(1 + x2 + · · ·+ xk−3) + 2

⌊
k − 1

2

⌋
C5(k)

+ (k − 2)

⌊
k − 1

2

⌋
C4(k), k odd

S(C2(k), C5(k)) = (k − 2)C1(k) + (k − 2)C4(k)(y + y3 + · · ·+ yk−3) +

(
2

⌊
k − 3

2

⌋
+ 1

)
C5(k)

+ (k − 2)

⌊
k − 1

2

⌋
C4(k), k even

(19)

S(C3(k), C4(k)) = −C3(k) + C4(k) (20)

S(C3(k), C5(k)) = C5(k)

S(C4(k), C5(k)) = C5(k),
(21)

which are all given by D-reductions. Therefore, {c1(k), C2(k), C3)k), C4(k), C5(k)} form a Gröbner basis.

Proof. We observe that we can always choose one of the coefficients c1, c2 in Definition 3 to be zero. So in
order to check that we have a Gröbner basis, we do not need to use G-polynomials.

Due to the symmetry, some formulas above follows immediately from others: S(C2(k), C3(k)) follows from
S(C1(k), C4(k)), S(C2(k), C4(k)) follows from S(C1(k), C3(k)), S(C2(k), C5(k)) follows from S(C1(k), C5(k)),
and S(C4(k), C5(k)) follows from S(C3(k), C5(k)).

To prove the rest, we observe that the leading monomial in C1(k) is yk, the leading monomial in C2(k) is
xk, the leading monomial in C3(k) is x2y, the leading monomial in C4(k) is xy2, and the leading monomial
in C5(k) is (k − 2)xy.

The D-reduction of S(C1(k), C2(k)) is shown in Figure 13. S(C1(k), C2(k)) consists of two disjoint
symmetric tiles. The reduction of them is similar and it is shown in parallel in Figure 13. We start with

S(C1(k), C2(k)) = xkC1(k)− ykC2(k). (22)
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(f) Step 3, k even

Figure 13: The D-reduction of S(C1(k), C2(k)).
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The D-reduction of S(C1(k), C3(k)) is shown in Figure 14. We start with

S(C1(k), C3(k)) = x2C1(k)− yk−1C3(k). (23)

From Step 3 to Step 4 we subtract (xyk−4+xyk−6+· · ·+xy)C4(k) or (xyk−4+xyk−6+· · ·+xy2+x)C4(k),
depending on k odd or even. From Step 4 to Step 5 we use the following formula if k is odd:

(k − 2)−
⌊
k − 3

2

⌋
=

⌊
k − 1

2

⌋
, (24)

and we use the following formula if k is even:

(k − 2)−
⌊
k − 1

2

⌋
=

⌊
k − 1

2

⌋
. (25)

The D-reduction of S(C1(k), C4(k)) is shown in Figure 15. We start with

S(C1(k), C4(k)) = xC1(k)− yk−2C4(k). (26)

From Step 1 to Step 2 we subtract (xk−4 + xk−6 + · · ·+ x)C4(k) or (xk−4 + xk−6 + · · ·+ x2 + 1)C4(k),
depending on k odd or even. From Step 2 to Step 3 we use formula 25 if k is odd and 27 if k is even.

The D-reduction of S(C1(k), C5(k)) is shown in Figure 16. We start with

S(C1(k), C5(k)) = (k − 2)xC1(k)− yk−1C5(k). (27)

To reach Step 1, we subtract (k − 2)C2(k). To reach Step 2, we subtract (1 + y2 + · · · + yk−3)C4(k)
if k is odd and (y + · · · + yk−3)C4(k) if k is even. To reach Step 3, we add 2

⌊
k−1
2

⌋
C5(k) if k is odd and(

2
⌊
k−3
2

⌋
+ 1

)
C5(k) if k is even.

The D-reduction of S(C3(k), C4(k)) is:

S(C3(k), C4(k)) = yC3(k)− xC4(k)

= x2y2 + xy2 − xy − y − (x2y2 + x2y − xy − x) = xy2 − y − x2y + x

= −C3(k) + C4(k).

(28)

The D-reduction of S(C3(k), C5(k)) is:

S(C3(k), C5(k)) = (k − 2)C3(k)− xC5(k)

= (k − 2)x2y + (k − 2)xy − (k − 2)x− (k − 2)− (k − 2)x2y + (k − 2)x

= C5(k).

(29)

4. Proof of Theorem 3

Consider a q × p, q ≥ p ≥ 1, rectangle. Using the presence of C3(k) and C4(k) in the Gröbner basis, the
rectangle can be reduced to one of the configurations in Figure 17, a), b). Configuration b) appears when
q, p are both even. The number of cells labeled by p is q − p+ 1 in a) and q − p in b).

In what follows the signed tile B = xy − 1 will play an important role. We recall that it can be moved
horizontally/vertically as shown in Figure 5. The tile B does not belong to the ideal generated by Tn. Other
signed tile of interest in the sequel is D = yn+1 +yn+yn−1 + · · ·+y2 +y+1−xy, which is the concatenation
of a vertical bar of length n and B. The tile D = yH1(k)− C4(k) belongs to the ideal generated by Tn.

Multiplying the polynomial associated to the rectangle by yp, we can assume that the configurations in
Figure 17 are at height p− 1 above the x-axis. Using the tiles C3(k), C4(k) and an amount of tiles B (p/2 if
p is even and zero if p is odd), they can be reduced further to the configurations shown in Figure 17,c), d).
We observe that b) is the sum of a) with p/2 copies of B.

Reducing further the configurations in Figure 17, c), d), with copies of D, the existence of a signed tiling
for the q × p rectangle becomes equivalent to deciding when the following two conditions are both true:
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Figure 14: The D-reduction of S(C1(k), C3(k)).

1) The the polynomial Q(x) = 1 + y + y2 + · · ·+ yn−1 divides:

Pp,q(y) = 1+2y+3y2+ · · ·+pyp−1+pyp+ · · ·+pyq−1+(p−1)yq+(p−2)yq+1+ · · ·+2yp+q−3+yp+q−2. (30)
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Figure 15: The D-reduction of S(C1(k), C4(k)).

2) The extra tiles B that appear while doing tile arithmetic for 1), including those from Figure 17, can
be cancelled out by C5(k).

If p+ q − 1 < n, then degQ > degPp,q, so divisibility does not hold. If p+ q − 1 ≥ n, we look at Pp,q as
a sum of p polynomials with all coefficients equal to 1:

Pp,q(y) = 1 + y + y2 + y3 + · · ·+ yp−1 + yp + . . .+ yq−1 + yq + yq+1 + · · ·+ yp+q−4 + yp+q−3 + yp+q−2

+y + y2 + y3 + · · ·+ yp−1 + yp + . . .+ yq−1 + yq + yq+1 + yp+q−4 + · · ·+ yp+q−3

+y3 + · · ·+ yp−1 + yp + . . .+ yq−1 + yq + yq+1 + · · ·+ yp+q−4

. . . . . . . . . . . .

+yp + . . .+ yq−1.
(31)

We discuss first 1) and show that it is true when p or q is divisible by n. Then, assuming this condition
satisfied, we discuss 2).

1) Assume that p+ q − 1 = nm+ r, 0 ≤ r < n, and p = ns+ t, 0 ≤ t < n. The remainder Rp,q(y) of the
division of Pp,q(y) by Q(y) is the sum of the remainders of the division of the p polynomials above by Q(y).

If r is odd, one has the following sequence of remainders, each remainder written in a separate pair of
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(f) Step 3, (+), k even

Figure 16: The D-reduction of S(C1(k), C5(k)).

parentheses:
Rp,q(y) =(1 + y + y2 + · · ·+ yr−1)

+(y + y2 + · · ·+ yr−2)

+(y2 + · · ·+ yr−3)

. . . . . . . . .

+(y
r−1
2 )− (y

r−1
2 )

. . . . . . . . .

−(y + y2 + · · ·+ yr−2)

−(1 + y + y2 + · · ·+ yr−1)

+(yr+1 + yr+2 + · · ·+ yn−3 + yn−2)

+(yr+2 + · · ·+ yn−3)

. . . . . . . . .

+(y
r+n−1

2 )− (y
r+n−1

2 )

. . . . . . . . .

−(yr+2 + · · ·+ yn−3)

−(yr+1 + yr+3 + · · ·+ yn−3 + yn−2)

. . . . . . . . .

(32)
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Figure 17: D-reductions of a rectangle.

If p ≥ n, the sequence of remainders above is periodic with period n, given by the part of the sequence
shown above, and the sum of any subsequence of n consecutive remainders is 0. So if p is divisible by n,
Pp,q(y) is divisible by Q(y). If p is not divisible by n, then doing first the cancellation as above and then
using the symmetry present in the sequence of remainders, the sum of the sequence of remainders equals 0
only if r + 1 = t, that is, only if q is divisible by n.

If r is even, one has the following sequence of remainders, each remainder written in a separate pair of
parentheses:

Rp,q(y) =(1 + y + y2 + · · ·+ yr−1)

+(y + y2 + · · ·+ yr−2)

+(y2 + · · ·+ yr−3)

. . . . . . . . .

+(y
r−2
2 + y

r
2 ) + (0)− (y

r−2
2 + y

r
2 )

. . . . . . . . .

−(y + y2 + · · ·+ yr−2)

−(1 + y + y2 + · · ·+ yr−1)

+(yr+1 + yr+3 + · · ·+ yn−3 + yn−2)

+(yr+2 + · · ·+ yn−3)

. . . . . . . . .

+(y
r+n−1

2 + y
r+n+1

2 ) + (0)− (y
r+n−1

2 + y
r+n+1

2 )

. . . . . . . . .

−(yr+2 + · · ·+ yn−3)

−(yr+1 + yr+3 + · · ·+ yn−3 + yn−2)

. . . . . . . . .

(33)
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If p ≥ n, the sequence of remainders above is periodic with period n, given by the part of the sequence
shown above, and the sum of any subsequence of n consecutive remainders is 0. So if p is divisible by n,
Pp,q(y) is divisible by Q(y). If p is not divisible by n, then doing first the cancellation as above and then
using the symmetry present in the sequence of remainders, the sum of the sequence of remainders equals 0
only if r + 1 = t, that is, only if q is divisible by n.

2) We assume now that n divides p or q and count the extra tiles B that appears. They are counted by
the coefficients of the quotient, call it S(y), of the division of Pp,q(y) by Q(y). We need to compute the sum
S1 of the coefficients in S(y) of the even powers of y and the sum S2 of the coefficients in S(y) of the odd
powers of y. The difference S1 − S2 gives the number of extra tiles B that we need to consider.

We use the equation relating the derivatives:

P ′p,q(y) = Q′(y)S(y) +Q(y)S′(y). (34)

Note that Q(−1) = 0, Q′(−1) = n/2, S(−1) = S1 − S2. Plugging in x = −1 gives:

S1 − S2 = S(−1) =
2P ′p,q(−1)

n
. (35)

From (31) one has:

P ′p,q(y) = 2 · 1 + 3 · 2y + 4 · 3y2 + · · ·+ (p− 1)(p− 2)yp−3 + p(p− 1)yp−2 + · · ·+ p(q − 1)yq−2

+(p− 1)qyq−1 + (p− 2)(q + 1)yq + · · ·+ 2(p+ q − 3)yp+q−4 + (p+ q − 2)yp+q−3.
(36)

While computing Pp,q(−1) we recall that n is even and distinguish the following cases:
Case A. p even, q odd.
Case B. p odd, q even.
Case C. p even, q even.
We need the following formulas:

2 · 1− 3 · 2 + 4 · 3− · · · − (p− 1)(p− 2) = −p(p− 2)

2

p(p− 1)− p(p) + p(p+ 1)− · · ·+ p(q − 2)− p(q − 1) = −p(q − p+ 1)

2

(p− 1)q − (p− 2)(q + 1) + · · ·+ 3(p+ q − 4)− 2(p+ q − 3) + (p+ q − 2) =
pq

2
.

(37)

Case A. One has:

P ′p,q(−1) = 2 · 1− 3 · 2 + 4 · 3− · · · − (p− 1)(p− 2) + p(p− 1)− · · · − p(q − 1)

+(p− 1)q − (p− 2)(q + 1) + · · · − 2(p+ q − 3) + (p+ q − 2) =
p

2
.

(38)

The number of extra tiles B that we have in this case is

−p
2

+
p

n
=
p(1− k)

n
. (39)

In order to have a complete reduction, the number of B tiles has to be a multiple of k− 2. As k− 1 and
k − 2 are relatively prime, we have the condition that p is a multiple of n(k − 2).

Case B. One has:

P ′p,q(−1) = 2 · 1− 3 · 2 + 4 · 3− · · ·+ (p− 1)(p− 2)− p(p− 1) + · · ·+ p(q − 1)

−(p− 1)q + (p− 2)(q + 1) + · · · − 2(p+ q − 3) + (p+ q − 2) =
q

2
.

(40)

The number of extra tiles B that we have in this case is q
n . We have the condition that q is a multiple of

n(k − 2).
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Case C. One has:

P ′p,q(−1) = 2 · 1− 3 · 2 + 4 · 3− · · · − (p− 1)(p− 2) + p(p− 1)− · · ·+ p(q − 1)

−(p− 1)q + (p− 2)(q + 1) + · · ·+ 2(p+ q − 3)− (p+ q − 2) = 0.
(41)

The number of extra tiles B that we have in this case is

−p
2

+
p

2
= 0. (42)

So in this case a signed tiling is always possible.

5. Proof of Proposition 4

If k is even, finding a signed tiling for a k-inflated copy of the L n-omino can be reduced, via reductions
by C3(k), C4(k) tiles, to finding a signed tiling for a nk × k rectangle. From Theorem 3 follows that such a
tiling always exists.

If k is odd, a reduction to a kn × k rectangle can be done only modulo a B tile, which does not belong
to the ideal generated by Tn.

Appendix

Here we show a signed tiling of a 16 × 1 rectangle by T8. To simplify the presentation, we use some
tiles from the Gröbner basis, which we already know that can be signed tiled by T8. One uses the following
formula:

xy9H1(8) +H2(8) + xy7C4(8) + y7C3(8)− y6C5(8) = x · y
16 − 1

y − 1
. (43)
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