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Abstract

We classify all matrices M ∈ Matm,n(K[x]) for which degM = 1
and rkM ≤ 2. Furthermore, we classify all such matrices M such that
M = JH for some polynomial map H . Among other things, we show that
JH is similar to a matrix M̃ which has either only two nonzero columns or
only three nonzero rows. In addition, we show that trdegK K(H) = rkJH

for quadratic polynomial maps H over K such that 1

2
∈ K and rkJH ≤ 2.

Furthermore, we prove that nilpotent Jacobian matrices N for which
degN = 1 and rkN ≤ 2 are conjugation similar to a triangular matrix
(with zeroes on the diagonal), regardless of the characteristic of K. This
generalizes [dBY, Th. 3.4] (the case where K has characteristic zero) and
[PC, Th. 1] (the case where 1

2
∈ K and N(0) = 0). In addition, we prove

the same result for Jacobian matrices N for which degN = 1 and N
2 = 0.

This generalizes [MO, §4] and [PC, Lem. 4] (the case where 1

2
∈ K and

N(0) = 0).

Key words: quadratic polynomial map, Jacobian rank two, transcendence
degree two, homogeneous, nilpotent, unipotent Keller map, linearly triangular-
izable, strongly nilpotent, similar, conjugation similar.

MSC 2010: 12E05, 12F20, 14R05, 14R10.

1 Introduction

Throughout this paper, K is an arbitrary field. Let H = (H1, H2, . . . , Hm) be
a polynomial map from Kn to Km, i.e. Hi ∈ K[x] := K[x1, x2, . . . , xn] for each

∗The author was supported by the Netherlands Organisation for Scientific Research
(NWO).
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i, where x := (x1, x2, . . . , xn) is an n-tuple of indeterminates. The degree of
H is defined by degH := max{degH1, degH2, . . . , degHm}. We say that H is
homogeneous of degree d if y1H1 +y2H2 + · · ·+ymHm is homogeneous of degree
d + 1, where y := (y1, y2, . . . , ym) is an m-tuple of indeterminates.

We write JH for the Jacobian matrix of H (with respect to x), i.e.

JH =











∂
∂x1

H1
∂

∂x2

H1 · · · ∂
∂xn

H1
∂

∂x1

H2
∂

∂x2

H2 · · · ∂
∂xn

H2

...
...

...
...
...

...
∂

∂x1

Hm
∂

∂x2

Hm · · · ∂
∂xn

Hm











Let R be a commutative ring with 1. We write Matm,n(R) for the set of
matrices with m rows and n columns over R. So JH ∈ Matm,n(K[x]). We
write Matn(R) for the ring of matrices with n rows and n columns over R. We
define GLn(R) as the group of invertible matrices over R, i.e. GLn(R) := {M ∈
Matn(R) | detM is a unit in R}.

If R is a K-algebra, then we say that elements M and M̃ of Matm,n(R) are
similar (over K) if there exists matrices S ∈ GLm(K) and T ∈ GLn(K) such
that M̃ = SMT . If m = n and S = T−1 in addition, then we say that M and
M̃ are conjugation similar (over K).

A matrix M ∈ Matn(R) is upper (lower) triangular if all entries below
(above) the principal diagonal are zero, and triangular (diagonal) if M is either
(both) upper or (and) lower triangular. The reader may verify the following.

Lemma 1.1. Suppose that R is a K-algebra and M ∈ Matn(R).

(i) If M is upper (lower) triangular, then M is conjugation similar to a lower
(upper) triangular matrix M̃ ∈ Matn(R)

(ii) If R is a reduced ring and M is both triangular and nilpotent, then the
diagonal of M is totally zero.

If M ∈ Matm,n(K[x]), then we write M(v) for the matrix











M11(v) M12(v) · · · M1n(v)
M21(v) M22(v) · · · M2n(v)

...
...

...
...
...

...
Mm1(v) Mm2(v) · · · Mmn(v)











where v ∈ Kn. We say that M ∈ Matm(K[x]) is strongly nilpotent (over K) if
there exists an r ≥ 1, such that

M(v(1)) ·M(v(2)) · · · · ·M(v(r)) = 0

for all v(1), v(2), . . . , v(r) ∈ Kn. If K is infinite, then proposition 1.3 below
gives a classification of strongly nilpotent matrices over K[x]. For the proof of
proposition 1.3, we need the following lemma, which one can show by induction
on r.
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Lemma 1.2. Suppose that M ∈ Matm(K[x]) is of the form

(

A ∅
∗ B

)

or

(

A ∗
∅ B

)

Let M̃ := M(v(1)) · M(v(2)) · · · · · M(v(r)), Ã := A(v(1)) · A(v(2)) · · · · · A(v(r))
and B̃ := B(v(1)) · B(v(2)) · · · · · B(v(r)). Then M̃ is of the form.

(

Ã ∅

∗ B̃

)

or

(

Ã ∗

∅ B̃

)

(1.1)

respectively.

Proposition 1.3. Suppose that L is infinite and an extension field of K. Let
M ∈ Matm(K[x]). Then M is strongly nilpotent over L, if and only if M is
nilpotent and conjugation similar to a triangular matrix M̃ ∈ Matm(K[x]) over
K.

Proof. The ‘if’-part is an straightforward exercise, so assume that M is strongly
nilpotent over L. Then there are v(2), v(3), . . . , v(r) ∈ Ln such that for all v(1) ∈
Ln,

M(v(1)) ·M(v(2)) · · · · ·M(v(r)) = 0 6= M(v(2)) ·M(v(2)) · · · · ·M(v(r))

Since K is infinite, it follows that

M ·M(v(2)) · · · · ·M(v(r)) = 0 6= M(v(2)) ·M(v(2)) · · · · ·M(v(r))

so the columns of M are linearly dependent over L. Since L is a vector space over
K, the columns of M are linearly dependent over K. Hence M is conjugation
similar to a matrix M̃ ∈ Matm(K[x]), of which the last column is zero. From
lemma 1.2, it follows that the leading principal minor matrix of size (m− 1) ×
(m− 1) of M strongly nilpotent. Hence it follows by induction on m that M is
conjugation similar to a lower triangular matrix.

The above proof has been extracted from that of [dB1, Th. 3.1], which is a
more general result.

Corollary 1.4. Suppose that M ∈ Matm(K[x]) is of the form

(

A ∅
∗ B

)

or

(

A ∗
∅ B

)

Then M is conjugation similar to a triangular matrix, if and only if A and B
are conjugation similar to a triangular matrix.

Proof. From lemma 1.2, it follows that A and B are strongly nilpotent over an
infinite extension field L of K if M is strongly nilpotent over L. Hence the ‘only
if’-part follows from proposition 1.3.

3



To prove the ‘if’-part, suppose that A and B are strongly nilpotent over an
infinite extension field L. Then there exists an integer r, such that Ã = B̃ = 0
in (1.1), for every v(1), v(2), . . . , v(r) ∈ Ln. It follows that

(

M(v(1)) ·M(v(2)) · · · · ·M(v(r))
)

·
(

M(v(r+1)) ·M(v(r+2)) · · · · ·M(v(2r))
)

= 0

for all v(1), v(2), v(3), . . . , v2r−1, v(2r) ∈ Kn. Hence the ‘if’-part follows from
proposition 1.3 as well.

Suppose that M = JH and M̃ = SMT , where H is a polynomial map from
Kn to Km, S ∈ GLm(K) and T ∈ GLn(K). Let H̃ := SH(Tx). From the
chain rule, it follows that

J H̃ = J
(

SH(Tx)
)

= SM |x=TxT = M̃ |x=Tx (1.2)

so M̃ itself is a Jacobian matrix up to an automorphism of K[x]. It follows
that J H̃ is (strongly) nilpotent or upper (lower) triangular, if and only if M̃ is
(strongly) nilpotent or upper (lower) triangular respectively.

The degree of a matrix M ∈ Matm,n(K[x]) is defined by

degM := max{degM11, degM12, . . . , degM1n, degM21, degM22, . . . , degMmn}

§2 In section 2, we classify all matrices M ∈ Matm,n(K[x]) for which degM =
1 and rkM ≤ 2. Furthermore, we classify all such matrices M such that M =
JH for some polynomial map H . Among other things, we show that M = JH
is similar to a matrix M̃ which has either only two nonzero columns or only
three nonzero rows.

In addition, we show that trdegK K(H) = rkJH for quadratic polynomial
maps H over K such that 1

2 ∈ K and rkJH ≤ 2. In general trdegK K(H) ≤
rkJH for a polynomial map H of any degree, with equality if K has charac-
teristic zero. This is proved in [BMS, Lem. 9] and [BMS, Th. 8] respectively.

§3 In section 3, we prove that nilpotent Jacobian matrices N for which degN =
1 and rkN ≤ 2 are conjugation similar to a triangular matrix (with zeroes on
the diagonal), regardless of the characteristic of K. This generalizes [dBY,
Th. 3.4] (the case where K has characteristic zero) and [PC, Th. 1] (the case
where 1

2 ∈ K and N(0) = 0). In [PC, Th. 1], which is the main result of [PC],
the authors additionally assume that K is infinite, but one can derive the finite
case from the infinite case by way of proposition 1.3 above.

At the end of section 3, we prove that nilpotent Jacobian matrices N for
which degN = 1 and N2 = 0 are conjugation similar to a triangular matrix
(with zeroes on the diagonal), regardless of the characteristic of K. This gener-
alizes [MO, §4] and [PC, Lm. 4] (the case where 1

2 ∈ K and N(0) = 0).

We additionally show that N(v(1)) · N(v(2)) · N(v(3)) = 0 if 1
2 ∈ K, where

v(1), v(2), v(3) are as in the proof of proposition 1.3, using the fact that the proof
of [PC, Lm. 4] shows that N(v(1)) ·N(v(2)) = 0 if N(0) = 0 in addition.
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2 (Jacobian) matrices of degree one and rank at
most two

A matrix of rank zero can only be the zero matrix, so we only need to distinguish
rank one and rank two. Let us start with rank one.

Theorem 2.1. Let M be a matrix whose entries are polynomials of degree at
most 1 over K. If rkM = 1, then M is similar to a matrix M̃ for which one of
the following statements holds.

(1) Only the first column of M̃ is nonzero.

(2) Only the first row of M̃ is nonzero.

If M is the Jacobian matrix of a (quadratic) polynomial map in addition, then
the following assertion can be added to (1).

(1) The first column of M̃ is of the form (∗, 1
2 , 0, . . . , 0).

Proof. If the constant part M(0) of M is zero, then we can substitute xi = xi+1,
where xi is a variable which appears in M , to obtain M(0) 6= 1. So we may
assume that M(0) 6= 0.

Since rkM(0) = 1, we can choose M̃ such that

M̃(0) =











1 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

...
...
...











Looking at the linear parts of the 2 × 2 minor determinants, we see that only
the first row and the first column of M̃ may be nonzero.

Suppose that (1) does not hold. Then we may assume that the second entry
of the first row of M̃ is nonzero. Suppose that (2) does not hold. Then we may
assume that the first entry of the second row of M̃ is nonzero. This contradicts
that the leading principal 2 × 2 minor determinant of M̃ is zero.

So we have proved the first part of this theorem. To prove the second part
of this theorem, assume that M = JH for a polynomial map H . If we remove
terms xk1

1 xk2

2 · · · of H for which 1
ki

/∈ K for all i, then M = JH is preserved,
and for every term t of H , there exists an i such that

∂

∂xi

t 6= 0

Since degJH ≤ 1, it follows that H becomes a polynomial map with terms of
degree 1 and 2 only. So we may assume that H(0) = 0 and degH ≤ 2.

Let H̃ := SH(Tx) and suppose that M̃ is as in (1). From (1.2), it follows
that J H̃ is an in (1) as well, i.e. only the first column of J H̃ is nonzero.

If 1
2 ∈ K, then for all j, H̃j is linearly dependent over K on x2

1 and x1 only.

If x1 and x2
1 are in turn linearly dependent over K on H̃1, H̃2, · · · , then we can
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get the first column of J H̃ and M̃ of the given form by way of row operations.
Otherwise, we can get the first column of J H̃ and M̃ of the form (∗, 0, 0, · · · , 0)
by way of row operations, so (2) is satisfied.

So assume that 1
2 /∈ K. Then for all j, H̃j is dependent over K on x1, x

2
1, x

2
2,

x2
3, . . .. By row operations, we can obtain that the coefficients of x1 of H̃j are

zero for all j ≥ 2. Hence only the first row of J H̃ is nonzero and M̃ is as in
(2).

In [dB2, Th. 1.8], it is proved that over fields of characteristic zero, polyno-
mial maps with an antisymmetric Jacobian matrix are linear. With essentially
the same proof, one can draw the same conclusion if the characteristic of the
field exceeds the degree of the polynomial map.

Lemma 2.2. Let H be a polynomial map of degree at most d over K, such that
d! 6= 0 in K. If JH is antisymmetric, then degH ≤ 1.

Proof. There is nothing to prove if 1
2 /∈ K, so assume that 1

2 ∈ K. Suppose that
JH is antisymmetric. Then

∂

∂xi

∂

∂xj

Hk = −
∂

∂xi

∂

∂xk

Hj =
∂

∂xj

∂

∂xk

Hi = −
∂

∂xi

∂

∂xj

Hk

and hence 2 ∂
∂xi

∂
∂xj

Hk = 0, for all i, j, k. As 2d! 6= 0 in K, it follows that

degH ≤ 1.

Using lemma 2.2 above, we can proceed with rank two.

Theorem 2.3. Let M be a matrix whose entries are polynomials of degree at
most one over K. If rkM = 2, then M is similar to a matrix M̃ for which one
of the following statements holds.

(1) Only the first two columns of M̃ are nonzero.

(2) Only the first two rows of M̃ are nonzero.

(3) The first row and the first column of M̃ are nonzero, and M̃ is zero else-
where.

(4) The leading principal 3 × 3 minor matrix of M̃ is anti-symmetric, with
only zeroes on the diagonal, and M̃ is zero elsewhere. Furthermore, the
three entries below the diagonal of this principal minor matrix are linearly
independent over K.

If M is the Jacobian matrix of a (quadratic) polynomial map in addition, then
the following assertions can be added to (3) and (4) respectively.

(3) The first column of M̃ is of the form (∗, ∗, 12 , 0, . . . , 0).

(4) M̃ is symmetric, i.e. 1
2 /∈ K.
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Proof. We first show that we may assume that

M(0) =











0 −1 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
...

...
...

...
...
...











(2.1)

Notice that this is indeed the case if rkM(0) ≥ 2. Otherwise, we may assume
that rkM(0) = 1, because we can substitute xi = xi + 1 if M(0) = 0, just like
in the proof of theorem 2.1. So we may assume that

M(0) =











0 0 0 · · ·
1 0 0 · · ·
0 0 0 · · ·
...

...
...

...
...
...











Suppose that an M̃ as in (3) cannot be obtained by interchanging the first and
the second row of M . Then M has a nonzero entry outside the second row and
the first column. Without loss of generality, we may assume that the second
entry of the first row of M is nonzero.

Say that the coefficient of xj of this entry of M is nonzero. Let C be the
coefficient matrix of xj of M . Then

x−1
j

(

M − xjC
)

+ x0
jC

is the expansion of the matrix x−1
j M , as a Laurant polynomial over xj with

matrix coefficients. Let C̃ be the matrix one gets by substituting xj = x−1
j in

x−1
j M . Then

C̃ = x+1
j

(

M − xjC
)

+ x0
jC = xj

(

M −M(0) − xjC
)

+ xjM(0) + C

If rkC ≥ 2, then we can interchange C and M(0) as coefficient matrices of M
without affecting rkM = 2, namely by replacing M by the result of substituting
xi = x−1

j xi for all i 6= j in C̃, to obtain rkM(0) ≥ 2 as above.
So assume that rkC = 1. Since the second entry of the first row of C is

nonzero, we may assume that the first row of C equals (0 1 0 0 · · · 0). Since
rkC = 1, it follows that only the second column of C is nonzero, so we may
assume that C is the transpose of M(0). Now substitute xj = xj − 1 to obtain
that M(0) is as in (2.1).

So M(0) is as in (2.1). Looking at the linear parts of the 3 × 3 minor
determinants, we see that only the first two rows and the first two columns of
M may be nonzero. Take i ≥ 3 arbitrary.

Suppose that (2) does not hold. Then we may assume that the third row
of M is nonzero. If the first entry of the third row is zero, then we can add
the second column and the second row to the first column and the first row
respectively, so we may assume that the first entry of the third row is nonzero.
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Looking at the quadratic part of the leading principal 3 × 3 minor determi-
nant, we see that the third column is dependent on the transpose of the third
row. If i > 3, then we could interchange the third and the i-th column of M ,
so the i-th column of M is dependent on the transpose of the third row.

Suppose that (1) does not hold. Then we may assume that the third column
of M is nonzero. Just as the i-th column of M is dependent on the transpose
of the third row, we can deduce that the i-th row of M is dependent on the
transpose of the third column. So the i-th row of M is dependent on the third
row. In addition, the i-th column of M is dependent on the third column.

Since the third column is dependent on the transpose of the third row, the
third entry of the first row of M is nonzero along with the first entry of the
third row. Furthermore, we may assume that the leading principal 3× 3 matrix
of M is of the form





∗ ∗ −a
∗ c −b
a b 0



 or





∗ ∗ b
∗ c λb
a λa 0



 (2.2)

where a and b are linear forms over K and λ ∈ K.
We show that (3) is satisfied if M is of the form of the rightmost matrix of

(2.2). Indeed, if M has this form, then we can subtract the first column and
the first row λ times from the second column and the second row respectively,
to obtain λ = 0, after which we can look at the leading principal 3 × 3 minor
determinant to deduce that c has become zero.

So assume that M is of the form of the leftmost matrix of (2.2), but not of
the form of the rightmost matrix of (2.2). Then a and b are independent linear
forms. Looking at the leading principal 3 × 3 minor determinant, we see that
b | a2c, so b | c and c = µb for some µ ∈ K. Subtracting the third row µ times
from the second row, we see that we may assume that µ = 0. So we may assume
that c = 0. More generally, we may assume that the diagonal of the leading
principal 3 × 3 matrix of M is zero.

Now it is straightforward to check that the leading principal 3 × 3 matrix
of M is antisymmetric. Furthermore, the three entries below its diagonal are
linearly independent over K, because a, b and f + 1 are linearly independent
over K for every linear form f . Since a and b are linearly independent, it follows
that the i-th row of M is dependent over K on the third row. Since −a and
−b are linearly independent, it follows that the i-th column of M is dependent
over K on the third column. So we can make M̃ as in (4) from M by way of
row and column operations.

So we have proved the first part of this theorem. To prove the second part
of this theorem, assume that M = JH for a polynomial map H . Just as in
the proof of theorem 2.1, we may assume that H(0) = 0 and degH ≤ 2. Let
H̃ := SH(Tx). The case where M̃ is as in (3) follows in a similar manner as
the case where M̃ is as in (1) in the proof of theorem 2.1.

Hence assume that M̃ is as in (4) and that 1
2 ∈ K. Then J H̃ is as in (4)

as well. Furthermore, H̃j ∈ K[x1, x2, x3] for all j. From lemma 2.2, it follows
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that deg H̃ = 1. This contradicts that M̃ has three entries which are linearly
independent over K.

Corollary 2.4. Let H be a quadratic polynomial map over K, such that r :=
rkJH ≤ 2. If 1

2 ∈ K, then K[H ] ⊆ K[f1, . . . , fr] for polynomials fi. In
particular, trdegK K(H) = rkJH.

Proof. From 1
2 ∈ K, it follows that for every term t of H ,

∂

∂xi

t 6= 0 ⇐⇒ xi | t

If r = 0, then H is constant. If r = 1, then it follows from theorem 2.1 that
we may assume that either K[H ] = K[x1] or K[H ] = K[H1]. So assume that
r = 2. Then it follows from theorem 2.3 that we may assume that either
K[H ] ⊆ K[x1, x2] or K[H ] = K[H1, H2] or K[H ] = K[H1, x1], because (4) of
theorem 2.3 for M = JH requires 1

2 /∈ K.

Lemma 2.5. Let H be a polynomial map over K and suppose that JH is sym-
metric. If for each i, the i-th entry of the diagonal of JH has no terms whose
degrees with respect to xi are equal to −2 in K, then there exists a polynomial
h ∈ K[x] such that H = (J h)t and JH = Hh.

Proof. Assume that the diagonal of JH is as indicated above. Then for each i,
Hi has no terms whose degrees with respect to xi are equal to −1 in K. From
the proof of [vdE, Lem. 1.3.53], it follows that there exists a polynomial h ∈ A[x]
such that H = (J h)t (the αi in that proof are nonzero). So JH = Hh.

Corollary 2.6. Suppose that H is a polynomial map of degree at most 2 in
dimension three over K, such that JH is antisymmetric with only zeroes on the
diagonal. Suppose that JH is not constant. Then there exist a λ ∈ K∗ and
c1, c2, c3 ∈ K, such that

JH = H
(

λ(x1 + c1)(x2 + c2)(x3 + c3)
)

Furthermore, 1
2 /∈ K and rkJH = 2 < 3 = trdegK K(H).

Proof. From lemma 2.2, it follows that 1
2 /∈ K and that JH is symmetric. From

lemma 2.5, it follows that M̃ |x=Tx = J H̃ = Hh for some polynomial h.
Since degH ≤ 2, it follows that terms of degree greater than 3 of h cannot

affect Hh. Since 1
2 /∈ K, it follows that terms of degree at most 3 of h which

are divisible by x2
i for some i cannot affect Hh. So we can remove terms of

h of degree greater than 3 and terms of h which are divisible by x2
i for some

i. Furthermore, we can remove terms of h of degree at most 1. After these
removals, h will be of the form

h = λx1x2x3 + c̃1x2x3 + c̃2x3x1 + c̃3x1x2

9



In particular deg h ≤ 3. Suppose that JH is not constant. Then deg h = 3, so
λ 6= 0. Hence JH is of the given form, with ci = λ−1c̃i for each i. Furthermore,
rkJH = 2.

Suppose that trdegK K(H) ≤ 2. Then there exists a polynomial f such that
f(H) = 0. If f̄ is the leading homogeneous part of f and H̄ is the leading
homogeneous part of H , then f̄(H̄) = 0, so trdegK K(H̄) ≤ 2. From [dB3,
Th. 2.5], it follows that there exists an S ∈ GL3(K) such that

SH̄ = (p, q, 0) or SH̄ = (p2, pq, q2)

for homogeneous polynomials p, q of the same degree. In the first case, the rows
of J H̄ are dependent over K. In the second case, deg(p, q) = 1 and the columns
of J H̄ are dependent over K. This is however not the case for

J H̄ = λ





0 x3 x2

x3 0 x1

x2 x1 0





so trdegK K(H) = 3.

Corollary 2.7. Let M be a matrix whose entries are polynomials of degree at
most one over K. Suppose that rkM ≤ 2 and that M is the Jacobian matrix
of a polynomial map H. Then there does not exists a polynomial map H such
that trdegK K(H) = rkJH and JH = M , if and only if M is as in (4) of
theorem 2.3. In that case, 1

2 /∈ K and trdegK K(H) = 3 > 2 = rkJH for every
polynomial map H such that JH = M .

Proof. The ‘if’-part follows from corollary 2.6. The last claim follows from
corollary 2.6 as well. The ‘only if’-part follows from theorem 2.3 and the proof
of corollary 2.4.

3 Nilpotent Jacobian matrices of degree one and
rank at most two

Before we prove the main result of this section, which is theorem 3.2 below, we
formulate a lemma about nilpotent matrices N of degree 1 and size 2 × 2 or
3 × 3, such that P−1N(0)P has Jordan normal form for a permutation matrix
P .

Lemma 3.1. Let K be a field and N be a nilpotent matrix whose entries are
polynomials of degree 1. Then the following holds.

(i) If N(0) =

(

0 0
0 0

)

, then N is conjugation similar to a triangular ma-

trix.

(ii) If N(0) =

(

0 0
1 0

)

, then N is lower triangular.
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(iii) If N(0) =





0 0 1
0 0 0
0 0 0



, then N is conjugation similar to a triangular

matrix.

(iv) If N(0) =





0 1 0
0 0 1
0 0 0



 and N is not upper triangular, then N is similar

to an antisymmetric matrix Ñ with only zeroes on the diagonal, such that
the constant part of Ñ is equal to the right hand side of (2.1) and the last
row of Ñ is (0 b 0) for some nonzero linear form b.

Proof.

(i) Using the trace condition, we see that

N =

(

a b
c −a

)

for linear forms a, b. As polynomial rings have unique factorization, b = λa
for some λ ∈ K. Using the deteminant condition, we see that c = λ−1a, so
the entries of a−1N are contained in K. Hence a−1N is strongly nilpotent
over an infinite extension field of K. From proposition 1.3, it follows that
a−1N is conjugation similar to a triangular matrix, and so is N .

(ii) Using the determinant condition,

N =

(

∗ 0
∗ ∗

)

(because the linear part is zero). Hence N is lower triangular.

(iii) Using the principal 2 × 2 minors condition, we see that

N =





∗ ∗ ∗
b ∗ ∗
0 c ∗





for linear forms b, c (because the linear part is zero). On account of the
determinant condition, bc = 0 (because bc is the quadratic part of detN).
If b = 0, then the leading principal 1 × 1 minor and the trailing principal
2 × 2 minor of N are nilpotent, hence conjugation similar to a triangular
matrix on account of (i). If c = 0, then the leading principal 2 × 2 minor
and the trailing principal 1×1 minor of N are nilpotent, hence conjugation
similar to a triangular matrix on account of (i). From corollary 1.4, it
follows that N is conjugation similar to a triangular matrix in both cases.

(iv) Using all principal minors conditions

N =





−a ∗ ∗
b a + c ∗
0 −b −c





11



for linear forms a, b, c (because the linear parts are zero). If b = 0, then N
is upper triangular, so assume that b 6= 0. On account of the determinant
condition, a = c (quadratic part) and b | a(a + c)c (cubic part). So b | a
if 1

2 ∈ K. If 1
2 /∈ K, then b | a2 on account of the principal 2 × 2 minors

condition, so b | a in any case.

Since b | a and b | c, we may assume that a = c = 0, because we can
replace N by T−1NT , where

T :=





1 −a
b

0
0 1 − c

b

0 0 1



 and T−1 =





1 a
b

ac
b2

0 1 c
b

0 0 1





On account of the determinant condition, the upper right corner of N is
zero. On account of the principal 2 × 2 minors condition,

N =





0 f + 1 0
b 0 f + 1
0 −b 0





for a linear form f . Hence

N





0 0 −1
0 −1 0
1 0 0



 =





0 −f − 1 0
f + 1 0 −b

0 b 0





is antisymmetric with only zeroes on the diagonal, its constant part is
equal to the right hand side of (2.1), and its last row is (0 b 0) for some
nonzero linear form b.

Theorem 3.2. Suppose that H is a quadratic polynomial map in dimension n
over a field K of any characteristic whatsoever, such that rkJH ≤ 2 and JH
is nilpotent. Then JH is conjugation similar to a triangular matrix.

Proof. Let M = JH . Suppose first that rkM = 1. From theorem 2.1, it
follows that there exists S, T ∈ GLn(K), such that M̃ := SMT satisfies one of
the following:

• M̃ is as in (1) of theorem 2.1.
Then M̃ , T−1MT and J

(

T−1H(Tx)
)

= T−1M |x=TxT are lower trian-
gular, because only their first columns are nonzero. So M is conjugation
similar to a triangular matrix.

• M̃ is as in (2) of theorem 2.1.
Then M̃ , SMS−1 and J

(

SH(S−1x)
)

= SM |x=S−1xS
−1 are upper trian-

gular, because only their first columns are nonzero. So M is conjugation
similar to a triangular matrix.

Suppose next that rkM = 2. From theorem 2.3, it follows that there exists
S, T ∈ GLn(K), such that M̃ := SMT satisfies one of the following:

12



• M̃ is as in (1) of theorem 2.3.
Then only the first two columns of M̃ , T−1MT and J

(

T−1H(Tx)
)

=
T−1M |x=TxT are nonzero. From (i) and (ii) of lemma 3.1, it follows that
the leading 2 × 2 principal minor matrix of T−1MT and T−1M |x=TxT
are conjugation similar to a triangular matrix. Hence M is conjugation
similar to a triangular matrix as well.

• Only the first three rows of M̃ may be nonzero.
Then only the first three rows of M̃ , SMS−1 and J

(

SH(S−1x)
)

=
SM |x=S−1xS

−1 are nonzero. Hence the leading principal 3 × 3 minor
matrix N of SMS−1 is nilpotent.

In order to show that M is conjugation similar to a triangular matrix, it
suffices to show that SMS−1 is conjugation similar to a triangular matrix.
From corollary 1.4, we deduce that it suffices to show that N is conjugation
similar to a triangular matrix. For that purpose, we distinguish three
cases.

rkN(0) = 0. Then we can replace M by the result of substituting xi =
xi+1 in M for some i, to obtain rkN(0) 6= 0, because of the following.
M becomes J (H |xi=xi+1), which is a Jacobian matrix as well, and
the linear part of N is not affected. So N and hence M as well is
conjugation similar to a triangular matrix before replacing M if N is
conjugation similar to a triangular matrix after replacing M .

rkN(0) = 1. Then the Jordan normal form of N(0) is equal to that of
N(0) in (iii) of lemma 3.1. So we may assume that N(0) is as in (iii)
of lemma 3.1. It follows from (iii) of lemma 3.1 that N is conjugation
similar to a triangular matrix.

rkN(0) ≥ 2. Then the Jordan normal form of N(0) is equal to (that of)
N(0) in (iv) of lemma 3.1. So we may assume that N(0) is as in
(iv) of lemma 3.1. Assume that N is not upper triangular. Then it
follows from (iv) of lemma 3.1 that N is similar to an antisymmetric
matrix Ñ with only zeroes on the diagonal, such that the constant
part of Ñ is of the form of the right hand side of (2.1) and the last
row of Ñ is (0 b 0) for some nonzero linear form b.

We may assume that Ñ is the leading principal 3 × 3 minor matrix
of M̃ . Since the leading principal 2 × 2 minor of Ñ(0) has full rank,
we can adapt T such that the first and the second row of M̃(0) will
be equal to (0 − 1 0 0 · · · 0) and (1 0 0 0 · · · 0) respectively.

Looking at the constant parts of the 3×3 minor determinants, we see
that the third and subsequent entries of the third row of M̃(0) are
zero. Looking at the linear parts of the 3×3 minor determinants, we
see that the second entry of the third row of M̃ is the only nonzero
entry in that row. The same holds for the Jacobian matrix of H̃ :=
SH(Tx), because J H̃ = M̃x=Tx on account of (1.2).

It follows that the second entry of the third row of J H̃ is of the
form λx2, where λ 6= 0 because λx2 = b|x=Tx. So 1

2λx
2
2 appears as

13



a term in H̃3. In particular, 1
2 ∈ K. Since Jx1,x2,x3

(H̃1, H̃2, H̃3) =

Ñ |x=Tx is antisymmetric, it follows from lemma 2.2 that degx2
H̃3 ≤

degx1,x2,x3
(H̃1, H̃2, H̃3) ≤ 1. Contradiction.

In the proof of [PC, Lem. 4], it is shown that JH2 = 0 implies (JH)(x) ·
(JH)(y) = 0 if H is quadratic homogeneous and 1

2 ∈ K, where y = (y1, y2, . . . ,
yn) is another n-tuple of indeterminates. The maps

H =
(

0, x1, x
2
1, x1x2 −

1
2x3

)

and
H =

(

0, 0, 0, x2x3, x3x1, x1x2, x1x4 + x2x5 + x3x6

)

show that the conditions that H is (quadratic) homogeneous and 1
2 ∈ K are

necessary respectively.

Theorem 3.3. Suppose that H is a quadratic polynomial map in dimension n
over a field K of any characteristic whatsoever, such that JH2 = 0. Then the
following holds.

(i) JH is conjugation similar to a triangular matrix.

(ii) If 1
2 ∈ K and H is homogeneous, then

(JH)(x) · (JH)(y) = 0

where y = (y1, y2, . . . , yn) is another n-tuple of indeterminates.

(iii) If 1
2 ∈ K and H is not (necessarily) homogeneous, then

(JH)(x) · (JH)(y) · (JH)(z) = 0

where z = (z1, z2, . . . , zn) is yet another n-tuple of indeterminates.

Proof. Let y = (y1, y2, . . . , yn) be an n-tuple of indeterminates. From degJH ≤
1, it follows that

(JH)
(

tx + (1 − t)y
)

= t(JH)(x) + (1 − t)(JH)(y)

Taking squares on both sides, we deduce that

0 = t(1 − t)
(

(JH)(x) · (JH)(y) + (JH)(y) · (JH)(x)
)

Consequently,

(JH)(y) · (JH)(x) = −(JH)(x) · (JH)(y) (3.1)

14



(i) We assume that H is homogeneous of degree 2, because due to proposition
1.3, a reduction to this case will be similar to the proof of (iii) below. If
n = 1, then JH is triangular, so assume that n ≥ 2. Let

Z =











Z11 Z12 · · · Z1n

Z21 Z22 · · · Z2n

...
...

...
...
...

...
Zn1 Zn2 · · · Znn











From (ii) of [PC, Prop. 3] and (3.1), it follows that

(JH)(Ze1) · (JH)(Ze2) · · · · · (JH)(Zen) ·
(

Zei
)

= (JH)(Zei) · (JH)(Zei) ·
( ...

)

= 0

Consequently

(JH)(Ze1) · (JH)(Ze2) · · · · · (JH)(Zen) · Z = 0

As rkZ = n, (JH)(Ze1) · (JH)(Ze2) · · · · · (JH)(Zen) = 0. Since we
can substitute elements of any field L ⊇ K in the indeterminates of Z, it
follows from proposition 1.3 that JH is conjugation similar to a triangular
matrix.

(ii) This is shown in the proof of [PC, Lem. 4].

(iii) Let H̄ be the quadratic part of H . Notice that

3
∏

i=1

(JH)(Zei) =
3
∏

i=1

(

(J H̄)(Zei) + (JH)(0)
)

(3.2)

and that every term of the expansion of the right hand side of (3.2)
either has two factors (JH)(0), or two distinct factors (J H̄)(Zei) and
(J H̄)(Zej), where 1 ≤ i ≤ j ≤ 3.

From (3.1), it follows that

(

(J H̄)(x)
)2

=
(

(JH)(x) − (JH)(0)
)2

=
(

(JH)(x)
)2

+
(

(JH)(0)
)2

= 0

From (ii), we subsequently deduce that

(J H̄)(x) · (J H̄)(y) = 0 (3.3)

Furthermore, it follows from (3.1) that

(J H̄)(x) · (JH)(0) =
(

(JH)(x) − (JH)(0)
)

· (JH)(0)

= −(JH)(0) ·
(

(JH)(x) − (JH)(0)
)

= −(JH)(0) · (J H̄)(x)
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Consequently, the factors of the terms of the expansion of the right hand

side of (3.2) anticommute. From (3.3) and
(

(JH)(0)
)2

= 0, we deduce
that every term of the expansion of the right hand side of (3.2) equals
zero. So (JH)(Ze1) · (JH)(Ze2) · (JH)(Ze3) = 0.

The conclusions of (ii) and (iii) of theorem 3.3 can be reformulated as proper-
ties of a triangular matrix to which JH is conjugation similar, see [dB1, Th. 2.1]
and [dB1, Cor. 2.2]. Using this reformulation more generally, one can deduce
the following.

Proposition 3.4. Let H be a polynomial map, such that JH is conjugation
similar to a triangular matrix. If JH is nilpotent and r = rkJH, then

(JH)(Ze1) · (JH)(Ze2) · · · · · (JH)(Zer) · (JH)(Zer+1) = 0

where Z is as in the proof of (i) of theorem 3.3.

It follows that the conclusions of (ii) and (iii) of theorem 3.3 can be added
to theorem 2.1 and theorem 2.3 respectively as well.
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