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Abstract

The summation of logarithmic contributions to perturbative radiative corrections in phys-

ical processes through use of the renormalization group equation has proved to be a useful

way of enhancing the information one can obtain from explicit calculation. However, it has

proved difficult to perform this summation when massive fields are present. In this note we

point out that if the masses involved are quite large, the decoupling theorem of Symanzik and

of Appelquist and Carazzone can be used to make the summation of logarithms possible.

1 Introduction

Higher loop calculations in perturbative quantum chromodynamics (QCD) lead to results that

depend on the logarithm of the unphysical renormalization mass scale µ2, typically of the form

ln
(

s
µ2

)

where s is the centre of mass energy in the process being considered. As µ2 is unphysical,

one has the renormalization group (RG) equation [1-5] which in many instances makes it possible

to sum logarithmic corrections [6,7]. However, when massive fields are present, the form of the

logarithms that arise is often so complicated that such summation is not feasible.

In the instance that the masses M2 that arise are much greater than the energy scale of the

process, a decoupling theorem due to Symanzik [8] and Appelquist and Carazzone [9] states that

up to order 1/M2, these masses serve only to renormalize the parameters that characterize the

full theory, leading to an effective low energy theory in which these massive fields are not present

(ie, they “decouple”). As both the full theory and the effective low energy theory satisfy the RG
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equation, it proves possible to relate the running parameters of the full theory with those of the

effective theory when one employs a mass independent renormalization scheme [10,11].

This result has the consequence of making it possible to perform RG summation of logarith-

mic contributions to radiative effects in the massless effective theory, and then to incorporate the

contribution of heavy fields by invoking the Appelquist-Carazzone-Symanzik (ACS) theorem. This

involves summing the logarithms appearing in the relationship between the parameters charactering

the full theory and those characterizing the effective theory.

We focus on the process R(e+e− → hadrons).

2 Summation of Logarithms and the ACS theorem

Let us denote the amplitude for the process e+e− → hadrons in the full theory by Γ(s, a,M, µ) and

in the effective low energy theory (in which s ≪ M2) by Γ∗(s, a∗, µ). The ACS theorem implies

that [10]

Γ∗(s, a∗, µ) = ZΓ(s, a,M, µ) +O

(

1

M2

)

(1)

where a and a∗ are the couplings in the two theories, and

Z = Z(a,M/µ) (2a)

a∗ = a∗(a,M/µ). (2b)

Since µ is an unphysical parameter, we have the RG equations

µ
dΓ

dµ
=

(

µ
∂

∂µ
+ β(a)

∂

∂a
+Mδ(a)

∂

∂M

)

Γ (3a)

= 0

=
dΓ∗

dµ
=

(

µ
∂

∂µ
+ β∗(a∗)

∂

∂a∗

)

Γ∗ , (3b)

where

β(a) = µ
da

dµ
= −ba2(1 + ca+ c2a

2 + . . .) (4a)

β∗(a∗) = µ
da∗

dµ
= −b∗a∗

2

(1 + c∗a∗ + c∗2a
∗2 + . . .) (4b)

and

Mδ(a) = µ
dM

dµ
= Mfa(1 + g1a+ g2a

2 + . . .). (5)

We are using the mass independent renormalization scheme [4,5] with minimal subtraction [4].

Together, eqs. (1-3) lead to [10]

β∗(a∗) =

(

µ
∂

∂µ
+ β(a)

∂

∂a
+Mδ(a)

∂

∂M

)

a∗(a,M/µ); (6)



this equation relates the couplings a and a∗ in the low energy region. (A formal solution of eq.(6)

is discussed in the appendix.)

If now the expansion

Γ∗ =
∞
∑

n=0

n
∑

m=0

T ∗
nmL

ma∗n+1 (7)

(L ≡ ln(µ/
√
s)) is substituted into eq. (3b), then

An(a
∗) = −

β∗(a∗)

n

d

da∗
An−1(a

∗) (8)

where

An(a
∗) =

∞
∑

m=0

T ∗
n+m,na

∗n+m+1. (9)

If now we define

η =

∫ a∗(η)

a∗
0

dx

β∗(x)
(a∗0 = a∗(0)) (10)

then by eq. (8)

An(a
∗(η)) = −

1

n

d

dη
An−1(a

∗(η))

=
(−1)n

n!

dn

dηn
A0(a

∗(η)) (11)

and so by eqs. (7-11),

Γ∗(s, a∗, µ) =
∞
∑

n=0

(−L)n

n!

dn

dηn
A0(a

∗(η))

= A0(a
∗(η − L)). (12)

As noted in ref. [12], η − L = − ln
(

e−ηµ√
s

)

and so η can be absorbed into µ; we now denote

a∗(−L) by α∗(−L) to distinguish a∗(η) in eq. (10) from the running coupling a∗ of eq. (4b). In

fact, by setting L = 0 in eqs. (1,12) we see that the boundary value a∗0 = α∗(0) is just the running

coupling a∗, so that

ln

√
s

µ
=

∫ α∗
(

ln
√

s

µ

)

a∗

dx

β∗(x)
. (13)

Differentiating eq. (13) with respect to lnµ results in

− 1 =
1

β∗
(

α∗
(

ln
√
s

µ

))µ
d

dµ
α∗

(

ln

√
s

µ

)

−
1

β∗(a∗)

(

µ
da∗

dµ

)

(14)

and so by eq. (4b)

µ

dα∗

(

ln

√
(s)

µ

)

dµ
= 0. (15)



Thus changes in µ are compensated by changes in a∗ in eq. (13) leaving α∗

(

ln

√
(s)

µ

)

unchanged; it

is independent of µ. One assigns, using experimental results, a value to a∗ appropriate to whatever

value of µ that is chosen. The centre of mass energy s is some multiple of this chosen value of µ2.

The net result, following from this observation, is that eq. (12) can now be written in the form

Γ∗(s, a∗(µ), µ) = A0

(

α∗

(

ln

√
s

µ
, a∗(µ)

))

(16)

with the explicit dependence of α∗ on µ through ln
√
s

µ
being compensated by the implicit dependence

through a∗(µ).

By eqs. (9,16) we find that

Γ∗ =

∞
∑

n=0

T ∗
n(α

∗)n+1 (T ∗
n ≡ T ∗

n0). (17)

In ref. [13] it is shown that renormalization scheme ambiguities when using mass independent

renormalization can be characterized by c∗2, c
∗
3 . . .; in ref. [12] it is shown how these ambiguities

result in T ∗
n being expressed as

T ∗
0 = 1 (18a)

T ∗
1 = τ ∗1 (18b)

T ∗
2 = −c∗2 + τ ∗2 (18c)

T ∗
3 = −2c∗2τ

∗
1 −

1

2
c∗3 + τ ∗3 (18d)

etc. where τ ∗i are all renormalization scheme invariants.

We now return to eq. (6) which relates the running coupling a∗ in the effective low energy theory

to the running coupling a in the full theory. The function a∗(a,M/µ) is evidently of the form

a∗ = a+
∞
∑

n=1

n
∑

m=1

λnmΛ
man (19)

where Λ = ln M
µ
. If now

Bn(a) =

∞
∑

m=0

λn+m,na
m (λ∞ = 1) (20)

then by eq. (19), eq. (6) becomes

β∗

(

∞
∑

n=0

BnΛ
n

)

=

[

(−1 + δ(a))
∂

∂Λ
+ β(a)

∂

∂a

] ∞
∑

n=0

BnΛ
n

or
∞
∑

k=0

1

k!
β∗(k)(a)

(

∞
∑

n=0

Bn(a)Λ
n

)k

=

∞
∑

n=0

[

(−1 + δ(a))(nBnΛ
n−1) + β(a)B′

nΛ
n
]

. (21)



The functions Bn(a) (n = 1, 2 . . .) can be determined b y the requirement that eq. (21) is satisfied

at each order in Λ. We find that

B0(a) = 1 (22a)

B1(a) =
β∗(a)− β(a)

−1 + δ(a)
(22b)

B2(a) =
β∗′(a)B1(a)− β(a)B′

1(a)

2(−1 + δ(a))
(22c)

etc.

We can now write a∗ as

a∗ =
∞
∑

n=0

Bn(a)Λ
n (23)

with Bn(a) given by eq. (22). Together, eqs. (13, 17,23) show that Γ∗ can now be expressed in

terms of a, s and M . Thus we have achieved our objective of having a resummation of logarithmic

corrections to the process e+e− → hadrons which takes into account the contributions of a field with

a large mass. The argument that leads to eq. (15) is still valid; Γ∗ is independent of µ. However,

both a and M are to be determined experimentally at the value of µ that is chosen.

The question remains of the renormalization schemes used to compute Γ∗ and Γ respectively.

(This has been considered in the context of supersymmetry in ref. [14].) In principle these two

choices can be made independently; there is no relationship between a and a∗ that fixes how the

parameters ci of eq. (4a) and gi of eq. (5) are related to the parameters c∗i of eq. (4b). The values

of c∗i affect T ∗
n through eq. (18); however, altering the values of ci and gi only serves to alter the

relationship of a and M with µ. But as Γ∗ is independent of µ, it is possible to select whatever

value of ci and gi that is most convenient. For example, if ci = gi = 0, then eq. (22) is greatly

simplified. The choice c∗i = 0 further simplifies eq. (22); it also reduces α∗
(

ln
√
s

µ

)

in eq. (13) to

being a Lambert W function [12]. One could also choose c∗i so that T ∗
n = 0 (n ≥ 2), reducing the

sum in eq. (17) to being just two terms.

3 Conclusion

We have combined RG summation with the ACS theorem to show how the calculation of the

amplitude for the process e+e− → hadrons can take into account the presence of heavy field. We

have also demonstrated how the result is independent of the renormalization scale µ and how one

can make convenient choices for the parameters c∗i , ci and gi that parameterize the renormalization

schemes chosen.
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Appendix

In this section we discuss the formal solution to eq. (6) using the method of characteristics.

We begin by writing eq. (6) as

(

β(a)
∂

∂a
+ (−1 + δ(a))

∂

∂Λ

)

a∗(a,Λ) = β∗(a∗(a,Λ))



where Λ = lnM/µ. Next, the characteristic functions a(r, s), Λ(r, s), a∗(r, s) are introduced, satis-

fying
da(r, s)

ds
= β(a(r, s)), a(r, 0) = a (A.1a)

dΛ(r, s)

ds
= −1 + δ(a(r, s)), Λ(r, 0) = Λ (A.1b)

da∗(r, s)

ds
= β∗(a∗(r, s)), a∗(r, 0) = a∗ . (A.1c)

Eq. (6) is satisfied by a(r, s), Λ(r, s) and a∗(r, s) for all r and s. From eqs. (A.1a) and (A.1c) we

see that

s =

∫ a(r,s)

a

dx

β(x)
+ c2(r) (A.2a)

s =

∫ a∗(r,s)

a∗

dx

β∗(x)
+ c3(r) (A.2b)

in addition, since
dΛ

da
=

−1 + δ(a)

β(a)
, (A.3)

we see that

Λ(r, s) =

∫ a(r,s)

a

dx(−1 + δ(x)

β(x)
+ c1(r) . (A.4)

The function ci(r) are boundary conditions on eq. (A.1).

Implicit in eq. (19) is the boundary condition a∗(r,Λ = 0) = a(r,Λ = 0) = r on eq. (A.1). From

this condition, eqs. (A.2a, A.2b, A.4) lead to

0 =

∫ r

a

dx

β(x)
+ c2(r) (A.5a)

0 =

∫ r

a∗

dx

β∗(x)
+ c3(r) (A.5b)

0 =

∫ r

a

dx(−1 + δ(x))

β(x)
+ c1(r) . (A.5c)

Eq. (A.5) fixes ci(4), and so eqs. (A.2a), (A.2b), (A.4) become

s =

∫ a(r,s)

r

dx

β(x)
(A.6a)

s =

∫ a∗(r,s)

r

dx

β∗(x)
(A.6b)

Λ(r, s) =

∫ a(r,s)

r

dx
(−1 + δ(x))

β(x)
. (A.6c)



In principle now, from eq. (A.6c) one can determine r; this can be inserted into eq. (A.6a) to

obtain s. With these values of s and r, a∗ in eq. (A.6b) is determined in terms of a∗(r, s), Λ(r, s)

thus giving the solution to eq. (A.1). To do this in closed form is not feasible, even when using the

’t Hooft renormalization scheme in which

β(a) = −ba2(1 + ca) (A.7a)

β∗(a∗) = −b∗a∗
2

(1 + c∗a∗) (A.7b)

δ(a) = fa . (A.7c)

It is best to employ the expansion of eq. (19). However, for purposes of illustration, consider

β(a) = b/a (A.8a)

β∗(a∗) = b∗/a∗ (A.8b)

δ(a) = 0 (A.8c)

in which case we have from eq. (A.6)

s =
1

2b
(a2 − r2) (A.9a)

s =
1

2b∗
(a∗

2

− r2) (A.9b)

Λ =
−a2 + r2

2b
. (A.9c)

By eq. (A.9c)

r2 = a2 + 2bΛ

and so by eq. (A.9a)

s = −Λ

and so eq. (A.9b) becomes

a∗
2

= a2 + 2(b∗ − b)Λ (A.10)

which satisfies
(

b

a

∂

∂a
−

∂

∂Λ

)

a∗ =
b∗

a∗

with the boundary condition a∗ = a when Λ = 0.
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