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TRIPLE CRYSTAL ACTION IN FOCK SPACES

THOMAS GERBER

Abstract. We make explicit a triple crystal structure on higher level Fock spaces,
by investigating at the combinatorial level the actions of two affine quantum groups
and of a Heisenberg algebra. To this end, we first determine a new indexation of
the basis elements that makes the two quantum group crystals commute. Then,
we define a so-called Heisenberg crystal, commuting with the other two. This gives
new information about the representation theory of cyclotomic rational Cherednik
algebras, relying on some recent results of Shan and Vasserot and of Losev. In
particular, we give an explicit labelling of their finite-dimensional simple modules.
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1. Introduction

Since Ariki’s proof [1] of the LLT conjecture [16], it is understood that higher level

Fock spaces representations of U ′
q(ŝle) have, via categorification, a very important

impact on our understanding of some structures related to complex reflection groups.

More precisely, if Fsl,e is the level l Fock space representation of U ′
q(ŝle) with mul-

ticharge sl and V (sl) the irreducible highest weight submodule of Fsl,e of weight
Λsl

(determined by sl), then one can compute the decomposition numbers for the
corresponding Ariki-Koike algebra by specialising at q = 1 Kashiwara’s canonical
basis of V (sl).
The Fock space itself is no longer irreducible, but one can however define a canonical
basis for it, which turns out to give, at q = 1, the decomposition numbers of a
corresponding q-Schur algebra, as was proved by Varagnolo and Vasserot [27], hence
generalising Ariki’s result.
The introduction of quiver Hecke algebras by Rouquier [21] and by Khovanov and
Lauda [15] has shed some new light about the role of the parameter q. In fact,
quiver Hecke algebras are graded, and graded versions of these results (which do not
require to specialise q at 1) hold for these structures, see [2].
Moreover, Ariki’s categorification theorem also permits to interpret the Kashiwara
crystal of V (sl) as the branching rule for the associated Ariki-Koike algebra. Shan
has proved in [23] that the crystal of the whole Fock space is also categorified by
a branching rule, but for another structure, namely a corresponding cyclotomic
rational Cherednik algebra.
Very recently, Dudas, Varagnolo and Vasserot [3] have proved a similar result sug-
gested by Gerber, Hiss and Jacon [7] in the context of finite unitary groups. In
this case, there is a notion of parabolic (or Harish-Chandra) induction for unipotent
representations which, provided one works with the appropriate Levi subgroups,
defines a branching graph which also categorifies the crystal of Fsl,e.
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Therefore, the study of Fsl,e, and in particular of its crystal structure (which yields
the theory of canonical bases in Kashiwara’s theory [14]) is crucial for approach-
ing fundamental problems in the representation theory of many classical algebraic
structures.
In Uglov’s paper [26], canonical bases of higher level Fock spaces have been thor-
oughly studied, generalising Leclerc and Thibon’s resultsin level one in [17] and [18].
In his work, the Fock space is identified to a subspace of the space of semi-infinite
q-wedges Λs. This space Λs is essentially the direct sum of all Fock spaces Fsl,e

over all l-charges sl whose components sum up to s. Three algebras act on Λs: two

quantum groups, namely U ′
q(ŝle) and U ′

p(ŝll), where p = −1/q, and a Heisenberg al-
gebra H. A fundamental result is that these three actions are pairwise commutative
[26, Proposition 4.6], and that the Fock space can be decomposed in a very simple
way: it suffices to act on the empty multipartition by the three algebras for some
restricted values of the multicharge to reach any vector [26, Theorem 4.8].

This emphasizes the relevance of considering Λs not only as a U ′
q(ŝle)-module, but

also as a U ′
p(ŝll)-module and as a H-module. This triple module structure is well-

defined because one has a three natural ways to index the elements of Λs: either by

partitions, by l-partitions, or by e-partitions. The action of U ′
p(ŝll) is understood

provided the correspondence between l-partitions and e-partitions is known, which is
the case (it is explicit and based on taking e-quotients and “modified” l-quotients).
This double quantum group structure is referred to as “level-rank” duality, and
has been investigated in particular in the works of Rouquier, Shan, Varagnolo and
Vasserot [22] and Webster [28].
The action of H has been less studied, but has recently been proved to have impor-
tant applications when it comes to the representation theory of rational Cherednik
algebras. More precisely, Shan and Vasserot [24] have categorified the Heisenberg
action on the Fock space, and used it to characterise finite-dimensional simple mod-
ules for the corresponding cyclotomic Cherednik algebra. In a recent preprint [20],
Losev has given a combinatorial interpretation of this categorical action, but with-
out using Uglov’s approach to the Fock space. Finally, in the context of [7] and [3],
some combinatorial observations suggest that H might play a role in the study of
unipotent representations of finite unitary groups, by relating the notion of weak
cuspidality to the classical one.
However, Uglov’s work says very little about crystals, and it is not clear how level-
rank duality nor the action of H is expressed at the crystal level.

The aim of this paper two-fold. First, complete Uglov’s study of higher level Fock
spaces at the crystal level. This is achieved by explicitely determining a triple crystal
structure which yields a nice decomposition of the whole crystal in the spirit of [26,

Proposition 4.6] and [26, Theorem 4.8]. This requires to make explicit the U ′
p(ŝll)-

crystal structure commuting with the U ′
q(ŝle)-crystal, and to define an appropriate

notion of Heisenberg crystal which shall commute with both affine quantum group
crystals. Second, place it into the context of the representation theory of Cherednik
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algebras to deduce new results using explicit combinatorics. In order to do this, we
must in particular prove a compatibily with a recent result of Losev [20]. Throughout
the paper, we will give a significant amount of examples to illustrate the various
notions and procedures that we introduce.
This article contains the following main points. In Section 2, we recall the important
combinatorial notions used in all the paper, in particular Uglov’s algorithms which
permit to juggle the different indexations of the semi-infinite q-wedges. This section
does not contain any new material, however we take some time to introduce all
notions carefully.

In Section 3, we recall the U ′
q(ŝle)-module structure on higher level Fock space which

was explicited in [11]. Note that this requires an order on i-boxes of multipartitions
which gives the so-called “Uglov” realisation of the Fock space, which is not consen-
sual in the literature (cf Remark 4.9). We also introduce the conjugation procedure,
which is capital, and the correspondence (3.7). Essentially, it enables to put a new

U ′
q(ŝle)- and U ′

p(ŝll)-structure on the Fock space, which is the appropriate one for
our purpose of studying crystals.

Section 4 gives a crystal version of level-rank duality. The U ′
p(ŝll)-crystal graph rule

commuting with the classic U ′
q(ŝle)-crystal is explicited (Theorem 4.8). The crystal

operators of U ′
p(ŝll) therefore give U ′

q(ŝle)-crystal isomorphisms in level l Fock spaces,
adding to the list in [6]. It is explicit and easy to describe on l-partitions. The use
of Correspondence (3.7) is indispensable.
In Section 5, we study “doubly highest weight vertices”, that is to say, vertices that

are simultaneously highest weight vertices in the U ′
q(ŝle)-crystal and in the U ′

p(ŝll)-
crystal. We use a result of Jacon and Lecouvey [9, Theorem 5.9] to characterise
these multipartitions, and then give some essential properties. The proofs there are
quite technical and require a careful analysis of the correspondence (3.7).
Section 6 is devoted to defining the Heisenberg crystal. We start by introducing
maps b̃−κ and b̃σ which shift periods to the left and to the right respectively in the

abacus representation of a multipartition. These are simultaneously U ′
q(ŝle)- and

U ′
p(ŝll)-crystal isomorphisms (Theorems 6.9 and 6.14). The Heisenberg crystal is

then defined as a graph where the arrows are given by the action of “Heisenberg
operators” which are refined versions of b̃−κ and b̃σ. We end with a decomposition
theorem (Theorem 6.21) which is an analogue of [26, Theorem 4.8].
Finally, Section 7 relates the various results of the previous sections to the represen-
tation theory of rational Cherednik algebras. We first give an general interpretation
of the crystal level-rank duality. Then, we show that Losev’s independent results on
the crystal version of the Heisenberg action [20] are compatible with those of Section
6, this is Theorem 7.6. This enables us to give an explicit characterisation of the
finite-dimensional simple modules for the cyclotomic rational Cherednik algebras
using the notion of FLOTW multipartitions (Theorem 7.7).
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2. General combinatorics

2.1. Charged multipartitions.
Let l be a positive integer. An l-charge (or simply multicharge) is an l-tuple sl =
(s1, . . . , sl) of integers. An l-partition (or simply multipartition) is an l-tuple λl =
(λ1, . . . , λl) of partitions. One considers that a partition has an infinite number of
size zero parts. The set of partition will be denoted by Π and the set of l-partitions
by Πl. The rank of λl is the sum of the ranks of the partitions λj, j = 1, . . . , l.
A charged l-partition is the data of an l-charge sl and an l-partition λl, denoted
|λl, sl〉. It can be represented by an l-tuple of Young diagrams (corresponding to
λl), whose boxes (a, b, j) (where a is the row of the box, b is its column and j its
component) are filled with the integers b− a+ sj. This integer is called the content
of the box (a, b, j).

Example 2.1. Take l = 2, sl = (−1, 2) and λl = (2.1, 12). Then

|λl, sl〉 = ( -1 0
-2

, 2
1

)

2.2. Abacci.
Equivalently, one can use Z-graded abacci to represent a charged multipartition,
following [10]. Given a charged l-partition |λl, sl〉, we can compute, for each j =
1 . . . , l, the numbers βj

k = λj
k + sj − k + 1 for k ≥ 0 where the λj

k (k ≥ 1) are the
parts of λj . For each j, this give a set of β-numbers for λj in the sense of [10], which
is infinite by the convention that λj has an infinite number of size zero parts. Note
that these β-numbers are precisely the “virtual” contents that appear just to the
right of the border of |λl, sl〉 in its Young diagram representation.
Formally, we define the abacus A(λl, sl) to be the subset of {1, . . . , l} × Z defined
by

A(λl, sl) =
{
(j, βj

k) , j ∈ {1, . . . , l}, k ≥ 0
}
.

We can depict A(λl, sl) by drawing l horizontal Z-graded rows, numbered from

bottom to top, and by drawing a bead on row j at position βj
k for all j = 1, . . . , l

and for all k ≥ 0.

Example 2.2. Take the same values as Example 2.1. Then the β-numbers are given
by

j = 2 : (. . . ,−5,−4,−3,−2,−1, 0, 2, 3)
j = 1 : (. . . ,−5,−4,−3,−1, 1)

and we get the following abacus

From this abacus, one recovers the l-charge by shifting all beads to the left and by
looking at the position of the rightmost bead on each row; and the partition λj (for
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all j = 1 . . . , l) by counting the number of empty spots to the left of each bead on
the j-th row.

2.3. Uglov’s algorithms.
In this section, we want l ≥ 2 and we fix another integer e ≥ 2. Following Uglov
[26], we explain a way to associate to a charged l-partition a charged 1-partition, as
well as a charged e-partition.
Consider the l-abacus representing a charged l-partition |λl, sl〉. Divide it into rect-
angles Rk, with k ∈ Z, of size e × l such that each rectangle contains the positions
(j, (k−1)e+1), (j, (k−1)e+2), . . . , (j, ke) for some k ∈ Z and for all j ∈ {1, . . . , l}.
Then for (j, c) ∈ Rk, set τ−1

l (j, c) = (1, c − e(j − 1) + elk). Then one can show
(see [26]) that τ−1

l is a bijection between {1, . . . , l} × Z and 1 × Z, and we denote
τl its inverse (whose formula can also be explicited). In fact, τ−1

l (A(λl, sl)) is a
1-abacus representing a charged partition, which we denote |λ, s〉. It is easy to see

that s =
∑l

j=i sj .

Starting from |λ, s〉, we can define a variant of τl which uses e. For (1, c) ∈ A(λ, s),
set τe(1, c) = ((−c) mod e + 1, (c − c mod e)/e + 1). Then τe is also bijection
between 1 × Z and {1, . . . , e} × Z. In fact, τe(A(λ, s)) is an e-abacus representing
a charged e-partition, which we denote |λe, se〉, and we also have s =

∑e
i=1 si if

se = (s1, . . . , se).

Example 2.3. We illustrate these procedures on Example 2.1. Take for instance
e = 3. We see in Figure 1 that τl “stacks horizontally” the elements of A(λ, s) into
rectangles of height l and width e, and that τe “stacks vertically” the elements of
A(λ, s) into rectangles of height e and width l. Notice also that the composition
τe ◦ τ

−1
l consists in flipping each rectangle through the diagonal joining the top lef

corner to the bottom right corner, and then “ ‘regluing” the rectangles to get an
abacus.
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Figure 1. The bijections τl and τe

Remark 2.4. Notice that shifting a bead one step to the left in |λe, se〉 amounts to
removing an e-ribbon in |λ, s〉. In fact, the bijection τe gives the e-quotient (in the
sense of [10]) of the partition |λ, s〉. The e-core of λ is obtained after shifting all
beads of |λe, se〉 to the left and computing the associated partition using τ−1

e . Note
finally that this does not hold for τl (the definitions of τl and τe are different).

2.4. Addable/removable boxes, residues, and order on boxes.
We keep the notations of the previous section. Recall that the content of a box
γ = (a, b, j) of a multipartition |λl, sl〉 is the integer cont(γ) = b − a + sj . The
residue of γ is the integer

res(γ) = cont(γ) mod e.

For i ∈ {0, . . . , e− 1}, γ is called an i-box if res(γ) = i.
A box γ is called removable for λl if γ is a box of λl and if λl\{γ} is still a
multipartition. Similarly, it is called addable if λl ∪ {γ} is still a multipartition.
In the abacus, this corresponds to a bead which can be shifted one step to the left
(respectively to the right). As seen in Remark 2.4, removing (respectively adding) a
box in |λe, se〉 corresponds to removing (respectively adding) an e-ribbon in |λ, s〉 =
τ−1
e (|λe, se〉).

For a charged l-partition |λl, sl〉 and i ∈ {0, . . . , e− 1}, there is a total order on the
set of its removable and addable i-boxes defined by

(2.1) γ < γ′ ⇔

{
cont(γ) < cont(γ′) or
cont(γ) = cont(γ′) and j > j′
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where γ = (a, b, j) and γ′ = (a′, b′, j′).
For charged l-partitions |λl, sl〉 and |µl, sl〉 such that µl = λl ∪ {γ} where γ is an
addable i-box of |λl, sl〉, we define the quantities
(2.2)

Ni(|λl, sl〉) = #{addable i-boxes of |λl, s〉}
−#{removable i-boxes of |λl, s〉}

N<
i (|λl, sl〉, |µl, sl〉) = #{addable i-boxes γ′ of |λl, sl〉 such that γ′ < γ}

−#{removable i-boxes γ′ of |µl, s〉 such that γ′ < γ}

N>
i (|λl, sl〉, |µl, sl〉) = #{addable i-boxes γ′ of |λl, sl〉 such that γ′ > γ}

−#{removable i-boxes γ′ of |µl, s〉 such that γ′ > γ}.

3. Module structures on the Fock space

3.1. U ′
q(ŝle)-action on the level l Fock space.

Notation 3.1. For s ∈ Z and N ∈ Z>0, we write

ZN (s) =

{
(x1, . . . , xN) ∈ ZN |

N∑

k=1

xk = s

}
.

In all what follows, we fix s ∈ Z, l, e ∈ Z≥2 and q be an indeterminate. Set also
p = −q−1. For each l-charge sl = (sl1, . . . , s

l
l) ∈ Zl(s), consider the level l Fock space

Fsl,e =
⊕

n∈Z≥0

⊕

λl⊢ln

C(q)|λl, sl〉.

Theorem 3.2 ([11]). The space Fsl,e is an integrable U ′
q(ŝle)-module with respect to

the following action:

(3.3)

ti|λl, sl〉 = qNi(|λl,sl〉)|λl, sl〉

ei|λl, sl〉 =
∑

res(λl\µl)=i

q−N<
i (|λl,sl〉,|µl,sl〉)|µl, sl〉

fi|λl, sl〉 =
∑

res(µl\λl)=i

qN
>
i (|µl,sl〉,|λl,sl〉)|µl, sl〉

Remark 3.3. These formulas arise from the choice of a coproduct ∆ on U ′
q(ŝle).

Namely, we have here chosen ∆(ti) = ti ⊗ ti, ∆(ei) = ei ⊗ t−1
i + 1⊗ ei and ∆(fi) =

fi⊗ 1 + ti ⊗ fi. In [11], the choice of ∆ is different. We refer to [13, Section 1.4] for
the different possible conventions.

In the sequel, we will also use level e Fock spaces Fse,l, where se = (se1, . . . , s
e
e) ∈ Ze(s)

is an e-charge. They are endowed with the structure of an integrable U ′
p(ŝll)-module

via the formulas 3.3 replacing q by p and exchanging e and l. For clarity, we might

further want to use the notation ṫj, ėj , ḟj for the generators of U ′
p(ŝll).



TRIPLE CRYSTAL ACTION IN FOCK SPACES 9

3.2. Uglov’s decomposition of Fock spaces.
In Uglov [26], Fock spaces are realised as submodules of Λs, the space of semi-infinite
q-wedges. There are several ways to index the basis elements of Λs, namely:

• by charged partitions |λ, s〉, by identifying the semi-infinite q-wedge uk1 ∧
uk2 ∧ . . . with the partition λ = (λ1, λ2, . . . ) where λi = ki − (s + 1 − i) for
all i,
• by charged l-partitions |λl, sl〉, via the bijection τl described in 2.3,
• by charged e-partitions |λe, se〉, via the bijection τe described in 2.3.

According to [26, Section 4.2], there is an action of U ′
q(ŝle), of U ′

p(ŝll), and of a

Heisenberg algebra H on Λs. Moreover, the action of U ′
q(ŝle) (respectively U ′

p(ŝll))
on Λs induces, via the indexation by l-partitions (respectively e-partitions), an action
on Fsl,e (respectively Fse,l). These actions are precisely the one of Section 3.1. In
fact, we have

(3.4) Λs =
⊕

sl∈Zl(s)

Fsl,e and Λs =
⊕

se∈Ze(s)

Fse,l.

Notation 3.4.
We denote Al,e(s) =

{
(sl1, . . . , s

l
l) ∈ Zl(s) | sl1 ≤ · · · ≤ sll < sl1 + e

}
.

Theorem 3.5 ([26, Proposition 4.6 and Theorem 4.8]).

(1) The actions of U ′
q(ŝle), U

′
p(ŝll) and H on Λs pairwise commute.

(2) We have the decomposition

(3.5) Λs =
⊕

sl∈Al,e(s)

U ′
q(ŝle)⊗H⊗ U

′
p(ŝll)|∅l, sl〉.

3.3. Conjugating multipartitions.
In this section, we modify the indexation of q-wedges by charged e-partitions. For a
partition λ, denote λ′ its conjugate. Using the indexation of semi-infinite q-wedges
by charged partitions, define an anti-linear isomorphism as follows

(3.6)
Λs −→ Λ−s

|λ, s〉 7−→ |λ′,−s〉
q 7−→ q−1

This is an involution of
⊕

s∈Z Λ
s. We write u′ for the image of u ∈ Λs.

Remark 3.6. Since p = −q−1, we also have that p′ = p−1.

The new indexation is given by the following procedure:

(3.7)

⊕

sl∈Zl(s)

Fsl,e

τ−1
l−−−−⇀↽−−−−
τl

Λs
′

−−−−⇀↽−−−−
′

Λ−s τe−−−−⇀↽−−−−
τ−1
e

⊕

se∈Ze(s)

Fs
′
e,l

|λl, sl〉 ←→ |λ, s〉 ←→ |λ′,−s〉 ←→ |λ′
e, s

′
e〉



10 THOMAS GERBER

where τl and τe are the isomorphisms induced by the bijection of Section 2.3. Here,
we have decided to use the notation |λ′

e, s
′
e〉 for the charged e-partition indexing the

semi-infinite q-wedge, so that it is compatible with that of Section 2.3. Namely if
|λe, se〉 = τe(|λ, s〉), then λ′

e is the “conjugate” of λe (that is to say, conjugate each
component of λe and reverse it), and s

′
e = (−see, . . . ,−s

e
2,−s

e
1) where (se1, . . . , s

e
e) =

se. In other words, the conjugation commutes with τe. It also commutes with τl.
We set

Tl,e = τe ◦ (.)
′ ◦ τ−1

l and Te,l = T−1
l,e = τl ◦ (.)

′ ◦ τ−1
e .

Example 3.7. Take l = 3, e = 4, λl = (5.1, 3.1, 1) and sl = (0,−1, 1).

Figure 2. The abacus A(λl, sl)

Applying the procedure described above, we get the following abacus.

Figure 3. The abacus A(λ′
e, s

′
e)

Hence we have Tl,e = |λ
′
e, s

′
e〉 = |(1

5, 3, ∅, 1), (−1,−1, 1, 1)〉.

Proposition 3.8. The action of the Chevalley operators on conjugate charged l-
partitions is given by the following rule.

(3.8)
e−i|λ

′
l, s

′
l〉 = q−Ni(|λl,sl〉)+1(ei|λl, sl〉)

′

f−i|λ
′
l, s

′
l〉 = qNi(|λl,sl〉)+1(fi|λl, sl〉)

′,

for all i = 0 . . . , e− 1 and where indices are understood to be modulo e.

Using Theorem 3.2, one recovers an explicit formula. As usual, we have a similar

result for the Chevalley operators ėj and ḟj of U ′
p(ŝll).

Proof. One way to see it is to use the explicit action of U ′
q(ŝle) in terms of removable

and addable i-boxes of Theorem 3.2. Now, it is clear that the conjugation isomor-
phism (3.6) maps a removable (respectively addable) i-box of |λl, sl〉 to a removable
(respectively addable) (−i)-box of |λ′

l, s
′
l〉, and that it reverses the way these boxes

are ordered. The result follows. �
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Note that the power of q appearing can be interpreted as the action of the element

ti ∈ U
′
q(ŝle) according to Theorem 3.2. This way, we recover the claim of [26,

Proposition 5.10].

Theorem 3.9. The claim of Theorem 3.5 is also valid when the action of U ′
p(ŝll) is

computed with respect to the indexation (3.7).

Proof. Theorem 3.5 says that the Chevalley operators of U ′
q(ŝle) and U ′

p(ŝll) commute
on Λs. when computed on the basis elements via the correspondence |λl, sl〉 ↔
|λe, se〉. Because of the formulas of Proposition 3.8, they still commute when we use
the correspondence |λl, sl〉 ↔ |λ

′
e, s

′
e〉. �

4. Two commuting crystals

4.1. Lower and upper crystal operators.
According to the works of Kashiwara, there are two kinds of crystal operators: upper
and lower, giving rise to upper and lower crystal bases (at q = 0). In the original
paper [12], upper crystal operators are introduced. In [13], the distinction is made
between lower and upper operators, and a relation between upper and lower crystal
bases is given. Essentially, each definition is related to the choice of a coproduct on
the quantum group. Maybe the most comprehensive exposition is to be found in
[14], where Kashiwara furthermore defines lower/upper crystal bases at q = 0 and
at q = ∞. In the litterature, the convention of Remark 3.3, and therefore the use
of lower crystal operators, is usually preferred.

The original definition of upper crystal operators given by Kashiwara [13, Section
2.4] is

(4.9)
ẽupi = (qiti∆i)

−1/2ei
f̃up
i = (qit

−1
i ∆i)

−1/2fi
where ∆i = q−1

i ti + qiti + (qi − q−1
i )2eifi − 2.

There is a similar definition of the lower crystal operators ẽlowi and f̃ low
i .

Note that there is an alternative definition of the crystal operators, introduced see
[13, Section 2.2], which is often used in the literature. The use of either of the ver-
sions is conventional, and, importantly, everything coincides at q = 0 (respectively
q = ∞). In this paper, we prefer to use the definitions (4.9), because in this reali-
sation, the crystal operators are directly defined in terms of the generators ti, ei, fi.
This is not the case for the alternative realisation: the definition then depends on the
representation and is less explicit. Since the aim of this section is to make explicit
two crystal structures that commute, the original definition is more suitable because
we already know that the Chevalley operators of the two considered quantum groups
commute by Theorems 3.5 and 3.9. Notice also that our preferred realisation is also
the one which was used by Jimbo, Misra, Miwa and Okado [11] to make explicit the
crystal graph of higher level Fock spaces in terms of multipartitions.
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Remark 4.1. At q = 0, upper and lower crystal operators coincide, and we use the
notation ẽi, f̃i. This is relevant when it comes to crystal bases.

4.2. Crystal graph of the Fock space.
We do not recall here the definition of lower and upper crystal bases (L,B) at q = 0

(respectively at q =∞) for integrable U ′
q(ŝle)-modules, and refer to Kashiwara [14].

Here, L is the so-called crystal lattice, B is a basis of L/qL (respectively L/q−1L) and
the lower and upper crystal operators induce endomorphisms of L/qL (respectively

L/q−1L). By Remark 4.1, we denote them simply by ẽi, f̃i.

Theorem 4.2 ([11, Theorem 3.7]). Let Aq ⊂ Q(q) be the ring of rational functions
in q without pole at 0. The crystal basis of Fsl,e is the pair (Le, Be) where

Le =
⊕

n∈Z≥0

⊕

λl⊢ln

Aq|λl, sl〉

Be = {|λl, sl〉 mod qLe ; λl ⊢l n for some n ∈ Z≥0}

For simplicity, we will call Be the crystal of Fsl,e. Thanks to this theorem, we can
identify the set of charged l-partitions (which is the standard basis of Fsl,e) with the
crystal of Fsl,e. We will do this in the rest of the paper.

The crystal operators induce a graph structure on Be by drawing an arrow λl
i
→ µl

whenever |µl, sl〉 = f̃i|λl, sl〉, called the crystal graph of Fsl,e. Moreover, for a
charged l-partition |λl, sl〉 ∈ Be, we denote Be(|λl, sl〉) the connected component of
Be containing |λl, sl〉.

In order to describe the crystal graph of Fsl,e combinatorially, we need to indroduce
the notion of good boxes for l-partitions.
Fix i ∈ {0, . . . , e− 1}, and let |λl, sl〉 be a charged l-partition. Recall that we have
defined in Section 2.4 a total order < on the set of removable and addable i-boxes
of |λl, sl〉. List the addable and removable i-boxes of |λl, sl〉 in increasing order with
respect to <, and encode each addable i-box by a sign + and each removable i-box
by a sign −. This yields a word in the letters + and −, denoted wi(|λl, sl〉) (or
simply wi) and called the i-word of |λl, sl〉. Now, delete recursively the subwords
of the form (−+) in wi, in order to obtain a word of the form (+)α(−)β , denoted
ŵi(|λl, sl〉) (or simply ŵi) and called the reduced i-word of |λl, sl〉.

Definition 4.3. The good addable (respectively removable) i-box of |λl, sl〉 is the box
corresponding to the leftmost sign − (respectively the rightmost sign +) in ŵi.

Theorem 4.4 ([11, Theorem 3.8]). We have |µl, sl〉 = f̃i|λl, sl〉 if and only if µl is
obtained from λl by adding its good addable i-box (if it exists).
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Example 4.5. We look again at Example 3.7. The reduced i-words for i = 0, 1, 2, 3
are

ŵ0 = ++−
ŵ1 = +−
ŵ2 = ++
ŵ3 = +−

The action of the crystal operators is then depicted in the following abacus:

Figure 4. The action of ẽ0 and f̃0 (yellow), ẽ1 and f̃1 (red), f̃2
(green), ẽ3 and f̃3 (blue)

By level-rank duality, one can switch the roles of e and l to describe the crystal

graph of the representation Fse,l of U ′
p(ŝll). The crystal operators appearing are

denoted by ˜̇ej and ˜̇fj .

Remark 4.6. Because of the combinatorial definition of τe, one sees that the action

of a crystal operator of U ′
p(ŝll) on the corresponding partition is to remove/add a

“good” l-ribbon. The definition of τl being different, this does not hold for U ′
q(ŝle).

4.3. Commutation of the crystal operators.
In order to obtain two commuting Kashiwara crystals, we need to work with crystal
bases at q = 0. The crystal graph of Fse,l being defined at p = 0 (i.e. at q = ∞),
we use the conjugation isomorphism defined in (3.6), which maps p to p−1, and use
the crystal graph rule of Theorem 4.4 on conjugate e-partitions in Fs

′
e,l.

Lemma 4.7. The conjuguate of the lower crystal basis of Fse,l at p = 0 is the upper
crystal basis of Fs

′
e,l at q = 0.

Proof. By Theorem 4.2, we know the crystal basis of Fse,l at p = 0. Applying the
conjugation isomorphism to (Ll, Bl), we obtain a pair (L′

l, B
′
l) where

L′
l =

⊕

n∈Z≥0

⊕

λ′
e⊢en

Ap−1 |λ′
e, s

′
e〉

B′
l = {|λ′

e, s
′
e〉 mod p−1L′

l ; λ
′
e ⊢e n for some n ∈ Z≥0} ,

which is exactly the crystal basis of Fs
′
e,l at p = ∞. Moreover, we have Ap−1 = Aq

and L′
l/p

−1L′
l = L′

l/qL
′
l. Hence, (L′

l, B
′
l) is the crystal basis of Fs

′
e,l at q = 0.

More precisely,it sends the lower crystal basis to the upper crystal basis because by
definition, one passes from one to the other by reversing the tensor product rule, see
[14]. This amounts to reversing the order on j-boxes and exchanging j and −j in the
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action of U ′
p(ŝll), which is exactly what the conjugation does in light of Proposition

3.8 �

Theorem 4.8. For all i ∈ {0, e − 1} and all j ∈ {0, l − 1}, the crystal operators

ẽi, f̃i and ˜̇ej ,
˜̇
fj commute when computed with respect to the indexation (3.7).

As a consequence, the procedure (3.7) combined with the crystal graph rule for level

e Fock spaces gives rise to a U ′
q(ŝle)-crystal isomorphism in the sense of [6].

Proof. By Theorem 3.9, the Chevalley operators of U ′
q(ŝle) and U ′

p(ŝll) commute on

Λs when we use the correspondence |λl, sl〉 ↔ |λ
′
e, s

′
e〉.

Now, by Lemma 4.7, the upper crystal basis (L′
l, B

′
l) of Fs

′
e,l at q = 0 is known,

and coincides with the lower crystal basis (Le, Be) of Fsl,e by identifying |λl, sl〉 and

|λ′
e, s

′
e〉. We can then look at the action of the crystal operators ẽi, f̃i and ˜̇ej ,

˜̇fj on
this basis.
Using their definition in terms of the Chevalley generators (4.9), which commute for

this indexation, we are ensured that the ẽi, f̃i commute with the ˜̇ej ,
˜̇
fj provided we

use the correspondence |λl, sl〉 ↔ |λ
′
e, s

′
e〉. �

Remark 4.9. It should be possible to state this theorem by sticking with Uglov’s
indexation |λl, sl〉 ↔ |λe, se〉 and introducing some alternative crystal operators,
whose combinatorial rule would be described in a similar way as that of Theorem
6.24 but using a “reverse” order on i-boxes. This approached is sketched in [2,
Remark 3.17], but with another realisation of the Fock space. More precisely, they

use the so-called Kleshchev realisation of the U ′
q(ŝle)-module Fsl,e, in opposition

to the Uglov realisation used in this paper. They differ by the order on i-boxes

(cf Section 2.4) used to define the action of U ′
q(ŝle) (the Kleshchev order does not

require the notion of residue, and can be seen as an asmptotic order of the Uglov
order, see [5]). As a consequence, the Kleshchev level l Fock space becomes a tensor
product of level 1 Fock spaces, which is not our case.

Example 4.10. We take the same values as in Example 3.7. The action of the

different crystal operators of U ′
p(ŝll) on |λ′

e, s
′
e〉 is depicted on its abacus as follows:

Figure 5. The action of
˜̇
f0 (orange), ˜̇e1 (green) and

˜̇
f2 (blue) on A(λ′

e, s
′
e)

On the l-abacus representing |λl, sl〉, this gives the following picture:
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Figure 6. The action of ˜̇f0 (orange), ˜̇e1 (green) and ˜̇f2 (blue) on A(λl, sl)

Take for instance |µl, rl〉 =
˜̇
f0|λl, sl〉.

Figure 7. The abacus representing the l-partition |µl, rl〉 =
˜̇f0|λl, sl〉

Then the reduced i-words (i = 0, 1, 2, 3) for |µl, rl〉 are

(4.10)

ŵ0 = ++−
ŵ1 = +−
ŵ2 = ++
ŵ3 = +−

These are exactly the i-words for |λl, sl〉, see Example 4.5.

Remark 4.11. Consider the action of the dual crystal operators ˜̇ej. On the l-abacus,
it either shifts a bead one step down (if j 6= 0), or l steps down and e steps left
(if j = 0). So these are particular cases of elementary operations in the sense of
[7, Section 7.3] if l = 2. This observation actually inspired this part of this paper

in the first place: elementary operations are U ′
q(ŝle)-crystal isomorphisms, and they

resemble dual crystal operators, so this suggested that there should be a version of
the dual crystal operators that commute with the crystal operators ẽi and f̃i. This
is indeed made explicit in Theorem 4.8.
There is another already known combinatorial procedure resembling the action of
˜̇ej, namely Tingley’s tightening procedure on abacci [25, Definition 3.8]. This is
however fundamentally different, in that tightening an abacus consists of systemat-
ically applying the procedure described above for all beads, regardless of the order
on i-boxes in the corresponding multipartition.

5. Doubly highest weight vertices

5.1. A combinatorial characterisation of the U ′
q(ŝle)-highest weight ver-

tices.
According to [9], the highest weight vertices for the U ′

q(ŝle)-crystal structure are
precisely the charged l-partitions whose abacus is totally periodic. Respectively, the



16 THOMAS GERBER

same holds for the U ′
p(ŝll)-crystal structure and e-partitions. Let us recall the notion

of totally periodic multipartition, cf [9, Definition 2.2].
Consider the abacus A representing a charged multipartition |λl, sl〉. The first e-
period in A is, if it exists, the sequence

P = ((j1, β1), . . . , (je, βe))

of e beads in A such that

• β1 is the greatest β-number appearing in A,
• βi = βi−1 − 1 for all i = 2, . . . , e,
• ji ≤ ji−1 for all i = 2, . . . , e,
• for all i = 1, . . . , e, there does not exist (j0, βi) ∈ A such that j0 ≤ ki.

The first period of A\P , if it exists, is called the second period of A. We define
similarly the k-th period of A by induction.
The abacus A is said to be totally e-periodic if it has infinitely many e-periods. In
this case, there exists a non-negative integer N such that the abacus obtained from
A by removing its first N periods corresponds to the empty multipartition. We call
an e-period P trivial if

(j, β) ∈ P ⇒ (j, β − c) ∈ A for all c ∈ Z>0.

In other words, a period is trivial if it encodes only size zero parts.
The key property of periods is the following:

Proposition 5.1. An e-period does not contribute in the computation of the reduced
i-words (for all i = 0, . . . , e− 1).

Proof. Let P = ((j1, β1), . . . , (je, βe)) be the first e-period in A = A(λl, sl). Fix
a residue i ∈ {0, . . . , e − 1} and look at the i-word (respectively reduced i-word)
wi (respectively ŵi) for A on the one hand, and the i-word (respectively reduced
i-word) vi (respectively v̂i) for A\P on the other hand. Let us show that ŵi = v̂i.
Suppose first that i = β1 mod e. Then (j1, β1) corresponds to a rightmost sign +
in wi. Now, either (je, βe − 1) ∈ A, in which case (je, βe − 1) ∈ A\P , (je, βe − 1)
corresponds to a rightmost sign + in vi; or (je, βe − 1) /∈ A, in which case (je, βe)
corresponds to a sequence (−+) in wi, which simplifies in ŵi. So in both cases,
ŵi = v̂i.
Suppose now that i 6= β1 mod e. Then there is an element (jk0 , βk0) ∈ P such that
i = βk0 mod e. If jk0+1 = jk0 , this means that (jk0 , βk0) and (jk0+1, βk0+1) do not
contribute in wi, and therefore neither in ŵi. In the case where jk0+1 < jk0 , then
either (jk0 , βk0 − 1) ∈ A, in which case there is a rightmost + in wi, corresponding
to (jk0+1, βk0+1), which also exists in vi, corresponding to (jk0 , βk0 − 1) ∈ P ; or
(jk0, βk0 − 1) /∈ A, in which case there is a sequence (−+) in P , corresponding to
the beads (jk0 , βk0) and (jk0+1, βk0−1), which simplifies in ŵi. Again, in both cases,
ŵi = v̂i. �

Theorem 5.2 ([9, Theorem 5.9]). The charged l-partition |λl, sl〉 is a highest weight

vertex in the U ′
q(ŝle)-crystal if and only if A(λl, sl) is totally e-periodic.
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This result also holds by switching e and l and replacing q by p.

Corollary 5.3. The charged partition |λ, s〉 is a highest weight vertex in both the

U ′
q(ŝle)-crystal and the U ′

p(ŝll)-crystal if and only if:

(1) A(λl, sl) is totally e-periodic, and
(2) A(λ′

e, s
′
e) is totally l-periodic.

Such an element is called a doubly highest weight vertex.

Proof. This is a direct consequence of Theorem 5.2 together with Theorem 4.8. �

Example 5.4. Take l = 3, e = 2, λl = (3, 3.1, 1) and sl = (−1, 0, 0). Then we have
λ′
e = (22.13, 2.13) and s

′
e = (0, 1).

Figure 8. The abacus A(λl, sl)

One sees that A(λl, sl) has two e-periods, and is totally e-periodic. The first period
corresponds to parts of size 3 (colored in red) and the second to parts of size 1
(colored in green).

Figure 9. The abacus A(λ′
e, s

′
e)

Similarly, A(λ′
e, s

′
e) has three l-periods, and is totally l-periodic. The first period

corresponds to parts of size 2 (blue) and the next two to parts of size 1 (green,
orange). The other periods are trivial.
Therefore, the associated charged partition |λ, s〉 = |(10.8.4.2),−1〉 is a doubly
highest weight vertex.

5.2. Properties of doubly highest weight vertices.
We now list some properties of such charged partitions. In what follows, we let |λ, s〉
be a doubly highest weight vertex.

Lemma 5.5.

(1) In A(λl, sl) (respectively A(λ′
e, s

′
e)), all beads of a given period correspond

to parts of the same size. We then denote Sk(l) (respectively Sk(e)) the part
size corresponding to the k-th period in A(λl, sl) (respectively A(λ′

e, s
′
e)).
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(2) Let N(l) (respectively N(e)) be the number of non-trivial periods in A(λl, sl)
(respectively A(λ′

e, s
′
e)). We have #{Sk(l) ; 1 ≤ k ≤ N(l)} = #{Sk(e) ; 1 ≤

k ≤ N(e)}.

Proof. Consider the first e-period P of A(λl, sl). There are only empty spots to the
right of P as represented in Figure 10.

Figure 10. The first period of A(λl, sl).

Using the correspondence (3.7), we get the abacus A(λ′
e, s

′
e) in which the empty

spots neighbouring P in A(λl, sl) give rise to some beads that have to form an
l-period, call it P ′, since A(λ′

e, s
′
e) is totally l-periodic. Therefore, the pattern of

Figure 11 appears in A(λ′
e, s

′
e). Moreover, A(λ′

e, s
′
e) is full to the left of P ′ (i.e. there

are no more empty spots, only beads). In other words, P ′ is the first trivial l-period
of A(λ′

e, s
′
e).

Figure 11. The pattern in A(λ′
e, s

′
e) that arises from the first period

of A(λl, sl): this is its first trivial period.

Now, assume that the beads of P do not all encode parts of the same size. That
implies that there exists two different positive integers M and N (without loss of
generality, M > N) such that M is the part encoded by, say, the beads of the form
(j, β) ∈ P for some row index j, and N is the part encoded by the beads of the
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form (j′, β) ∈ P for some row index j′. Choose such pair (j, j′) such that the |j− j′|
is minimal. Write δ = M − N > 0, so that there are δ more empty spots in row
j than in row j′. Therefore, there are δ beads in A(λ′

e, s
′
e) which do not belong

to an l-period. So A(λ′
e, s

′
e) is not totally l-periodic, which is a contradiction. By

induction on the number of non-trivial e-periods in A(λl, sl), this is the case for all
e-period.
Obviously, the same holds for the l-periods in A(λ′

e, s
′
e) by symmetry, and we have

proved Point (1).

Let Pk be the k-th e-period in A(λl, sl), for some 1 ≤ k ≤ N(l). Then by (1),
it corresponds to a part Sk(l) of |λl, sl〉. Now, by definition of Tl,e (Section 3.6),
it corresponds to Sk(l) l-periods in A(λ′

e, s
′
e), denoted P ′

k1
, . . . , P ′

kSk(l)
, encoding the

same part, that is to say

Sk1(e) = Sk1(e) = · · · = SkSk(l)
(e).

Therefore, each such Pk encodes a part Sk(l) which corresponds to a unique part
Sk1(e) in the e-abacus. This proves point (2). �

Corollary 5.6.

(1) The multiplicity of each part in λl (respectively λ′
e) is divisible by e (respec-

tively l).
(2) The rank of λ is divisible by el.

Proof.

(1) This is straightforward from Lemma 5.5 (1), since each part of λl (respec-
tively λ′

e) is read off the abacus by looking at each bead of the non-trivial
periods.

(2) By Point (1) above, the multiplicity of each part in λ′
e is divisible by l. Using

Remark 2.4 and the definition of the correspondence 3.7, we can see λ′ as
the partition with e-quotient λ′

e and e-core determined by s
′
e. Therefore the

rank of λ′ is divisible by el, hence so is that of λ.

�

Recall the definition of the domain Al,e(s) given in Notation 3.4.

Proposition 5.7. We have

sl ∈ Al,e(s) and s
′
e ∈ Ae,l(s).

Proof. Recall that the multicharge is read from the abacus by shifting all beads to
the left and looking at the index of the rightmost bead in each row of the resulting
abacus. By Lemma 5.5, all periods in a doubly highest weight vertex correspond
to the same part. Therefore, a doubly highest weight charged l-partition |λl, sl〉 is
obtained from |∅l, sl〉 by shifting whole e-periods to the right. This is a key fact
and will be used in what comes next. Therefore, it suffices to prove the claim for
vertices of the form |λl, sl〉. In this case, let us observe the corresponding charged
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e-partition |λ′
e, s

′
e〉 defined via Formula (3.7). By definition of Tl,e, if sl /∈ Al,e(s),

then:

• either there exists and index j such that sj > sj+1, in which case the differ-
ence δ = sj − sj+1 creates δ empty spots in the l-abacus which are beads in
the e-abacus but do not form an l-period,
• or there exists two indices j and j′ such that j′ < j and sj′ < sj−e, in which

case the difference sj − sj′ also gives beads in the corresponding e-abacus
which do not form an l-period.

In both cases, A(λ′
e, s

′
e) is not totally l-periodic, which is a contradiction, so the

claim is proved. �

5.3. Shifting periods in abacci. We now consider the crucial procedure of shifting
periods one step to the left. Let P be an e-period in A(λl, sl) which is shiftable one
step to the left. By Lemma 5.5 above, it is equivalent to say that there exists
(j, β) ∈ P such that (j, β − 1) /∈ A(λl, sl) (i.e. there is one empty spot left adjacent
to some bead in P ). Then by the same observation as in the proof of Lemma 5.5,
depicted in Figures 10 and 11, there is a corresponding l-period P ′ in A(λ′

e, s
′
e)

which is shiftable one step to the left. Define then

(5.11)
ϕl,P : A(λl, sl) −→ {1, . . . , l} × Z

(j, c) 7−→

{
(j, c− 1) if (j, c) ∈ P
(j, c) otherwise.

The image of A(λl, sl) under ϕl,P is the l-abacus obtained from A(λl, sl) by shifting
P one step to the left. We define ϕe,P ′ similarly, that is to say, the map shifting P ′

one step to the left in the e-abacus A(λ′
e, s

′
e).

Lemma 5.8. We have
ϕl,P = Te,l ◦ ϕe,P ′ ◦ Tl,e.

Note that the use of Tl,e and its inverse only means that we look at the action of ϕl,P

on the e-abacus using Indexation 3.7. In fact, this lemma claims that shifting an
l-period of A(λ′

e, s
′
e) one step to the left amounts to shifting an e-period of A(λl, sl)

one step to the left. Of course, the same holds by switching A(λ′
e, s

′
e) and A(λl, sl)

and e and l. In particular, this procedure is always well defined when the considered
period is the last non-trivial period. This will be used in Section 6.1.

Proof. Assume, without loss of generality, that l ≤ e. We have already explained
how an l-period P ′ corresponds to a given e-period P . Now, write

P = {(jk, βk) ; k ∈ {1, . . . , e}} ⊆ A(λl, sl).

By definition of ϕl,P (5.11), ϕl,P only affects P , namely ϕl,P (P ) is an e-period P̂
defined by

P̂ = {(jk, βk − 1) ; k ∈ {1, . . . , e}} .
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If k is such that jk = jk+1 (which is a case that necessarily happens if e > l), then
βk+1 = βk − 1. Moreover,

{(jk, βk), (jk, βk+1)}
ϕl,P
7−→ {(jk, βk − 1), (jk, βk+1 − 1)}

= {(jk, βk+1), (jk, βk − 2)},

so ϕl,P fixes (jk, βk+1). Therefore, ϕl,P fixes all elements of P that are on the same
row but one, so it moves exactly e beads, and in fact these are the beads of P ′ and
they are moved in A(λ′

e, s
′
e) one step to the left. This is precisely the action of ϕe,P ′

on A(λ′
e, s

′
e) by definition. �

Example 5.9. To illustrate the phenomenon explained in the proof of Lemma 5.8,
look at Example 5.4. We get the following picture.

Figure 12. Shifting the last non-trivial period of A(λ′
e, s

′
e) one step

to the left, and its representation on A(λl, sl)

We see that on A(λl, sl), the action depicted with the red arrows actually corre-
sponds to shifting a period of A(λl, sl) (the first one) one step to the left.

5.4. The partition κ.
Denote Sl = {Sk(l) ; 1 ≤ k ≤ N(l)} and Se = {Sk(e) ; 1 ≤ k ≤ N(e)}. The ele-
ments of Sl (respectively Se) are the different non-zero size parts of λl (respectively
λ′
e), see Lemma 5.5 (2). Note that we have

Sk(l) < Sk−1(l) for all k ∈ {2, . . . , N(l)}.

Similarly,
Sk(e) < Sk−1(e) for all k ∈ {2, . . . , N(e)}.

For Sk(l) in Sl (respectively Sk(e) in Se), denote Ml(Sk(l)) (respectively Me(Sk(e)))
the multiplicity of the non-zero part Sk(l) (respectively Sk(e)) in the l-partition λl

(respectively the e-partition λ′
e). By Corollary 5.6, Ml(Sk(l)) (respectively Me(Sk(e)))

is divisible by e (respectively l). Let ml(Sk(l)) (respectively me(Sk(e))) be the inte-
ger Ml(Sk(l))/e (respectively Me(Sk(e))/l).
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Set

(5.12)
κl = (S1(l)

ml(S1(l)), S2(l)
ml(S2(l)), . . . , SN(l)(l)

ml(SN(l)(l)))
κe = (S1(e)

me(S1(e)), S2(e)
me(S2(e)), . . . , SN(e)(e)

me(SN(e)(e)))

Remark 5.10. Equivalently (and maybe more simply), κl can be defined as the
ordered multiset {Sk(l) ; 1 ≤ k ≤ N(l)} (and similarly for κe).

Proposition 5.11. The sequences κl and κe are partitions, and κe = κ′
l.

Proof. Because Sk(l) < Sk−1(l) for all k ∈ {2, . . . , N(l)} and Sk(e) < Sk−1(e) for all k ∈
{2, . . . , N(e)} as already observed, κl and κe are partitions. Further, each period P
in the l-abacus corresponds to a period P ′ in the e-abacus, and therefore the parti-
tion κe can be read off the partition κl. In fact, by definition of the correspondence
Tl,e (3.7), it is obtained by conjugating the original partition κl. �

Example 5.12. Take the charged multipartition in Example 5.4. We have Sl =
{3, 1}, with Ml(3) = 2 and Ml(1) = 2. Similarly, we have Se = {2, 1} with Me(2) =
3 and Me(1) = 6. We get κl = (3.1) = and κe = (2.12) = .
Note that using the multiset definition of κl and κe (Remark 5.10), we have directly
κl = Sl = {3, 1} and κe = Se = {2, 1, 1}.

We decide to rename κ = κl.

Remark 5.13. Note that κ depends on |λl, sl〉. In fact, it induces two maps

κ : Be −→ Π
|λl, sl〉 7−→ κ

and
κ : B′

l −→ Π
|λ′

e, s
′
e〉 7−→ κ′.

In the rest, we want to use the notation κ(|λl, sl〉), or simply κ(λl) (or κ(λ)). Im-
portantly, note that the map κ is surjective: starting from a partition σ, it is easy
to construct a doubly highest weight l-partition (respectively e-partition) |λl, sl〉
(respectively |λ′

e, s
′
e〉) such that κ(λ) = σ, so κ is surjective.

Moreover, if we restrict κ to the set of doubly highest weight vertices, it is clearly
injective since two doubly highest weight l-partitions with different κ are different.
So κ restricted to the set of doubly highest weight vertices is a bijection.

We end this section on a refinement of Corollary 5.6.

Corollary 5.14. We have

(1) |λl| = e|κ| and |λ′
e| = l|κ|

(2) |λ| = el|κ|

Proof.

(1) The partition κ encodes the position of the non-trivial e-periods in A(λl, sl).
Each e-period consists of e beads, so that |λl| = e|κ|. Similarly, |λ′

e| = l|κ|.
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(2) As in the proof of Corollary 5.6, we use Remark 2.4, which ensures that
|λ| = e|λ′

e| = el|κ| by (1).

�

6. The Heisenberg crystal

The aim of this section is to obtain a “crystal version” of Theorem 3.5. More precisely,
we want to construct crystal Heisenberg operators, such that

(1) they induce maps between U ′
q(ŝle)- and U ′

p(ŝll)-crystals which commute with
the two kinds of crystal operators. Such maps are called double crystal
isomorphisms.

(2) every charged l-partition can be obtained from the empty partition charged
by sl ∈ Al,e(s) for some s ∈ Z by applying some sequence of Kashiwara

crystal operators of U ′
q(ŝle) and U ′

p(ŝll) and of Heisenberg crystal operators.

Notation: If φ : Be −→ Be is a map between crystals, then we will also write
φ for the map from B′

l to B′
l as well as for the map going from the set of charged

partitions to itself induced by the correspondence (3.7).

6.1. The maps b̃−κ.

Definition 6.1. Let |λ, s〉 be a charged partition which is a doubly highest weight
vertex. We identify |λ, s〉 with the charged l-partition |λl, sl〉 and the charged e-
partition |λ′

e, s
′
e〉 using (3.7). Define

b̃−1|λ, s〉 = |µ, s〉 and b̃′−1|λ, s〉 = |ν, s〉

where |µ, s〉 (respectively |ν, s〉) is identified with |µl, sl〉 (respectively |ν ′
e, s

′
e〉) using

(3.7) where

• A(ν ′
e, s

′
e) is obtained from A(λ′

e, s
′
e) by shifting its last non-trivial period one

step to the left.
• A(µl, sl) is obtained from A(λl, sl) by shifting its last non-trivial period one

step to the left.

Remark 6.2. Remember that we had defined a map ϕl,P in (5.11) which shifts the pe-
riod P one step to the left in the l-abacus. Therefore, identifying abacci and charged
multipartitions, b̃−1 = ϕl,P where P is the last non-trivial e-period ofA(λl, sl) (which

we have noticed earlier is well-defined). Similarly, b̃′−1 = ϕe,Q where Q is the last
non-trivial l-period of A(λ′

e, s
′
e).

Note that by Remark 2.4 together with Lemma 5.8, both b̃−1 and b̃′−1 act on |λ, s〉
by removing l e-ribbons.

Example 6.3. In Example 5.9, we have depicted the action of b̃−1 on both the e-
abacus and the l-abacus. In terms of multipartitions, we have

b̃−1|(3, 3.1, 1), (−1, 0, 0)〉 = |(3, 3, ∅), (−1, 0, 0)〉 , i.e.

b̃−1|(10.8.4.2),−1〉 = |(10.8),−1〉
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and
b̃′−1|(2

2.13, 2.13), (0, 1)〉 = |(22.1, 2.12), (0, 1)〉 , i.e

b̃′−1|(10.8.4.2),−1〉 = |(6.6.4.2),−1〉

Recall that we have denoted Be the crystal graph of the Fock space Fsl,e and B′
l

the crystal graph of the Fock space Fs
′
e,l in Section 4.3. We have two induced maps

between crystals which we denote the same way:

(6.13)
b̃−1 : Be −→ Be b̃′−1 : B′

l −→ B′
l

|ν l, sl〉 7−→ b̃−1|ν l, sl〉 |ν ′
e, s

′
e〉 7−→ b̃′−1|ν

′
e, s

′
e〉,

where b̃−1(|ν l, sl〉) is computed as follows:

(1) Find the highest weight vertex in the connected component of Be containing
|ν l, sl〉 (either recursively via a sequence of Kashiwara crystal operators, or
more explicitely via the algorithm exposed in [6, Remark 6.4]).

(2) Use the correspondence (3.7) to get an element of B′
l, and find the highest

weight vertex in the connected component of B′
l of this e-partition. This is

a doubly highest weight vertex in view of Theorem 4.8.
(3) Apply b̃−1 using again the correspondence (3.7).
(4) Do the reverse operations of Points (2) and (1). The resulting l-partition is

b̃−1|ν l, sl〉.

The map b̃′−1 : B
′
l −→ B′

l is defined similarly, switching indexations using (3.7) and

replacing b̃−1 by b̃′−1 in the above procedure.

Theorem 6.4. The maps b̃−1 and b̃′−1 are double crystal isomorphisms.

Proof. By the ad hoc construction above, it suffices to check that this holds for the
doubly highest vertices.
By Lemma 5.8, each of these two maps act on a doubly highest weight vertex by
shifting an e-period one step to the left in the l-abacus and by shifting an l-period
one step to the left in the e-abacus. Now, by Proposition 5.1, the reduced i-word
of |λl, sl〉 is the same as the reduced i-word of b̃−1|λl, sl〉 for all i = 0 . . . , e− 1; and

the reduced j-word of |λ′
e, s

′
e〉 is the same as the reduced j-word of b̃′−1|λ

′
e, s

′
e〉 for

all j = 0 . . . , l − 1. Hence, b̃−1 is a double crystal isomorphism. The same holds for
b̃′−1. �

By extension, we define b̃−z : Be −→ Be by saying that, for a doubly highest weight
vertex |λl, sl〉 ∈ Be, b̃−z|λl, sl〉 is obtained from |λl, sl〉 by shifting its last non-trivial

e-period z steps to the left, if possible. We extend this to Be in the same way as b̃−1

(Formula (6.13) above). We define similarly b̃′−z : B
′
l −→ B′

l.

Remark 6.5. One sees that b̃−z is the z-fold composition of b̃−1 if and only if
SN(l)(l) = z (see Lemma 5.5, i.e. if and only if the last non-trivial e-period of

λl corresponds to a part z). We have the similar property for b̃′−z.



TRIPLE CRYSTAL ACTION IN FOCK SPACES 25

Definition 6.6. For a partition σ = (σ1, σ2, . . . , σt), we define b̃−σ : Be −→ Be and

b̃′−σ : B′
l −→ B′

l through the formulas

(6.14)
b̃−σ = b̃−σ1 ◦ b̃−σ2 ◦ · · · ◦ b̃−σt

and

b̃′−σ = b̃′−σ1
◦ b̃′−σ2

◦ · · · ◦ b̃′−σt
.

When one of the b̃−σk
is not well defined on (b̃−σk+1

◦ · · · ◦ b̃−σt
)|λl, sl〉, we set

b̃−σ|λl, sl〉 = 0 (and similarly for b̃′−σ).

Remember that the partition κ (respectively κ′) associated to |λ, s〉 (see 5.12) is
written κ = (κ1, κ2, . . . , κt) where each κi is a certain Sk(l) (respectively κ′ =

(κ′
1, κ

′
2, . . . , κ

′
u) where each κ′

i is a certain Sk(e)). So because of Remark 6.5, b̃−κ and

b̃′−κ′ are well-defined on |λ, s〉.

Proposition 6.7.

(1) If |λ, s〉 is a doubly highest weight partition, then b̃−κ|λl, sl〉 = |∅l, sl〉 and

b̃′−κ|λ
′
e, s

′
e〉 = |∅e, s

′
e〉.

(2) The following diagram commutes

Be

Tl,e
//

b̃−κ

��

B′
l

b̃′
−κ′

��

Be
Tl,e

// B′
l,

where here, the partition κ depends on the chosen multipartition (see Remark

5.13). Therefore, we write b̃−κ = b̃′−κ′ .

Proof.

(1) By definition of b̃′−σ on B′
l and by construction of κ, it is straightforward

the e-partition b̃′−κ′ |λ
′
e, s

′
e〉 is empty (and b̃−κ′ does not modify the e-charge).

Similarly, we have b̃−κ|λl, sl〉 = |∅l, sl〉.
(2) Because of Proposition 5.7, Tl,e maps |∅l, sl〉 to |∅e, se〉. In other words, the

e-partition associated to the |∅l, sl〉 such that sl ∈ Al,e(s) via the correspon-
dence (3.7) is also empty. Together with Point (1), we get the commutativity
of the diagram.

�

Notation 6.8. If |λ, s〉 is a doubly highest weight vertex, we will use the notation

|λ̄, s〉 for the charged partition b̃−κ(λ)|λ, s〉.

Theorem 6.9. The map b̃−κ is a double crystal isomorphism.

Proof. This is a direct consequence of the definition of b̃−κ together with Theorem
6.4 and Remark 6.5. �
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6.2. The inverse maps.
Recall that we have introduced the notion of trivial period in Section 5.1.

Definition 6.10. Let |λ, s〉 be a charged partition which is a doubly highest weight
vertex. We identify |λ, s〉 with the charged l-partition |λl, sl〉 and the charged e-
partition |λ′

e, s
′
e〉 using (3.7). Define

b̃1|λ, s〉 = |µ, s〉 and b̃′1|λ, s〉 = |ν, s〉

where |µ, s〉 (respectively |ν, s〉) is identified with |µl, sl〉 (respectively |ν ′
e, s

′
e〉) using

(3.7) where

• A(ν ′
e, s

′
e) is obtained from A(λ′

e, s
′
e) by shifting its first trivial period one step

to the right.
• A(µl, sl) is obtained from A(λl, sl) by shifting its first trivial period one step

to the right.

We extend this definition and write, for a positive integer z, b̃z|λl, sl〉 to be the
l-partition obtained by shifting the first trivial period of |λl, sl〉 z steps to the right.

Similarly, b̃′z|λ
′
e, s

′
e〉 to be the e-partition obtained by shifting the first trivial period

of |λ′
e, s

′
e〉 z steps to the right. Finally, for a partition σ = (σ1, . . . , σt), we define

b̃σ = b̃σt
◦ · · · ◦ b̃σ1 and b̃′σ = b̃′σt

◦ · · · ◦ b̃′σ1
. When this is not well-defined, we set again

b̃σ|λl, sl〉 = 0 (respectively b̃′σ|λ
′
e, s

′
e〉 = 0. All of these maps induce maps between

crystals Be −→ Be or B′
l −→ B′

l by the procedure explained in (6.13).

Remark 6.11. By definition of κ in Section 5.12 and Proposition 6.7, it is clear that
for all charged partition |λ, s〉 which is a doubly highest weight vertex,

|λ, s〉 = b̃κ|λ̄, s〉.

So, it is enough to understand the connected components in Be and B′
l contain-

ing |∅l, sl〉 and |∅e, s
′
e〉 respectively. This is the case we consider in the following

proposition.

Remark 6.12. The maps b̃σ and b̃−σ are defined so that they are inverse to each
other, that is

b̃σ ◦ b̃−σ = IdBe
= b̃−σ ◦ b̃σ

and
b̃′σ ◦ b̃

′
−σ = IdB′

l
= b̃′−σ ◦ b̃

′
σ,

whenever the first identities make sense.

As a consequence of Remarks 6.11 and 6.12, we see that b̃σ|λl, sl〉 6= 0 if and only if
the first part of σ is not greater than the last part of κ = κ(|λl, sl〉). In this case,
we have

(6.15)
b̃σ|λl, sl〉 = (b̃η ◦ b̃−κ)|λl, sl〉

= b̃η|∅l, sl〉,

where η is the partition obtained by adding the parts of σ to κ.
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Proposition 6.13. For all partition σ, we have b̃σ|λ̄, s〉 = b̃′σ′ |λ̄, s〉.

Proof. First of all, |λ̄, s〉 is a doubly highest weight vertex for all s ∈ Z, which

ensures that b̃σ|λ̄, s〉 and b̃′σ′ |λ̄, s〉 are well-defined. In fact, the l-partition and the e-
partition corresponding are empty by Proposition 6.7, and the l-charge (respectively
e-charge) is an element of Al,e(s) (respectively Ae,l(s)) by Proposition 5.7.

By Lemma 5.8, the action of b̃1 on the l-abacus (shifting its first trivial e-period
one step to the right) corresponds to shifting an l-period one step to the right in
the e-abacus. Since this e-abacus corresponds to the empty e-partition, it has only
trivial l-periods, and one can only shift its first trivial l-period to the right. This
forces b̃1 to be the same as b̃′1. Hence, the result holds for σ = (1). In fact, one can

look directly at the action of b̃z (= b̃σ with σ = (z)) on the empty l-partition. Using
the combinatorial definition of the correspondence (3.7), one sees that moving the
first trivial e-period in the empty l-abacus z steps to the right creates z l-periods
in the e-abacus which are obtained from the empty e-abacus by recursively shifting
its first period one step to the right. In other terms, it corresponds to applying
b̃′1 ◦ · · · ◦ b̃

′
1 (with z factors) to the empty e-abacus. That is to say, b̃(z) = b̃′(1z).

Therefore, the result holds for σ = (z). Similarly, it holds for σ = (1z). Using

the same observation, we deduce that for an arbitrary σ, the map b̃σ acts on the
empty l-abacus exactly like b̃′σ′ acts on the empty e-abacus, with the identification
(3.7). �

Theorem 6.14. The map b̃σ is a double crystal isomorphism.

Proof. It is similar to that of Theorem 6.9. What b̃σ does is shift periods (to the
right) in the l-abacus and e-abacus, so by Proposition 5.1 the reduced words for
either quantum group structure are unchanged. �

Remark 6.15. In the level 1 case, Leclerc and Thibon [18] have made explicit the
action of some elements Sσ ∈ H, defined from the basis of Schur functions in the
space of symmetric functions, on the canonical basis of the Fock space, see [18,
Theorem 6.9]. This induces an action of H at the combinatorial level, i.e. on the
crystal on partitions: the operator Sσ acts on a partition λ by adding e times each
part of σ in λ. For instance, if e = 3,

S ( ) = .

In the 1-abacus representing λ, this amounts to shifting recursively the first trivial
e-period σk steps to the right, where σ = (σ1, σ2, . . . ). So this is exactly the same

procedure as our map b̃σ. Hence, these maps b̃σ can be interpreted as generalisations
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of the operators Sσ coming from the action of H in the level 1 case. However,
throughout this paper, l = 1 is not allowed. In fact, in the level 1 case, the structure
of the Fock space is somewhat different since there is only one quantum group and
the Heisenberg algebra H acting.

6.3. Definition of the Heisenberg crystal.
We can now define an oriented colored graph structure on the set of charged parti-
tions, by setting |λ, s〉

c
−→ |µ, s〉 if κ(µ) is obtained from κ(λ) by adding a box (a, b)

such that b− a = c. As usual, we define it on doubly highest weight vertices and we
extend it as in (6.13). We call it the Heisenberg crystal, or simply the H-crystal, of
Λs.

Remark 6.16. The rule for drawing an arrow in the Heisenberg crystal is in fact the
Uq(sl∞)-crystal graph rule on {|κ(λ), 0〉 ; λ ∈ Π} , which is equal to {|σ, 0〉 ; σ ∈ Π}
by the surjectivity of κ explained in Remark 5.13. Hence, one can see the Heisen-
berg crystal as the preimage under the map κ of the Uq(sl∞)-crystal on the set of
partitions, which justifies the terminology “crystal”.

Now, observe that the procedure |λ, s〉
c
−→ |µ, s〉 is in fact a composition of maps

b̃±σ, namely

|λ, s〉
b̃−κ(λ)

−−−−−−−→ |λ̄, s〉
b̃κ(µ)

−−−−−−→ |µ, s〉.

This is a generalisation of Formula (6.15).
Therefore, we call the map

(6.16) b̃1,c = b̃κ(µ) ◦ b̃−κ(λ)

Heisenberg crystal operator, and there is an arrow |λ, s〉
c
−→ |µ, s〉 in the Heisenberg

crystal if and only if |µ, s〉 = b̃1,c|λ, s〉. This is an analogous result to Theorem 6.24,
in the sense that the Heisenberg crystal graph is explicitely described in combinato-
rial terms (via an explicit formula of the Heisenberg crystal operator). In fact, b̃1,c
is an analogue for H of the Kashiwara crystal operator f̃i for U ′

q(ŝle).

Remark 6.17. The map b̃1,c can be seen as a “weighted” version of the map b̃1
(Definition 6.10), in the sense that it shifts an e-period one step to the right in the
l-abacus, which is determined by c (and is not necessarily the first trivial one).

Remark 6.18. By Remark 2.4, a Heisenberg crystal operator acts on a charged
partition by adding an e-ribbon.

Each l-charge sl ∈ Al,e(s) determines a connected component of the H-crystal. A
source vertex in the H-crystal is called a highest weight vertex (by analogy with the

quantum group case): it is a charged partition |λ, s〉 such that b̃−σ|λ, s〉 = 0 for all
σ ∈ Π. In other terms, the highest weight vertices in the H-crystal are the elements
of the form |λ̄, s〉 for some partition λ. The number of arrows necessary to go from
|λ̄, s〉 to |λ, s〉 in the H-crystal is called the depth of |λ, s〉 and is equal to |κ(λ)|.
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By definition, a map b̃σ (with σ a partition) is a composition of maps of the form

b̃z with z positive integer. We can now give an alternative description of b̃σ using
composition of Heisenberg crystal operators. Let {γk ; k = 1, . . . , |σ|} be the set of
boxes of σ, ordered from bottom to top, and from right to left. If γk = (ak, bk) (row
and column indices), then write ck = bk − ak. In particular, one always has c|σ| = 0.
We have

(6.17) b̃σ = b̃1,c1 ◦ b̃1,c2 ◦ · · · ◦ b̃1,c|σ|
.

Theorem 6.19. The Heisenberg crystal operators simultaneously commute with the

U ′
p(ŝll)-crystal operators and with the U ′

p(ŝll)-crystal operators when computed with
respect to Indexation (3.7).

Proof. By definition, the Heisenberg crystal operators are a composition of a map
b̃−ka and a map b̃σ. Both these maps are double crystal-isomorphisms by Theorems
6.9 and 6.14. This proves the claim. �

To sum up, we have constructed a new crystal structure, so that we have in total
three crystal structures on the space Λs:

- a U ′
q(ŝle)-crystal,

- a U ′
p(ŝll)-crystal,

- an H-crystal,

which are all explicited and pairwise commute provided one uses the correspondence
(3.7) to switch between the different indexations.

6.4. The decomposition theorem.

Notation 6.20. Let r (respectively t) be a non-negative integer and, let i1, . . . , ir
(respectively j1, . . . , jt) be elements of {0, . . . , e−1} (respectively {0, . . . , l−1}). We
denote

F̃(i1...ir) = f̃i1 . . . f̃ir and ˜̇F(j1...jt) =
˜̇fj1 . . .

˜̇fjt .

The following theorem says that every charged l-partition is obtained from the empty
l-partition charged by an element of Al,e(s) by applying some crystal operators of

U ′
q(ŝle), of H, and of U ′

p(ŝll). So this is an analogue of Theorem 3.5 at the crystal
level.

Theorem 6.21. For all charged l-partition |λl, sl〉, there exist r, t ∈ Z≥0, i1, . . . , ir ∈
{0, . . . , e− 1}, j1, . . . , jt ∈ {0, . . . , l − 1}, and a partition σ such that

|λl, sl〉 = ( ˜̇F(j1...jt) ◦ b̃σ ◦ F̃(i1...ir)) |∅l, s̃l〉,

for some s̃l ∈ Al,e(s).

Here, we have implicitely used the correspondence (3.7) to switch between the in-
dexations by l-partitions, partitions, and e-partitions. Note that by Identity (6.17),

the map b̃σ in the middle is indeed a composition of Heisenberg crystal operators.



30 THOMAS GERBER

Proof. We identify as usual the l-,e-, and 1-partitions using (3.7). Starting from

|λ, s〉, one first goes back in the U ′
p(ŝll)-crystal to the highest weight vertex, say |ν, s〉.

One then computes b̃−κ(ν)|ν, s〉 = |ν̄, s〉. Finally, one can go back in the U ′
q(ŝle)-

crystal to the highest weight vertex. By Theorem 6.19, the order of these operations
does not matter, and by Proposition 6.7, the resulting l-partition is empty, and
charged by an element of Al,e(s) according to Proposition 5.7. �

6.5. An application using FLOTW multipartitions.
A consequence of Theorem 6.21 is the existence of a labelling of each charged l-
partition by a triple consisting of a particular l-partition, a partition and a partic-
ular e-partition. More precisely, let us introduce the convenient class of FLOTW
multipartitions.

Definition 6.22. Let λl = (λ1, . . . , λl) be an l-partition and sl = (s1, . . . , sl) be an
l-charge in Al,e(s) (cf Notation 3.4). For j ∈ {1, . . . , l}, write (λj = (λj

1, λ
j
2, . . . ).

We call |λl, sl〉 FLOTW if the two following conditions are satisfied.

(1) • λj
k ≥ λj+1

k+sj+1−sj
∀j ∈ {1, . . . , l − 1} and ∀k ≥ 1, and

• λl
k ≥ λ1

k+e+s1−sl
, ∀k ≥ 1.

(2) For all α > 0, the residues of the rightmost boxes of the parts of size α do
not cover {0, . . . , e− 1}.

Denote by Ψsl
the set of FLOTW l-partitions with sl, and by Ψl the set of all

FLOTW l-partitions (i.e. without specifying the l-charge).

Remark 6.23. Throughout this paper, we have assumed that l > 1. This definition
is however still valid when l = 1. In this case, l-partitions are simply partitions, and
the FLOTW partitions are precisely the e-regular partitions (and in this case, the
charge is insignificant).

Theorem 6.24 ([4, Theorem 2.10]). The vertices of the connected component of the

U ′
q(ŝle)-crystal graph of Fsl,e containing |∅l, sl〉 are the FLOTW l-partitions.

The relevance of this theorem is that a priori, the vertices in the crystal graph
of Fsl,e are computable, but only have a recursive definition: one starts with the

highest weight vertex and recursively applies some crystal operators of the form f̃i;
whereas the FLOTW l-partitions have a more explicit (in particular non-recursive)
combinatorial definition.

Example 6.25. Take e = 4, l = 2 and sl = (0, 1). Then the elements of Ψsl
of rank

4 are
( ∅ , 1 2 3 ) ( 0 , 1

0
) ( 0 , 1 2 ) ( 0

-1
, 1 )

(
0
-1
-2

, ∅ ) ( 0 1 , 1 ) ( 0 1
-1

, ∅ ) ( 0 1 2 , ∅ ).

Theorem 6.26. There is a one-to-one correspondence

Be
1:1

←−−−−→ Ψl × Π×Ψe.
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Proof. Theorem 6.21 says that on can always decompose any element of Be as follows

|λl, sl〉 = ( ˜̇F(j1...jt) ◦ b̃σ ◦ F̃(i1...ir)) |∅l, s̃l〉.

Now, by Theorem 6.24, the l-partition F̃(i1...ir)|∅l, s̃l〉 is FLOTW, i.e. an element

of Ψl. Denote it |µl, rl〉. Similarly ˜̇F(j1...jr)|∅e, s̃
′
e〉 ∈ Ψe, and we denote it |νe, te〉.

Therefore, we get a bijection

Be
1:1

←−−−→ Ψl × Π×Ψe

|λl, sl〉 ←−−−→ (|µl, rl〉, σ, |νe, te〉).

�

Remark 6.27. In [6, Remark 6.5], we have constructed an analogue of the Robinson-
Schensted correspondence, which maps bijectively an element |λl, sl〉 ∈ Be to a
pair consisting of an FLOTW l-partition |µl, rl〉 and a combinatorial “recording
data” (Q, α). The FLOTW l-partition is precisely the one appearing in the above
theorem. Hence, Π × Ψe can be identify to the set of objects (Q, α). It sould be
interesting to make this relation explicit.

7. Application to the representation theory of cyclotomic

rational Cherednik algebras

There is a close connection between Uglov’s combinatorial level l Fock space Fsl,e

and cyclotomic rational Cherednik algebras. For a fixed non-negative integer n, one
associates the Cherednik algebra Hc,n with parameter c = (−1

e
, sl) arising from the

complex reflection group G(l, 1, n) = (Z/lZ)n ⋊Sn (this is the so-called cyclotomic
case). The parameter c is sometimes expressed differently in the literature. For
some background, one can refer to e.g. [23].
There is a corresponding category O, see [8] for its definition, denoted Oc,n, and one
can consider, for n varying, all categories Oc,n together. Denote it Oc. The simple
objects in Oc are parametrised by the elements of Irr(G(l, 1, n)) for n varying, i.e.
by l-partitions.
It is known that the Fock space plays an important role in the representation theory
of Hc,n, with n varying, via categorification phenomenons. In particular, the crystal
of Fsl,e reflects the branching rule on Hc,n with n varying, where the Kashiwara op-

erators ẽi (respectively f̃i) reflects the parabolic restriction (respectively induction)
in Oc, see Shan [23, Theorem 6.3] and Losev [19, Theorem 5.1].
Moreover, the action of the Heisenberg algebra (cf Section 3.2) has also been cat-
egorified by Shan and Vasserot [24], and some of the associated combinatorics has
been recently studied by Losev [20].

7.1. Interpretation of the crystal level-rank duality.
We have seen in Section 4 how Uglov’s level-rank duality is expressed at the crystal
level, via the double crystal structure arising from the two quantum group actions.
More precisely, the two crystals commute provided one works with the indexation
(3.7) (Theorem 4.8). At the categorical level, it is known that level-rank duality
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reflects the Koszul duality between the corresponding categories O, denoted Oe for
the category O associated to Fsl,e and Ol for that associated to Fse,l. The first
results in this direction are due to Rouquier, Shan, Varagnolo and Vasserot [22] and
Webster [28].
More precisely, the Koszul duality sends a simple object of Oe to a tilting object in
Ol. The categorical crystal on the simples modules in Oe arises from the abelian

action of ŝle. Similarly, one constructs a categorical crystal on the simple modules

in Ol by considering the action of ŝll, and the Koszul duality yields a categorical
crystal on the tilting modules in Oe.
At the combinatorial level, the simple modules in Oe correspond to the dual canon-
ical basis of Fsl,e, whose associated crystal requires the specialisation at q−1 = 0;
and the tilting modules correspond to the canonical basis, whose associated crystal
requires the specialisation at q = 0. In order for the two crystals to commute, they
have to be specialisations at the same value of q (e.g. q = 0), so one must use the
bijection between the labels of the simples and tilting modules in Oe.
Theorem 4.8 suggests that this bijection is given by the conjugation of l-partitions.
Note that this coherent with [26, Proposition 5.14], which states that the dual
canonical basis is related to the (lower) canonical basis of Fsl,e through conjugation
of l-partitions.

7.2. Propagation in the U ′
p(ŝll)-crystal and compatibility with the results

of Losev.
In [20], Losev has introduced a combinatorial recipe to compute a so-called sl∞-
crystal 1 on the set of charged l-partitions which reflects, at a combinatorial level,
an abstract crystal structure on the set of classes of simple objects in the category
Oe, arising from the action of the Heisenberg algebra at a categorical level (whose
existence goes back to Shan and Vasserot [24]).
This recipe consists of two ingredients:

• An explicit description of some operators ãσ (parametrised by partitions σ,
first introduced in [24]) on charged l-partitions, in the case where the l-charge
is asymptotic.
• A formula for wall-crossing bijections, that permits to pass from the asymp-

totic case to the general case.

Notice that the formula for these wall-crossing bijections is unfortunately not very
explicit. Moreover, these ingredients are introduced for highest weight vertices in

the U ′
q(ŝle)-crystal; however, the commutation of this sl∞-crystal with the U ′

q(ŝle)-
crystal ensures that one can extend it to the whole set of partitions (see [20, Remark
5.4]). Finally, Losev does not use the combinatorial level-rank duality at all, so there
is no triple crystal structure involved in this recipe. In this section, we will show
that Losev’s sl∞-crystal coincides with the Heisenberg crystal introduced in Section
6.2 above.

1This terminology is justified by the same kind of arguments as that of Remark 6.16.
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Let j0 ∈ {1, . . . , l}. An l-charge sl is called j0-asymptotic if there exists a positive
integer N such that sj0 > sj +N for all j ∈ {1, . . . , l− 1}, j 6= j0. Actually, in what
follows, we will consider the maximal such N for simplicity. In this case, we will
also call a charged an element |λl, sl〉 asymptotic (charged) multipartition.

Lemma 7.1. Let sl be an j0-asymptotic l-charge. If |λl, sl〉 is a highest weight vertex

in the U ′
q(ŝle)-crystal such that |λl| ≤ N , then there exists a partition θ = (θ1, θ2, . . . )

such that λj0 = (θe1, θ
e
2, . . . ).

Proof. Because of Theorem 5.2, we know that A(λl, sl) is totally e-periodic. In
view of the condition on the rank of λl, the first periods of A(λl, sl) consist only of
elements of the form (j, β) with j = j0 (in other terms, the first periods are entirely
included in the j0-th row of the abacus). Hence, the partition λj0 is of the form
(θe1, θ

e
2, . . . ) for some non-negative integers θi. �

Notice that this partition θ is constructed in a similar way as the partition κ for
doubly highest weight vertices (except that for θ, one focuses exclusively on the j0-th
component of |λl, sl〉). We will show in Theorem 7.6 that θ is in fact the partition
κ associated to the corresponding doubly highest weight vertex.
Let us now recal the result of Losev that is relevant in our context. Let sl be an
j0-asymptotic l-charge, and |λl, sl〉 be a highest weight vertex in the U ′

q(ŝle)-crystal
such that |λl|+ e|θ| ≤ N (cf Lemma 7.1 above). The following is [20, Section 5.1.2
and Proposition 5.3].

Theorem 7.2.

(1) The depth of |λl, sl〉 in the sl∞-crystal is equal to the rank of θ.
(2) If θ = ∅ and σ = (σ1, σ2, . . . ) is a partition such that |λl| + e|σ| ≤ N , then

ãσ(|λl, sl〉) = |µl, sl〉, where µj = λj for all j 6= j0, and µj0 = (σe
1, σ

e
2, . . . ).

(3) The sl∞-crystal commutes with the U ′
q(ŝle)-crystal.

Here, we have slightly “rephrased” the original result of Losev. In particular, the
notion of asymptoticity must be reversed in order to be compatible with the language
of Fock space, as well as the convention on “multiplicating/dividing” of partitions
by e (one recovers Losev’s convention by conjugating, see also [20, Section 5.5]).

Example 7.3. Take l = 2, λl = (13, ∅) , sl = (0, 14), e = 3 and σ = (2, 1). So we
have j0 = 2 and N = s2 − s1 − 1 = 13. Since |λl| + e|σ| = 3 + 3.3 = 12, we are in
the conditions of the theorem. The abacus of |λl, sl〉 is

Applying ãσ, we get the following abacus
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So we see that ãσ acts by shifting periods in λj0 to the right according to σ: the
first period is shifted two steps and the second one step.

One first thing to notice is that Losev’s formula for ãσ is similar to the formula of
the operators b̃σ of Section 6 (shifting e-periods to the right). However, one sees that
the property of being asymptotic is somehow antagonistic to the property of being
a doubly highest weight vertex. More precisely, a doubly highest weight vertex can
never be asymptotic; and conversely, an asymptotic multipartition can never be a
doubly highest weight vertex (except for the trivial cases). This is clear for instance
looking at Proposition 5.7. Still, we have explained how to extend the definition of
the new operators to the whole set of partitions, in (6.13). In this section, we will

show that the operator ãσ actually coincides with b̃σ for all partition σ. Moreover,
we show that the partition θ arising in the asymptotic case is in fact equal to the
partition κ arising in the doubly highest weight vertex case. Note that the maps
b̃−1 and b̃−κ implicitely then corresponds to taking the inverse maps to ã(1) and ãκ.

For every asymptotic charged l-partition |λl, sl〉 which is a highest weight vertex

in the U ′
q(ŝle)-crystal, one can consider the corresponding doubly highest weight

vertex. One can apply to it an operator b̃−κ, and go back in the U ′
p(ŝll)-crystal

to get the corresponding l-partition |µl, rl〉 = b̃−κ|λl, sl〉 (cf Procedure (6.13)). In

fact, the propagation in the U ′
p(ŝll)-crystal turns out to have a nice description:

acting by b̃−κ and by b̃σ on |λl, sl〉 is combinatorially “the same” as acting on doubly
highest weight vertices (i.e. shifting e-periods to the left), as is stated in the next
proposition.

Proposition 7.4. Let |λl, sl〉 be a highest weight vertex in the U ′
q(ŝle)-crystal. Write

|λ̃l, s̃l〉 for the corresponding doubly highest weight vertex, and set κ = κ(|λ̃l, s̃l〉) =
(κ1, κ2, . . . , κN(l)). Then |λl, sl〉 has at least N(l) non-trivial periods, and

(1) b̃−κ acts on |λl, sl〉 by shifting the k-th period of A(λl, sl) by κk steps to the
left, for all k = 1, . . . , N(l), starting from k = N(l), . . . and finishing by
k = 1,

(2) if κ = ∅, then for all partition σ = (σ1, σ2, . . . , σr), b̃σ acts on |λl, sl〉 by
shifting the k-th period of A(λl, sl) by σk steps to the right, for all k =
1, . . . , r, starting from k = r, . . . and finishing by k = 1.

Remark 7.5. Note that in the case |λl, sl〉 = |λ̃l, s̃l〉, this procedure coincides with

the procedure for b̃−κ described in Definition 6.6. The subtlety here is that we
might have more than N(l) non-trivial periods in |λl, sl〉, so we have to modify the
statement. This being said, the action remains very explicit.

Proof. We have already explained in Section 4.3 how the crystal operators ˜̇fj of

U ′
p(ŝll) act on the l-abacus, see Theorem 4.8 and Example 4.10. They are U ′

q(ŝle)-
crystal isomorphisms, and in fact they transform an e-period P = ((jk, βk))k=1,...,e

of A(λ̃l, s̃l) into another e-period P ′ = ((j′k, β
′
k))k=1,...,e, where either
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• (j′k, β
′
k) = (jk, βk) for all k but one, denoted k0, for which (j′k0 , β

′
k0
) = (jk0 −

1, βk0), or
• (j′k, β

′
k) = (jk, βk) for all k > 1 and (j′1, β

′
1) = (l, βe+e) (in which case je = 1).

This is true because A(λ̃l, s̃l) is totally e-period (and so are all elements in the

U ′
p(ŝll)-crystal). We see directly that such a procedure can only preserve the number

of periods, or make it increase, proving the opening statement.
Let us prove Point (1). We first need to show that it is possible to apply the shifting
procedure in the proposition, that is to say, that each element of the N(l)-th period
has at least κN(l) empty spots to its left, and so on (formally, (j, β) ∈ PN(l) ⇒
(j, β − a) /∈ A(λl, sl) ∀a = 1, . . . , κN(l), and so on, if Pk denotes the k-th period

in A(λl, sl)). By contradiction, suppose that applying the operator ˜̇fj to a highest

weight vertex in the U ′
q(ŝle)-crystal moves a bead of a period Pk in the abacus to

a spot (j, β) (j ∈ {1, . . . , l} and meaning
˜̇
f0 if j = l) such that a period Pk′, with

k > k′, contains an element of the form (j, β ′) and has exactly κk′ empty spots to
its left. In this case, the element (j, β ′) creates a − in the j-word ẇj(|λ

′
e, s

′
e〉), which

directly simplifies with the + created by the bead that is moved by
˜̇
fj , which is a

contradiction.
In fact, this procedure indeed gives the crystal action of the Heisenberg algebra for

the highest weight vertices in the U ′
q(ŝle)-crystal. It suffices to notice that shifting

the considered e-periods preserves the reduced j-words ẇj, because this amounts
to potentially make subwords of the form (−+) collapse. In addition, one observes

that
˜̇
fj acts on the modified l-abacus by moving the bead corresponding to the bead

of the original abacus A(|λl, sl〉) which is moved by
˜̇
fj. This is the same as applying

the procedure to
˜̇
fj|λl, sl〉. Because b̃−κ is a U ′

p(ŝll)-crystal isomorphism (Theorem

6.9), this procedure is indeed the action of b̃−κ on l-abacci.
Using the exact same arguments and looking at the reverse procedure, Point (2) is
also proved. �

Theorem 7.6. The Heisenberg crystal coincides with Losev’s sl∞-crystal.

Proof. It suffices to show that b̃σ = ãσ for all σ ∈ Π, and that θ = κ.
In fact, we first show that the b̃σ and ãσ coincide on highest weight vertices in the

U ′
q(ŝle)-crystal which are j0-asymptotic for some j0 ∈ {1, . . . , l}. This is enough

because we know that in both cases, the maps commute with the crystal operators

of U ′
q(ŝle) (Theorem 6.19 for b̃σ and Theorem 7.2 for ãσ). Every such charged l-

partition |λl, sl〉 is obtained from a doubly highest weight vertex by applying a

sequence of Kashiwara crystal operators ˜̇fj1
˜̇fj2 . . .

˜̇fjr . By Proposition 7.4, we know
how these operators act. In the asymptotic case, if |λl| + e|σ| ≤ N (where the

N comes from the asymptotic property), applying b̃σ only affects the j0-th row of
A(λl, sl). Moreover, the shifting procedure on abacci described in Proposition 7.4
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is exactly Losev’s formula for ãσ on charged l-partitions, see Theorem 7.2. So we
have b̃σ = ãσ for all partition σ.
Similarly, the action of b̃−κ is entirely described on the j0-th row of A(λl, sl), and the
procedure of Proposition 7.4 on abacci is in this case precisely the reverse procedure
of Losev’s formula for ãθ on l-partitions, with θ = κ. Therefore, κ = θ. In particular,
the depth of |λl, sl〉 in the Heisenberg crystal is by definition |κ| = |θ|. �

Therefore, we can now use the results of Losev [20] and Shan and Vasserot [24] on
the Heisenberg crystal.

7.3. A combinatorial characterisation of finite-dimensional simple mod-
ules.
One of the important results of Shan and Vasserot in [24] is Proposition 5.18, which
gives a characterisation of the finite-dimensional simple modules for cyclotomic ra-
tional Cherednik algebras. They show that this property is equivalent to being
“primitive”. Combinatorially, this amounts to saying that the l-partition labelling

this module is simultaneously a highest weight vertex in the U ′
q(ŝle)-crystal and in

the Heisenberg crystal, see e.g. [20, Section 5.1.1].
Using the results of Section 6.4, we can give an explicit combinatorial description of
these l-partitions. For this, recall that we have introduced the notion of FLOTW e-
partitions in Definition 6.22, and that we can use the correspondence (3.7) between
l-partitions charged by sl and e-partitions charged by s

′
e.

Theorem 7.7. A simple Hc,n-module is finite-dimensional if and only if it is labelled
by an l-partition λl of rank n such that |λ′

e, s
′
e〉 is an FLOTW e-partition.

Proof. As already explained, a simple Hc,n-module is finite-dimensional if and only
if it is labelled by an l-partition λl of rank n such that |λl, sl〉 is a highest weight

vertex in the U ′
q(ŝle)-crystal and |λ, s〉 is a highest weight vertex in the Heisenberg

crystal, i.e. λ = λ̄.

Assume first that |λl, sl〉 is a highest weight vertex in the U ′
q(ŝle)-crystal and |λ, s〉

is a highest weight vertex in the Heisenberg crystal. Then with the notation of
Theorem 6.21, we have (i1, . . . , ir) = ∅ and σ = ∅, thus

|λ′
e, s

′
e〉 =

˜̇F(j1,...,jk)|∅e, s̃
′
e〉

where s̃
′
e ∈ Ae,l(s). By Theorem 6.24, |λ′

e, s
′
e〉 ∈ Ψe, i.e. is FLOTW.

Conversely, if |λ′
e, s

′
e〉 is an FLOTW e-partition, then there exist some (j1, . . . , jk) ∈

{0, . . . , l − 1}k such that |λ′
e, s

′
e〉 =

˜̇F(j1,...,jk)|∅e, s̃
′
e〉, for some s̃

′
e ∈ Ae,l(s). Then for

all σ ∈ Π, we have

b̃−σ|λ
′
e, s

′
e〉 = (b̃−σ ◦

˜̇F(j1,...,jk))|∅e, s̃
′
e〉

= ( ˜̇F(j1,...,jk) ◦ b̃−σ)|∅e, s̃
′
e〉 by Theorem 6.19

= 0.
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and for all i ∈ {0, . . . , e− 1},

ẽi|λ
′
e, s

′
e〉 = (ẽi ◦

˜̇F(j1,...,jk))|∅e, s̃
′
e〉

= ( ˜̇F(j1,...,jk) ◦ ẽi)|∅e, s̃
′
e〉 by Theorem 4.8

= 0.

So |λl, sl〉 is a highest weight vertex in the U ′
q(ŝle)-crystal and |λ, s〉 is a highest

weight vertex in the Heisenberg crystal. �
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