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Abstract. These notes were written for the mini-course Extrema of log-correlated ran-
dom variables: Principles and Examples at the Introductory School held in January
2015 at the Centre International de Rencontres Mathématiques in Marseille. There
have been many advances in the understanding of the high values of log-correlated ran-
dom fields from the physics and mathematics perspectives in recent years. These fields
admit correlations that decay approximately like the logarithm of the inverse of the
distance between index points. Examples include branching random walks and the two-
dimensional Gaussian free field. In this paper, we review the properties of such fields
and survey the progress in describing the statistics of their extremes. The branching
random walk is used as a guiding example to prove the correct leading and subleading
order of the maximum following the multiscale refinement of the second moment method
of Kistler. The approach sheds light on a conjecture of Fyodorov, Hiary & Keating on
the maximum of the Riemann zeta function on an interval of the critical line and of the
characteristic polynomial of random unitary matrices.
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1. Introduction

There has been tremendous progress recently in the understanding of the extreme value
statistics of stochastic processes whose variables exhibit strong correlations. The purpose
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of this paper is to survey the recent progress in this field for processes with logarithmically
decaying correlations. The material has been developed for the mini-course Extrema of
log-correlated random variables: Principles and Examples at the Introductory School held
in January 2015 at the Centre International de Rencontres Mathématiques in Marseille
for the trimester Disordered systems, Random spatial processes and Applications of the
Institut Henri-Poincaré.

The study of extreme values of stochastic processes goes back to the early twentieth
century. The theory was developed in the context of independent or weakly correlated
random variables. The first book regrouping the early advances in the field is the still
relevant Statistics of Extremes by E.J. Gumbel [43] published in 1958. Gumbel credits
the first work on extreme values to Bortkiewicz in 1898, which is one of the first paper
emphasizing the importance of Poisson statistics. After progress by Fisher and Tippett in
understanding the limit law of the maximum of a collection of IID random variables, the
theory culminated in 1943 with the classification theorem of Gnedenko [42] which showed
that the distribution of the maximum of N independent and identically distributed (IID)
random variables when properly recentered and rescaled can only be of three types:
Fréchet, Weibull or Gumbel. Prior to this, von Mises had shown sufficient conditions
for convergence to the three types. All in all, it took the theory sixty years between
the first rigorous results and an essentially complete theory as it appears in Gumbel’s
review. There are now many excellent textbooks on extreme value statistics, see e.g.
[19,28,49,54].

The classical theory however does not apply to collections of random variables that
exhibit strong correlations, i.e. correlations of the order of the variance. As Gumbel
points out at the very beginning of Statistics of Extremes:

Another limitation of the theory is the condition that the observations from
which the extremes are taken should be independent. This assumption,
made in most statistical work, is hardly ever realized.

In the last thirty years, there have been important breakthroughs in mathematics and in
physics to identify universality classes for the distributions of extreme values of strongly
correlated stochastic processes. One such class that has attracted much interest in recent
years is the class of log-correlated fields. Essentially, these are stochastic processes for
which the correlations decay logarithmically with the distance. Even though the theory
has not reached a complete status as in the IID case, there has been tremendous progress
in identifying the distribution of extremes in this case and to develop rich heuristics
that describe accurately the statistics of large values. There are already excellent survey
papers on the subject by Bovier [20] and Zeitouni [57], all offering a different perspective
on log-correlated fields. The present paper modestly aims at complementing the growing
literature on the subject by focusing on the techniques to obtain precise estimates on
the order of the maximum of log-correlated fields and their potential applications to
seemingly unrelated problems: the maxima of the characteristic polynomials of random
matrices and the maxima of the Riemann zeta function on an interval of the critical line.
The approach we take is based on Kistler’s multiscale refinement of the second moment
method introduced in [46].

The presentation is organized as follows. In Section 1, we review the basic theory in
the case of IID random variables and will introduce log-correlated fields in generality.
Section 2 focuses on two important examples of log-correlated fields: branching random
walks and the two-dimensional Gaussian free field. In particular, three properties of these
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fields (and of log-correlated fields in general) are singled out as they play a crucial role
in the analysis of extremes. In Section 3, we describe the general method of Kistler to
prove fine asymptotics for the maximum of log-correlated fields [46]. Finally, in Section
4, we will explain how the method is expected to be applicable to study the high values
of the characteristic polynomials of random matrix ensemble as well as the large values
of the Riemann zeta function on an interval of the critical line.
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1.1. Statistics of extremes. We are interested in the problem of describing the maxima
of a stochastic process in the limit where there are a large number of random variables.
For example, consider the process consisting of IID centered Gaussian random variables.
One realization of this process for 210 variables is depicted in Figure 1 with a particular
choice of the variance. The maximum of the rugged landscape of this realization lies
around 6. If we repeat this exercise for several realizations, we would observe that this is
the case for every realization: the maximum has fluctuations roughly of order one around
a deterministic value which is close to 6.
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Figure 1. A realization of 210 centered Gaussian random variables of vari-
ance 1

2
log 210.

Now consider a drastically different stochastic process: let U be a random 210 × 210

unitary matrix sampled uniformly from the unitary group and consider the modulus of
the characteristic polynomial on the unit circle

PU(θ) =
∣∣det(eiθ − U)

∣∣ .
A realization of the logarithm of this quantity on the interval [0, 2π] is given in Figure 2.
This random process is of course qualitatively very different from the IID process above.
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Figure 2. A realization of PU(θ) on [0, 2π] of a random unitary matrix U
of size 210 × 210.

It is not Gaussian and it is a continuous process with singularities at the eigenvalues of U .
However, perhaps by coincidence, the maximum of the landscape lies also around 6. In
fact, if we repeat the experiment, we would again observe that the maximum fluctuates
around a deterministic value close to 6. If we were precise enough, we would see that the
deterministic value is close to the one for IID variables but there is a slight discrepancy.
The conjecture of Fyodorov-Hiary-Keating [39, 40] makes a detailed prediction for the
maximum of PU(θ). The distribution of the maximum is different in the limit of a large
number of variables from the one of IID, though it is close. However, it is a perfect match
with the distribution of log-correlated Gaussian field. This conjecture is still open (even
to first order). However, the mechanism that would be responsible for this conjecture to
hold is now quite clear. This is the goal of this review to illustrate the techniques for
log-correlated fields in the forthcoming sections and their relations to PU(θ) in Section 4.

Throughout the paper, the framework will be as follows. The random field will be
indexed by a discrete space Vn with 2n points. One important example is Vn = {−1, 1}n
representing the configurations of n spins. In most examples, Vn will be equipped with a
metric that we denote d(v, v′), v, v′ ∈ Vn. We consider the random field

X(n) = {Xv(n), v ∈ Vn} .
defined on a probability space (Ω, P ). We will suppose without loss of generality that
E[Xv(n)] for all v ∈ Vn. In most examples, the variance will be the same for every v ∈ Vn.
This is not true for the two-dimensional Gaussian free field because of the boundary effect.
However, the variance is almost uniform for most points which ultimately does not affect
the results, but complicate the analysis. With this in mind, we choose to parametrize the
variance as

E[Xv(n)] = σ2n ,

for some σ2. This turns out to be the correct physical parametrization: it gives a a
non-trivial limit for the free energy per spin in the limit n→∞, cf. Section 1.3.

Even though the analysis we present are not limited to Gaussian fields, it is convenient
to present the ideas in this setting. There are many advantages to do so. First, the
distribution of the field X(n) is then entirely determined by the covariances

E[Xv(n)Xv′(n)] .
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Second, estimates for the probability of large values for Gaussians are very precise: it is
not hard prove the Gaussian estimate for Xv(n) ∼ N (0, σ2n),

(1) P (Xv(n) > a) =
(1 + o(1))√

2π

√
σ2n

a
exp

(
− a2

2σ2n

)
for a >

√
σ2n.

Finally, comparison results for Gaussian processes can be used in some instances to bound
functionals of the processes above and below with functionals of processes with simpler
correlation structures.

The central question of extreme value theory is to describe the functional

max
v∈Vn

Xv(n) in the limit n→∞.

As for other global functionals of a stochastic process such as the sum, it is reasonable to
expect universality results for the limit, i.e. results that depend mildly on the fine details
of the distributions of X(n). From a physics perspective, this question corresponds to
describing the ground state energy of a system with state space Vn and energy −Xv(n)
for the state v. The system is said to be disordered because the energies depend on the
realization of the sample space Ω. A realization of the process as depicted in Figures 1
and 2 from this point of view represents the energy landscape of the system for a given
disorder.

With a perhaps naive analogy with the limit theorems for sum of IID random variables,
one might expect a corresponding law of large numbers and central limit theorems for the
maximum. More precisely, the problem is to:
(2)

Find a recentering an and rescaling bn such that max
v∈Vn

Xv(n)− an
bn

converges in law.

If these sequence exist, it suggests that there is a non-trivial random variable M inde-
pendent of n such that the approximate equality holds:

max
v∈Vn

Xv(n) ≈ an + bnM .

In this regard, the recentering an is the term analogous to the law of large numbers
whereas bn sizes the magnitude of the fluctuations with distribution M, thus belongs
to the central limit theorem regime. Of course, an should be unique up to an additive
constant and bn, up to a multiplicative constant. We refer to an as the order of the
maximum. We shall focus on general techniques to rigorously obtain the order of the
maximum an for log-correlated fields in Section 3. The proofs of fluctuations are tech-
nically more involved, but the heuristics developed for the order of the maximum are
crucial to the analysis at a more refined level.

The starting point of our analysis is the result when Xv(n) are IID Gaussians with
variance σ2n. In this case, the problem (2) is a simple exercise and has a complete
answer.

Proposition 1. Let X(n) = (Xv(n), v = 1, . . . , 2n) be IID centered Gaussians with
variance σ2n. Then for c =

√
2 log 2σ and

(3) an = cn− 1

2

σ2

c
log n, bn = 1,
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we have

lim
n→∞

P

(
max
v∈Vn

Xv(n) ≤ an + bnx

)
= exp(−Ce−cx) , with C =

σ/c√
2π

.

In other words, the maximum converges in distribution to a Gumbel random variable
also known as double-exponential. The order of the maximum is linear in n at first order
with velocity c =

√
2 log 2σ. The subleading order is logarithmic in n. The proof of this is

simple but is instructive for the case of log-correlated fields. The same type of arguments
can be used for the order statistics, i.e. the joint distribution of first, second, third, etc
maxima. It converges to a Poisson point process with exponential density.

Proof of Proposition 1. Clearly, since the random variables are IID, we have

P

(
max
v∈Vn

Xv(n) ≤ an + bnx

)
=

(
1− 2nP (Xv(n) > an + bnx)

2n

)2n

.

This implies that the convergence of the distribution reduces to show that

2nP (Xv(n) > an + bnx) converges for an appropriate choice of an and bn.

The right side is exactly the expected number of exceedances, that is

E [N (y)] , where N (y) = #{v ∈ Vn : Xv(n) > y}
for y = an + bnx. It is not hard to prove using the Gaussian estimate (1) that the choice

an = cn− 1
2
σ2

c
log n and bn ensures the convergence. In fact, the leading order cn lies in

the large deviation regime for the distribution Xv(n). It compensates exactly the entropy

term 2n. As for the subleading order −σ2

2c
, it balances out the fine asymptotics

σ2n

an
=

√
σ2n

cn(1 + o(1))
= O(n−1/2)

in the Gaussian estimate. �

It is a real challenge to achieve precise results of the kind of Proposition 1 for a sto-
chastic X(n) with correlations of the order of the variance. Correlations should affect
the order of the maximum and its fluctuations, but to which extent ? It is reasonable to
expect the statistics of extremes of such processes to retain features of the IID statistics
if we look at a coarse-enough scale. When correlations are present the expected number
of exceedances is no longer a good proxy for the correct level of the maximum, since by
linearity of the expectations, it is blind to correlations and is the same as IID. The ex-
pected number of exceedances turns out to be inflated by the rare events of exceedances
far beyond the right level of the maximum. As we will see in Section 3, the number of
exceedances need to be modified to reflect the correct behavior of the maxima.

1.2. Log-correlated fields. In the framework where X(n) = (Xv(n), v ∈ Vn) is a sto-
chastic process on a metric space Vn with distance d, a log-correlated field has correlations

(4) E[Xv(n)Xv′(n)] ≈ − log d(v, v′) .

In particular, the correlation decays very slowly with the distance! Slower than any
power. We emphasize that the covariance might not be exactly logarithmic for the field
to exhibit a log-correlated behavior. For one, the covariance matrix must be positive
definite, hence the covariance might be exactly the logarithm of the distance. Moreover,
the logarithmic behavior might only be exhibited in the bulk due to some boundary
effect. As we will see in Section 2, this is the case for the two-dimensional Gaussian free
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field. Other important examples of processes in this class are branching random walks
and models of Gaussian multiplicative chaos. It is good to re-express (4) in terms of the
size of neighborhoods with a strong correlations with a fixed point v. More precisely, for
r > 0, consider the number of points v′ whose covariance is a fraction r of the variance.
The logarithmic nature implies that

(5)
1

2n
#
{
v′ ∈ Vn :

E[Xv(n)Xv′(n)]

E[Xv(n)2]
> r
}
≈ 2−rn .

In other words, it takes approximately 2rn balls to cover the space Vn with neighborhoods
where correlations between points is greater than r times the variance. In particular, the
size of these neighborhoods lies at the mesoscopic scales compared to the size of the
systems. This will play an important role in the analysis of Sections 2 and 3.

The motivations for the study of log-correlated fields are now plenty. On one hand, in
the physics literature, the work of Carpentier & Ledoussal [26] spurred a lot of interest in
the study of such processes as energy landscapes of disordered systems. We mention in
particular the works of Fyodorov & Bouchaud [38] and Fyodorov et al. [41]. These papers
develop a statistical mechanics approach to the problem of describing the extreme value
statistics of the systems that are applicable to a wide range of systems. Second, these
processes play an essential role in Liouville quantum gravity as well as models of three-
dimensional turbulence. We refer to the excellent review on Gaussian Multiplicative
Chaos of Rhodes & Vargas [55] and references therein for details in these directions.
Third, many models of volatility in finance are now built on the assumption that the time-
correlations of the returns are log-correlated, see also [55] for more details on this. Finally,
as we shall see in Section 4, log-correlated fields seem to provide the right structure to
study the local maxima of the Riemann zeta function on the critical line as suggested in
[39,40].

It is argued in the physics literature that the distribution of the maximum of log-
correlated fields is a borderline case where the features of IID statistics should still be
apparent. In fact, it is expected that the following should hold for log-correlated fields
that are close to Gaussians in some suitable sense.

Conjecture 1 (Informal). Let X(n) = {Xv(n), v ∈ Vn} be a log-correlated field in the
sense of (4) with E[Xv(n)] = 0 and E[Xv(n)2] ≈ σ2n. Then for c =

√
2 log 2σ and

(6) an = cn− 3

2

σ2

c
log n, bn = 1,

we have

lim
n→∞

P

(
max
v∈Vn

Xv(n) ≤ an + bnx

)
= E[e−CZe

−cx
] .

for some constant C and random variable Z called the derivative martingale.

This is to be compared with Proposition 1 for IID random variables. Perhaps sur-
prisingly, the first order of the maximum is the same as for IID with the same velocity.
The correlations start having an effect in the subleading where 1

2
for IID is changed to

3
2
. This seemingly small change hides an important mechanism of the extreme value sta-

tistics that will be explained in Section 3.2. For now, let us just observe that under the
recentering an = cn− 3

2
σ2

c
log n, the expected number of exceedances diverges like n. To

get the correct order, it will be necessary to modify the exceedances with a description
of the values at each scale of the field. Finally, the fluctuations are not exactly Gumbel
as for IID Gaussians. The distribution is a mixture of Gaussians, the mixture being on
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the different realizations of the random variables. This in fact changes qualitatively the
nature of the distribution as it is expected that the right tail behaves like xe−cx for x
large whereas as it is e−cx for double exponential distribution.

Conjecture 1 was proved in many instances of log-correlated fields. The most important
contribution is without a doubt the seminal work of Bramson [25] who proved the result
for branching Brownian motion (see Lalley & Sellke [47] for the expression in terms of the
derivative martingale). For branching random walks, it was proved in great generality by
Aı̈dekon [3], see also [1,14,24]; for the two-dimensional Gaussian free field, by Bramson et
al. [23] (see Biskup & Louidor [17] for the expression in terms of the derivative martingale),
for a type of Gaussian Multiplicative Chaos by Madaule [50], and finally in great generality
for log-correlated Gaussian fields by Ding et al. [35].

We will not have time in this review paper to touch the subject of the order statistics
or extremal process of log-correlated fields. Again, it turns out that the statistics retain
features of the IID case. In fact, it is expected that the extremal process is a Pois-
son cluster process or Poisson decorated point process. This was proved for branching
Brownian motion in [4, 8–10], for branching random walks in [51], and partially for the
two-dimensional Gaussian free field in [17].

1.3. Relations to statistical physics. Questions of extreme value statistics such as
Conjecture 1 can be addressed from a statistical physics point of view. In that case the
object of interest is the partition function

(7) Zn(β) =
∑
v∈Vn

exp(βXv(n)), β > 0.

(Observe that we use β as opposed to the customary −β since we are interested in the
maximum and not the minimum of X(n).) By design, the points v with a high value
of the field have a greater contribution to the partition function, and the continuous
parameter β (the inverse temperature) adjusts the magnitude of the contribution. The
free energy per particle or normalized log-partition function is also of importance:

(8) fn(β) =
1

βn
logZn(β) .

In particular, in the limit n → ∞, the free energy contains the information on the first
order of the maximum. Indeed, we have the elementary inequalities

maxv∈Vn Xv(n)

n
≤ fn(β) ≤ log 2

β
+

maxv∈Vn Xv(n)

n
,

therefore

lim
n→∞

maxv∈Vn Xv(n)

n
= lim

β→∞
lim
n→∞

fn(β), whenever the limits exist.

To obtain finer information on the maximum such as subleading orders or fluctuations,
one could study directly the partition functions Zn(β). For example, one could compute
the moments of Zn(β) and try to infer the distribution of Zn(β) from it. This is the
approach taken in [38, 41] for example, but there are major obstacles to overcome to
make this type of arguments fully rigorous.
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For log-correlated fields, it is possible to compute rigorously the free energy by the
Laplace method. We have by rearranging the sum over v that

(9) fn(β) ≈ 1

n
log

 ∑
E∈[0,c]

exp(βnE + nSn(E))

 ,

where

(10) Sn(E) =
1

n
logNn(En) =

1

n
log #{v ∈ Vn : Xv(n) > En} .

is the entropy or log-number of high points, i.e. the log-number of exceedances at level
En. In the limit, it is possible to prove in some cases, see e.g. [27] and [12, 13], that for
log-correlated fields

(11) S(E) = lim
n→∞

Sn(E) =

{
0 if E ≥ c

log 2− E2

2σ2 if E ∈ [0, c]
in probability,

where c =
√

2 log 2σ. We will see a general method to prove this in Section 3.1. Note
that this is exactly the result one would obtain for IID random variables by applying (1)!
The free energy is then easily calculated like a Gibbs variational principle

(12) lim
n→∞

fn(β) = max
E∈[0,c]

{
βE + log 2− E2

2σ2

}
=

{
log 2 + β2σ2

2
if β < c

σ2

cβ if β ≥ c
σ2 .

Again, not suprisingly, the free energy of log-correlated fields corresponds to the one for
IID variables also known as the Random Energy Model (REM) as introduced by Derrida
[30]. In particular, the free energy exhibits a freezing phase transition, i.e. for β > c

σ2 , the
free energy divided by β is constant reflecting the fact the partition function is supported
on the maximal values of the field. Equation (12) was first proved for branching random
walks by Derrida & Spohn [32] who pioneered the study of log-correlated random fields
as disordered systems. Equation (12) was also proved for other log-correlated Gaussian
fields in [12,13].

Another important object in statistical physics is the Gibbs measure which in our
context is a random probability measure on Vn defined as

(13) Gn,β(v) =
exp βXv(n)

Zn(β)
, v ∈ Vn.

This contains refined information on the order statistics of the field X(n). We only men-
tion here that the limiting distribution of the Gibbs measure depends on the parameter
β. In particular, the annealed Gibbs measure

Gann
n,β (v) =

exp βXv(n)

E[Zn(β)]

should have a non-trivial continuous limit for high temperature β < c
σ2 [55], whereas for

low temperature β ≥ βc, the quenched Gibbs measure as in (13) is the relevant limiting
object and should be singular [12,13].
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2. Examples and general properties

Branching random walk serves as a guiding example to prove rigorous results for log-
correlated fields. In particular, we will use it to illustrate three important properties of
log-correlated fields. We will refer to these as the multi-scale decomposition, the dichotomy
of scales and the self-similarity of scales. As we will see these properties do not hold
exactly for general log-correlated fields, like the 2D Gaussian free field. However, they
hold approximately enough to reproduce the extremal behavior.

2.1. Branching random walk. We will focus on a simple example of branching random
walk (BRW), where the branching is binary and the increments are Gaussian. This
process is sometimes called hierarchical Gaussian field. More specifically, let Vn be the
leafs of a binary rooted tree with n generations. The field is indexed by Vn and thus has
2n random variables. As before, we denote the field by

X(n) = {Xv(n) : v ∈ Vn} .
The random variables Xv(n) are constructed as follows. We consider {Ye} IID centered
Gaussian random variables of variance σ2 indexed by the edges of the binary tree. The
parameter σ2 will be adjusted when we compare log-correlated fields to approximate
branching random walks. For a given leaf v ∈ Vn, the random variable Xv(n) is given by
the sum of the Ye’s for the edges e on the path from the root ∅ to the leaf v, i.e. ,

Xv(n) =
∑
e: ∅→v

Ye .

We will often abuse notation and write Yv(l) for the variable Ye for the leaf v at level l
in the tree. In other words,

(14) Xv(n) =
n∑
l=1

Yv(l) .

We refer to Yl(v) as the increment at scale l of Xv(n). With this definition, it is easy to
see that the variance of each variable is

E[Xv(n)2] =
n∑
l=1

E[Yv(l)
2] = σ2n .

As for the covariance for v, v′ ∈ Vn, we need to define

v ∧ v′ , the level of the tree where the paths of v and v′ to the root split.

We call v∧v′ the branching time or branching scale of v and v′. Note that 0 ≤ v∧v′ ≤ n.
See Figure 3 for an illustration. It then follows directly from the definition (14) that

E[Xv(n)Xv′(n)] =
v∧v′∑
l=1

E[Y 2
v (l)] = σ2 (v ∧ v′) .

The covariance matrix completely determines the distribution of the centered Gaussian
field X(n).

Why is the field X(n) log-correlated ? The best way to see this is to think in terms
of neighborhood with a certain covariance as in equation (5). Indeed, let 0 ≤ r ≤ 1, and
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;
Scales l

l = 0

l = n
v v0

v ^ v0

Yv(1)

Yv(2)

Yv(3)

Yv(4)

Yv0(2)

1

Figure 3. An illustration of a binary branching random walk with incre-
ments Yv(l) at each scale 0 ≤ l ≤ n.

suppose for simplicity that rn is an integer. Then the size of the neighborhood of a given
v with covariance rσ2n with v is exactly

#
{
v′ ∈ Vn :

E[Xv(n)Xv′(n)]

σ2n
≥ r
}

= 2n−rn .

It corresponds to those v′ which branched out from v at level rn ! It is a ball of size
2n(1−r) and is of mesoscopic scale compared to the size of the systems.

There are three elementary properties of BRW which will have their counterpart for
any log-correlated field. These properties will be key to guide our analysis in more
complicated models.

• Multiscale decomposition: The first property simply refers to the decomposition
(14) into independent increments.

Xv(n) =
n∑
l=1

Yv(l) .

• Dichotomy of scales: Another simple consequence of the definition of BRW is the
fact that for scales before the branching points of v and v′, the increments are per-
fectly correlated whereas after the branching point, they are exactly independent.
In other words:

(15) E[Yl(v)Yl(v
′)] =

{
σ2 if l ≤ v ∧ v′,
0 if l > v ∧ v′ .

We refer to this abrupt change in correlations for the increments as the dichotomy
of scales.
• Self-similarity of scales: In the case of BRW, the increments at each scale are

identically distributed. In particular, together with the property of dichotomy,
this property implies that for a given 0 < l < n, the variables Xv(l) =

∑l
k=1 Yv(k)

define a process X(l) with 2l distinct values. Moreover, this process is exactly a
BRW with l levels. Similarly, for a given v, we can define the variables

{Xv′(n)−Xv′(l) : v′ ∧ v ≥ l} .
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This defines a BRW on 2n−l points corresponding to the subtree with the common
ancestor at level l acting as the root.

We point out that the above construction leads to a natural generalization of fields by
modifying the variance of the increments in the multiscale decomposition at each scale.
The self-similarity is lost in these models. The study of such types of models go back
to Derrida who introduced the Generalized Random Energy Models [31]. In the case of
BRW, these are called time-inhomogeneous BRW. They were studied in [21,22,36,37,52].
A similar scale-inhomogenous field for the Gaussian free field was introduced and studied
in [11,13].

2.2. 2D Gaussian free field. The discrete two-dimensional Gaussian free field (2DGFF)
is an important model of random surfaces. Let Vn be a finite square box of Z2. To em-
phasize the similarities with BRW, we suppose that #Vn = 2n. The 2DGFF is a centered
Gaussian field X(n) = {Xv(n), v ∈ Vn} defined as follows.

Let Pv be the law of a simple random walk (Sk, k ≥ 0) starting at v ∈ Vn and Ev, the
corresponding expectation. Denote by τn the first exit time of the random walk from Vn.
We consider the covariance matrix given by

(16) E[Xv(n)Xv′(n)] = Ev

[
τn∑
k=0

1Sk=v′

]
= Gn(v, v′) .

The right-hand side is the expected number of visits to v′ of a random walk starting at
v before exiting Vn. It is not hard to show, using the Markov propery of the random
walk, that the right-hand side is the Green’s function of the discrete Laplacian on Vn
with Dirichlet boundary conditions. More precisely, for f a function on the vertices of
Vn, the discrete Laplacian is

−∆f(v) =
1

4

∑
ω∼v

f(ω)− f(v) = Ev[f(S1)− f(v)] ,

where ω ∼ v means that ω and v share an edge in Z2. The Green’s function can be seen
as the inverse of the discrete Laplacian in the sense that it satisfies

−∆Gn(v, v′) = δv′(v) =

{
1 if v = v′,

0 if v 6= v′.

In particular, the Green’s function is symmetric and positive definite, since the Laplacian
is. The density of the 2DGFF is easily obtained from the covariance (16). Indeed, by
rearranging the sum, we have∑

v∼v′
(xv − xv′)2 =

1

4

∑
v

xv(−∆)xv .

Again, since the Green’s function is the inverse of −∆, we have that

(17) P (Xv(n) ∈ dxv, v ∈ Vn) =
1

Z
exp

(
−1

8

∑
v∼v′

(xv − xv′)2
)

,

for the appropriate normalization Z.
Why is this field log-correlated ? It is reasonable to expect this since the Green’s func-

tion of the Laplacian in the continuous setting decays logarithmically with the distance.
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This analogy can be made rigorous using random walk estimates. In fact, it is possible
to show, see e.g. [48], that

(18) Gn(v, v′) = Ev

[
τn∑
k=0

1Sk=v′

]
= Ev[a(v′, Sτn)]− a(v, v′)

where a(v, v) = 0 and if v 6= v′

a(v, v′) =
1

π
log d(v, v′)2 +O(1) +O(d(v, v′)−2) ,

where d(v, v′) is the Euclidean distance in Z2. In particular, this implies that for points
not too close to the boundary, the field is log-correlated: Gn(v, v′) = 1

π
log 2n

d(v,v′)2 +

O(d(v, v′)−2). Moreover, we get the following upper bound on the variance:

Gn(v, v) ≤ 1

π
log 2n +O(1) .

Again, a matching lower bound follows from (18), but only for points far from the bound-
ary. As first step towards a connection to BRW, these estimates already suggest that the
BRW parameter σ2 should be taken to be

σ2 −→ log 2

π
.

To make the connection with an approximate BRW more precise, we shall need three
fundamental facts. First, it is not hard to prove from the density (17) that the field
satisfies the Markov property, that is for any finite box B in Vn,
(19)
{Xv(n), v ∈ B} is independent of the field in Bc given the field on the boundary ∂B.

Here the boundary ∂B refers to the vertices in Bc that share an edge with a vertex in B.
This property essentially follows from (17) since the correlations are expressed in terms
of nearest neighbors. Second, it follows from the Markov property that the conditional
expectation of the field inside v given the boundary is simply a linear combination of the
field on the boundary. More precisely, we have

(20) E[Xv(n)|{Xv′(n), v′ ∈ Bc}] =
∑
u∈∂B

pu(v)Xu(n)

where pu(v) is the probability of a simple random walk starting at v to exit B at u. The
specific form of the coefficient of the linear combination is proved using the strong Markov
property of the random walk. A similar argument shows that the process is self-similar.
Namely, if we write Xv(B) = E[Xv(n)|{Xu(n), u ∈ ∂B}] for the harmonic average of
Xv(n) on the boundary of B, we have

(21) {Xv(n)−Xv(B), v ∈ B
}

is a 2DGFF on B,

in the sense that it is a Gaussian free field with covariance (16) restricted to B.
The third property shows that if v and v′ are in B, then Xv(B) and Xv′(B) should be

close, if they are not too close to the boundary of B. More precisely, say B is a square
box or a disc containing 2l points for some l. Estimates of the Green’s function as in (18)
can be used to show that, see e.g. Lemma 12 in [18],

(22) E[(Xv(B)−Xv′(B))2] ≤ O(d(v, v′)2−l/2)
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whenever the distance of v and v′ to the center of B is of the order of 2(l−1)/2 or less, to
avoid boundary effects.

The connection between the 2D Gaussian free field and an approximate BRW is made
through Equations (19), (21), and (22). For each v ∈ Vn and 0 ≤ l ≤ n, we define
[v]l, a neighborhood of v containing 2n−l points. For simplicity, suppose that [v]l is a
square box. If such a neighborhood is not entirely contained in Vn, we define [v]l to be
the intersection of the neighborhood with Vn. Note that these neighborhoods shrink as
l increases. By convention, we take [v]0 = Vn and [v]n = {v}. The boundary is denoted

∂[v]l and the union of ∂[v]l with its boundary will be denoted by [v]l. The connection of
2DGFF with BRW is illustrated in Figure 4 and is as follows. For simplicity, we assume
that all vertices v are not too close to the boundary of Vn.
Multiscale decomposition: The decomposition here is simply a martingale decomposition.
Namely, we define the field of v ∈ Vn at scale l as

Xv(l) = E[Xv(n)|{Xv′(n) : v′ ∈ [v]cl}] = E[Xv(n)|{Xu(n) : u ∈ ∂[v]l}] ,
where the second equality is by the Markov property. Note that for each v ∈ Vn,
(Xv(l), 0 ≤ l ≤ n) is a martingale by construction. Define the increments at scale l
as the martingale difference

Yv(l) = Xv(l)−Xv(l − 1) , 1 ≤ l ≤ n .

These increments are orthogonal by construction. Since the field is Gaussian, so are the
conditional expectations. In particular, the increments are independent of each other for
a given v. Thus, the decomposition

(23) Xv(n) =
n∑
l=1

Yv(l) , v ∈ Vn ,

seems so far to be the right analogue of the multiscale decomposition of BRW. It remains
to check the other two properties.
Self-similarity of scales: First, note that the increments are Gaussian by definition. The
fact that the increments have approximately the same variance follows from (21). Indeed,
for 0 ≤ l ≤ n, the variance of Xv(n)−Xv(l) is by (18)

E[(Xv(n)−Xv(l))
2] = (n− l) log 2

π
+O(1) ,

Because Xl(v) is orthogonal to Xv(n)−Xv(l), we deduce that

E[Xv(l)
2] = l

log 2

π
+O(1) .

In particular, since Xv(l+ 1) admits the orthogonal decomposition Xv(l) +Yv(l+ 1), this
implies

E[Yv(l)
2] =

log 2

π
+ o(1)

where o(1) is summable, so the contribution of the sum over l of the error is O(1). This
justifies the choice σ2 = log 2/π for the comparison with BRW. Of course, here, the
increments are not exactly identically distributed, but since the error is summable, it will
not affect the behavior of the extremes.
Dichotomy of scales: It remains to establish the correlations of the increments between
two distinct v, v′. For this purpose, it is useful to define the branching scale v ∧ v′ as
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follows

(24) v ∧ v′ = min{0 ≤ l ≤ n : [v]l ∩ [v′]l = ∅},
that is the smallest scale for which the neighborhoods of v and v′ (including their bound-
aries) are disjoint. Note that because the neighborhoods have size 2n−l, the branching
scale v ∧ v′ is related to the distance by

d(v, v′)2 ≈ 2n−v∧v
′
.

For small scales, a direct application of the Markov property (19) yields

E[Yv(l)Yv′(l)] = 0 if l > v ∧ v′.
This is because if l > v ∧ v′, then the neighborhoods of v and v′ do not intersect and
are contained in each other’s complement. For scales larger than the branching scale,
we expect the increments to be almost perfectly correlated. To see this, note that by
definition, for l = v∧v′−1, then the neighborhoods intersect but for larger neighborhoods,
that is l < v ∧ v′ − 1, v and v′ must be contained in each other’s neighborhood. In
particular, an application of (22) gives

E[(Xv(l)−Xl(v
′))2] = O(1) .

In other words, the vectors Xv(l) and Xl(v
′) are close in L2. Since these vectors are sums

of orthogonal increments, these increments must be also close. In particular, we get

E[Yv(l)Yv′(l)] =
log 2

π
+ o(1) if l < v ∧ v′ − 1,

where o(1) is summable in l.
This completes the construction of an approximate BRW embedded in 2DGFF. We

remark that the dichotomy of scales is not as clean cut as the one of BRW in (15). In
particular, nothing precise can be said for the correlation between exactly at the branching
scale l = v ∧ v′. It turns out that the coupling and decoupling of the increments do not
have to be perfect as long as they occur fast enough. The same will be true for non-
Gaussian models in Section 4.

3. Order of the maximum

In this section, we explain a general method to show the leading and subleading orders
of the maximum for log-correlated fields in Conjecture 1. We will prove them in the case
of Gaussian branching random walk on the binary tree, following the treatment in [46].
We will also prove the convergence of the log-number of high points or entropy, cf. (11).
The heuristic is (or expected to be) the same for more complicated log-correlated models,
such as the two-dimensional Gaussian free field. The multiscale decomposition of the field
plays a fundamental role in the proof. This is also true when proving more refined results
such as the convergence of the maximum and of the extremal process. In a nutshell,
to prove such results on the maximum, one needs to understand the contribution of the
increments at each scale to a large value of the field.

3.1. Leading order of the maximum. Recall the definition of the Gaussian BRW
X(n) on a binary tree defined in Section 2.1. The following result yields the leading
order of the maximum
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Figure 4. An illustration of the approximate branching structure defined
by the 2DGFF. The grey area represents the increments at each scale.

Theorem 2. Let X(n) = {Xv(n) : v ∈ Vn} be a branching random walk on a binary tree
with n levels as in (23) with Gaussian increments of variance σ2. Then

lim
n→∞

maxv∈Vn Xv(n)

n
=
√

2 log 2 σ in probability.

The theorem goes back to Biggins for general BRW [16]. The analogue for the 2DGFF
was proved by Bolthausen, Deuschel & Giacomin [18]. We point out that Kistler greatly
simplified the proof in both cases [46] using a multiscale refinement of the second moment
method. This approach also makes the analysis amenable to non-Gaussian models. We
refer the reader directly to [46] for a proof of the theorem. We shall instead use Kistler’s
method to prove a very similar result on the log-number of high points or exceedances.

Theorem 3. Let X(n) = {Xv(n) : v ∈ Vn} be a branching random walk on a binary tree
with n levels as in (23) with Gaussian increments of variance σ2. Then for 0 ≤ E < c =√

2 log 2σ,

lim
n→∞

1

n
log #{v ∈ Vn : Xv(n) > En} = log 2

(
1− E2

c2

)
in probability.

In other words, the number of points whose field value is larger than En is approx-
imately 2n(1−E

2/c2) with large probability for E smaller than the maximal level c. We
stress that this is the same result for 2n IID Gaussian random variables of variance σ2.
The analogue of this result for 2DGFF was shown by Daviaud in [27].

Proof. Upper bound: To bound the number of points beyond a given level, it suffices to
use Markov’s inequality. Let

Nn(En) = #{v ∈ Vn : Xv(n) > En} .
Then for a given ε > 0, we have

(25) P

(
Nn(En) > 2

n(1+ε)
(
1−E2

c2

))
≤ 2

−n(1+ε)
(
1−E2

c2

)
E[Nn(En)] .
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By linearity, the expectation is simply

E[Nn(En)] = 2nP (Xv(n) > En) ≤ 2n exp

(
−E

2n

2σ2

)
= 2n(1−

E2

2c2
)

where we use the Gaussian estimate (1) with Xv(n) ∼ N (0, σ2n). It follows that the
probability in (25) goes to 0. This proves the upper bound.
Lower bound: It remains to show that

P

(
Nn(En) > 2

n(1−ε)
(
1−E2

c2

))
→ 1 .

The lower bound is an application of the Paley-Zygmund inequality, which states that for
any random variable N > 0 and 0 ≤ δ ≤ 1,

(26) P (N > δE[N ]) ≥ (1− δ)2E[N ]2

E[N 2]

So ultimately, one needs to prove that in the limit the second moment matches the first
moment square. This would certainly be the case if the variables were independent.
In the case of BRW, this is not so. However, we can create enough independence and
not losing too much precision by dropping the increments at lower scales. In addition,
as observed in [46], the matching of the moments is greatly simplified if one considers
increments rather than the sum of increments. More precisely, since the leading of the
maximum is linear in the scales, it is reasonable to expect that each scale contributes
equally to the maximal value to leading order (since they have the same variance). It
turns out this heuristic is correct and extend to the high points.

With this in mind, we introduce a parameter K which divides the n scales coarser K
levels. We define accordingly, for m = 1, . . . , K, the increments

Wm(v) =
∑

m−1
K

<l≤m
K

Yl(v) .

The idea is that for a high point at level En, each variable Wm(v) should contribute E n
K

.
Without loss of generality, we can suppose ε is small enough so that (1 + ε)E < c. We
consider the event

Em(v) = {Wm(v) > (1 + ε)
n

K
E} ,m = 1, . . . , K,

and the modified number of exceedances,

Ñn =
∑
v∈Vn

K∏
m=2

1Em(v) .

Note that if v is counted in Ñn, then each Wm(v) for m ≥ 2 exceeds (1 + ε)K−1nE.
Moreover, it is easy to check using the Gaussian estimate (1) that |W1(v)| is less than
K−1n with large probability. In particular, Xv(n) > (1 + ε)(1−K−1)En on the events,
so that we can take K large enough depending on ε so that Xv(n) > En. We conclude
that

Ñn ≤ Nn(En) ,

hence it suffices to show

P

(
Ñn > 2

n(1−ε)
(
1−E2

c2

))
→ 1 .
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We apply the inequality (26) with δ = 2
−nε

(
1−E2

c2

)
. We have by the Gaussian estimate

(1)

E[Ñn] = 2n
(1 + o(1))√

2π
exp

(
−(1−K−1)(1 + ε)2E2n

2σ2

)
≥ 2

n
(
1−E2

c2

)
,

for n large enough. Thus

P

(
Ñn > 2

n(1−ε)
(
1−E2

c2

))
≥ P

(
Ñn > δE[Ñn]

)
It remains to show

(27)
(E[Ñn])2

E[(Ñn)2]
→ 1 as n→∞.

The idea is to split the second moment according to the branching scale. More precisely,
we have
(28)

E[(Ñn)2] =
∑

v,v′∈Vn
v∧v′≤ n

K

P (
K⋂
m=2

Em(v) ∩ Em(v′)) +
K∑
r=2

∑
v,v′∈Vn

(r−1)n
K

<v∧v′≤ rn
K

P (
K⋂
m=2

Em(v) ∩ Em(v′))

=
∑

v,v′∈Vn
v∧v′≤ n

K

K∏
m=2

P (Em(v))2 +
K∑
r=2

∑
v,v′∈Vn

(r−1)n
K

<v∧v′≤ rn
K

K∏
m=2

P (Em(v) ∩ Em(v′))

where the second line holds by the independence of the increments between the scale and
the fact that Wm(v) = Wm(v′) for all m ≥ 2 if v ∧ v′ ≤ n/K by the dichotomy of scales.
Since there are at least 2n(2n − 2n−n/K) = 22n(1 − o(1)) pairs such that v ∧ v′ ≤ n/K,

the first term of (28) is (1 − o(1))(E[Ñn])2. The proof will be concluded once we prove

that the second term is o(1)(E[Ñn])2.
Guided by the dichotomy of scales, we do not lose by dropping the constraints on m

smaller than the branching scales for one of the v’s since they are identical. The second
term is smaller than

K∑
r=2

∑
v,v′∈Vn

(r−1)n
K

<v∧v′≤ rn
K

K∏
m=2

P (Em(v))
∏

m≥r+1

P (Em(v′)),

where we use the independence of the increments after the branching scales. Since there

are at most 2n(2n−
(r−1)n
K ) pairs v ∧ v′ such that (r−1)n

K
< v ∧ v′ ≤ rn

K
, we have that the

above is smaller than

(E[Ñn])2
K∑
r=2

(
2

(r−1)n
K

r∏
m=2

P (Em(v))

)−1
≤ (E[Ñn])2

∞∑
r=2

(
2(r−1)nK−1

(
1−(1+ε)2E2/c2

))−1
where we used the Gaussian estimate with variance n/K for each variable Wm. The sum
is geometric. It converges because of the choice (1 + ε)E < c. Thus the second term of
(28) is smaller than

2(E[Ñn])2 2−nK
−1
(
1−(1+ε)2E2/c2

)
= o(1)(E[Ñn])2 ,

for n large enough. This proves (27) and concludes the proof of the theorem. �
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3.2. Subleading order of the maximum. We now turn to the proof of the subleading
order of the maximum for a Gaussian branching random walk. The basic idea goes back to
the seminal work of Bramson who showed the convergence of the law of the maximum of
branching Brownian motion. It consists in observing that the increments of the maximum
must satisfy a linear constraint at each scale. This is consistent with the fact the first
order is linear in the scales and that at each scale l, the variables Xl(v) form themselves
a BRW with 2l points. To prove convergence, more precise estimates are needed than for
the subleading order. We follow here the treatment of [46] with the additional use of the
ballot theorem as in [5], cf. Theorem 5 below.

Theorem 4. Let X(n) = {Xv(n) : v ∈ Vn} be a branching random walk on a binary tree
with n levels as in (23) with Gaussian increments of variance σ2. Then

lim
n→∞

maxv∈Vn Xv(n)− cn
log n

= −3

2
in probability.

where c =
√

2 log 2 σ.

For simplicity, we define the deterministic displacement of the maximum as

(29) mn = cn− 3σ2

2c
log n, and more generally, mn(ε) = mn + ε log n .

The first observation is to realize that the expected of exceedances at the levelmn diverges!
Indeed, using the Gaussian estimate (1) and linearity

E[Nn(mn)] = E[#{v ∈ Vn : Xv(n) > mn}] = O(n) .

This is the first sign that the branching structure matters for the subleading order. The
divergence of the expectation comes from atypical events that inflate the expectation.
Therefore, it is necessary to restrict the exceedances to the typical behavior values. Since
the first order is linear in the scales and the variables {Xl(v) : v ∈ Vn} form a BRW on 2l

values, it is reasonable to expect that Xl(v) =
∑l

k=1 Yk(v) ≤ cl+B for some appropriate
choice of barrier B. Keeping this in mind, we introduce a modified number of exceedances

Ñn = #{v ∈ Vn : Xv(n) > mn, Xl(v) ≤ cl +B ∀l ≤ n} .

It turns out that E[Ñn] = O(1), because the probability of a random walk (in this instance
(Xl(v), l ≤ n)) to stay below a barrier is exactly of the order 1/n. This is the content
of the ballot theorem that we now state precisely. The reader is referred to [1, 2, 24] for
more details. The result quoted here is the version appearing in [7].

Theorem 5. Let (Sn)n≥0 be a Gaussian random walk with increments of mean 0 and

variance σ2 > 0, with S0 = 0. Let δ > 0. There is a constant C = C(σ, δ) such that for
all B > 0, b ≤ B − δ and n ≥ 1

(30) P [Xn ∈ (b, b+ δ) and Xk ≤ B for 0 < k < n] ≤ C
(1 +B)(1 +B − b)

n3/2
.

Moreover, if δ < 1,

(31) P [Xn ∈ (0, δ) and Xk ≤ 1 for 0 < k < n] ≥ 1

Cn3/2
.

With this new tool in hand, we are ready to prove the subleading order.
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Proof of Theorem 4. Upper bound: We want to show that for ε > 0

lim
n→∞

P (max
v∈Vn

Xv(n) ≥ mn(ε)) = 0 .

As mentioned previously, the idea is to first show that we can constrain the random walks
to stay below a linear barrier. More precisely, we prove that for B = log2 n,

(32) lim
n→∞

P (∃v ∈ Vn : Xv(n) ≥ mn(ε), Xl(v) > cl +B for some l ≤ n) = 0 .

The proof is by a Markov’s inequality at each scale. Indeed, we can bound the above by
n∑
l=1

P (∃v : Xl(v) > cl +B) ≤
n∑
l=1

2l exp

(
−(cl +B)2

2σ2l

)
= n exp(−Bc/σ2) = o(1) ,

where the first inequality is by the Gaussian estimate and the last by the choice of
B = log2 n.

To conclude the proof of the upper bound, consider the event

E+(v) = {Xv(n) ≥ mn(ε), Xl(v) ≤ cl +B ∀l ≤ n} .
By (32), it follows that

P (max
v∈Vn

Xv(n) ≥ mn(ε)) = P (
∑
v∈Vn

1E+(v) ≥ 1) + o(1) .

Therefore, it remains to show that the first probability goes to 0. By Markov’s inequality,
this is simply

P (
∑
v∈Vn

1E+(v) ≥ 1) ≤ 2nP (E+(v)) .

To prove that this goes to 0, it is useful to make a change of measure to make the end
value mn(ε) typical. To this aim, consider the measure Q defined from P through the
density

dQ

dP
=
∏
e

eλYe

eϕ(λ)
, ϕ(λ) = logE[eλYe ] =

λ2σ2

2
,

where the product is over all the edges in the binary tree. Note that by definition

ϕ′(λ) = EQ[Ye] = λσ2 .

In particular, to make mn(ε) typical, we choose

λ =
mn(ε)

σ2n
.

Under this change of measure, we can write the probability as

(33)
P (E+(v)) = e−(λmn(ε)−ϕ(λ)) EQ[e−λ(Xv(n)−mn(ε))1E+(v)]

≤ e−
(mn(ε))2

2σ2n Q(E+(v)) ,

where we use the choice of λ and the fact that Xv(n) −mn(ε) ≥ 0 on the event E+(v).
Since

2n exp(−(mn(ε))2

2σ2n
) = O(n−εc/σ

2

) n3/2,

the upper bound will be proved if

n3/2Q(E+(v)) = o(nεc/σ
2

) .
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But this follows from the ballot theorem (Theorem 5) with B = (log n)2, since (Yl(v) −
mn(ε)/n, l ≤ n) under Q is a random walk of finite variance.

Lower bound: As for the leading order, to get a matching lower bound, it is necessary
to create independence by cutting off the increments at low scales. Of course, we cannot
truncate as many scales. We choose

r = log log n ,

and consider the truncated walks Xv(n)−Xv(r). We do not lose much by dropping these
since, for ε > 0,
(34)
P
(
∃v : Xv(n) < mn(−2ε), Xv(n)−Xr(v) ≥ mn−r(−ε)

)
≤ P (∃v : Xv(r) < −10cr) ,

where the inequality holds for n large enough depending on ε. By a union bound and the
Gaussian estimate (1) (note that the variables are symmetric!),

P (∃v : Xv(r) < −10cr) ≤ 2r exp(−100c2r2/(2σ2)) = 2−99r → 0 .

In view of (34) and by redefining ε > 0, we reduced the proof to showing

(35) P
(
∃v : Xv(n)−Xr(v) ≥ mn−r(−ε)

)
→ 1, n→∞.

For this purpose, consider

(36) µ =
mn−r(−ε)
n− r

µ2

2σ2
= log 2−

(
3

2
− c

σ2
ε

)
log(n− r)
n− r + o(n−1) .

Denote the truncated walk and its recentering by

Xv(r, n) = Xv(n)−Xr(v) , Xv(r, n) = Xv(n)−Xr(v)− µ(n− r) .
With this notation, the event of exceedance with the barrier B = 1 is

E−(v) =
{
v ∈ Vn : Xv(r, n) ∈ [0, δ], Xv(l, n) ≤ 1 ∀l ≥ r + 1

}
,

where δ > 0 is arbitrary. The relevant number of exceedances is

N−(v) =
∑
v∈Vn

1E−(v) .

By the Paley-Zygmund inequality, we have

P (N−(v) ≥ 1) ≥
(
E[N−(v)]

)2
E[(N−(v))2]

.

To prove (35), it remains to show that

(37) E[(N−(v))2] = (1− o(1))
(
E[N−(v)]

)2
.

The second moment can be can be split as a sum over v ∧ v′. We get

(38)

E[(N−(v))2] =
∑

v,v′: v∧v′≤r
P (E−(v) ∩ E−(v′))

+
n∑

m=r+1

∑
v,v′:v∧v′=m

P (E−(v) ∩ E−(v′)) .
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For the first term, note that E−(v) is independent of E−(v′) because v ∧ v′ ≤ r so the
walks share no increments. Thus, the first term is

(39)
∑

v,v′: v∧v′≤r
P (E−(v) ∩ E−(v′)) = (1− o(1))

(
E[N−(v)]

)2
since there are 22n(1− o(1)) pairs v, v′ with v ∧ v′ ≤ r. We show that the second term is

o(1)
(
E[N−(v)]

)2
to conclude the proof.

Observe that, by proceeding as (33) with the measure Q (for λ = µ/σ2) and the
Gaussian estimate (1), the expected number of exceedances satisfy

(40)

E[N−(v)] ≥ C2ne−λδe−
µ2(n−r)

2σ2 Q(E−(v))

≥ C2re−λδ(n− r) c
σ2
ε (n− r)3/2Q(E−(v))

≥ C2r(n− r) c
σ2
εe−λδ

for some constant C > 0. Here we used the estimate on µ2

2σ2 in (36). The last inequality
is a consequence of the ballot theorem 5. For v ∧ v′ = m, we decompose the probability
P (E−(v)∩E−(v′)) on the events {Xv(r,m) ∈ (−q,−q+1]} for q ≥ 0. Note that Xv(m) =
Xv′(m)! We thus get

P (E−(v) ∩ E−(v′))

=
∞∑
q=0

P (E−(v) ∩ E−(v′) ∩ {Xv(m,n) ∈ (−q,−q + 1]})

≤
∞∑
q=0

P
(
Xv(r,m) ∈ (−q,−q + 1], Xv(r, l) ≤ 1 ∀l = r + 1, . . . ,m

)
×
(
P
(
Xv(m,n) ≥ q − 1, Xv(m, l) ≤ 1 + q ∀l = m+ 1, . . . , n

))2
where we used the bound on Xv(m), and the square of the probabillity comes from
the independence of increments after the branching scale m. We evaluate these two
probabilities. Using the change of measure with λ = µ/σ2 and the bounds on Xv(m,n),
the first one is smaller than

eλqe−
µ2(n−r)

2σ2 Q(Xv(r,m) ∈ (−q,−q + 1], Xv(r, l) ≤ 1 ∀l = r + 1, . . . ,m
)
.

By the ballot theorem, this is smaller than

eλqe−
µ2(n−r)

2σ2
q + 1

(m− r)3/2 .

An identical treatment of the square of the second probability yields that it is smaller
than

e−2λqe−
µ2(m−r)

σ2
q + 1

(n−m)3
.

Putting all the above together, we finally obtained that

n∑
m=r+1

∑
v,v′:v∧v′=m

P (E−(v) ∩ E−(v′)) ≤
n∑

m=r+1

22n−m e−
µ2

2σ2
(2n−m−r))

(m− r)3/2(n−m)3

∞∑
q=0

(q + 1)2e−λq ,
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since there are at most 22n−m pairs with v ∧ v′ = m. The last sum is finite. Moreover,
using the estimate in (36), the first sum is smaller than

C2r(n− r)2ε c
σ2

n∑
m=r+1

(n− r) 3
2
(2−m−r

n−r )

(m− r)3/2(n−m)3
.

It is not hard to show by an integral test that the series is bounded for any n. Thus

(41)
n∑

m=r+1

∑
v,v′:v∧v′=m

P (E−(v) ∩ E−(v′)) ≤ C2r(n− r)2ε c
σ2 .

Using (41), (40), and (39) in (38), we conclude that

P (N−(v) ≥ 1) ≥ 1

1 + C2re2λδ

which goes to 0 by taking n → ∞ (r = log log n) than δ → 0. This proves the theorem.
�

4. Universality classes of log-correlated fields

The heuristics developed in Section 3 from branching random walks turns out to be
applicable to a wide class of stochastic processes. It is a research topic of current in-
terest to extend these techniques to other non-Gaussian log-correlated models with the
purpose of proving results similar to Conjecture 1. One interesting problem that we will
not have time to allude to is the cover time of the discrete random walk on the two-
dimensional torus, which perhaps surprisingly, can be estimated using such methods. We
refer the reader to [15,29] for results on this question. We focus our attention here to two
open problems: the large values of the Riemann zeta function and of the characteristic
polynomials of random matrices. The behavior of the large values of these two models
was conjectured by Fydorov, Hiary & Keating [39, 40] to mimic that of a Gaussian log-
correlated model. We shall explain here this connection in terms of branching random
walks.

4.1. Maximum of the Riemann zeta function on an interval. Let s ∈ C. If
Re s > 1/2, the Riemann zeta function is defined by

(42) ζ(s) =
∞∑
n=1

1

ns
=

∏
p primes

(1− p−s)−1 .

This definition can be analytically continued using the functional equation

ζ(s) = χ(s)ζ(1− s) , χ(s) = 2sπs−1 sin
(π

2
s
)

Γ(1− s) ,

to the whole complex plane with a pole at s = 1. The distribution of the primes is fa-
mously linked to information on the zeros of the function. There are trivial zeros (coming
from the functional equation) at the negative even integers. The Riemann Hypothesis
states that all other zeros lie on the critical line Re s = 1/2 suggested by the symmetry
of the functional equation. See Figure 5 for the plot of the modulus of ζ on the critical
line.

We shall be interested instead in the large values of the modulus of ζ in an interval.
In other words, what can be said about the local maxima of zeta ? The global behavior
is much more intricate, see the Lindelöf’s hypothesis.
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Figure 5. The function log |ζ(s)| for s = 1/2 + it for t ∈ [0, 500].

Fyodorov, Hiary and & Keating based on numerics and connection with random matri-
ces made an astonishing prediction for the local maximum of ζ on an interval, say [0, 1],
of the critical line.

Conjecture 2 (Fyodorov–Hiary–Keating [39,40]). For τ sampled uniformly from [0, T ],

(43) lim
T→∞

maxh∈[0,1] log |ζ(1/2 + i(τ + h))| − log log T

log log log T
= −3

4
in probability.

In fact, their conjecture is even more precise, suggesting an explicit distribution for the
fluctuation. Roughly speaking, the above means that the maximum in a typical interval
of the critical line is

max
h∈[0,1]

log |ζ(1/2 + i(τ + h))| ≈ log log T − 3

4
log log log T +O(1) .

The connection with Conjecture 1 is made by taking log T = 2n and σ2 = log 2
2

. Observe
that it is a perfect match! As we will see, the relation with log-correlated models goes
beyond the numerological curiosity. It also proposes a starting point to prove the conjec-
ture. In fact, the conjecture can be proved to the subleading order for a random model
of zeta, cf. Theorem 6.

Suppose first the Euler product of the Riemann zeta function extended to the critical
line. By expanding the logarithm, we would have
(44)

log |ζ(1/2+it)| = −Re
∑
p

log(1−p−(1/2+it)) =
∞∑
k=1

1

k

∑
p

Re
1

pk(1/2+it)
=
∑
p

Re p−it

p1/2
+O(1) .

This expansion can be made partially rigorous if the sum over primes is cut off at T ,
see Proposition 1 of [44] based on [56]. Now replace t by a random τ + h where h ∈
[0, 1] and τ is sampled uniformly from [0, T ]. The randomness entirely comes from the
random variables (p−iτ , p primes). It is an easy exercise by moment computations to verify
that, since the values of log p are linearly independent for distinct primes, the process
(p−iτ , p primes) converges in the sense of finite-dimensional distribution as T → ∞ to
independent random variables distributed uniformly on the unit circle. This suggests the
following model for zeta: let (Up, p primes) be IID uniform random variables on the unit
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circle index by the primes and take

(45)

(∑
p≤T

Re(Upp
−ih)

p1/2
, h ∈ [0, 1]

)
.

For this model, we can prove the conjecture up to subleading order.

Theorem 6 ([7]). Let (Up, p primes) be independent random variables distributed uni-
formly on the unit circle. Then

(46) lim
T→∞

maxh∈[0,1]
∑

p≤T
Re(Upp−ih)

p1/2
− log log T

log log log T
= −3

4
in probability.

The proof is based on finding an approximate branching random walk embedded in
zeta. What is this approximate branching random walk ? In particular, what is the
mutliscale decomposition and does it exhibit the usual self-similarity and dichotomy of

scales of log-correlated models ? It is tempting to think of the decomposition
∑

p
Re p−it

p1/2

as the right multiscale decomposition since the variables Re p−it decorrelate in the limit.
However, for the scales to be self-similar, it is necessary to consider a coarse-graining of
the sum. For the sake of clarity, we take log T = 2n. For the random model (45), the
increment at scale l for l = 1, . . . , n is

(47) Yh(l) =
∑

2l−1<log p≤2l

Re(Upp
−ih)

p1/2
, h ∈ [0, 1].

The multiscale decomposition is therefore∑
p≤T

Re(Upp
−ih)

p1/2
=

n∑
l=1

Yh(l) .

For the random model, the increments are independent by construction. For zeta, they
are only independent in the limit which is a substantial difficulty. We verify that the
Y (l)’s are self-similar and exhibit a dichotomy. The variance is easily calculated for the
random model

E[(Yh(k)2] =
∑

2k−1<log p≤2k

1

p
E[(ReUp)

2] =
1

2

∑
2k−1<log p≤2k

1

p

where we used the fact that E[U2
p ] = 0 and E[UpUp] = 0 where z is the complex conjugate

of z. The sum over primes can be evaluated using the Prime Number Theorem, see e.g.
[53], which states that

(48) #{p ≤ x : p prime} =

∫ x

2

1

log u
du+O(xe−c

√
log x).

We get

E[(Yh(l)
2] =

log 2

2
+O(e−c

√
2l) .

Thus the variances of the increments are approximately equal. Moreover, the parameter
σ2 should be taken to be log 2/2. This motivates the above coarse-graining to get self-
similarity. For the dichotomy, we need the equivalent of the branching scale. For h, h′ ∈
[0, 1], take

(49) h ∧ h′ = log2 |h− h′|−1 .
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The covariance between increments at scale l is

E[Yh(k)Yh′(k)] =
1

2

∑
2k−1<log p≤2k

cos(|h− h′| log p)

p
.

Again, the sum can be evaluated using (48). This time, the oscillating nature of cosine
will produce a dichotomy depending on the branching scale between h and h′. In fact, it
is not hard to show that, see Lemma 2.1 in [7],

(50) E[Yk(h)Yk(h
′)] =

{
log 2
2

+O
(
2−2(h∧h

′−k)) if k ≤ h ∧ h′,
O
(
2−(k−h∧h

′)
)

if k > h ∧ h′.
The dichotomy is not as clean as for BRW. On the other hand, the increments couple and
decouple exponentially fast in the scales. This turns out to be sufficient for the purpose
of the subleading order.

To prove Theorem 6, there are additional difficulties. On one hand, the process is
continuous and not discrete like BRW. Therefore, an argument is needed to show that a
discrete set of 2n points capture the order of the maximum. This is based on a chain-
ing argument. Finally, the process here is not Gaussian so the estimate (1) cannot be
used. It is replaced by precise large deviation principles obtained from estimates on the
exponential moments of the sum.

Of course, there are tremendous technical obstacles to extend the method of proof of
Theorem 6 to prove Conjecture 2 on the actual zeta function. For one, large deviation
estimates are much harder to get. Moreover, the contribution to ζ of primes larger than
T needs to be addressed. Despite these hurdles, the branching random walk heuristic
gives a promising path to prove at least the leading order of the conjecture.

4.2. Maximum of the characteristic polynomial of random unitary matrices.
In this final section, we return to the problem we alluded to in Section 1.1. Let UN be a
random N ×N unitary matrix sampled uniformly from the unitary group. This is often
referred to as the Circular Unitary Ensemble (CUE). We consider the modulus of the
characteristic polynomial on the unit circle

|PUN
(θ)| =

∣∣det(eiθ − UN)
∣∣ =

210∏
j=1

|eiθ − eiλj | .

where the eigenvalues of UN are denoted by (λj, j ≤ N) and lie on the unit circle. A
realization of this process was given for N = 210 in Figure 2. The prediction for the order
of the maximum of this process is

Conjecture 3 (Fyodorov–Hiary–Keating [39, 40]). For N ∈ N, let UN be a random
matrix sampled uniformly from the group of N ×N unitary matrices. Then

(51) lim
N→∞

maxθ∈[0,2π] log |PUN
(θ)| − logN

log logN
= −3

4
in probability.

In other words, it it expected that

max
θ∈[0,2π]

log |PUN
(θ)| ≈ logN − 3

4
log logN +O(1) .

The conjecture is well motivated by numerics and precise computations by Fyodorov
& Keating of moments of the partition function of the models. They infer from the
expression for the moments the order of magnitude of the moments as well as a prediction
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for the fluctuations of the maximum assuming that the system undergoes a freezing
transition similar to the random energy model. Since there is strong empirical evidence
that the characteristic polynomial of CUE is a good model for the Riemann zeta function
locally, the authors use in part Conjecture 3 to motivate Conjecture 2.

As for the Riemann zeta function, the conjecture is exactly what would be expected
for the maximum of a log-correlated model with N = 2n random variables with variance
σ2n = log 2

2
n, cf. Conjecture 1. It turns out that for a given θ, it was shown in [45] that

log |PUN
(θ)| normalized by

√
1
2

logN converges in distribution to a standard Gaussian.

Therefore, the choice of of σ2 is already consistent with this result. Kistler’s multiscale
refinement of the second moment method as described in Section 3 can be adapted to
prove the leading order of the conjecture.

Theorem 7 ([6]). For N ∈ N, let UN be a random matrix sampled uniformly from
the group of N × N unitary matrices. Write PN(θ), θ ∈ [0, 2π], for its characteristic
polynomial on the unit circle. Then

(52) lim
N→∞

max
θ∈[0,2π]

log |PN(θ)|

logN
= 1 in probability.

In this section, we explain the connection to an approximate branching random walk
which illustrates the approach to prove the theorem and the general conjecture.

To see what plays the role of the multiscale decomposition, write the characteristic
polynomial as

log |PUN (θ)| =
N∑
j=1

log |1− ei(λj−θ)|.

By expanding the logarithm, we get

(53) log |PUN (θ)| =
N∑
j=1

∞∑
k=1

−Re(eik(λj−θ))

j
=
∞∑
k=1

−Re(e−ikθTr Uk
N)

k

where Tr stands for the trace. It turns out that an integrable periodic function always
has a pointwise convergent Fourier series wherever it is differentiable, so the above series
makes sense for θ away from the eigenvalues. This already seems a good candidate for
the multiscale decomposition. However, as it was the case for zeta, it will be necessary
to group the traces of powers to get the equivalent of increments at each scale. In other
words, the traces of the powers play the role of the primes.

To see this, we will need the seminal result of Diaconis & Shahshahani [34], see also
[33], who proved that

(54) E
[
Tr Uj

N Tr Uk
N

]
= δkj min(k,N).

where E stands for the expectation under the uniform measure on the unitary group. It is
also easy to see by rotation invariance of the uniform measure that E

[
Tr Uj

NTr Uk
N

]
= 0.

This shows that that traces of powers are uncorrelated. However, and this is one of the
main issue, they are not independent for fixed N . The formula (54) is useful to our
heuristic in many ways. First, an easy calculation shows that the variance of the powers
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less than N is

E

( N∑
k=1

−Re(e−ikθTr Uk
N)

k

)2
 =

1

2

∑
k≤N

1

k
=

1

2
logN +O(1).

In particular, if we take N = 2n to emphasize the analogy with BRW, it leads us to define
the increment at scale l for l = 1, . . . , n as

Yθ(l) =
∑

2l−1<k≤2l
−Re(e−ikθTr Uk

N)

k
.

This gives

E[(Yθ(l))
2] =

log 2

2
+ o(1) ,

where o(1) is summable in l. From (53), the candidate for the multiscale decomposition
is

(55) log |PUN (θ)| =
n∑
l=1

Yθ(l) + Zθ(n) ,

where Zθ(n) stands for the sum of powers greater than n. Moreover, equation (54)
suggests that the contribution of Zθ(n) to log |PN(θ)| in (53) should be of order 1 since∑

j>N
N
j2

= O(1). We stress that, in this decomposition, the increments are uncorrelated

though not independent. They are however asymptotically independent Gaussians, cf.
[34]. Finally, they are almost self-similar in that regard since their variances are almost
identical.

It remains to show the dichotomy of scales to complete the connection with BRW. A
simple calculation using (54) gives that the covariance between increments for θ, θ′ ∈
[0, 2π] is

(56) E[Yθ(l)Yθ′(l)] =
∑

2l−1<k≤2l

cos(j‖θ − θ′‖)
2k

,

where ‖θ − θ′‖ stands for the periodic distance on [0, 2π]. As it was the case for the
Riemann zeta function, the presence of the cosine is responsible for the dichotomy. To
see this, define the branching scale

(57) θ ∧ θ′ = − log2 ‖θ − θ′‖ .
For j such that j‖h−h′‖ is small the cosine is essentially 1, and for j such that j‖θ− θ′‖
is large the oscillation of the cosine leads to cancellation. This can be proved by Taylor
expansion of cos in the first case and summation by parts in the other. This argument
shows

(58) E[Yθ(l)Yθ′(l)] =

{
1
2

+O(2l−θ∧θ
′
) if l ≤ θ ∧ θ′,

O(2−2(l−θ∧θ
′)) if l > θ ∧ θ′.

In particular, this shows that the sum of traces of powers less than N are log-correlated:

E

[(
n∑
l=1

Yθ(l)

)(
n∑
l=1

Yθ′(l)

)]
=
θ ∧ θ′

2
+O(1) = −1

2
log ‖θ − θ′‖+O(1) .

There are substantial difficulties to implement the method of Section 3 to prove Theo-
rem 7 and more generally Conjecture 3. First, it is necessary to control the contribution
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of the high powers, that is Zθ(n) in (55). This turns out to be technically very challenging
from a random matrix standpoint. Second, as opposed to BRW, the increments are not
independent. This makes it much harder to get good large deviation estimates on the
sum of the increments. Finally, since we are dealing with a continuous process on [0, 2π]
with singularities at the eigenvalues, one needs to justify that taking the maximum on
N = 2n discrete points is enough to capture the order of the maximum.
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