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We investigate the nucleation, growth, and spatial organization of topological defects with a
ribbon shaped elastic sheet which is stretched and twisted. Singularities are found to spontaneously
arrange in a triangular lattice in the form of vertices connected by stretched ridges that result in a
self-rigidified structure. The vertices are shown to be negative disclinations or e-cones which occur
in sheets with negative Gaussian curvature, in contrast with d-cones in sheets with zero-Gaussian
curvature. We find the growth of the wrinkled width of the ribbon to be consistent with a far-from-
threshold approach assuming a compression-free base state. The system is found to show a transition
from a regime where the wavelength is given by the ribbon geometry, to where it is given by its
elasticity as a function of the ratio of the applied tension to the elastic modulus and cross-sectional
area of the ribbon.

Localized defects in the form of disclinations, grain
boundaries, voids, and inclusions that mark an otherwise
featureless solid are important to understanding and de-
signing the macroscopic properties of materials [1]. Topo-
logical defects such as disclinations and dislocations are
known to control the morphology and mechanical prop-
erties of thin flexible sheets and membranes [2]. For ex-
ample, a disclination appears in a thin disk shaped sheet
when the metric of a surface is modified by adding a
wedge. Such a point-like defect induces in-plane stresses
that can be alleviated by out-of-plane deformations [3].
Disclinations can be positive or negative, depending on
the “charge” associated with Gaussian curvature around
the defect. Oppositely signed disclinations can pair up
resulting in what is called a dislocation with zero net
Gaussian charge [2, 4, 5]. Thus, a sheet with a dis-
location is isometric to a plane outside the core of the
defect. In the context of elastic sheets, dislocation and
negative disclinations are usually called d-cones and e-
cones, respectively [6, 7]. Recent studies suggest a deep
connection between topological defects, such as discli-
nations and disclocations in crystaline membrane, and
e-cones and d-cones in amorphous membranes based on
their Gaussian charge [8].

Considerable experimental and theoretical challenges
exist to identify and model the emergence of such de-
fects and their dynamics under external forcing. Isolated
defects in infinite sheets have been well studied [5–7, 9–
13]. Outside the core of the defect, the deformations
are assumed to be inextensible, i.e. stress free. While
this has been shown to lead to a reasonable description
of the overall shape of the surface [10], the inner struc-
ture of the defect and its interaction with other defects
and surface edges are still not well understood [14]. Be-
cause interacting defects can be commonly noted as in
crumpled paper [14–17] and indented shells [18–20], a
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FIG. 1. A 3D reconstruction of a twisted ribbon (Mylar,
t/W = 8.5 × 10−3, T = 1.2 × 10−3 and α = 437) with mea-
sured (a) Gaussian curvature K(r, s), and (b) mean curvature
H(r, s) superimposed on a ridge. Map of (c) H(r, s) and (d)
K(r, s) as a function of increasing α. Here we show that a
symmetry breaking and a triangular lattice develop with non-
zero Gaussian curvature. The lattice spacing appears almost
constant with α.

detailed geometrical characterization of defect interac-
tions in sheets under well defined loading and boundary
conditions is still needed to build a deeper understand-
ing of macroscopic properties of sheets undergoing large
displacement.

Because of its rich phase diagram and well-defined
boundary conditions, the twisted ribbon configuration
has been proposed as a model system to understand the
nonlinear and singular behavior of elastic sheets [21, 22].
A particularly interesting aspect of the system is the
spontaneous emergence of ridges and point-like defects
organized in a triangular lattice that have been shown
to form at small tension [23]. This simplified geometry
develops rigidity due to the formation of ridges and al-
lows investigation of the formation of interacting singu-
larities under well-defined loading conditions. Over the
last decades, various theoretical approaches have been
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proposed to model twisted ribbons including anisotropic
rod-like theory [23–25] and nonlinear plate and shell the-
ory [26–31]. However, none of these approaches have
captured or predicted the spontaneous emergence of the
ridges and their fine structure with the exception of a re-
cent study which has sought to describe some aspects of
the extension of a creased sheet with far from threshold
analysis [22].

Here, we address the nucleation of topological defects
in elastic sheets, and examine their growth and detailed
structure using micro-focus x-ray computed tomography.
We find that the structure of the observed vertex sin-
gularities are different from d-cones which are often as-
sumed while viewing such defects in thin sheets. In fact,
we find these defects correspond to negatively signed in-
teracting disclinations, i.e. interacting e-cones. We show
that triangles emerge even when stretching is applied, in
contrast with analysis with inextensible sheets by Ko-
rte, et al. [23]. We measure the growth of the width
of the wrinkles and show that it is consistent with a
far-from threshold approach assuming a compression free
base state [22]. We find that the wavelength of the wrin-
kles changes from being given by ribbon geometry to its
elasticity as the tension is increased, and is proportional
to λ ∼ W and λ ∼ W 1/2t1/2T−1/4, respectively, where
W is the width of the ribbon, t the thickness, and T is
the normalized applied tension.

Experiments were performed with mylar and cellu-
lose acetate sheets which have a linear elastic response
for strains less than 2% (see Supplementary Documenta-
tion.) Above the elastic limit, mylar deforms plastically
but does not rupture. Where as, cellulose acetate is a
quasi-brittle material which leaves a contrasting mark
when deformed just above the elastic limit and can then
rupture. Young’s modulus E and Poisson ratio ν for My-
lar are E ' 3.4 GPa and ν = 0.4± 0.05, and for cellulose
acetate E ' 2.2 GPa and ν = 0.35± 0.05. Ribbons with
thickness t = 75, 125, and 256µm, width W in the range
10 − 30 mm, and length L = 100 − 300 mm are used.
The ends of the ribbon are clamped and stretched by ap-
plying a constant force F , and then twisted around its
long axis by a prescribed twist angle θ. Therefore, the
experimental control parameters are the normalized ten-
sion T = F/Etw and normalized twist angle η = θW/L.
Accordingly, one can define a confinement parameter
α = η2/T which is the ratio of a geometrical strain over
a mechanical strain [32].

In order to measure its morphology, the ribbon is
scanned as a function of applied twist and the surface
identified by using a threshold contrast for the absorbed
x-rays (see Supplementary Documentation.) As shown in
Fig. 1, the longitudinal and transverse coordinates along
the ribbon surface normalized by W are denoted by s and
r, respectively. The Gaussian curvature K and mean cur-
vature H are then obtained by locally fitting the surface
with a quadratic function. A reconstructed shape of the
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FIG. 2. A paper model of a ribbon with e-cones (a-c) and
d-cones (d-f) which is constructed by hand on a triangular
lattice. (a) A ribbon with e-cones (black filled circles) ob-
tained by making cuts (white lines) and inserting π/6 angled
wedges in the lateral flaps (pink/gray areas). (b) A close-up
of an e-cone and associated ridges. (c) An e-cone decorated
helicoid at equilibrium with flat triangular regions connected
by ridges. (d) A ribbon with d-cones (black open circles)
and the two lateral flaps. (e) Close-up of a d-cone with lines
defining ridges and the inner edges of the flaps. (f) A twisted
helicoid with d-cones with flat triangular regions connected
by stretched ridges.

ribbon along with K and H superimposed on a single
ridge is shown in Fig. 1(a) and Fig. 1(b), respectively.
One observes that regions with higher K are confined
to the vertices, and those with higher H are distributed
along the ridge as well as focused near the vertices. Fur-
ther, the peak values of the curvatures do not coincide
spatially. Thus, the actual route toward localization and
defect formation can be quantified by the evolution of H
and K using η, or equivalently with α, for a fixed T .

As is well known, a twisted ribbon has a helicoid shape
with H ≈ 0 and K = −η2 for small enough α at fi-
nite T , and wrinkles just above α > αc ≈ 24 due to
the development of compressive stress around the cen-
terline [21, 26, 28]. Accordingly, the map of H(r, s) and
K(r, s) is shown for α > αc in Fig. 1(c) and Fig. 1(d),
respectively. We observe a continuous transition from
smooth wrinkles to sharp ridges along with an increase
in the overall curvature by an order of magnitude as α
is increased from 55 to 437. Further, while the wrinkles
are initially confined to the center of the ribbon, they
are observed to grow in width as α is increased, before a
symmetry breaking occurs when the region with larger H
tilts with alternating angles. In contrast, the regions with
larger |K| progressively reduces in size at the expense of
those with smaller |K|. For α� αc, H is localized along
ridges with alternating tilt angles, while K is localized
in small regions which are self-organized in a triangular
lattice with a spacing similar to the wavelength at thresh-
old. As we discuss next, these localized regions can be
thought of as point-like defects which can be modeled as
conical singularities with a geometry which can be as-
signed using the measured curvature.
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FIG. 3. (a) Front view and (b) side view of the plastic defor-
mations located near the vertex in a cellulose acetate sheet
(t/W = 7.4× 10−3, T = 2.1× 10−4 and α = 3700) indicating
that the strain is mainly localized in a small triangular wedge
along the ribbon edges and along the stretched ridges. The
side view shows a change of curvature along the edge when
passing over the defect. Scale bar is 1mm. (c) Gaussian cur-
vature of a ribbon (Mylar, t/W = 8.5×10−3, T = 1.2×10−3)
for α = 430 shows stretched ridges with K < 0 connecting
e-cones. In-between the ridges, bumps and dimples (K > 0)
under low compression are observed. Data for K > −1 is
shown for better visualization. (d) Mean curvature of the
same ribbon as in (c) showing two ridges of positive (red/light
gray) and negative (blue/gray) curvature. (e) The maximum
Kmax of the Gaussian curvature on the defects increases as a
power with αNote Kmax � −η2 (dashed black line).
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FIG. 4. (a) Profile of mean curvature amplitude A(r) =√
〈H2〉s for an increasing α showing the growth of ampli-

tude and width of the wrinkles. (b) Evolution of the width
of the wrinkles rwr with α is in agreement with the form pre-
dicted using a far from threshold analysis (solid red line). For
comparison, the prediction from a near threshold analysis is
plotted (dashed black line). (c) Evolution of the amplitude
A(r = 0) with α showing a sublinear dependence with an
exponent 0.65(≈ 2/3) measured for large α.

To understand the nature of these singularities, we first
examine a model of conical singularities prescribed at the
vertices of a triangular lattice which are located at a fi-
nite distance from the edge (see Fig. 2.) In practice, neg-
ative and positive disclinations are obtained by adding
or removing a wedge-shaped sector at the edge of the
ribbon, while d-cones are created by forcing a point on
the sheet – corresponding to the vertex – into a small
rim [10]. We observe that the buckled shape is qualita-
tively different from that of an isolated singularity be-
cause of the interaction between defects. In Fig. 2(a-c),
we show that a ribbon with embedded e-cones leads to
a triangular faceted helicoid that we name an e-helicoid.
The e-helicoid is reminiscent of the wavy edges of torn
polyethene sheets and leaves induced by plastic flow and
growth [33], except that in our case, the Gaussian curva-
ture is localized due to the underlying non-planar config-
uration of the ribbon. We further found that a helicoid
structure could not be constructed using positive discli-
nations. However, d-cones organized in the same triangu-
lar lattice (see Fig. 2(d)) lead to a faceted helicoid upon
twisting with very similar triangular facets connected by
stretched ridges (see Fig. 2d-f). This is a significant result
as it is highly non-trivial to find isometric configurations
of elastic sheets theoretically or numerically with given
boundary conditions. These ordered developable shapes,
that we call d-helicoids, offer an intermediate step toward
understanding more complicated, fully disordered crum-
pled sheets which are also singular developable shapes
with vertices and ridges.

In order to compare to these models, we display the
front and side views of a scar formed on a twisted ribbon
due to plastic deformations located at the core of a sin-
gularity in Fig. 3(a) and Fig. 3(b). Unlike d-cones which
form a parabolic scar [10], we observe a triangle-shaped
plastic deformation near the edge. In this region, we
note that the metric of the surface is similar to the paper
model of an e-helicoid shown in Fig. 2(c). Further, these
characteristic features can be compared with the mea-
sured Gaussian and mean curvatures shown in Fig. 3(c)
and (d), respectively, where the curvatures are averaged
over several ridges to improve the signal to noise ratio. As
shown in Fig. 3(e), the core of the defects have a strong
negative Gaussian curvature which increases with α as
Kmax ≈ K0(α − αc)

1.7, with K0 = 6.7 × 10−4. We ob-
serve that the cores of these singularities are connected by
ridges with large H with alternating signs and relatively
small K which shows stretching between interacting e-
cones. Further, in between ridges, we identify regions
with positive K and alternating H indicating bumps and
dimples due to compression. As noted in the discussion of
the model of an e-helicoid in the previous paragraph and
Fig. 3(b), lateral flaps located near the edges of the rib-
bon (r ≈ ±1/2) are developable (K ≈ 0) but with small
curvature of alternating signs (see Fig. 3(d)). Based on
these measurements and comparisons, we conclude that
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FIG. 5. Twisted ribbons (cellulose acetate) with T = 2.5 ×
10−3 (a) and T = 2.1×10−4 (b) showing plastics deformations
at the edges with a spacing which decreases with tension. The
dashed lines represent location of the ridges which connect the
e-cone singularities to guide the eye. (c) Normalized spacing

between defects λ/
√
tW decreasing with the tension (for T >

10−3) using Mylar (blue circles) and cellulose acetate (red

squares). The prediction near threshold CλNT /
√
tW (black

dashed line) provides a reasonable fit to the data using the
adjusting parameter C = 0.9. The wavelength is observed to
saturate at λ/W ≈ 2 for T < 10−3 (see inset).

a stretched twisted ribbon spontaneously forms e-cones,
rather than d-cones, in the far from threshold regime.

We next focus on the compressed section in the central
part of the ribbon. Taking advantage of the translation
invariance along the s direction, we introduce the charac-
teristic amplitudeA(r) =

√
〈H2〉s of the wrinkled section

averaged along s. With this definition, A(r) is identically
zero and positive for developable and helicoid states, re-
spectively. In Fig. 4(a), we plot A(r) for increasing α.
Because the transition from the wrinkled section to the
stretched flaps appears continuous, the wrinkled section
is defined in practice as the region where A(r) > A(0)/10
corresponding to r < rwr. As shown in Fig. 4(b), the
evolution of rwr with α compares well with the predic-
tion from a far from threshold analysis which assumes
that the formation of the wrinkles relaxes the stresses
leading to a compression free central part and tensile
flaps [22, 31]. By contrast, a linear perturbation anal-
ysis does not capture the evolution of rwr (dashed black
line). This is because assuming that the wrinkles do not
relax the stress leads to unphysically large compressive
stresses especially in the case of α � αc. Further, the
evolution of the wrinkling amplitude A(0) evaluated at
r = 0 is observed to increase sub-linearly for large α,
consistent with A(0) ∼ (α− αc)

2/3. However, the origin
of this scaling remains unclear.

Finally, we analyze the lattice spacing between de-
fects λ. As shown in Fig. 5(a,b), we find that λ de-
creases with T and that there is little dependence with
α. We verified that the defects are not trapped in one
location due to plasticity by decreasing T under fixed
twist angle. Two regimes for the defect spacing are
identified (see Fig. 5(c)). At relatively large tension

(T > 10−3) corresponding to the elastic regime, λ is
observed to clearly decrease with tension. Because the
scaling for λ is not available in the far from thresh-
old regime, we compare the experimental data with the
prediction from a linear stability analysis which gives
λNT = 1.71(1 − ν2)−1

√
t/WT−1/4 [28]. We find that

the data can be well described by λfit = C×λNT , where
C = 0.9 is an adjustable non-dimensional prefactor close
to one. This indicates that the scaling of λ does not
change significantly far from threshold, as opposed to the
scaling of rwr shown in Fig. 4(b) which is not described
by near threshold analysis. Similar distinction has been
noted recently as well in the wrinkling of an elastic sheet
floating on a liquid drop [32]. However, at lower tension,
a plateau is observed for λ ∼ 2W , with no observable
dependence on T (Fig. 5(c), inset) indicating a lattice
spacing essentially controlled by the geometry.

In conclusion, we find that a thin extensible rib-
bon upon twisting exhibits a continuous transition from
smooth wrinkles to sharp ridges. We show with physical
models that faceted helicoids can be constructed using
ridges that connect either d-cones or negatively signed
disclinations i.e. e-cones that are located in a periodic
triangular lattice near the edges of the ribbon. Our mea-
surements clearly demonstrate that the singularities in
extensible ribbons are e-cones, and we thus call the re-
sulting structure an e-helicoid. The longitudinal stretch
of the ribbon is found to control the growth of the e-
cones and their spatial organization with a lattice spac-
ing depending on ribbon geometry and elasticity. Hence,
we demonstrate that the stretched twisted ribbon has a
dual nature as it shows properties intermediate between
a torn polyethene sheet where strain induced plasticity
leads to edges with negative Gaussian curvature and a
crumpled paper where the inextensibility condition pro-
duces shapes with flat facets and localized defects. Fi-
nally, we suggest that the characteristic features of in-
teracting e-cones found here may be applied to other
thin film systems. They may help understand extensi-
ble sheets under other conditions which result in changes
to the metric, examples of which include torn thin films,
shells with cracks, film growth, and even crumpled sheets.
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