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IRREDUCIBLE REPRESENTATIONS OF THE CHINESE MONOID

LUKASZ KUBAT AND JAN OKNINSKI

ABSTRACT. Allirreducible representations of the Chinese monoid Cy,, of any rank n, over a nondenumer-
able algebraically closed field K, are constructed. It turns out that they have a remarkably simple form
and they can be built inductively from irreducible representations of the monoid C2. The proof shows
also that every such representation is monomial. Since C, embeds into the algebra K[Ch]/J(K[Cr]),
where J(K[Cy]) denotes the Jacobson radical of the monoid algebra K[Cy], a new representation of
C'y, as a subdirect product of the images of C), in the endomorphism algebras of the constructed simple
modules follows.

1. INTRODUCTION

For a positive integer n the monoid C,, defined by the finite presentation: C,, = (ay,...,a,) with the
defining relations
aj0Ra; = Qpa;0; = ALG;a; fori<j<k (1.1)
is referred to as the Chinese monoid of rank n. It is known that each element x of C),, has a unique
presentation of the form = = bybybs - - - b,,, where

b1 = a’fl‘l,
by = (a2a1)k2’1a§2’27
_ k3,1 k3,2 k3.3
by = (aza1)™(azaz)™2a3™>?, (1.2)

bn — (anal)kn,l(ana2)kn,2 - (ananil)kn,nflaﬁn,n7

with all exponents k; ; nonnegative [I]. We call it the canonical form of the element z € C,. The
monoid algebra K[C,,] over a field K, which can be viewed as the unital algebra defined by the algebra
presentation determined by the relations , is called the Chinese algebra of rank n. The Chinese
monoid is related to the so called plactic monoid, introduced and studied in [I5]. Both constructions
are strongly related to Young tableaux, and therefore to several aspects of representation theory and
algebraic combinatorics. The latter construction became a classical and powerful tool in representation
theory of the full linear group and in the theory of symmetric functions, via the Littlewood-Richardson
rule (cf. [§], [I3]). Tt also plays an important role in quantum groups (in the context of crystal bases)
and in the area of classical Lie algebras, [6], [14], [16].

The Chinese monoid appeared in the classification of monoids with the growth function coinciding
with that of the plactic monoid [7]. One of the motivations for a study of the Chinese monoid is based on
an expectation that it might play a similar role as the plactic monoid in several aspects of representation
theory, quantum algebras, and in algebraic combinatorics. Combinatorial properties of C,, were studied
in detail in [I]. In case n = 2, the Chinese and the plactic monoids coincide. The structure of the algebra
K|[C5] is described in [3]. In particular, this algebra is prime and semiprimitive, it is not noetherian and
it does not satisfy any polynomial identity. For n = 3 some information on K[C,] was obtained in [9].
In particular the Jacobson radical of K[Cj3] is nonzero, but it is nilpotent, and the prime spectrum of
K|[C3] is pretty well understood. A surprisingly simple form of the minimal prime ideals of the algebra
K|[C,)], for every n, was established in [I0], [4]. Namely, every minimal prime ideal P is of the form
P = Spang{x —y : z,y € Cp, and x —y € P}. Hence, in particular K[C,]/P = K[C,/pp], for the
congruence pp on C,, defined by pp = {(z,y) € C,, x C,, : x —y € P}. We write P = I, in this case.
It was shown that every P is generated by a finite set of elements of the form z — y, where x,y are
words in the generators ay, ..., an, both of length 2 or both of length 3. Consequently, K[C,]/P inherits
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the natural Z-gradation and this algebra is again defined by a homogeneous semigroup presentation. In
particular, the number of minimal primes P is finite. Moreover, every C,,/pp embeds into the product
B x 7!, for some nonnegative integers k, [, where Z is the infinite cyclic group and B = (p,q: qp = 1)
is the bicyclic monoid. The latter plays an important role in ring theory and in semigroup theory, [5],
[12]. It was also shown that C,, embeds into the product []p K[C,]/P, where P runs over the set of
all minimal primes in K[C,]. Hence C,, embeds into some B" x Z°. However, the algebra K[C,,] is not
semiprime if n > 3. Moreover, the description of minimal primes P of K[C,] allows to prove that every
K|[C,]/P is semiprimitive and the Jacobson radical of K[C,] is nilpotent, and nonzero if n > 3.

The aim of this paper is to describe all irreducible representations of C,, over a nondenumerable
algebraically closed field K. First, one shows that they are infinite dimensional unless the dimension
is 1. Then, in our main result, Theorem [3.13] all irreducible representations are constructed. It turns
out that they have a remarkably transparent form. In particular, they can be built inductively from
irreducible representations of the monoid C5, that are easy to determine. The proof shows that every
such representation is monomial. This is in contrast with the case of representations of the plactic
monoid, as recently shown in [2]. Since C,, embeds into K[C,]/J(K[C,]), where J(K[C}]) denotes the
Jacobson radical of the algebra K[C),] (see [10]), a new representation of C,, as a subdirect product of
the images of C,, in the endomorphism algebras of the constructed simple modules also follows.

2. BACKGROUND ON MINIMAL PRIME IDEALS

Throughout the paper, K will stand for a nondenumerable algebraically closed field, if not stated
otherwise. In this section, we recall from [I0] the necessary background on minimal prime ideals of the
Chinese algebra K[C),] of rank n > 3.

A finite tree D is associated to C,, whose vertices are diagrams of certain special type. Each diagram
d in D determines a congruence p(d) on the monoid C,, in such a way that the ideals /.4 corresponding
to the leaves d of D are exactly all the minimal prime ideals of K[C,,].

Each diagram d in D is a graph with n vertices, labeled 1,...,n and corresponding to the generators
ai,...,a, of C,. For every d in D that is not the root of D there exist u < v, with w,v € {1,...,n},
such that the vertices u,...,v are marked (colored black) and the corresponding generators a, ..., a,

are called the used generators in d. Some pairs k, [ (k < [) of the used generators can be connected with
an edge and then we say that such a pair is an arc @;ay, in d. A given generator can be used in at most
one arc. The used (marked) generators not appearing in any arc are called dots. The root of D is the
diagram in which none of the generators is used. The first level of the tree D (diagrams connected by
an edge of D to the root) consists of 2n — 3 diagrams. There are n — 2 diagrams with only one of the
generators asg, . ..,a,—1 used, and n — 1 diagrams with exactly two consecutive generators as, asy1 used
in an arc. Then, if d is in level ¢ of D and it is not a leaf (by a leaf of the tree D we understand a
diagram containing an arc of the form aiay or a,ay, for some k) then it is connected by an edge of D to
certain diagrams in level ¢ 4+ 1 which are obtained from d by adding an arc or adding a dot, according to
the following rules:

(1) If in the last step of construction of the diagram in level ¢ an arc was added, that is, if the
diagram in level ¢ has the form

o~~-omo...o

generators

then we can either get, as a diagram in level ¢ + 1, the diagram

o~~~omo~uo

generators

or one of the following two diagrams

used
generators

used

c -0 e generators

O +-+ O or O +++ O ® O -+ O

(2) Whereas, if the diagram in level ¢ has the form

used
generators
then we can either get, as a diagram in level ¢ + 1, the diagram

o---omo---o

generators

O +++ O @ O «++ O

or the following diagram



used
o o e e generators © o

(3) Similarly, if the diagram in level ¢ has the form
o - gen‘ésr(;(%ors o -0
then we can either get, as a diagram in level ¢ + 1, the diagram
o --- O @OYS\QQ o --- O
or the following diagram

used

© -+ O generators

® @ O -+ O

(4) Finally, after a dot in the first level of D only an arc can be added, so after a diagram

O+«++0 @ O++-0

the following diagram can only occur

00 € @@ 0---0

Example 2.1. The diagram in D (for n = 15) of the form

o o o oooo/(_\o\o °

arises, in accordance with the rules mentioned above, in the following steps. First, choose the arc aj1a1p
and then the arc ajsag. This leads to the diagram

OOOOOOOOO/./T\.\.OOO

Next, choose consecutively three dots ag, a7, ag. This yields the following diagram

0O 0 00O e e e « e o o0 o

Then, choosing the arc a;zas we get

o0 o0 o e oo o s o o

Finally, choosing the dot aq4 and then the arc ajsay leads to the considered diagram (which is a leaf).
The full description of D in case n = 3 and n = 4 is given in Section

We shall also consider several homomorphic images of C,, of type C,,/p, where p is a congruence on
Cn generated by certain pairs of the form (a;a;,aja;) and of the form (a;ajax, ay(;)ao(j)aok)) for some
permutations o of {i,j, k}. Then, for the sake of simplicity, the image of a; in C,,/p will also be denoted
by a;. Clearly, in monoids of this type we have a degree function with respect to every generator and
we write deg, () for the degree of 2 € C,,/p in a;. Moreover, by deg(x) we mean the total degree of ,
that is, deg(z) = Y/, deg, ().

If u,v € {1,...,n} are such that © < v + 1 then we define the monoid

u,v
Cn _<a1a~~'7au717a11+17"‘7an>gc’n;

which is the Chinese monoid of rank v — 1 + n — v, and its homomorphic image
—u,v ooy oy — t
Cn = <CL1, sy Qy—1,0y41, -+ - an>/(gi+1f.,ai 22$$3t2)7
that is, 62’” = C,,/n, where 7 is the congruence on C,, generated by all pairs (a;a;,a;a;) for ¢, j < v and
all pairs (ara;, aay) for k,1 > v.
By Z we mean the (multiplicative) infinite cyclic group, with a generator g.
If dy is the diagram with only one used generator as, where 1 < s < n, then we associate to it the
homomorphism ¢q: C,, — C’Z’S x Z defined by

W) = (1,9) ifi=s,
do(a) {(ai,l) if i # 5.
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The congruence Ker(¢g) on C,, is then generated by the pairs:
(aiaj,aja;) for i,j < s,
(arar, ajag) for k,1 > s.
If d; is the diagram with only two used generators that form an arc asyias, where 1 < s < n, then we

associate to it the homomorphism vq: C,, — CS B x Z, where B = (p,q : gp = 1) is the bicyclic

monoid, defined by

(a;,p, 1) ifi<s,
(I,p,g) ifi=s,
(1,,1) ifi=s+1,
(ai,q,1) ifi>s+1.

Yo(a;) =

The congruence Ker(t)) on C,, is then generated by the pairs:
(a;a;,aja;), (aias1105, a5a5410;) for 7,5 < s,
(arar, aiay), (agasar, ajasag) for k,1 > s.

Now, we define
k(dy): Cp — C % S

as k(d1) = ¢o (and then (u,v) = (s,s) and S; = Z) in case d; is the diagram with only one used
generator ag, or k(dy) = 1o (and then (u,v) = (s,s+1) and S; = B X Z) in case d; is the diagram with
only two used generators that form an arc a,, 1as. Moreover, let p(d;) = Ker k(dy).

So, the homomorphisms and congruences described above are associated to the 2n — 3 diagrams from
the first level of D. The procedure described below allows us to associate (inductively) a homomorphism
k(d): C, — C" x (B x Z)* x Z, where u, v and k, I depend on d, and the congruence p(d) = Ker x(d)
to every diagram d at the level > 1 of D. However, in contrast to the congruences from the first level,
the generators of p(d) are much harder to determine, see [4].

Assume that a diagram d; in level ¢ > 1 of the tree D has been constructed and it is not a leaf. Assume
also that the homomorphism #(dy): C, — C.'" x Si, where S; = (B x Z)* x ZL, together with the
congruence p(d;) = Ker k(d;) have been defined. Here, the indices u, v correspond to the used generators
Gy, - - -, Gy in the diagram d;, whereas the nonnegative integers k, [ correspond to the number of arcs and
dots, respectively, used in the construction of the diagram d,. Moreover, let d;;1 be a diagram at the
level t + 1 of D that is connected to d; by an edge in D.

If d;44 is obtained by adding a dot to d; (then this is either a,_1 or a,1), we have a homomorphism

U,v

gf)tién XSt*)627UXZXSt

given by
1,9,2 ifi=s,
drlasa) = |00 =S .
(a;, 1,z) ifi<wori>wvbutis#s,
where s =« — 1 (and then (uv/,v') = (u — 1,v)) or s = v + 1 (and then (v/,v") = (u,v + 1)), depending
on which of the two possible dots was added.
If d;41 is obtained by adding an arc to d; (then this arc is m), we have a homomorphism

Uu u—1,v+1

U O x Sy — C X Bx7Z xS,

given by

(ai,p,l,2) fi<u-—1,
(1,p,g9,2) fi=u-—1,
(1,¢q,1,2) ifi=v+1,
(ai,q,1,z) ifi>v+1,

1/%(@1', .’E) =

and then we put (v/,v") = (u—1,v+ 1). Furthermore, we put S;11 = Z x S; in case d;41 is obtained by
adding a dot to dg, and S¢y1 = B X Z x Sy in case d;11 is obtained by adding an arc to d;.
Now, we define
K(dt+1)l Cn — 6Z v X St+1
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as a composition

¢t o k(dy) if dyyq is obtained from d; by adding a dot,
Yy ok(dy) if dpyq is obtained from d; by adding an arc.

k(dey1) = {

Moreover, let p(di+1) = Ker k(di+1). Then, of course, p(d;) C p(diy1).

Summarizing, if do,ds,...,dy = d in a branch in D then p(dp) C p(dy1) C -+ C p(dm) = p(d) (by
p(dp), for the root dy of D, we mean the trivial congruence on C,). However, if m > 1, then as was
mentioned at the beginning of this section, generators of the congruence p(d) = Ker x(d) are hard to
determine explicitly. Though, if the diagram d is of some special shape (e.g. one of the shapes listed
below), then looking at the embedding C,, /p(d) — C.'" x (B x Z)* x Z! (for some u, v and some k, ),
induced by the homomorphism x(d), it is quite easy to derive some relations that must hold in C,,/p(d)
and which will be needed later.

Namely, if d is a diagram of the form

O +++ O @ O +++ O
consisting of a single dot as, then the following equalities hold in C,,/p(d):
a;a; = a;a; for all i,j < s, (2.1)
aRa; = aoy for all k,1 > s.

If d is a diagram of the form

s—t+1 5—2 s—1 s s+1 s+2 s+3 s+t
consisting of ¢ > 0 consecutive arcs @ 10s, . . . , Gs11as_¢ 11, then the following equalities hold in C,, /p(d):
a;a; = a;a; for all 4,5 <'s, (2.3)
ara; = a;ay for all k,1 > s, (2.4)
AiGstrQj = QjGsqrl; foralli,j <s—r+1, where r =1,...,1t, (2.5)
AfOs—ri10] = QQs_r110k for all k,1 > s+r, wherer =1,...,t. (2.6)

If d is a diagram of the form

mo~-o

O .o .. O .
s—t s—t+1 s—1 s s+1 s+2 s+t
. . . (/\ . .
consisting of ¢ > 0 consecutive arcs m, ...,0s51105—111 and a single dot as_¢, then the following

equalities hold in C,,/p(d):

a;a; = a;a; for all 4,5 < s, (2.7)
ara; = a;ay for all k,1 > s, (2.8)
ALs_1 0] = AQs_1 Ak for all k,1 > s+ 1, (2.9)
Qs qrOj = Qj0syra; foralli,j <s—r+1, where r =1,...,¢t, (2.10)
AkQs—pr10] = AQs—pr110k for all k,1 > s+r, wherer =1,...,¢t. (2.11)

Similarly, if d is a diagram of the form

6 -t o ./././\.x\..

. O PR O
s—t+1 s—1 s s+1 s+2 s+t s+t+1
. . . — — ————— . o, .
consisting of ¢t > 0 consecutive arcs asy1as,...,0s+t0s—t+1 and a single dot as4441, then equalities dual

to (2.7)—(2.11) also can be derived. However, these equalities will not be used explicitly in the paper.

3. IRREDUCIBLE REPRESENTATIONS

Our first result shows that infinite dimensional simple K[C,,]-modules will be crucial.

Proposition 3.1. Let ¢: C,, — Endg (V) be an irreducible representation of C,, over a field K.
(1) If ¢(anar) = 0 then either ¢p(a,) =0 or ¢(a;) = 0.
(2) If dimg V < oo, then ¢(Cy,) is commutative, hence dimx V =1 if K is algebraically closed.
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Proof. First, we claim that a,Cpa; C an,a1C),. Let © € C,,. From the canonical form of elements in C),
it follows that za, = x; ---x, for some j € {1,...,n}, where z;,...,z, € C, and z; € a,C, if j = 1,
and z; € aja1C, if j > 1. Since a,aja; = apaiaj, the claim follows.

Suppose that ¢(ana1) = 0. Then ¢(an)P(Cr)d(ar) = ¢(an)p(ar)P(Cp) = 0. Since ¢ is irreducible, it
follows that either ¢(a,) = 0 or ¢(ai) = 0.

In order to prove the second assertion, consider z = anaq € C,,. If ¢(z) = 0 then, by the first part of
the proof, ¢ comes from an irreducible representation of C,_1. Hence, the result follows by induction in
this case. Otherwise, ¢(z) # 0 is an invertible element in the simple algebra R = Spany ¢(C,,), because
it is central. Thus, in particular, ¢(a,,) is invertible in R, so the relations defining C,, easily imply
that ¢(C,,) is commutative and the assertion follows. O

Our next aim is to construct a family of simple left K [C),]-modules in case n is even. Later we shall see
that these modules are of special interest, because they are the corner stone of an inductive classification
of all simple left modules over the algebra K[C,].

Proposition 3.2. Let V be a K-linear space with basis {e;,. i, : 91,...,is > 0} for some s > 1.
Moreover, let 0 # A1, ..., s € K and n = 2s. Then the action of a1,...,a, € C,, on 'V defined by

Aj€irij—1 i1, it ] if j < s,
i€y, .., = § €i, if j > s and iy >0 for allk >n — j,
0 if > s and i =0 for some k >n—j

makes V.=V (A\1,...,As) a simple left K[Cy]-module. Moreover, if 0 # u1,...,pus € K then we have
VAL, ooy As) 2V (11, ..., ps) as left K[Cp]-modules if and only if \; = p; for alli=1,...,s.

seesbn—gyin—j1— 1, is—1

Proof. First, we have to check that the defined action of ay,...,a, € C,, on V respects the Chinese
relations. So, we have to prove that

(maka; —ajajar)V = ai(aga; — ajar)V =0
and
(maga; — agara;)V = (qap — agar)a;V =10
for all j < k <. Since we have (aya; —ajar)V =0 for all j,k < s and (aar —ara;)V =0 for all k,1 > s,
it is enough to show that:
V=0forall j <s<k<I[suchthat j+1<n,
) ( V=0forall j <s<k<lsuchthat j+k<n<j+I,
) ( )V =0 for all j <s <k <lsuchthat n < j+k,
) (aaka; —agaia;)V =0 for all j <k <s < [suchthat k+1<n,
) (@ara; —araa;)V =0forall j <k <s<lsuchthat j+1<n<k+I,
6) (aara; —araia;)V =0 for all j <k < s <[ suchthat j+1>n.
It is easy to verify that we have, respectively:
(1) If k£ < I then

1) (maka; — aajay)
aaKa; — a1a;ay)
aapa; — aja;ag

AJCiyevsig 145 FLyeeeyin 1L i 141 seesin—ksin— k41— Lyeensis —1
QA€ . i, = Qa;0K€; . i = if 4, > 0 for all p > n — &,

0 otherwise.

Whereas, if £ = [ then

>\j€z‘1,...,ij_l,ij+1,...,in,k+1,z'n,k+1—1 ..... is—1
aQaga;e;, . i, = Qa;AKE;, . ;i = if 4, > 0 for all p > n — &,

ey

0 otherwise.
(2) If j+1>n+1 then
Ajeil:~~~7infl)in—l+1717~~~aij—171;ijy~-~7in7kyin—k+1717'~~)i571

ifi, >0foralln—I0<p<y,

QaRa;e;, . i, = Qa;age;, i = ‘
7 ’ ! and ig > 0 for all ¢ > n — &,

0 otherwise.



Whereas, if j +1=mn+ 1 then

Aj€iinirin_tp1—1,.is—1 if ip > 0 for all p >n —k,

AIAKA;Ciy,.. . iy = QUAAECHy .. iy = .
0 otherwise.

(3) f k<land j+k >n+1 then

)\jeil7~--7in7l7infl+1_17<~-7i'n,7k_17in7k+1_27~~-7ij71_27ij_11-<~7is_1

ifi,>0foralln—-Il<p<n-—£k,

QAR . i, = QA;0E€;, . i = ig>1foralln—Fk<gq<j,
and i, > 0 for all r > j,

0 otherwise.

Ifk=17land j+k >n-+1 then

A€y i —povin kg1 —2yerij 1 —2yi5 =1, i —1
ifip >1foralln—Fk<p<yj,

and i, > 0 for all ¢ > 7,

0 otherwise.

QaKA;€4y,. .. i, = AA;AKCG 5, =

Whereas, if j + k =n + 1 then

. . Ajeily---yin—l7in—l+1—17~--,is—1 if ip > 0 for all p>n— l,
a1aEQ;€qy .. i, = QA;AKEGy .. 5, =
It ’ et 0 otherwise

(4) If j < k then

QaKA;€;5y 5, = QKA1 Ciy i = AjARCiy i1 i, in 141 ik 2 sin 142141+ 1,eist1e
Whereas, if j = k then
W€, . i, = QpIAGEG, iy = A€oy i1y 420msin 1+ 2yin— a1+ L,eeiatL-
(5) If k+1>n+1 then
aagQ;€qy,. . i, = QA€ 5. = /\j)\kezl,...,ij_l,¢_7+1,...,in,l+1,z'n,,+1,...,ik,l,z‘k+1,...,is+1-
Whereas, if £k 4+ 1 =n+1 then
Qaka;e;, . i, = QRAIA;j€;, i, = NjAkCiy i i+l i1
(6) f j <kand j+1>n+1 then
AGARCy o in—vin— 11 =Ly —1—Ligseesin1 ikt 1, ia 1

aaKQ;€q, . . i, = Qpaa;e; . ; = ifi, >0foralln—1<p<yj,

0 otherwise.

Ifj=Fkand j+1>n-+1 then

2
Ajeil;~-~7in—l5in—l+1717"‘aij71715ij+1:"'7is+1
WakA;€4,,. i, = ALAIA;E;, . i, = ifip, >0 foralln —1<p<yj,

0 otherwise.
Whereas, if j +1=mn+ 1 then

WaKA;E4y . iy = ARAIA;E i = AjARCiy iy 1 ,ip+1,ia+1-

Now, let us prove that the K[C,]-module V is simple. First, it can be easily verified that for each
J <swehave an_jae;, i, = Aj€iy iiqii410541 s (that is, the action of a,,—ja; one;, ., increases
the index ¢; by one and leaves other indices unchanged) and ase;,.. i, = As€iy .. i, 1..+1 (that is, the
action of as on e;, . ;. increases the index is by one and leaves other indices unchanged). Therefore,

s

€iroie = (A an—1a1)" -+ (A asr1as1) " (A as) e, o0
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for all i1,...,45 > 0. Hence, to prove simplicity of V, it suffices to check that eg . o € K[Cy|v for each
0£veV. So,let 0#£v= Z;,...,iszo it is€iq,....i, fOr some Ay, ;€ K be fixed. Then define

st

Ay ia,...is 7 0 for some i3, ..., 45},

725}7

mq = max{iy : A;y .4, 7 0 for some i, ..
mo = max{is :

mg = max{is : A, ma.is....i. 7 0 for some iy, ...

: )\ml,‘..,ms,l,is # O}

ms = max{is
Because, for each j < s, we have

_ >‘j+1ei1,m,ij—hij*1,i]‘+17-~,is if ij >0,
Op—j41A541€4y,...i, = o
0 ifi; =0
(that is, the action of a,—j11aj41 on e;, . ;, decreases the index ¢; by one, if possible, and leaves other
indices unchanged) and because

oo e ieyie—1 ifis >0,
s+1€iy,. 0, = o
’ 0 ifig =0

(that is, the action of asy1 on e;, . ;, decreases the index i, by one, if possible, and leaves other indices

unchanged), we conclude that

€o,....,0 = ()‘Mhm,ms/\gnl e '>‘75”871)_1a:?|:1 (asq2as)™ =" - (anag)™ v € K[Cylv,

as claimed.

Finally, note that isomorphic modules have equal annihilators and (an—it+1a; — A\;)V = 0 for each
i=1,...,s. Hence, if also (ap—_;1+1a; — p;)V = 0 for some i € {1,...,s}, then (A\; — p;)V = 0 and, in
consequence, A\; = ;. Thus the last part of the proposition also follows. (I

It is worth to note that the modules constructed in Proposition [3.2] can be obtained by a successive
application of the construction presented in Proposition starting with the left K[Cs]-module Z with
basis {e; : i > 0}, and with the action of ay,as € Cy on Z defined by

e ifi> 0,

0 ifi=0

for some 0 # A\; € K. (Notice that such a module Z is a straightforward generalization of the classical
simple K[B]-module, considered for example in [12] p. 195 and Ex. 11.9.].) This is fully explained below.
Proposition 3.3. Let U be a left K[C5*TY-module with basis {e;,.. i, : i1,...,is—1 > 0}, where
n = 2s for some s > 1. Assume that (a;a; — a;a;)U = (aga; — ayax)U = 0 for all i,j < s and
k0 > s+ 1. Assume also that for each 0 # u € U and iy,...,is—1 > 0 there exists v € K - C35+!
satisfying xu = e, i, . Moreover, let V be a K-linear space with basis {f; : ¢ > 0}. Then, for
each 0 # \s € K, the action of ai,...,a, € C, on the K-linear space W = U Qg V with basis
{€ir,is = €irivy ® fiy ti1,...,1s > 0} defined by

ai1e; = )\1€i+17 a2€; = {

aj€iy,. i1 ® fis41
AsCinrio_r @ fis+1

Aj€iy,iy = § Ciryonrias @ fii—1
aj€iy,..is @ fis—1
0

makes W a left K[C,]-module such that (a;a; —a;a;))W =
.,is > 0 there exists x € K - C,, satisfying zw = e;, .. ;.. In

Moreover, for each 0 # w € W and iy, ..
particular, W is a simple left K[C,]-module.

Proof. First, it is convenient to define ase;,,. ;. , = As€sy,..
; .,an € C, on the basis of W can be rewritten as

i1,...,75—1 > 0. With this notation the action of ay, ..

i€y, ie 1 @ fis41

i€y, ig 1 @ fis—1

AjCiy,... is =

0

if j <s,
ifj=s,
ifj=s+1 and is > 0,
ifj>s+1 and iz > 0,
otherwise

(aga;—ajap)W =0 for alli,j < s and k,l > s.

ls—1 and As+1C€iq,..i5—1 = Ciy,ig for all

if 7 <s,
if 7 > sand is >0,
if j > sand iy = 0.



It is almost obvious that the defined action respects the Chinese relations not involving as; and as1.

Moreover, if i, j < s then
(aia; — ajai)es,,.. i, = (aia; —

a;ja;)W = 0. Similarly, if k,{ > s then

a;a;)es . iy @ fi,42 =0,

hence (a;a; —

if iy, > 1,

(akal - azak)eil s = {(akal . alak)eihwirl ; fir2 =0,

0 ifi, <1

hence (ara; — ajar,)W = 0. Since (asi1as —
suffices to check that:

(1) (ajas1a; — asyraja,)W =0 for all i < j <s,
) (ajast1a; — aja;as41)W =0forall i <s < j,
) (asaja; —ajasa;)W =0 foralli <s < j,
) (
) (

As)W = 0, to prove that W is indeed a K[C}]-module it

ajaias — ajasa;)W =0 for all s <i < j,
(s+105+10; — Gs410;05+1)W =0 for all i < s,

(6) (asa;as — aasas)W =0 for all i > s.
Let Wy denote the subspace of W spanned by the set {eZl
denote the subspace of W spanned by the set {e;, ..
respectively:

(1) (a]—asﬂai — asﬂajai)W = (aja5+1

(aja511 — asyra)Wy =0 for j <s.

(2) (ajastia; — aja;as41)W = aj(ast10; — a;a541)W = 0, because (asy1a; — a;as41)W C Wy for
i <sand a;Wy =0 for j > s.
(asaja;,—ajasa;)W = (asa;j—ajas)a; W = 0, because a;W C W, fori < s and (asa;—ajas) Wy =
0 for j > s.
(aja;as — ajasa;)W = a;(a;as
a;jWo =0 for j > s.
(541054105 — Qs410i0541)W = asp1(asyra; —
for i <s, and as+1Wo = 0.

L ii1,...,05—1 > 0 and ig = 0}, and W
Jle—1 > 0 and i5 > 0}. Then we have,

,,,,,

— ast105)a;W = 0, because a;W C W, for ¢ < s and

— asa; )W = 0, because (a;as — asa;)W C Wy for i > s and

aias+1)W = O7 because (CLS_HCl,' —aia5+1)W - W()

(6) (asaias — ajasas)W = (asa; — ajas)asW = 0, because a,W C W, and (asa; — a;as)W4 = 0 for
1> s.

Now, let us ﬁx 0 7& w € W and iy,...,i, > 0. To show that xw = e;,,.. ;, for some xz € K - C), write

w = ZJ1 ,gg_o rje€i1,.njes Where A o€ K. Define
m = max{js : Aj, . j, 7 0 for some jq,...,js—1}.

Then replacing the vector w by a3 ,w we may assume that A; ;. = 0 for all ji,...,js-1 > 0 and

js > 0, that is
.
0Fw= > Ny 1,061, e 1.0 = U fo,

jlv---ajs—lZO
where 0 # u = Z;lw--;js—l=0 Aj1,ode1,0€41,....5._1 € U. By assumptions on U, there exists z € K - Csstl
such that zu = €;,,...;, ,. Let p=73",. ., deg, () and ¢ =}, deg, (x). Then

ag2(A5 as)" (u® fo)

’L

—p—i q p
AP abal  zabw = (N ag

Q

S

=(As
= Ay
=(As

= €ig,...

Hence the result follows.

7lsas+1‘r(u ® fp)

)**a
)
)“a
)

Q

s s+16217 Jls—1,9

s

a’9 €iryeinsis—1,0

sls®

O

The next result is one of the essential tools used in this section. An easy proof, based on the Density

Theorem, can be found in [3].

Proposition 3.4. Let A be a left primitive algebra over an algebraically closed field F. If dimp A < |F|

then the algebra A is central (that is, Z(A) = F).



If wi,wa,...,w, € M for a monoid M then we will write wjws - --wj, for the set of all elements of
the form w?w? wlk’“ € M with iy,i9,...,1; > 0.

Now, consider a simple left K[C},]-module V' with annihilator P. Since P is a prime ideal, it follows
that P contains a minimal prime ideal of K[C,], which is of the form I, for some leaf d in D (see
Section [2| or [I0]). So, it is reasonable to investigate the structure of left primitive ideals of K[C,,]
containing ideals coming from diagrams of a particular shape. Our first result in this direction reads as
follows.

Proposition 3.5. Assume that P is a prime ideal of K[C,] containing the ideal I,, where p is the
congruence on C,, determined by the diagram

o e YT TN N 6.0

consisting of t > 0 consecutive arcs as110sg, - - - ,dm (as shown in the picture). Assume addition-
ally that agyyas—y41 € P. Then agyy € P or as—y41 € P.

Proof. Let T be the image of C,, in K[C,]/P. Our first aim is to show that as_;y1a54¢ = 0 in T.
To prove this let us introduce some notation. For any 1 < i < j < n let W;; denote the subset of
C), consisting of all elements of the form b; ---b; written in the notation of the canonical form .
Moreover, let us adopt the convention that W; ; = {1} in case ¢ > j. In the following we shall use the
same notation for the elements of T'.

First, using as4iras—¢+1 = 0 in T, note that:

o If j <s—t+1 then (as_t+1a5+1)aj = astias—¢+1a; in C,. Hence (as—i+1as4¢)a; = 0 in T for
all  <s—t+1.

o If j < ksatisfy j < s—t+1and k < s+t then (as—t410s1¢)(AkA;) = Qo—t4105410jax =
asytas—ti105a in Cy. Hence (as—¢41as4¢)(araj) = 01in T for all j < k such that j < s—t+1
and k < s+t

This implies that as—¢+10s1Wis—¢41 = 0in T and as_s 41054 Ws—i42,541 = Gs—¢41a54.U U {0} in T,
where U = Uy - - - Ug—1 and

U, = (asft+2)*7
Us = (as—t4305—t4+2)" (Qs—t43)",

Us = (as—t440s—142) (Qs—t4405—143)" (as—t44)",

Ugi—1 = (as+tas—t+2)*(as+tas—t+3)* t (as+tas+t—1)*(as+t)*~
As a consequence we get
As—t4+10544T C a5_141054:.UWi i1, U {0} (3.1)
Next, remembering that asiias—¢y1 = 0 in T, we get:

o If j > s+t then a;(as—t+1as+t) = ajGs+1as—¢+1 in Cp. Hence aj(as—¢11054¢) = 0 in T for all
j>s+t

o If j < ksatisfy j <s—t+1and k > s+t then (ara;)(@s—t+10s+t) = (@s—t+1as+¢)(ara;) in C.
Hence also (ara;)(as—t+10s4t) = (@s—t+10s4¢)(ara;) in T for all j < k such that j < s—t+1
and k > s +t.

o If j < ksatisty j > s—t+1and k > s+t then (ara;)(@s—t+1as+¢) = (akas—i+1)(@ja541) =
(ajasit)(arbs—t+1) = jakas4tas—41 in Cp. Hence (agaj)(as—iy1as4¢) = 0in T for all j < k
such that j >s—t+1and k> s+1t.

These equalities assure that Wy ¢41,n0s—t+1054+¢ C as—t+1a54+1. Thus, together with , we obtain

st 410544105t 41054¢ C As_t4105 4 UWoii11 0051410541 C as_441054tUas 105447 (3.2)
Now, choose 1 # u € U. Then let m be the minimum of those numbers j € {s —t+2,...,s+ ¢} such
that the generator a; appears in u. Since as1¢(ar0m) = ag(@sttam) in G, for all m < k < s+ ¢, we get
asytt € Tagyiayy,. Therefore,

As—t4+10s4tUAs—t410s4t € asft+1T(as+tama57t+1)as+t = asft+1T(as+tasft+1am)as+t = 0. (33)

Thus (3.3) together with (as_;11a54¢)% = 0 in T yield as_¢y1051¢Uas_¢11as4¢ = 0 in T. Hence, as
a consequence of (3.2), we get as_tr10s4:Tas—t+1054+ = 0 as well. Since T is a prime semigroup, we
conclude that as_¢+1a54+ = 0 in T, as desired.
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Next, we claim that as_y4+1Tasyy = 0. First, by it follows that as_¢41 commutes in T' with
ai,...,as. Hence we get as_y1 Wi s = Wi sa5_¢41 in T Similarly, by it follows that asy¢ commutes
in T" with asy1,...,a,. Moreover, asy+ commutes in C,, with aja; for all 7 < j such that i < s+t < j.
Therefore, we get Wyt n@stt = as4t Wit n in T, which leads to

asft+1Tas+t = Wl,sasft%»lws%»l,nas%»t = Wl,sasft%»lWs+1,s+t71as+th+t,n'
So it is enough to show that as_t41Wsi1,s4t—1as4+ = 0 in T". Further, let us observe that:
o If j > s then ajast = asqra; in T (by (2.4), because j > s and s+t > ),
o If k > s then (axas)as+: = asyiasar in T (by with 7 = 1, because k > s and s +1¢ > s),
o If j < ksatisfy s —t < j < s and j+ k > n then (ara;)asyt = asiajar in T (by with
r = s —j+ 1. Indeed, the assumption s —¢t < j7 < s assures that 1 < r < ¢t. Moreover,
s+r=2s—j5+1=n—j+41. Hence, to use , it only remains to check that k > n—j+1 and
s+t > n—j+1. Now, the first inequality is a consequence of j+k > n, whereas the second one is
obtained as follows. Since s —¢ < j, we get t > s —j+1. Therefore, s+t >2s—j+1=n—j+1.
We note that straightforward calculations on indices of this type will be also used in other proofs
in this section; however, complete explanations will be skipped.)
These equalities lead to the conclusion that W11 s11—1a54¢ € Vas T, where V =V, ---V,_; and

Vi = (asy1a1)" (ast1a2)” - (ast105-1)",
Vo = (as+2a1)*(as+2a2)* s (as+2as—2)*a

Vi = (as+3a1)*(as+3a2)* ce (as+3a573)*7

Viei= ((lertflfll)*(fler1t71(l2)>k s (as+t71a57t+1)*~
Next, we have as_¢y1(ara;) = a;aas—¢41 in T for all j < k such that j+k <n+1land s <k <s+t.
Indeed, here assumptions on j and k£ can be rewritten as j <n—k+1and s—t+1 <n—k+ 1, hence
our equality follows by (2.5) with r = k — s. Since each element of V' is a product of elements apa; with
j < k such that j+k <nand s < k < s+t, we conclude that as_¢+1V C Tas_¢y1. Therefore

as—t+1Ws+1,s+t—1as+t Cas—t+1Vas T C Tas_i11044T = 0.

This proves the claim. Since T is a prime semigroup, it follows that as_;y1 =0in T or as4¢ =0in T
or, in other words, as_¢y1 € P or az4y € P. O

Proposition 3.6. Assume that P is a left primitive ideal of K[C,,]| containing the ideal I,, where p is
the congruence on C,, determined by one of the two diagrams

o-~-oo/o/(__\o\o\oon-o or on-omoon~o

. . . — e . .
consisting of t > 0 consecutive arcs Gs410as, - . .,as+1as—t+1 and a single dot as—¢ or as4i+1 (as shown in
the picture). Assume additionally that asyias—141 ¢ P. Then as_y —Aas_141 € P or ag1441 — Aasyt € P
for some XA € K, respectively.

Proof. Since the two cases are symmetric, it is enough to consider the former. Let us notice first that the
element as tas_t11 is central in K[C,,]/P. Indeed, if i < s—t+ 1, then a;a54404s5—t11 = Gs—t410s+1a; =
as+tas—t110; in K[C,]/P (first equality is a consequence of with r = ¢, because i < s — ¢t + 1;
second equality is valid in C,). Next, if s —t+ 1 < i < s+ t, then a;051105—141 = As1t0s_t110; N
Cy, hence also in K[C},]/P. Whereas, if i > s + t, then a;as410s—t+1 = QiGs5—t11051¢t = AstGs—14+10; I
K|[C,]/P (first equality holds in C,,; second equality follows from with r = ¢, because i > s + ).
Therefore, Proposition implies that asq¢as—¢+1 = p in K[C,]/P for some u € K. Moreover, p # 0
because asitas—ty1 ¢ P. We claim that the element agitas—; is central in K[C,]/P as well. Indeed,
if 5 < s—t, then a;as11a5—1 = As—1as+1a; = aspias—a; in K[Cy,]/P (first equality holds by
with » = ¢, because j < s —t+ 1 and s —t < s — ¢t + 1; second equality is valid in C,). Next, if
s—t < j<s+t, then ajas41as—+ = Gs41a5—1a; in Cp, hence also in K[C,]/P. Whereas, if j > s +t,
then ajasiias—t = 51405054 = agsyras_a; in K[C,]|/P (first equality holds Cp; second equality is a
consequence of (2.9), because j > s+t). Therefore, by Proposition 3.4} we get a4ias—¢ = v in K[C,]/P
for some v € K, which leads to

HAs—t = Qs4t0s—t+10s—t = Qs+1As—tUs—t+1 = VAs—t41
in K[C,]/P. Hence we get as_; — Aas_¢+1 € P, where A\ = u~'v € K. O
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Proposition 3.7. Assume that P is a left primitive ideal of K[Cy] containing the ideal I,, where p is
the congruence on C,, determined by one of the two diagrams

c/c/(_\o\o\o 0---0 or 0---0 c/c/(_\o\o\o

. . . — —— — e .
consisting of t > 0 consecutive arcs az11Gz, ... ,02¢a1 OT Qp—t410p—ty -« Cplp—2t4+1 (as shown in the
picture). Assume additionally that asiay & P or apnan—_ot1 ¢ P, respectively. Then asiy1 — Aage € P or
Gn—9t — ANp—2t41 € P for some A € K, respectively.

Proof. Since the two cases are symmetric, it suffices to consider the former. First, notice that the element
agtaq is central in K[C,]/P. Indeed, if ¢ < 2¢, then a;asta; = astaia; in Cp, hence also in K[C,]/P.
Whereas, if ¢ > 2t, then a;a9ia1 = a;a1a2; = agiara,; (first equality holds in Cp,; second equality follows
from with r = s = t, because ¢ > 2t). Hence, by Proposition we get agia; = pin K[C,]/P
for some p € K. Moreover, agiar ¢ P implies that p # 0. We claim that the element as;1aq is central
in K[C,]/P as well. Indeed, if j < 2t, then asi11a1a; = ajazt1a1 in C,, hence also in K[C,]/P.
Whereas, if j > 2t, then ajag4+101 = aja1a241 = ax101a; in K[C,]/P (first equality holds in Cp;
second equality is a consequence of with r = s = ¢, because j > 2t). Thus, Proposition yields
asey1a1 = v in K[Cy,]/P for some v € K, and we get

HA2t4+1 = A2t4102tA1 = G2t4101G2¢ = VA2t

in K[C,]/P. Hence we get agiy1 — Aag; € P, where A\ = u~'v € K. O

Before we proceed to a formulation of the main result of this paper, let us recall some notions and
introduce some notation. We say that the element x € K[C,] acts regularly on a left K[C,]-module V'
if zv # 0 for each 0 #£ v € V (or, in other words, if the annihilator of x in V' is equal to zero).

In the following five lemmas we assume that n is even, say n = 2s for some s > 1. We assume as well
that the K[C,]-module V is simple, and its annihilator P contains the ideal I,,, where p is the congruence
on C,, determined by the diagram

consisting of s consecutive arcs az110as,...,a,a1 (as shown in the picture). Moreover, we consider the
set
X ={aja;:i<s+1l<jandi+j>n+1} CC,,
and its subsets
Xo = {z € X : z does not act regularly on V}, X1 =X\ Xo.
Of course, the sets Xy and X; depend on the module V.
Lemma 3.8. We have xy —yx € P for all z,y € X.

Proof. Let x = aja; and y = ajay. If j = [ then zy = yx in C),. Hence, we may assume that j < [. If
i > k then again xy = yx in C,. So, assume that ¢ < k. Summarizing, we are in the situation where
1 <k<s+1<j<l. Then, by with r = s — i+ 1, we get aja;a; = qa;a; in K[C,]/P (because
l>j>n—i+1so, in particular, j,{ > n — i+ 1), which leads to

TY = a;0;010 = A1A;050 = Q1A;Q;0 = QARA;0; = YT
in K[C,]/P. Hence the result follows. O

Lemma 3.9. Assume that a,—jy1a; ¢ P for each j =1,...,s. If x € Xy then x — pu € P for some
0#puekK.

Proof. First, notice that each element a,_j11a; for j = 1,...,s is central in K[C,]/P. Indeed, if
i < j, then a;an_j110; = ajan_j110; = an_jy1a5a; in K[C,]/P (first equality is a consequence of
with r = s — j + 1, because i < j; second equality is valid in C,). Next, if j < ¢ < n —j+ 1,
then a; commutes with a,_;y1a; in C,, hence also in K[C,]/P. Whereas, if i > n — j + 1, then
AiOp—j4+10j = QiQjAn—jt1 = Gn_j+16;a; in K[C,]/P (first equality holds in C),; second equality follows
from with r = s —j+ 1, because ¢ > n—j + 1). Hence Proposition assures that a,_;11a; = A;
in K[C,]/P. Since a,,—ji1a; ¢ P, we get \; # 0 for each j =1,...,s. Now, let = aga;. Since we have

(ara;)(@n—j+1an—k+1) = An—j+10kA;an—k+1 = (@n—j+105)(AkAn—r+1)
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in C, and akaj(an,jﬂan,kﬂakaj — AjAn—i41)V = 0, we conclude that « and ¥ = van—;+10n—k+1,
where v = (AjA\p—k4+1) " € K, are mutual inverses in K[C,]/P.

We claim that each generator a;, for i = 1,...,n, commutes with z or y in K[C},]/P. Indeed, if i < j
then, by with r = s —j 4+ 1, we get a;n—j110n—kt1 = Qn_kt10n—j+1a; in K[C,]/P (because we
have i < j, and from j+ k >n+ 1 we get alson —k+ 1 < j), so

Y = VAiOn—j410n—k+1 = VOn—k410n—j410; = Vap—j410n—k+1G; = YU;
in K[C,]/P. f j<i<n—j+1thenfromj+k>n+1wegetn—k+1<j<i,soa; commutes with
Y = Gp—j410n—k+1 in Cp, hence in K[C,]/P, too. If n —j+1 < i < k then j <n —j+1 <4 implies
that a; commutes with « = apa; in Cy,, hence in K[C,]/P as well. Whereas, if i > k then, by with
r=s—j+1, we have a;a;ar = araja; in K[C,]/P (because from j+k >n+1wegeti >k >n—j+1),
which yields
;T = A;0E0; = ;A0 = AEpG;A; = T4

in K[C},]/P, and the claim follows. In particular,  in central in K[C,]/P. Therefore, Proposition
guarantees that © — u € P for some p € K. Since z acts regularly on V', we must have p # 0. ]

Let x = qyar € X and y = aja; € X. We say that = dominates y (or that y is dominated by x) if
j<landi<k.

Lemma 3.10. Assume that an—j116; ¢ P foreachj=1,...,s. Ify € X is dominated by some x € X,
then y € X;.

Proof. By Lemma we know that x — u € P for some 0 # p € K. Moreover, as in Lemma [3.9] we
have a,,_j11a; = Aj in K[C,]/P, where \; # 0, for each j = 1,...,s. Now, write z = aq;a; and y = a;a,.
Of course it suffices to consider just two cases. Namely, (¢,5) = (k — 1,{) and (4,5) = (k,I — 1). Assume
first that (¢,7) = (k — 1,1). Then, by (2.6) with »r = s — k + 1, we have a,_gi12ara0; = @1akAn—_k12 D
K[C,]/P (because from k+1>mn+1 we get [ > n—k+ 1 and, of course, n —k+2 >n —k+1). Now,
if v € V and yv = 0 then
0 = Gn—k420RYV = Qp—k120KAAK—1V = QAKAn— k420K -1V = Ag—1 10,
because ajar, = p and an—gi2ak—1 = A\p—1 in K[C,]/P. Hence v = 0. Finally, let (i,5) = (k,1 —1). If
yv = 0 for some v € V then
0= ai0n_142YV = Q10p 1420110V = QA_10n_ 420KV = Ap_ 4201050 = Apy_(12/i0,

because a;_1an—i1+2 = Ap—i+2 and qjax, = p in K[C,]/P. Hence again v = 0, and the result follows. O

The statement of the last lemma can be easily visualized if we arrange the elements of X in a triangular
matrix, as follows

apa2 Gpa3 Ap Q4 e apQs—2 GpQs—1 UnQs
(p—-103 QAp-1G4 - - Up—10s—2 Qap—10s—1 0Ap—10s
Up—2Q4 -+ Up—20s—2 Qp—20s—1 Ap—20s

(3.4)

As440g5—2 Ag44Q05—1 As440g

As4305—1 54304

As4204
Then, for each = € X, elements in X dominated by z constitute a right triangle with = as the vertex of
the right angle and with its hypotenuse consisting of elements lying on the diagonal of the above matrix.
It is also worth to reformulate Lemma in the following way. If x = aja; € Xo then all elements
dominating z also lie in X, (these are precisely the elements of the matrix lying inside the rectangle

defined by the vertices aja;, ana;, anas, a;as).

Lemma 3.11. If x € X then for each v € V there exists m > 0 such that x™v = 0.

Proof. Let x = ara;. Since x does not act regularly on V, there exists 0 # w € V such that zw = 0.
Because V is a simple module, we have V = K[C,,Jw. We claim that for each z € C,, there exists [ > 0
such that  commutes with z'z in K[C,,]/P (in fact, it suffices to take | = deg(z)). Of course this claim
implies our lemma. We shall prove the claim by induction on deg(z). So assume first that deg(z) = 1.
Then z = a; for some ¢ € {1,...,n}. If i < j then 2z = araja; = (ara;)a; in C,. Hence xz commutes
with = in C,, so also in K[C,]/P. Next, if j < i < k then  commutes with z in C,,, hence also with
rz in C,, and of course in K[C,]/P as well. Finally, if i > k then, by with r = s — j + 1, we get
13



xz = araja; = (a;a;)ar in K[Cy]/P (because j+k > n+1implies i > k > n—j+1). Thus z commutes
with zz in K[C,]/P as well. Now assume that deg(z) > 1 and write z = z’a; for some 2z’ € C), and
some i € {1,...,n}. By induction, there exists [ > 0 such that z commutes with z'2’ in K[C,]/P. Now
2ty = a*a; = (2'2')(za;), so the claim follows, because z commutes in K[C,]/P with z!2’ and
with za;, hence also with z!*!z. O

Lemma 3.12. Assume that an—j11a; ¢ P for each j =1,...,s. If as41 does not act reqularly on V
then there exists 0 # v € V such that xv = 0 for each x € Xo and ajv = 0 for each j > s. In this
situation V' is spanned as a K-linear space by the set

(an—lal)*(an—2a2)*(an—3a3)* te (as+3as—3)*(as+2as—2)*(as+1as—1)*azv-

Proof. First, note that for each j = 1,..., s we have a,,—jy1a; = A; in K[C,,]/P for some 0 # \; € K (this
was already proved in Lemma [3.9). Assume for the moment that we already have a vector 0 # w € V
such that zw = 0 for each z € Xy. Then there exists £ > 0 such that algﬂw =0 # aklllw (the

S

proof of this fact is completely analogous to the proof of Lemma so it will be omitted here). Let
v = alstllw # 0. Since ags41 commutes with each x € X in C,,, we get zv = 0 for each x € X. Of course

as41v =0, and if j > s+ 1 then we have
0= 0050541V = aj051105V = Asa50,

which gives a;jv = 0, because Ay # 0. Thus, to finish the proof of the first part of our lemma, it is
enough to show that there exists 0 # w € V such that zw = 0 for each x € Xy. If X is empty then
there is nothing to show. Therefore, assume that Xo = {x1,...,2q} with d = | Xo| > 0. Take [ < d and

suppose that there exists 0 # w; € V such that zyw; = -+ = zjw; = 0. By Lemma we know that
i w =0 # xﬁ;lwl for some m > 0. Then define w;1; = xﬁ;lwl =% 0. Because x1,...,x; commute
with z;41 in K[C,]/P (see Lemma [3.8)), we get zyw;41 = -+ = zywi11 = 41w, = 0. Now, it is clear

that after d steps we obtain a nonzero vector w = wg € V such that xw = 0 for each z € Xj.

Let us proceed to the proof of the last statement of the lemma. So, fix 0 # v € V satisfying zv = 0
for each x € Xy and a;v = 0 for each j > 5. Of course V' is spanned as a K-linear space by the set C),v.
Hence it suffices to show that for each x = by ---b,, € C,, written in its canonical form we have
2v € K - (ap—1a1)* -+ (asy1as—1)*aiv.

First, by , we have a,a; = aja; in K[C,]/P for all i,j < s. Hence, the element by --- b, can be
written in K[C,]/P as an element of the set aj - -- af. Next, for each j < s we have

Aj410 = Un—jaj 4105 = (Gn—ja;)a;41

in K[Cy]/P. Thus, we conclude that aj---a* C K - (ap—101)* - (@s4105-1)%a
allows us to assume that

* in K[C,]/P, which

S

by -bs € (ap—1a1)" -+ (asp1a5—1)%a. (3.5)
Further, by (2.4)), we have axa; = ajar in K[C,]/P for all k,l > s. Therefore, for each j > s, the
element b; can be written in K[C,]/P as an element of the set (aja1)*---(ajas)* a5, - aj. Because
the elements a¢y1,...,a; commute in C,, with each ara;, where i < k satisfy i < s and k > j, we deduce
that as41,...,a; commute in K[C,]/P with all elements b;1,...,b,. Moreover, as41v = --- = a;v = 0.
These two facts allow us to assume that
b; € (aja1)*---(ajas)" for each j > s. (3.6)
Next, we claim that for all ¢ < s < j such that i + j < n the equality
(i1 An—j)aja; = (an—iai)(@n—i-10i+1)(An-i—20i+2) -+ (@jan—;) (3.7)

holds in K[C,]/P. We shall prove the claim by inductionond=n—¢—j. f d=1theni+j=n—-1
and we have

(an—iai)(ajan—;) = (aj+1a:)(ajaiv1) = ajajr1a:0i41 = aj(aj110i41)a; = Niy1a;5ai,
because aji1ai4+1 = An—iiy1 = Ai+1 in K[Cy]/P. So assume that d > 1, and the claim is true for all
i < s < jsuch that n —i —j = d. Our aim is to show that holds for all i < s < j such that
n—1i—j=d+ 1. Observe that in this case we must have i + 1 < s, because otherwise i > s — 1 and
j>s+lgived+l=n—i—j<n-—(s—1)—(s+1) =0, a contradiction. Soi+1 < s < j and
n — (i+ 1) — j = d. Therefore, by induction, we get

(Nig2 - An—j)ajaiyr = (@n—i—1@iv1) - - (ajan—j)
14



in K[Cy]/P. This equality, together with a,_;a;1+1 = A1 in K[C,]/P, lead to

(Nit1Ait2 - An—j)ajai = (Nig2 - An—j)(an—iait1)(a;a;)

= (Nit2 - A—j)ajGn—_iQiy10;

= (Nig2 An—j)ajan—ia;a;j41

= (Nit2 - An—j)(an—ia;)(ajait1)

= (an—i0;)(@n—i—1Giy1) - (ajan_j)

in K[C,]/P, hence the claim follows. Now, looking at the form (3.6)) of b; and using (3.7) to rewrite the
factors aja; with i < n—j (appearing in the form (3.6]) of b;), and also noticing that ajan,—j11 = Ap—jt1
in K[C,]/P, we conclude that we may restrict to the situation when

n

i+2 7

bj € (ap—1a1)" -+ (ajan—;)" - (ajan—j+2)* - -~ (ajas)” for each j > s. (3.8)
Note that in the form of b; two types of factors appear. First n — j factors are of the form a,,_;a;
fori=1,...,n—7j, whereas next s — (n—j+1) = j — s — 1 factors (separated from the first n — j factors
by a dot) are of the form a;a;, where i =n —j+2,...,s. Further, each factor a;a; forn—j+2 <i <s,
appearing in the form (3.8)) of b;, lies in X and commutes with all factors a,—1a1,...,aj41a,—;j—1 that
appear in the form the elements b;11,...,b,. Hence, we can write bsyq ---b, in K[C,]/P as an

element of the set K - (ap_1a1)* - (as41a05—1)*(X), where (X) C C,, denotes the monoid generated by
the set X = Xo U X;. Since Xov = 0 and X;v C Kv (see Lemma , we get (X)v C Kwv, which leads
to the conclusion that

bsr1--bpv € K- (an—1a1)* -+ (asr1as—1)*v. (3.9)
Finally, (3.5) and (3.9)) yield v = by -+ - bsbsy1 -+ bpv € K- (an—1a1)* - (as41as—1)*akv, which ends the
proof. O

Now, we are ready to formulate the main result of the paper.

Theorem 3.13. Let V be a simple left K[Cy]-module. Then V is isomorphic to one of the modules
constructed in Proposition (in this case n must be even) or £V = 0, where x = a; — X for some
ie{l,...,n} and A € K, or x = Aaj — paj_1 for some j € {2,...,n} and A\, € K not both equal
to zero. In the latter case V. may be treated as a simple left K[C,_1]-module and its structure can be
described inductively.

Proof. Let P denote the annihilator of the module V. Since P is a prime ideal, it follows that P contains
a minimal prime ideal of K[C,], which is of the form I, for some leaf d € D (see Section [2). We also
know that the congruence p(d) arises as a finite extension p(dy) C p(di) C -+ C p(dm) = p(d), where
each d; is a diagram in level j of D. In particular, I,4;) C P for each j =1,...,m.

First, consider the case in which some diagram d;;, is obtained from d; by adding a dot. Let us
additionally assume that j is minimal with this property. If j = 0 then the diagram d; consists of
a single dot a; for some i € {2,...,n — 1}. Hence, by and with s = 4, we conclude that
a; is central in K[C,]/P. Therefore, by Proposition we have £V = 0, where z = a; — A\ for some
A € K. Whereas, if j > 0 then d; consists of j consecutive arcs az110as, . . ., ast;as—;+1 and dj;1 arises by
adjoining the dot a,_; to d; or by adjoining the dot asy;41 to d;. If as4jas—j41 € P then Proposition@
implies that 2V = 0, where « € {asyj, as—;41}. Whereas, if asqjas_ ;41 ¢ P then Propositionimplies
that 2V = 0, where z € {as_; — Mas_j11,as4541 — Aasyj : A € K}, and the result also follows.

Now assume that a dot does not appear in the construction of d, but d contains the arc a;jaj, where
j < n or the arc a,a;, where i > 1. If aja; € P or ana; € P then Proposition implies that zV =0
for some z € {a1,a;,a;,a,}. Whereas, if aja1 ¢ P and a,a; ¢ P then Proposition yields zV = 0,
where = € {a;+1 — Aaj,a;—1 — Aa; : A € K}, hence the result follows in this situation as well.

Let us observe that if n is odd then one of the cases described above must hold. Therefore, we may
assume that n = 2s for some s > 1. Moreover, it remains to consider the case in which the diagram d

consists of s consecutive arcs @s;1ds,...,ana; (as shown in the picture). In this situation we already

know (see the proof of Lemma that the elements a,_;y1a; for j =1,...,s are central in K[C,]/P.

Therefore, by Proposition we have a,_j11a; = A; in K[C,]/P for some \; € K. Moreover, due

to Proposition we may assume that each A\; # 0. Further, if a,y; acts regularly on V' then the

equality asy1(asass1 — As)V = 0 implies (asasy1 — A\s)V = 0. Hence as and \;las; are mutual
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inverses in K[C),]/P. Since as commutes with ay,...,as in K[C,]/P (see (2.3)), and a,41 commutes
with as41,...,a, in K[Cp]/P (see (2.4)), we conclude that as is a central element of K[C,]/P. Thus,
again by Proposition [3.4] we conclude that V' = 0, where # = a5 — A for some A € K. Therefore, we
may assume that a1 does not act regularly on V. In this situation Lemma [3.12] guarantees that

there exists 0 # v € V such that Xov =0 and a;uv =0 for all j > s (3.10)

(notation introduced before Lemmais used here). Moreover, we know that V' is spanned as a K-linear
space by elements of the set (ap—1a1)* - (as41a5—1)*a’v.

First, assume Xo = X. We claim that in this case elements of the set (an—1a1)* - (ast16s—1)*alv
are linearly independent over K. Indeed, suppose on the contrary that

r
Z Ny oin(@n_1a1)™ - (asg1as 1) talsv =0

i1 yeenyis =0
is a nontrivial relation of linear dependence. Then define
my = max{iy : \j, i,,...i. 7 0 for some iz, ... 495}
Observe that, by with r = s — 1, we have a1a,_1a2 = asa,—_1a1 in K[C,]/P, which yields
(anaz)(an—1a1) = ap(agan—1a1) = ap(aran—1a2) = (anay)(ap—1a2) = A2

in K[C),]/P. Since anazv = 0 and because the element a,as commutes in C,, with a,_;a; for j > 1, we
get

i
0= (anaz)™ Z Nivsosis (an—1a1)" -+ (asy1as—1)='akv

015008 =0

.
= (MA2)™ D Ampiaia (Gn-2a2) - (ag1as1) " ag o,

i2,eyis=0

Assume now that k < s — 1, the numbers my, ..., my have already been defined, and the equality

T

7 Ts— Tg 0
) Ao sin 1 reis (@n—k—1@k+1) " - (a5 41a5-1)"" T agv =0

Tht1se--ts =0

holds with Ay .y, i, 7 0 for some ix41,...,75. Put

Tt1se
Mpt1 = MaX{ikt1 * Ay sipsssinso,...is 7 0 for some ipqo, ... i}

Then, by (2.5) with r = s—k—1, we have ax42ay—k—10k+1 = Gk11an—k—1ak+2 in K[Cy,]/P, which yields

(an—kars2)(@n—r—10K41) = Gn_k(Ary20n_k—10141)
= ap—k(Ak+10n—k-10k+2)
= (an—kak+1)(On-k—10k42) = Akr1 k42
in K[C,]/P. Since an—_rak+2v = 0 and because the element a,,_jag42 commutes in C,, with a,,_;a; for
7>k+1, we get
r

m i dorn s
0 = (an—rags2)™ E Ao i 1seeesis (@n—k— 10k 1) F1 - (Asq105-1) """t ag v
Tt 1y eyts=0
T

= AertMer2)™ D Aeimisrinsanis (Gnok-20k42) 2 - (as105-1) " ag v,

Tht2,---sts=0

Thus, by induction, we conclude that there exist my,..., ms_; such that Ay, . m. . 7 0 for some i,
and

T
7
E >‘m1,-~~7ms—17isassv =0.
1s=0

Now, let ms = max{is : Ay, m, 1, # 0}. Since asy1as = As in K[C,]/P and as41v = 0, we get

r
— ,Ms ) _ Mg
0= a3+1 Z )\mlanwms—lﬂsassv - >\s b)‘mhu-,ms”a
1s=0
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which leads to a false conclusion that v = 0. Therefore, the set
E={e, i = (Aflan_lal)i1 ~-~()\s__llasﬂas_l)is‘l()\S_las)“v S0l ...,05 > 0}

is a basis of V' over K, and one can easily check that the action of aq,...,a, € C, on the basis F
agrees with the action of a1, ..., a, € C, on the basis of the left K[C,]-module V(A1,...,\s) defined in
Proposition Hence we get V=V (Aq,...,As).

Finally, let us consider the last case. Namely, Xo # X. This means that some element a;a; € X acts
regularly on V' (that is, aja; € X7). Lemma assures that we may restrict to the situation in which
i+j =n+2 (that is, aja; lies on the diagonal in the matrix notation of elements of X). Moreover,
we may assume that j is minimal with that property. In this case Lemma [3.10] and the discussion after
this lemma imply that all elements a;ar € X with k > ¢ lie in X. Because the vector v satisfies Xqv =0

(see (3.10)), we get, in particular,
ajaiv = 0 for all aq;ar, € X with k > 1. (3.11)
We also know that V' is spanned as a K-linear space by the set
(an—1a1)* - (ajan—j) " (aj_1an—j1+1)" (aj—2an—jt2)" - - (ast1a5-1)"av.
Since aja; € X1, Lemma guarantees that aja; = p; in K[C,]/P for some 0 # p; € K. Moreover, we
have
(ajai)(aj,lai,l) =0;-10;0;0;—1 = Qj-10;0;—10; = (aj,lai)(ajai,l)

in C,. Since i +j = n+ 2, we get aj_1a;, = A; and aja;—1 = A\—1 in K[C,]/P. Furthermore, we
have ajai(aj,lai,lajai — XAi—1A)V = 0. Because aja; acts regularly on V, the last equality yields
(aj—1a;—1a;a; — Ai—1\;)V = 0. Therefore, we conclude that a; _1a,—j41 = aj—1a,—1 = pi—1 in K[C,]/P,
where ;1 = N1 i ! # 0, hence V is also spanned as a K-linear space by the set

(an—101)" - (ajan—;)" (a5 -2an—j12)" - (Gst105-1) agv.
We claim that in this case zV = 0, where © = \ja; — pa;—1. To prove this, fix

w = (an-101)" - (@jan ;)" (A 9an_j12)" 7+ - (asy10.1) " tafv €V,

where 41,...,9n—j,In—j42,...,%s > 0. Our aim is to show that zw = 0.
Assume first that j = s + 2 (and, consequently, i = s). Because a;_; and a; commute in C,, with all
elements a,_1a1,...,as12a5—2, we have

aj— 1w = ((ln—wl)i1 "'(as+2as—2)i‘*_2%‘—1a?“
and
ajw = (ap_101)" -+ (454205 2)"**ajalv.

So it is enough to show that zw’ = 0, where w’ = a’v. But aj—1v = a;v = 0 and a;_1a,v = v,
ajasv = p;v imply that

, Nias"tv ifig >0, , piats~ty if iy >0,
aj 1w = o and a;w = o
0 ifi, =0 0 if i, = 0.
Hence the result follows in this case.
Now, let j > s+ 2. Because a;_; and a; commute in C,, with all elements a,,_1a1,...,aja,—;, we
have

aj1w = (an-101)" -+ (a500-7) "7 051 (0j20n—j42)" 2 - (as4105-1) A
and

a;w = (@p_1ay)™ - (ajanij)in*j aj(aj,zan,jﬁ)i“*f“ o (asp1as- 1) tak .

So it suffices to check that zw’ = 0, where w’ = (a;_2an—j42)"=9+2 -+ (as41a5—1)"**a’sv. Suppose that
in—j4+2 > 0. Then, remembering that ¢ +j = n + 2, we get

aj 1w = aj 105 20 j+2(aj-2an—j12)" 2T Haj 300 j13)" T - (asp105-1) A
= (@j-10n—j12)a5-2(aj 2an_jr2) " 2 (aj_gan_j13)" 7" - (ast1as-1)" " alv

)it @ gan—j13) " (A p1as-1) T A
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and

in—j+2—1 in—j is—1 ,0s
ajw’ = a;a;j-—2an—j12(aj-2an—j42)" 77 (aj_3an—j13)" T - (asp1as-1)" T ag v
in—j+2—1 in—j is—1 40s
= (ajan—j+2)aj-2(aj-2an—j+2)" 77 (aj—3an—j1+3)" 7+ -+ (ast1a5-1)""tagv
i jra—1 i o1 s
= Wiaj—2(aj—2an—j1+2)"" "7 (aj_3an—j4+3)" TP - (asp1a5-1)" T ag v,
because aj_1an—j+2 = aj_1a; = N; and ajan—;j+2 = aja; = p; in K[C,]/P. Hence zw’ = 0 in this
case. Next, assume that i,_j4o = 0. If all 4,43 = -+ =451 = 0 then w’ = a’v. Since j > s+ 2,
we have a;_jas,a;a, € X. Thus (3.11) gives aj_jasv = ajas,v = 0, because s > 4. Moreover, we have
aj—1v = a;jv = 0. Therefore, a;_1w’ = a;w’ = 0 and, in consequence, zw’ = 0. Finally, assume that
in—jt+2 = 0 but i > 0 for some k € {n —j+3,...,s — 1}, and choose minimal k with this property. In
this situation we have w’ = (an_gar)™ - - (as41a5—1)"*"'a’*v. Because k > n — j + 3 then both j — 1
and j are > n — k, hence a;_1an—gar = an—i(aj_1ax) and a;a,—kar = an—k(aax) in C,. Therefore
, _— 4 _
aj W = aj_10n— kg (an—kar)™* " (Ap_p—10k+1)" - (Gsp105-1)" T ag v,
_— . L
= A (aj—108)(@n—kar)™* " (An—k—10k+1)" " - (Gsp105-1)" " a v,

an—r(an—rar)* taj_rap(@n—r—1ap41)* - (aspras—1) = rakv

and

ajw’ = ajan—par(an—rar)* N (@n—k—1a541)* - (asy1as—1)"takv.
= an—r(ajag)(an—rar)* Han—r—1a511)"* " - (aspras-1)='atv.
= an,k(an,kak)ik_lajak(an,k,lakﬂ)i’““ o (asp1as 1) " tal .

Further, observe that k > n — j + 3 implies that for each k <! < s we have j —1 >n — [, hence a;_1ax
and aja, commute with a,—;a; in C,,. Since k < s < j —1 it is also clear that a;_;aj and aja; commute
in C,, with as. Thus

' i—1 % o1 is
1w = Gpk(@n—gar)* " (Gn_g—1@r+1) "+ - (asg10s-1)" " tag aj_1ax0,
' i—1 % o1 is
a; W = ap_g(An_par)* " (Ap_p—10p41)"*+ - (@sp10s-1)" "L ay ajaxv.
Since aj_1axv = ajarv = 0 (by (3.11)), because k > n — j + 3 =i + 1 implies that a;_1ax, ajar, € X and
k> 1), we get a;_1w’ = ajw’ = 0 and, in consequence, zw’ = 0. This finishes the proof. O

Recall that a representation of a monoid M in a K-linear space V is said to be monomial, if V' admits
a basis F such that for each w € M and each e € E there exist A € K and f € E such that we = Af.
As a consequence of Proposition and Theorem we get the following remarkable result.

Corollary 3.14. Fach irreducible representation of the Chinese monoid C, is monomial.

This is in contrast with the results obtained for the, similarly defined, important class of plactic
algebras. Namely, in [2] it is shown that the plactic algebra of rank 4 admits irreducible representations
which are not monomial. It is also worth to note that all irreducible representations of plactic algebras
of rank not exceeding 3 are monomial (see [I1]).

4. ILLUSTRATION OF THE MAIN THEOREM FOR n < 4

In order to provide more insight into the nature of Theorem [3.13] we interpret it in the case of small
values of n. The case n = 1 is trivial. Next, it is well known that the Chinese algebra K[C3] of rank 2
coincides with the plactic algebra of rank 2. Moreover, the irreducible representations of Cy are easy to
describe, as they are induced from irreducible representations of the bicyclic monoid B = Cy/(aza; = 1).
Namely, we have the following result (see [I1] for more details).

Remark 4.1. Let V be a simple left K[C5]-module. Then V is 1-dimensional or V' 2 Z, where Z is the
simple left K[Cs]-module defined just before Proposition

Our next step is to describe all irreducible representations of the monoid C3. In this case the diagram
D has the form
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and three leaves of this diagram correspond to the minimal prime ideals of K[C3]:

Py = (ag, a3 commute, agay central),

Py = (as central),

P; = (a1, a2 commute, azas central).
Here, writing for example ‘as, a3 commute’ in P; we mean that P; contains the element asas — agas.
Similarly, writing ‘asa; central’ we understand that P, contains all elements of the form a;asa; — asaqa;

for i = 1,2,3. The same convention applies to other minimal prime ideals of K[Cs].
Hence, by Remark and the results from Section |3] we get the following classification.

Remark 4.2. Let V be a simple left K[Cs]-module. Then V is 1-dimensional or there exists a basis
{e; :i >0} of V such that exactly one of the following possibilities holds:

(1) there exist A, u € K such that A # 0 and aje; = Ae;11, ase; = e;_1, aze; = pe;—q for all i > 0.
(2) there exist A, n € K such that A # 0 and a1e; = Aej11, ase; = pe;, aze; = e;—q for all ¢ > 0.

(3) there exist A\, p € K such that u # 0 and a1e; = Aeji1, ase; = peiy1, aze; = e;— for all i > 0.
e

that, to make our statements more compact, we adopted the convention that e_; = 0.

Finally, let us describe all irreducible representations of the monoid Cy. In this situation the diagram
D has the form

o O O O

¢ ® 0 O O e 0 O o & @ O O O @ O o o & e

« oo o o« o o & e

and five leaves of this diagram correspond to the minimal prime ideals of K[Cly]:
P, = (ag, a3, a4 commute, asaq, aza; central),
P, = (a3, a4 commute, as, aza; central),
P; = (a1, a9 commute, as, ay commute, agas central),
Py = (a1, a2 commute, as, agas central),
Ps = (a1, a2, a3 commute, aqas, agas central).

Now, Remark together with the results obtained in Section [3|lead to the following classification.
Remark 4.3. Let V be a simple left K[Cy4]-module. Then V is 1-dimensional or there exists a basis
{€;; 14,7 >0} of Vand 0 # A, u € K such that

a1€55 = )\€¢+1,j+17 a2€4 5 = M€ j+1, a3€i; = €451, (4€455 = €;—1,5—1

for all 7,7 > 0 (with the convention that e; ; = 0 if i = —1 or j = —1), or there exists a basis {e; : i > 0}
of V such that exactly one of the following possibilities holds:
(1) there exist A\, u, v € K such that A # 0 and a1e; = Aejy1, ase; = €;-1, aze; = pe;—1, a4€; = ve; 1
for all i > 0.
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(2) there exist A\, p,v € K such that A # 0 and aj1e; = Aej 1, ase; = pe;, aze; = e;—_1, ase; = ve;_1
for all 7 > 0.
(3.1) there exist A\, i, v € K such that u # 0 and a1e; = Aej11, ase; = peir1, aze; = €;_1, age; = Ve,
for all i > 0.
(3.2) there exist A, u,v € K such that A # 0 but uv = 0 and are; = Ae;11, aze; = pe;, ase; = ve;,
ase; = e;_1 for all i > 0.
(4) there exist A, p,v € K such that p # 0 and a1e; = Aejy1, ase; = peip1, ase; = ve;, ag€; = ;-1
for all 7 > 0.
(5) there exist A\, u, v € K such that v # 0 and aje; = Aejy1, ase; = peiy1, ase; = Ve, G4€; = €1
for all i > 0.

Note that, as in Remark we used the convention that e_; = 0. Moreover, it is worth to notice that
modules in family (i), for ¢ = 1,2,4, 5, contain in their annihilators the ideal P;. Furthermore, modules

in

1

2

both families (3.1) and (3.2) contain Ps in their annihilators.
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