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ABSENCE OF CARTAN SUBALGEBRAS FOR HECKE VON

NEUMANN ALGEBRAS

MARTIJN CASPERS

Abstract. For a right-angled Coxeter system (W,S) and q > 0, let Mq be
the associated Hecke von Neumann algebra, which is generated by self-adjoint
operators Ts, s ∈ S satisfying the Hecke relation (

√
q Ts − q)(

√
q Ts +1) = 0 as

well as suitable commutation relations. Under the assumption that (W,S) is
reduced and |S| ≥ 3 it was proved by Garncarek [Gar15] that Mq is a factor
(of type II1) for a range q ∈ [ρ−1, ρ] and otherwise Mq is the direct sum of a
II1-factor and C.

In this paper we prove (under the same natural conditions as Garncarek)
that Mq is non-injective, has the weak-∗ completely bounded approximation
property and is a strongly solid algebra. Consequently Mq cannot have a
Cartan subalgebra.

1. Introduction

Hecke algebras are one-parameter deformations of group algebras of a Coxeter
group. They were the fundament for the theory of quantum groups [Jim86], [Kas95]
and have remarkable applications in the theory of knot invariants [Jon85] as was
shown by V. Jones. A wide range of applications of Coxeter groups and their
Hecke deformations can be found in [Dav08]. In [Dym06] (see also [Dav08, Section
19]) Dymara introduced the von Neumann algebras generated by Hecke algebras.
Many important results were then obtained (see also [DDJB07]) for these Hecke
von Neumann algebras, including their dimension theory, cohomology and L2-Betti-
numbers. In this paper we investigate the approximation properties of Hecke von
Neumann algebras as well as their Cartan subalgebras (here we mean the notion of
a Cartan subalgebra in the von Neumann algebraic sense which we recall in Section
6 and not the Lie algebraic notion).

Let us recall the following definition. Let q > 0 and let W be a right-angled
Coxeter group with generating set S (see Section 2). The associated Hecke algebra
is a ∗-algebra generated by Ts, s ∈ S which satisfies the relation:

(
√
q Ts − q)(

√
q Ts + 1) = 0, T ∗

s = Ts and TsTt = TtTs,

for s, t ∈ S with st = ts. Hecke algebras carry a canonical faithful tracial vector
state (the vacuum state) and therefore generate a von Neumann algebra Mq under
its GNS construction. It was recently proved by Garncarek [Gar15] that if (W,S)
is reduced (see Section 2) and |S| ≥ 3, the von Neumann algebra Mq is a factor
in case q ∈ [−ρ, ρ] where ρ is the radius of convergence of the fundamental power
series (2.2). If q 6∈ [−ρ, ρ] then Mq is the direct sum of a II1 factor and C.

The first aim of this paper is to determine approximation properties of Mq (as-
suming the same natural conditions as Garncarek). We first show that Mq is a
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2 MARTIJN CASPERS

non-injective von Neumann algebra and therefore falls outside Connes’ classifica-
tion of hyperfinite factors [Con76]. Secondly we show that Mq has the weak-∗
completely bounded approximation property (wk-∗ CBAP). This means that there
exists a net of finite rank maps on Mq that is uniformly bounded and converges to
the identity in the point σ-weak topology. In case q = 1 the algebraMq is the group
von Neumann algebra of a right-angled Coxeter group. In this case the result was
known and can be proved using techniques that now became standard and origin
from [Haa78]. We refer to [BoSp94], [BrOz08], [Oza08] for these and related results.
In this context we also mention the parallel results for q-Gaussian algebras with
−1 < q < 1: factoriality by Ricard [Ric05], non-injectivity by Nou [Nou04] and the
completely contractive approximation property by Avsec [Avs11]. The latter paper
also obtains strong solidity, see below. Some of these results were preceded by the
same result for a smaller range of the parameter q by others; see references in these
papers. Another important achievement concerning the approximation properties
of operator algebras was obtained by Houdayer and Ricard [HoRi11] who settled
the approximation properties of free Araki-Woods factors (including the non-almost
periodic case). For our Hecke von Neumann algebra Mq we summarize:

Theorem A. Let q > 0.

(1) Let (W,S) be a reduced right-angled Coxeter system with |S| ≥ 3. Then
Mq is non-injective.

(2) For a general right-angled Coxeter system (W,S) the associated Hecke von
Neumann algebra Mq has the wk-∗ CBAP.

Obviously non-injectivity and the wk-∗ CBAP of Theorem A have different
proofs. However the two proofs each borrow some ideas from [RiXu06] where Ri-
card and Xu proved that weak amenability with constant 1 is preserved by taking
free products of discrete groups. In order to prove non-injectivity we first obtain a
Khintchine inequality for Hecke algebras. We show that this Khintchine inequality
leads to a contradiction in case Mq were to be injective. For the wk-∗ CBAP we
first obtain cb-estimates for radial multipliers and then use estimates of word length
projections (see Proposition 5.17) going back to Haagerup [Haa78].

Our second aim is the study of Cartan subalgebras of the Hecke von Neumann
algebra Mq. Recall that a Cartan subalgebra of a II1-factor is by definition a max-
imal abelian subalgebra whose normalizer generates the II1-factor itself. Cartan
subalgebras arise typically in crossed products of free ergodic probability measure
preserving actions of discrete groups on a probability measure space. In fact Cartan
subalgebras always come from some orbit equivalence class in the following sense:
for a separable II1 factor M any Cartan subalgebra A ⊆ M gives rise to a stan-
dard probability measure space X and an orbit equivalence class R with cocycle
σ such that (A ⊆ M) ≃ (L∞(X) ⊆ R(X, σ)). We refer to [FeMo77] for details.
Cartan subalgebras can be used to obtain further fascinating rigidity results, see
[PoVa14], [IPV13] for two very prominent illustrations of this: the first showing
that (suitable) actions of free groups on probability spaces remember the number
of generators of the group; the second showing that certain group von Neumann al-
gebras completely remember the group (W∗-superrigidity). These results typically
rely on the uniqueness of a Cartan subalgebra. Other applications can be found
in prime factorization theorems [PoOz04], [HoIs15] in which the absence of Cartan
algebras plays a crucial role.
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In [OzPo10] Ozawa and Popa were able to find the first classes of von Neumann
algebras that do not have a Cartan subalgebra, namely the free group von Neu-
mann algebras. These results generlize to a larger class of groups, see for instance
[PoVa14]. Another result concerning the absence of Cartan subalgebras was ob-
tained by Isono [Iso15] in which he proves that free orthogonal/unitary quantum
groups do not have a Cartan subalgebra. In order to do so Isono first put ear-
lier results from [Oza04] and [PoVa14] into a general von Neumann framework.
In particular he proposed condition (AO)+ – generalizing Ozawa’s condition (AO)
[Oza04] by assuming the existence of a certain ucp lift. Then [Iso15] proves that
condition (AO)+ together with the wk-∗ CBAP implies strong solidity of a von
Neumann algebra. The notion of strong solidity is recalled in Definition 6.1. Using
Isono’s result we are able to show the following.

Theorem B. Let q > 0. Let (W,S) be a reduced right-angled Coxeter system with
|S| ≥ 3. The associated Hecke von Neumann algebra Mq is strongly solid.

In turn as Mq is non-injective by Theorem A we are able to derive the result
announced in the title of this paper.

Corollary C. Let q > 0. For a reduced Coxeter system (W,S) with |S| ≥ 3 the
associated Hecke von Neumann algebra Mq does not have a Cartan subalgebra.

Structure. In Section 2 we introduce Hecke von Neumann algebras and some basic
algebraic properties. Lemma 2.7 is absolutely crucial as each of the results in this
paper rely in their own way on this decomposition lemma. In Section 3 we obtain
universal properties of Hecke von Neumann algebras. In Section 4 we prove that
Mq is non-injective. In Section 5 we find approximation properties of Mq and
conclude Theorem A. Finally Section 6 proves the strong solidity result of Theorem
B from which Corollary C shall easily follow.

Convention. Let X be a set and let A,B ⊆ X . We will briefly write A\B for
A\(A ∩B).

2. Notation and preliminaries

Standard result on operator spaces can be found in [EfRu00], [Pis02]. Standard
references for von Neumann algebras are [StZs75] and [Tak79]. Recall that ucp
stands for unital completely positive.

2.1. Coxeter groups. A Coxeter group W is a group that is generated by a finite
set S and which satisfies the relation

(st)m(s,t) = 1,

for some constant m(s, t) ∈ {1, 2, . . . ,∞} with m(s, t) = m(t, s) ≥ 2, s 6= t and
m(s, s) = 1. The constant m(s, t) = ∞ means that no relation is imposed, so
that s, t are free variables. The Coxeter group W is called right-angled if either
m(s, t) = 2 or m(s, t) = ∞ for all s, t ∈ S, s 6= t and this is the only case we need
in this paper. Therefore we assume from now on that W is a right-angled Coxeter
group with generating set S. The pair (W,S) is also called a Coxeter system.

Let w ∈ W and suppose that w = w1 . . . wn with wi ∈ S. The representing
expression w1 . . . wn is called reduced if whenever also w = w′

1 . . . w
′
m with w′

i ∈ S
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then n ≤ m, i.e. the expression is of minimal length. In that case we will write
|w| = n. Reduced expressions are not necessarily unique (only if m(s, t) = ∞
whenever s 6= t), but for each w ∈ W we may pick a reduced expression which we
shall call minimal.

Convention: For w ∈ W we shall write wi for the minimal representative w =
w1 . . . wn.

To the pair (W,S) we associate a graph Γ with vertex set V Γ = S and edge
set EΓ = {(s, t) | m(s, t) = 2}. A subgraph Γ0 of Γ is called full if the following
property holds: ∀s, t ∈ V Γ0 with (s, t) ∈ EΓ we have (s, t) ∈ EΓ0. A clique in Γ
is a full subgraph in which every two vertices share an edge. We let Cliq(Γ) denote
the set of cliques in Γ. To keep the notation consistent with the literature the
empty graph is in Cliq(Γ) by convention (in this paper we shall often exclude the
empty graph from Cliq(Γ) explicitly or treat it as a special case to keep some of the
arguments more transparent). We let Cliq(Γ, l) be the set of cliques with l vertices.

Definition 2.1. A Coxeter system (W,S) is called reduced if the complement of Γ
is connected.

2.2. Hecke von Neumann algebras. Let (W,S) be a right-angled Coxeter sys-
tem. Let q > 0. By [Dav08, Proposition 19.1.1] there exists a unique unital

∗-algebra Cq(Γ) generated by a basis {T̃w | w ∈ W} satisfying the following rela-
tions. For every s ∈ S and w ∈ W we have:

T̃sT̃w =

{
T̃sw if |sw| > |w|,
qT̃sw + (1 − q)T̃w otherwise,

T̃ ∗
w =T̃w−1 .

We define normalized elements Tw = q−|w|/2T̃w. Then for w ∈ W and s ∈ S,

TsTw =

{
Tsw if |sw| > |w|,
Tsw + pTw otherwise,

,(2.1)

where

p =
q − 1√

q
.

There is a natural positive linear tracial map τ on Cq(Γ) satisfying τ(Tw) = 0,w 6= 1
and τ(1) = 1. Let L2(Mq) be the Hilbert space given by the closure of Cq(Γ) with
respect to 〈x, y〉 = τ(y∗x) and let Mq be the von Neumann algebra generated by
Cq(Γ) acting on L2(Mq). τ extends to a state on Mq and L2(Mq) is its GNS
space with cyclic vector Ω := Te. Mq is called the Hecke von Neumann algebra at
parameter q associated to the Coxeter system (W,S).

Theorem 2.2 (see [Gar15])). Let (W,S) be a reduced Coxeter system and suppose
that |S| ≥ 3. Let ρ be the radius of convergence of the fundamental power series:

(2.2)
∞∑

k=0

|{w ∈ W | |w| = k}|zk.

For every q ∈ [−ρ−1, ρ] the von Neumann algebra Mq is a factor. For q > 0 not in
[−ρ−1, ρ] the von Neumann algebra Mq is the direct sum of a factor and C.
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As Mq posesses a normal faithful tracial state the factors appearing in Theorem
2.2 are of type II1.

For the analysis ofMq we shall in fact need M1 which is the group von Neumann
algebra of the Coxeter group W . It can be represented on L2(Mq). Indeed, let

T
(1)
w denote the generators of M1 as in (2.1) and let Tw be the generators of Mq.

Set the unitary map,

U : L2(M1) → L2(Mq) : T
(1)
w Ω → TwΩ.

In this paper we shall always assume that M1 is represented on L2(Mq) by the
identification M1 → B(L2(Mq)) : x 7→ UxU∗. Note that this way

(2.3) T (1)
v (TwΩ) = TvwΩ.

For w ∈ W we shall write Pw for the projection of L2(Mq) onto the closure of the
space spanned linearly by {TvΩ | |w−1v| = |v| − |w|}. For Γ0 ∈ Cliq(Γ) we shall
write PV Γ0 for Pw where w ∈ W is the product of all vertex elements of Γ0 and
|V Γ0| for the number of elements in V Γ0. Similarly we shall write PvV Γ0 for Pw

where w ∈ W is the product of v with all vertex elements of Γ0.

Remark 2.3 (Creation and annihilation arguments). Note that for w,v ∈ W
saying that |w−1v| = |v| − |w| just means that the start of v contains the word
w. Throughout the paper we say that s ∈ W acts by means of a creation operator
on v ∈ W if |sv| = |v| + 1. It acts as an annihilation operator if |sv| = |v| − 1.
For v,w ∈ W we may always decompose w = w′w′′ such that |w| = |w′| +
|w′′|, |w′′v| = |v| − |w′′| and |wv| = |v| − |w′′| + |w′|. That is w first acts as by
means of annihilations of the letters of w′′ and then w′ acts as a creation operator
on w′′v. We will use such arguments without further reference.

The following Lemma 2.7 together with Lemma 2.4 say that Tw decomposes

in terms of a sum of operators that first act by annihilation (this is T
(1)
u′′ ) then a

diagonal action (this is the projection PuV Γ0) and finally by creation (this is T
(1)
u′ ).

This decomposition is crucial for each of our main results.

Definition 2.4. Let w ∈ W . Let Aw be the set of triples (w′,Γ0,w
′′) with

w′,w′′ ∈ W and Γ0 ∈ Cliq(Γ) such that: (1) w = w′V Γ0w
′′, (2) |w| = |w′| +

|V Γ0|+ |w′′|, (3) Γ0 is not the empty graph, (4) if s ∈ S commutes with V Γ0 then
|w′s| > |w′|.
Lemma 2.5. For (w′,Γ0,w

′′) ∈ Aw there exists u,u′,u′′ ∈ W such that

(2.4) T
(1)
w′ PV Γ0T

(1)
w′′ = T

(1)
u′ PuV Γ0T

(1)
u′′ ,

and moreover if s ∈ W is such that |u′s| < |u′| then |su′′| > |u′′|.
Proof. Let u ∈ W be the (unique) element of maximal length such that |w′u−1| =
|w′| − |u| and |uw′′| = |w′′| − |u|. Set u′ = w′u−1 and u′′ = uw′′. It then remains
to prove (2.4) as the rest of the properties are obvious. For v ∈ W such that
|V Γ0w

′′v| = |w′′v| − |V Γ0| we have,

T
(1)
u′ PuV Γ0T

(1)
u′′ (TvΩ) = T

(1)
u′ PuV Γ0(Tuw′′vΩ) = T

(1)
u′ (Tuw′′vΩ)

=Tw′w′′vΩ = T
(1)
w′ PV Γ0(Tw′′vΩ) = T

(1)
w′ PV Γ0T

(1)
w′′(TvΩ).

For v ∈ W such that |V Γ0w
′′v| 6= |w′′v| − |V Γ0| it follows from a similar compu-

tation that both sides of (2.4) have (TvΩ) in its kernel. �
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Remark 2.6. In Lemma 2.5 the property that |u′s| < |u′| implies that |su′′| > |u′′|
is equivalent to |u′u′′| = |u′| + |u′′|. The words u′ and u′′ in Lemma 2.5 are not
unique: in case |su′′| = |u′′| − 1 and s commutes with V Γ0 then we may replace
(u′,u′′) by (u′s, su′′).

Lemma 2.7. We have,

(2.5) Tw = T (1)
w +

∑

(w′,Γ0,w′′)∈Aw

p#V Γ0T
(1)
w′ PV Γ0T

(1)
w′′ ,

where Aw is given in Definition 2.4.

Proof. The proof proceeds by induction on the length of w. If |w| = 1 then

Tw = T
(1)
w + pPw by (2.1). Now suppose that (2.5) holds for all w ∈ W with

|w| = n. Let v ∈ W be such that |v| = n+ 1. Decompose v = sw, |w| = n, s ∈ S.
Then,

Tv =TsTw

=
(
T (1)
s + pPs

)

T (1)

w +
∑

(w′,Γ0,w′′)∈Aw

p#V Γ0T
(1)
w′ PV Γ0T

(1)
w′′




=T (1)
sw + pPsT

(1)
w +

∑

(w′,Γ0,w′′)∈Aw

(
p#V Γ0T

(1)
sw′PV Γ0T

(1)
w′′ +p#V Γ0+1PsT

(1)
w′ PV Γ0T

(1)
w′′

)
.

(2.6)

Now we need to make the following observations.

(1) If sw′ = w′s then PsT
(1)
w′ = T

(1)
w′ Ps. So in that case,

PsT
(1)
w′ PV Γ0T

(1)
w′′ = T

(1)
w′ PsPV Γ0T

(1)
w′′ .

Moreover PsPV Γ0 equals PsV Γ0 in case s commutes with all elements of
V Γ0 and 0 otherwise.

(2) In case sw′ 6= w′s we claim that PsT
(1)
w′ PV Γ0T

(1)
w′′ = 0. To see this, rewrite

PsT
(1)
w′ PV Γ0T

(1)
w′′ = PsT

(1)
u′ PuV Γ0T

(1)
u′′ with u,u′,u′′ as in Lemma 2.5. As

sw′ 6= w′s we have su′ 6= u′s and/or su 6= us.
(a) Assume su′ 6= u′s. For v ∈ W with Tu′′vΩ in the range of PuV Γ0 ,

(2.7) PsT
(1)
u′ PuV Γ0T

(1)
u′′ (TvΩ) = PsTu′u′′vΩ.

Furthermore, the assertions of Lemma 2.5 imply |u′uV Γ0| = |u′| +
|uV Γ0| and therefore |u′u′′v| = |u′′v| + |u′| which implies (because
su′ 6= u′s and u′u′′v starts with all letters of u′) that (2.7) is 0. For v ∈
W with Tu′′vΩ not in the range of PuV Γ0 we have T

(1)
u′ PuV Γ0T

(1)
u′′ (TvΩ) =

0. In all we conclude PsT
(1)
u′ PuV Γ0T

(1)
u′′ = 0.

(b) Assume su′ = u′s but su 6= us. Then PsT
(1)
u′ Pu = T

(1)
u′ PsPu = 0.

So in all (2.6) gives,

Tv =T (1)
sw + pPsT

(1)
w +

∑

(w′,Γ0,w′′)∈Aw

p#V Γ0T
(1)
sw′PV Γ0T

(1)
w′′

+
∑

(w′,Γ0,w′′)∈Aw,sw′=w′s,sV Γ0=V Γ0s

p#V Γ0+1T
(1)
w′ PsV Γ0T

(1)
w′′ ,
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and in turn an identification of all summands shows that the latter expression
equals,

T (1)
sw +

∑

(v′,Γ0,v′′)∈Asw

p#V Γ0T
(1)
v′ PV Γ0T

(1)
v′′ .

This concludes the proof. �

2.3. Group von Neumann algebras. Let G be a locally compact group with
left regular representation s 7→ λs and group von Neumann algebra L(G) = {λs |
s ∈ G}′′. We let A(G) be the Fourier algebra consisting of functions ϕ(s) =
〈λsξ, η〉, ξ, η ∈ L2(G). There is a pairing between A(G) and L(G) which is given
by 〈ϕ, λ(f)〉 =

∫
G
f(s)ϕ(s)ds which turns A(G) into an operator space that is com-

pletely isometrically identified with L(G)∗. We let MCBA(G) be the space of com-
pletely bounded Fourier multipliers of A(G). Form ∈ MCBA(G) we let Tm : L(G) →
L(G) be the normal completely bounded map determined by λ(f) 7→ λ(mf). The
following theorem is due to Bozejko and Fendler [BoFe84] (see also [JNR09, Theo-
rem 4.5]).

Theorem 2.8. Let m ∈ MCBA(G). There exists a unique normal completely
bounded map Mm : B(L2(G)) → B(L2(G)) that is an L∞(G)-bimodule homomor-
phism and such that Mm restricts to Tm : λ(f) 7→ λ(mf) on L(G). Moreover,
‖Mm‖CB = ‖Tm‖CB = ‖m‖MCBA(G).

3. Universal property and conditional expectations

In this section we establish some standard universal properties for subalgebras
of Mq.

Theorem 3.1. Let q > 0 put p = (q − 1)/
√
q and let (W,S) be a right angled

Coxeter system with associated Hecke von Neumann algebra (Mq, τ). Suppose that
(N , τN ) is a von Neumann algebra with GNS faithful state τ that is generated by
self-adjoint operators Rs, s ∈ S that satisfy the relations RsRt = RtRs whenever
m(s, t) = 2, R2

s = 1 + pRs, s ∈ S and further τN (Rw1 . . . Rwn
) = 0 for every

non-empty reduced word w = w1 . . . wn ∈ W . Then there exists a unique normal
∗-homomorphism π : Mq → N such that π(Ts) = Rs. Moreover τN ◦ π = τ .

Proof. The proof is routine, c.f. [CaFi15, Proposition 2.12]. We sketch it here.
Let (L2(N ), πN , η) be a GNS construction for (N , τN ). As τ is GNS faithful we
may assume that N is represented on L2(N ) via πN . We define a linear map
V : L2(Mq) → L2(N ) by V Ω = η and

V (TwΩ) = Rwη, where w ∈ W,

and Rw := Rw1 . . . Rwn
. It is easy to check that V is well-defined and isometric.

Then π( · ) = V ( · )V ∗ does the job. As V Ω = η we get τN ◦ π = τ . �

Remark 3.2. Note that the property T 2
s = 1+pTs, s ∈ S with p = q−1√

q is equivalent

to the usual Hecke relation (
√
qTs−q)(

√
qTs+1) = 0 that appears in the literature.

We shall say that (W ′, S′) is a Coxeter subsystem of (W,S) if S′ ⊆ S and
m′(s, t) = m(s, t) for all s, t ∈ S′. Here m′ is the function on S′×S′ that determines
the commutation relations for W ′, c.f. Section 2.1.
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Corollary 3.3. Let q > 0. Let (W ′, S′) be a Coxeter subsystem of a right angled
Coxeter system (W,S). Let M′

q and Mq be their respective Hecke von Neumann
algebras. There exists a trace preserving normal conditional expectation E : Mq →
M′

q.

Proof. Theorem 3.1 implies that M′
q is a von Neumann subalgebra of Mq and the

canonical trace of Mq agrees with the one on M′
q. Therefore M′

q admits a trace
preserving normal conditional expectation value, c.f. [Tak03]. �

4. Non-injectivity of Mq

Recall that a von Neumann algebra M ⊆ B(H) is called injective if there exists
a (not necessarily normal) conditional expectation E : B(H) → M. This means
that E is a completely positive linear map which satisfies ∀x ∈ M : E(x) = x.

We prove that Mq is non-injective. The proof is based on a Khintchine type
inequality. For the sake of presentation we shall first prove non-injectivity in the
free case, meaning that m(s, t) = ∞ whenever s 6= t. The proof is conceptually the
same as the general case but the notation simplifies quite a lot, making the proof
much more accessible.

4.1. Non-injectivity of Mq: the free case. In this subsection assume that
m(s, t) = ∞ for all s, t ∈ S, s 6= t. In particular this means that in Lemma
2.7 every clique appearing in the sum has only 1 vertex. We proceed now as in
[RiXu06, Section 2]. Define the following two linear subspaces of B(L2(Mq)):

(4.1) L1 := span
{
PsT

(1)
s P⊥

s | s ∈ S
}
, K1 := span

{
P⊥
s T (1)

s Ps | s ∈ S
}
.

Note that as s2 = e in fact PsT
(1)
s P⊥

s = T
(1)
s P⊥

s and P⊥
s T

(1)
s Ps = T

(1)
s Ps. The

following Lemma 4.1 is a special case of [RiXu06, Lemma 2.3 and Corollary 2.4].

Lemma 4.1. We have complete isometric identifications,

L1 ≃
(
C#S

)
column

: T
(1)
s P⊥

s 7→ es,

K1 ≃
(
C#S

)
row

: T
(1)
s Ps 7→ es,

where the lower scripts indicate the operator space structure of a column and row
Hilbert space with orthonormal basis es, s ∈ S.

We define Σ1 = span{Ts | s ∈ S} and subsequently:

Σd = span{Tw1 ⊗ . . .⊗ Twd
| w ∈ W},

which is contained in the d-fold algebraic tensor copy of Σ1. There exists a canonical
map σd : Σd → B(L2(Mq)) : Tw1 ⊗ . . .⊗ Twd

7→ Tw. For s ∈ V Γ we let As := CPs,
i.e. a 1-dimensional operator space. Using ⊗h for the Haagerup tensor product we
set Lk = (L1)

⊗hk,Kk = (K1)
⊗hk and

Xd =

(
d⊕

k=0

Lk ⊗h Kd−k

)
⊕

(
⊕

s∈S

d−1⊕

k=0

Lk ⊗h As ⊗h Kd−k−1

)
.

Here the sums are understood as ℓ∞-direct sums of operator spaces. The multipli-
cation maps Lk ⊗h Kd−k → B(L2(Mq)) and Lk ⊗h As ⊗h Kd−k−1 → B(L2(Mq))
are completely contractive by the very definition of the Haagerup tensor product.
Extending linearly to Xd gives a map Πd : Xd → B(L2(Mq)) with

(4.2) ‖Πd‖CB ≤ (d+ 1) + d#S.
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In fact the tensor amplification

(4.3) (ι⊗Πd) : Mq ⊗min Xd → Mq ⊗min B(L2(Mq))

has complete bound majorized by (d+1)+ d#S. Define a mapping jd : Σd → Xd,

Tw1 ⊗ . . .⊗ Twd
7→

(
d⊕

k=0

Tw1P
⊥
w1

⊗ . . .⊗ Twk
P⊥
wk

⊗ Twk+1
Pwk+1

⊗ . . .⊗ Twd
Pwd

)

⊕
(
⊕

s∈S

d−1⊕

k=0

Tw1P
⊥
w1

⊗ . . .⊗ Twk
P⊥
wk

⊗ Ps ⊗ Twk+2
Pwk+2

⊗ . . .⊗ Twd
Pwd

)
,

(4.4)

and extend linearly.

Lemma 4.2. We have σd = Πd ◦ jd.

Proof. The lemma follows if we could prove the following equalities, the first one
being Lemma 2.7,

Tw =(Pw1 + P⊥
w1

)T (1)
w1

(Pw1 + P⊥
w1

) . . . (Pwd
+ P⊥

wd
)T (1)

wd
(Pwd

+ P⊥
wd

)

+ p

d−1∑

k=0

(Pw1 + P⊥
w1

)T (1)
w1

(Pw1 + P⊥
w1

) . . . (Pwk
+ P⊥

wk
)T (1)

wk
(Pwk

+ P⊥
wk

)×

Pwk+1
(Pwk+2

+ P⊥
wk+2

)T (1)
wk+2

(Pwk+2
+ P⊥

wk+2
) . . . (Pwd

+ P⊥
wd

)T (1)
wd

(Pwd
+ P⊥

wd
)

=

d∑

k=0

(Tw1P
⊥
w1

) . . . (Twk
P⊥
wk

)(Twk+1
Pwk+1

) . . . (Twd
Pwd

)

+ p

d−1∑

k=0

(Tw1P
⊥
w1

) . . . (Twk
P⊥
wk

)Pwk+1
(Twk+2

Pwk+2
) . . . (Twd

Pwd
).

(4.5)

The proof is a creation/annihilation argument as in [RiXu06, Fact 2.6]. First note

that from the fact that w2
i = 1 we obtain that T

(1)
wi Pwi

= P⊥
wi
T

(1)
wi Pwi

= P⊥
wi
T

(1)
wi and

by taking adjoints Pwi
T

(1)
wi = Pwi

T
(1)
wi P

⊥
wi

= T
(1)
wi P

⊥
wi
. Therefore also P⊥

wi
T

(1)
wi P

⊥
wi

=

Pwi
T

(1)
wi Pwi

= 0. Next note that Pwi
Pwi+1 = 0. Using these considerations we

see that in the left hand side expression of (4.5) all terms are zero except for
the ones that remain on the right hand side of (4.5). Indeed consider a product∏d

i=1 T
(1)
wi Qwi

with Qwi
= Pwi

or Qwi
= P⊥

wi
. If a factor T

(1)
wi+1P

⊥
wi+1

occurs then

we must have Qwi
= P⊥

wi
or this product is zero. This shows that the only non-zero

summands in the first term on the left side of (4.5) are the ones appearing in the
first summation on the right side. Similarly the second summations on each side of
(4.5) may be identified. �

Remark 4.3. The inequality (4.2) can be interpreted as a Khintchine inequality.
It is also possible to obtain the reverse Khintchine inequality ‖jd(x)‖ ≤ ‖σd(x)‖ fol-
lowing (almost exactly) the proof of [RiXu06, Theorem 2.5]. The reverse inequality
will not be used in this paper.
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Lemma 4.4. Let A be a C∗-algebra and let M = (Mi,j)1≤i≤k,1≤j≤l ∈ Mk,l(A) be a
k × l-matrix with entries Mi,j ∈ A. Assume k > l. Suppose that if Mi,j and Mi,j′

are non-zero then j = j′. Then,

‖M‖Mk,l(A) ≤
√
‖
∑

i,j

Mi,jM∗
i,j‖A.

Proof. The assumption that if Mi,j and Mi,j′ are non-zero then j = j′ just means
that after possibly permuting the standard basis vectors we may represent the
transpose of M by means of the following matrix,



M1,1 . . . M1,n1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 M2,n1+1 . . . M2,n2 . . . 0 . . . 0
...

...
...

...
. . .

...
...

0 . . . 0 0 . . . 0 . . . Mk,nk−1+1 . . . Mk,l


 .

Then ‖M‖Mk,l(A) = maxi
√
‖∑ni

j=ni−1+1 Mi,jM∗
i,j‖A, which yields the lemma. �

Theorem 4.5. Assume that |S| ≥ 3 and ∀s, t ∈ S,m(s, t) = ∞. The Hecke von
Neumann algebra Mq is not injective.

Proof. IfMq were to be injective then we would have for all choices xi, yi ∈ Mq, 1 ≤
i ≤ m that

(4.6) ‖
m∑

i=1

xi ⊗ yi‖ ≥ |τ(
m∑

i=1

x∗
i yi)|,

c.f. [Was77, Corollary 2]. We show that this contradicts (4.2). Fix d ∈ N and find
a (finite) sequence w(i) ∈ W with |w(i)| = 2d that satisfies the property that i = j
whenever

(4.7) w
(i)
1 . . . w

(i)
d = w

(j)
1 . . . w

(j)
d or w

(i)
d+1 . . . w

(i)
2d = w

(j)
d+1 . . . w

(j)
2d .

One can choose such a sequence of length equal to at least 2d−1. (Indeed let
s, t, r ∈ S be three different generators. There are exactly 2d−1 reduced words
w1 . . . wd−1s with wi ∈ {s, t, r}. Call these words A. Also there are exactly 2d−1

words twd+2 . . . w2d with wi ∈ {s, t, r}. Call these words B. Take some bijection
ϕ : A → B and consider the wordswϕ(w). This results in 2d−1 words with property
(4.7); in fact the only thing that matters for the proof is that the length of such a
sequence is exponential in d). (4.6) then reads

(4.8) ‖
2d−1∑

i=1

Tw(i) ⊗ Tw(i)‖ ≥ 2d−1.

On the other hand, the Khintchine inequality (4.2) with length 2d gives

(4.9) ((2d+ 1) + 2d#S)Ad ≥ ‖
2d−1∑

i=1

Tw(i) ⊗ Tw(i)‖,

where Ad is the maximum over the norms of each of the following expressions:

(4.10)

2d−1∑

i=1

Tw(i) ⊗ T
w

(i)
1
P⊥
w

(i)
1

⊗ . . .⊗ T
w

(i)
k

P⊥
w

(i)
k

⊗ T
w

(i)
k+1

P
w

(i)
k+1

⊗ . . .⊗ T
w

(i)
2d

P
w

(i)
2d

,
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with 0 ≤ k ≤ 2d and
(4.11)
2d−1∑

i=1

Tw(i) ⊗ T
w

(i)
1
P⊥
w

(i)
1

⊗ . . .⊗ T
w

(i)
k

P⊥
w

(i)
k

⊗ P
w

(i)
k+1

⊗ T
w

(i)
k+2

P
w

(i)
k+2

⊗ . . .⊗ T
w

(i)
2d

P
w

(i)
2d

,

with 0 ≤ k ≤ 2d− 1, s ∈ S. Here these expressions are identified in respectively

(4.12) Mq ⊗min Lk ⊗h K2d−k ≃ Mq ⊗min B(C(#S)k ,C(#S)(2d−k)

),

with 0 ≤ k ≤ 2d and

Mq ⊗min Awk
⊗min B(C(#S)k ,C(#S)2d−k−1

),

with 0 ≤ k ≤ 2d− 1. The isomorphism (4.12) is given by

x⊗ T (1)
s1 P⊥

s1 ⊗ . . .⊗ T (1)
sk P⊥

sk ⊗ T (1)
sk+1

Psk+1
⊗ . . .⊗ T (1)

s2dPs2d

7→x⊗ | es1 ⊗ . . . esk〉〈esk+1
⊗ . . .⊗ es2d |,

and therefore Condition (4.7) and Lemma 4.4 show that the norm of (4.10) can be
upper estimated by:

‖
2d−1∑

i=1

Tw(i)T ∗
w(i)‖

1
2 ≤ 2(d−1)/2

√
max

i
‖Tw(i)T ∗

w(i)‖

= 2(d−1)/2 max
i

‖Tw(i)‖.

The expression can be upper estimated by 2(d−1)/2 (1 + 2dp), c.f. Lemma 2.7.
A similar argument shows that we may upper estimate the norm of (4.11) with
2(d−1)/2 (1 + 2dp). Combining this with (4.8) shows that for every d we must have:

2d−1 ≤ 2(d−1)/2 (1 + 2dp)((2d+ 1) + 2d#S).

As for large d this leads to a contradiction, we conclude thatMq cannot be injective.
�

Corollary 4.6. Let (W,S) be a right angled Coxeter system with associated Hecke
von Neumann algebra Mq. Let (W ′, S′) be a Coxeter subsystem of (W,S) that is
free, i.e. m′(s, t) = ∞ for all s, t ∈ S′. Then Mq is non-injective.

Proof. This follows as the Hecke von Neumann algebra M′
q of (W ′, S′) is an ex-

pected subalgebra of Mq, c.f. Corollary 3.3. If Mq were to be injective then so
would M′

q which contradicts Theorem 4.5. �

Remark 4.7. Following the argument of Corollary 4.6 we would be able to prove
non-injectivity of a general reduced Coxeter system (W,S) with |S| ≥ 3 if we could
prove this for the case that |S| = 3, say S = {r, s, t}, and m(r, s) = ∞,m(s, t) = ∞
and m(r, t) = 2. Though that this special case suffices, we derive nevertheless a
general Khintchine inequality in the next section as this involves the same modifi-
cations.
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4.2. Non-injectivity of Mq: the general case. We now assume again that
(W,S) is a general Coxeter system of a right-angled Coxeter group, i.e. ∀s, t ∈ S
we have that m(s, t) equals either 2 or ∞. Non-injectivity of Mq follows essentially
by the same argument as in the free case. We only need to treat the Khintchine
inequality with more care. Therefore we introduce some additional terminology.
Firstly, for s ∈ S we set

Link(s) = {t ∈ S | m(s, t) = 2},
so these are all vertices in Γ that have distance exactly 1 to s. For a subset X ⊆ V Γ
we set Link(X) = ∩s∈XLink(s). We sometimes regard Link(X) as a full subgraph of
Γ. We let Σd be span{Tw1 ⊗ . . .⊗Twd

| w ∈ W} which is contained in the algebraic

tensor product Σ⊗d
1 and Σ1 the linear space spanned by Ts, s ∈ S. Let (Wf , S) be

the free Coxeter system which is determined by the same generating set S but with
relations mf (s, t) = ∞, s 6= t. Let Mf

q be the free Hecke von Neumann algebra and

L2(Mf
q ) its GNS space. We define the spaces L1 and K1 exactly as in (4.1) but with

respect to the Coxeter system (Wf , S). In particular Lemma 4.1 remains valid. It
is not valid for the system (W,S) which is the reason we need to introduce an extra
intertwining argument in this section. Then set Lk = (L1)

⊗hk,Kk = (K1)
⊗hk.

Let Cliq(Γ, l) be the set of cliques in Γ with l vertices. For Γ0 ∈ Cliq(Γ, l) we let
Comm(Γ0) be the set of all pairs (Γ1,Γ2) ∈ Cliq(Link(Γ0))

2 such that V Γ1∩V Γ2 = ∅.
Let

(4.13) Xd =

d⊕

l=0

⊕

Γ0∈Cliq(Γ,l)

⊕

(Γ1,Γ2)∈Comm(Γ0)

d−l⊕

k=0

Lk ⊗h AΓ0 ⊗h Kd−k−l,

where AΓ0 = CP f
V Γ0

⊆ B(L2(Mf
q )); here P f

V Γ0
is the projection onto the vectors

TvΩ ∈ L2
f (Mq) with v starting with letters V Γ0 ordered in minimal order.

Parallel to the free case we shall define a mapping jd : Σd → Xd. Let 0 ≤
l ≤ d, 0 ≤ k ≤ d − l and let Γ0 ∈ Cliq(Γ, l), (Γ1,Γ2) ∈ Comm(Γ0). The image of
Tw1 ⊗ . . .⊗ Twd

under jd in the corresponding summand of (4.13) is,

Twσ(1)
(P f

wσ(1)
)⊥ ⊗ . . .⊗ Twσ(k)

(P f
wσ(k)

)⊥ ⊗ PV Γ0

⊗ Twσ(k+l+1)
(P f

wσ(k+l+1)
)⊗ . . .⊗ Twσ(d)

(P f
wσ(d)

),
(4.14)

provided that there exists a permutation σ of indices such that:

(1) w1 . . . wd = wσ(1) . . . wσ(d);
(2) wσ(k+1) . . . wσ(k+l) make up all the letters in V Γ0;
(3) |wσ(1) . . . wσ(k)s| = k − 1 whenever s ∈ V Γ1;
(4) |wσ(1) . . . wσ(k)s| = k + 1 whenever s ∈ Link(Γ0)\V Γ1;
(5) |swσ(k+l+1) . . . wσ(d)| = d− k − l − 1 whenever s ∈ V Γ2;
(6) |swσ(k+l+1) . . . wσ(d)| = d− k − l + 1 whenever s ∈ Link(Γ0)\V Γ2.

In (4.14) we shall assume moreover that wσ(1) . . . wσ(k), wσ(k+1) . . . wσ(k+l) and
wσ(k+l+1) . . . wσ(d) are minimal words and if wσ(i) = wσ(j), i < j then σ(i) < σ(j)
so that σ is unique. If such a σ does not exist then (4.14) should be read as the
zero vector.

Lemma 4.8. Let w ∈ W . Let Aw(k,Γ0) be the set of pairs (w′,w′′) with w =
w′V Γ0w

′′, |w′| = k and |w| = |w′| + |V Γ0| + |w′′|. For each Γ1 ∈ Cliq(Link(Γ0))
there exists at most one (w′,w′′) ∈ Aw(k,Γ0) with (∗) for all s ∈ V Γ1, |w′s| =
|w′| − 1, for all s ∈ Link(Γ0)\V Γ1, |w′s| = |w′|+ 1.
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Proof. Suppose that (w′
1,w

′′
1 ) ∈ Aw(k,Γ0) and (w′

2,w
′′
2 ) ∈ Aw(k,Γ0) both satisfy

the property (∗) of the lemma. Suppose that for some t ∈ S we have |w′
1t| = |w′

1|−1
but |w′

2t| = |w′
2|+1. Then we must have |tw′′

1 | = |w′
1|+1 but |tw′′

2 | = |w′
2|−1 and

moreover t commutes with V Γ0. But property (∗) shows that such t that commutes
with V Γ0 can only either be on the left or on the right, leading to a contradiction.
So we must have w′

1 = w′
2 and hence also w′′

1 = w′′
2 . �

Lemma 4.9. For every Tw1 ⊗ . . .⊗ Twd
∈ Σd we have,

Tw1 . . . Twd
=

d∑

l=0

d−l∑

k=0

∑

Γ0∈Cliq(Γ,l)

∑

(Γ1,Γ2)∈Comm(Γ0)

p#V Γ0(T (1)
wσ(1)

P⊥
wσ(1)

) . . . (T (1)
wσ(k)

P⊥
wσ(k)

)

× PV Γ0(T
(1)
wσ(k+2)

Pwσ(k+2)
) . . . (T (1)

wσ(d)
Pwσ(d)

),

(4.15)

where σ (changing over the summation) is as in (1) – (6) above this lemma. If such
σ does not exist then the summand is understood as 0.

Proof. We first note that we may decompose,

(4.16) Tw1 . . . Twd
= (Pw1 + P⊥

w1
)Tw1(Pw1 + P⊥

w1
) . . . (Pwd

+ P⊥
wd

)Twd
(Pwd

+ P⊥
wd

).

Therefore consider an expression of the form:

(4.17) Q(1)
w1

Tw1Q
(2)
w1

. . . Q(1)
wd

Twd
Q(2)

wd
,

where Q
(j)
wi equals either Pwi

or P⊥
wi
. Throughout the proof we shall assume that

(4.17) is non-zero. The following claims show that after possibly interchanging
commuting factors in the expression (4.17) we may assume that (4.17) is of a
specific form.

Claim 1. The expression (4.17) is after possibly interchanging commuting letters
in w1 . . . wd of the form:

(4.18) Q(1)
w1

Tw1Q
(2)
w1

. . . Q(1)
ws

Tws
Q(2)

ws
(P⊥

ws+1
Tws+1Pws+1) . . . (P

⊥
wd

Twd
Pwd

).

Moreover, the tail of annihilation operators is maximal in the sense that if for some

i ≤ s we have Q
(2)
wi = Pwi

then Q
(1)
wi = Pwi

.

Proof of Claim 1. Suppose that we are given an expression as in (4.18). Suppose

that for some i < s we have Q
(1)
wi = P⊥

wi
, Q

(2)
wi = Pwi

. Then we need to show that
wi commutes with wi+1 . . . ws. To do so we may suppose the index i was chosen
maximal. Suppose that wi and wi+1 . . . ws do not commute and let wk be the first
letter in wi+1 . . . ws that does not commute with wi. Our choice of i yields that

Q
(1)
wk = Pwk

(indeed if Q
(1)
wk were to be P⊥

wk
then (4.18) is 0 in case Q

(2)
wk = P⊥

wk
and

in case Q
(2)
wk

= Pwk
then i was not maximal). But then (4.18) contains a factor

Pwi
Pwk

= 0 which means that (4.18) would be zero which in turn is a contradiction.

Claim 2. The expression (4.17) is after possibly interchanging commuting letters
in w1 . . . wd of the form:

Q(1)
w1

Tw1Q
(2)
w1

. . . Q(1)
wr

Twr
Q(2)

wr
(Pwr+1Twr+1Pwr+1) . . . (Pws

Tws
Pws

)

× (P⊥
ws+1

Tws+1Pws+1) . . . (P
⊥
wd

Twd
Pwd

).
(4.19)
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Moreover, the tail of annihilation and diagonal operators is maximal in the sense

that if for some i ≤ r we have Q
(1)
wi = Pwi

then Q
(2)
wi = P⊥

wi
.

Proof of Claim 2. Suppose that we are given a (non-zero) expression as in (4.19).

Suppose that for some i < r we have Q
(1)
wi = Pwi

, Q
(2)
wi = Pwi

. Then we need to
show that wi commutes with wi+1 . . . wr. To do so we may suppose the index i < r
was chosen maximal. Suppose that wi and wi+1 . . . wr do not commute and let
wk be the first letter in wi+1 . . . wr that does not commute with wi. Our choice

of i yields that Q
(1)
wk = Pwk

and Q
(2)
wk = P⊥

wk
. But then (4.19) contains a factor

Pwi
Pwk

= 0 which means that (4.19) would be zero. As this is a contradiction the
claim follows.

Claim 3. The expression (4.17) is after possibly interchanging commuting letters
in w1 . . . wd of the form:

(Pw1Tw1P
⊥
w1

) . . . (Pwr
Twr

P⊥
wr

)(Pwr+1Twr+1Pwr+1) . . . (Pws
Tws

Pws
)

× (P⊥
ws+1

Tws+1Pws+1) . . . (P
⊥
wd

Twd
Pwd

).
(4.20)

Moreover wr+1 . . . ws forms a clique.

Proof of Claim 3. This is obvious now from Claim 2 and the fact that P⊥
wi
Twi

P⊥
wi

=
0. As Pwi

Pwj
is non-zero only if wi and wj commute we must have that wr+1 . . . ws

forms a clique.

Remainder of the proof. Note that as Tw = T
(1)
w + pPw we have that (4.17) after

possibly interchanging commuting letters in w1 . . . wd equals:

p#V Γ0(T (1)
w1

P⊥
w1

) . . . (T (1)
wr

P⊥
wr

)PV Γ0(T
(1)
ws+1

Pws+1) . . . (T
(1)
wd

Pwd
),(4.21)

where Γ0 is the clique comprising the letters ws+1 . . . wr as in Claim 3. Therefore
the non-zero terms on the right hand side of (4.16) all occur in the summation
(4.15). Note that the ‘possible commutations’ in each of the claims do not affect the
permutation σ in (4.15). That the summands of (4.15) are in 1–1 correspondence
with the non-zero terms of (4.16) follows by Lemma 4.8. �

We define

(4.22) Πd : jd(Σd) → B(L2(Mq)) : jd(x) 7→ σd(x).

As Σd is finite dimensional this map is completely bounded and by definition σd =
Πd ◦ jd. It remains to obtain control over the complete bound of Πd in terms of d.
This is done by means of the following intertwining lemma.

Lemma 4.10. Πd defined in (4.22) has complete bound that is majorized by Cd2

for a constant C that is independent of d.

Proof. The proof is an intertwining argument between product maps associated to
the general and to the free case. Let us make this precise. Let L2(Mf

q ) be the

GNS space of the Hecke algebra Mf
q generated by (Wf , S) where again Wf is the

‘free’ Coxeter group with generating set S and relations ∀s, t ∈ S,mf (s, t) = ∞.
Let 0 ≤ l ≤ d, 0 ≤ k ≤ d− l and let Γ0 ∈ Cliq(Γ, l), (Γ1,Γ2) ∈ Comm(Γ0). Let,

(4.23) Πf
d,k,l,Γ0,Γ1,Γ2

: Lk ⊗h AΓ0 ⊗h Kd−k−l → B(L2(Mf
q ))
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be the product map. This map is completely bounded as follows from the definition
of the Haagerup tensor product.

Definition of the intertwining maps. We define two unitary maps. Note that
the second map only differs from the first one at the place we put an exclamation
mark.

• We define the intertwining map,

Qk,l,Γ0,Γ1 :L2(Mq) → L2(Mf
q ),(4.24)

by sending a vector TwΩ with |w| = d to Twσ(1)...wσ(d)
Ω where σ is the

permutation defined in (1) – (4). Moreover we assume that this σ is chosen
such that each of the expressions wσ(k) . . . wσ(1), wσ(k+1). . .wσ(k+l) and
wσ(k+l+1) . . .wσ(d) are minimal (which uniquely determines Qk,l,Γ0,Γ1). If
such σ does not exist then Qk,l,Γ0,Γ1(TwΩ) is understood as the zero vector.

• We define the intertwining map,

Rk,l,Γ0,Γ1 :L2(Mq) → L2(Mf
q ),(4.25)

by sending a vector TwΩ with |w| = d to Twσ(1)...wσ(d)
where σ is the per-

mutation defined in (1) – (4). Moreover we assume that this σ is chosen
such that each of the expressionswσ(1) . . . wσ(k) (!), wσ(k+1). . .wσ(k+l) and
wσ(k+l+1) . . .wσ(d) are minimal (which uniquely determinesRk,l,Γ0,Γ1(TwΩ)).
If such σ does not exist then Rk,l,Γ0,Γ1(TwΩ) is understood as the zero vec-
tor.

Claim. Let x = Tw1 ⊗ . . . ⊗ Twd
∈ Σd and let xd,k,l,Γ0,Γ1,Γ2 with 0 ≤ l ≤ d,

0 ≤ k ≤ d − l, Γ0 ∈ Cliq(Γ, l) and (Γ1,Γ2) ∈ Comm(Γ0) be the corresponding
summands of jd(x) in Xd. We have,

R∗
k,l,Γ0,Γ1

Πf
d,k,l,Γ0,Γ1,Γ2

(xd,k,l,Γ0,Γ1,Γ2)Qd−l−k,l,Γ0,Γ2

=(T (1)
wσ(1)

P⊥
wσ(1)

) . . . (T (1)
wσ(k)

P⊥
wσ(k)

)PV Γ0(T
(1)
wσ(k+l+1)

Pwσ(k+l+1)
) . . . (T (1)

wσ(d)
Pwσ(d)

),

(4.26)

where σ is defined as in (1) – (6) and the right hand side should be understood as
0 otherwise.

Proof of the Claim. Note that both sides of (4.26) equal 0 if a σ as in the statement
of the claim does not exist, c.f. the definition of jd. So we assume that this is
not the case. Take an elementary tensor product Tw1 ⊗ . . . ⊗ Twd

∈ Σd. As both
sides of (4.26) change in the same way under interchaning wi and wi+1 in case
m(wi, wi+1) = 2, we may assume that the tensor product Tw1 ⊗ . . .⊗Twd

is ordered
in such a way that the permutation σ on the right hand side of (4.26) is trivial.
Now take a vector TvΩ and set,

Qd−l−k,l,Γ0,Γ2(TvΩ) = T f
v′Ω,

with v′i = vσ(i) and σ as in the definition of Qd−l−k,l,Γ0,Γ2 so that v′d−k−l . . . v
′
1,

v′d−k−l+1 . . . v
′
d−k and v′d−k+1 . . . v

′
n are minimal. If such σ does not exist then

Qd−l−k,l,Γ0,Γ2(TvΩ) = 0. We have,

Πf
d,k,l,Γ0,Γ1,Γ2

(xd,k,l,Γ0,Γ1,Γ2)

=(T f
w1

P f ⊥
w1

) . . . (T f
wk

P f ⊥
wk

)P f
V Γ0

(T f
wk+l+1

P f
wk+l+1

) . . . (T f
wd

P f
wd

).
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And therefore, if Qd−l−k,l,Γ0,Γ2(TvΩ) is non-zero,

Πf
d,k,l,Γ0,Γ1,Γ2

(xd,k,l,Γ0,Γ1,Γ2)Qd−l−k,l,Γ0,Γ2(TvΩ)

=〈T f
v′
1
Ω, T f

wd
Ω〉 . . . 〈T f

v′

d−k−l

Ω, T f
wk+l+1

Ω〉

T f
w1...wk

T f
v′

d−k−l+1...v
′

d−k

T f
v′

d−k+1...v
′
n
Ω.

(4.27)

On the other hand consider an expression

(T (1)
w1

P⊥
w1

) . . . (T (1)
wk

P⊥
wk

)PV Γ0

× (T (1)
wk+l+1

Pwk+l+1
) . . . (T (1)

wd
Pwd

)TvΩ
(4.28)

Because wk+l+1 . . . wd starts with V Γ2 (since we assumed that (4.26) is non-zero)
this expression can only be non-zero if there exists v′ as defined above in which
case,

(4.28) =(T (1)
w1

P⊥
w1

) . . . (T (1)
wk

P⊥
wk

)PV Γ0

× (T (1)
wk+l+1

Pwk+l+1
) . . . (T (1)

wd
Pwd

)Tv′Ω

=〈Tv′
1
Ω, Twd

Ω〉 . . . 〈Tv′

d−k−l
Ω, Twk+l+1

Ω〉
Tw1...wk

Tv′

d−k−l+1...v
′

d−k
Tv′

d−k+1...v
′
n
Ω.

(4.29)

Clearly the image of (4.29) under Rk,l,Γ0,Γ1 equals (4.27). This concludes the claim.

Remainder of the proof. From Lemma 4.9 we see that Πd is given by the direct sum

of the maps R∗
k,l,Γ0,Γ1

Πf
d,k,l,Γ0,Γ1,Γ2

( · )Qd−l−k,l,Γ0,Γ2 which are defined on the cor-
responding summands of Xd. As each of these summands is completely contractive
and there are Cd2 summands for some constant C independent of d, we see that
Πd is completely bounded with complete bound majorized by Cd2.

�

Theorem 4.11. Let q > 0 and let (W,S) be a reduced Coxeter system with |S| ≥ 3.
The Hecke von Neumann algebra Mq is not injective.

Proof. Following Remark 4.7 it suffices to consider the case |S| = 3, say S = {r, s, t},
with commutation relations m(r, s) = ∞,m(s, t) = ∞,m(r, t) = 2. The proof of
this case is now a mutatis mutandis copy of the proof of Theorem 4.5.

Note that at the beginning of the proof we had to justify that there existed a
sequence of words w(i) of length 2d−1 such that (4.7) holds. For the proof it only
matters that the maximal possible length of such a sequence is exponential in d.
We claim that in the current case there is such a sequence of length at least 2

1
2 (d−1)

in case d is odd. Indeed, for d odd we may consider words a1sa3sa5 . . . ad−2sr

with ai ∈ {r, t}. Such words form a set A of size 2
1
2 (d−1). Similarly the words

tsa1sa3sa5 . . . sad−2 with ai ∈ {r, t} form a set B of size 2
1
2 (d−1). Letting again

ϕ : A → B be a bijection and considering the words wϕ(w),w ∈ A shows that

there is a sequence satisfying (4.7) of length at least 2
1
2 (d−1).

Next note that the Khintchine inequality applied in (4.9) gets replaced by Lemma
4.10. The rest of the proof of Theorem 4.5 changes mutatis mutandis to the Khint-
chine decomposition (4.13). �
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5. Completely bounded approximation property

We show that for a right angled Coxeter system (W,S) the Hecke von Neumann
algebra Mq has the wk-∗ CBAP, see Definition 5.18. We first consider radial
multipliers and then show that cutting down to radius n has a cb-norm that is at
most polynomial in n.

5.1. Creation/annihilation arguments. In this section we introduce some aux-
iliary notation and prove some elementary properties concerning creation/annihilation
of letters in words. Let x,w ∈ W . We shall write w ≤ x for saying that
|w−1x| = |x| − |w|. Then w < x is defined naturally. So w ≤ x means that w is
obtained from x by cutting off a tail. An element v ∈ W is called a clique word in
case its letters form a clique. For Λ a clique in W and v ∈ W we define v(2, ∅) as the
maximal clique Γ0 such that |vV Γ0| = |v| − |V Γ0|. Then we set the decomposition
v = v(1,Λ)v(2,Λ) with |v| = |v(1,Λ)| + |v(2,Λ)| and v(2,Λ) = v(2, ∅)\Λ (which
uniquely determines v(1,Λ)). For g ≤ x we let Λg,x be (x−1g)(2, ∅). In other
words Λg,x is the maximal clique that appears at the start of g−1x. We let C(g,x)
be the collection of w ∈ W with g ≤ w ≤ gΛg,x. Note that C(g,x) contains at
least g and gΛg,x (and the latter elements can be equal). We write C(g,+) for
∪g≤xC(g,x).

Example 5.1. Consider the Coxeter system (W,S) with S = {r, s, t} in which
m(r, s) = 2 and m(r, t) = m(s, t) = ∞. Consider v = trs. Then v(1, ∅) =
t,v(2, ∅) = rs,v(1, r) = tr and v(2, r) = s. Also Λt,trst = {t, tr, ts, trs}.

We set, for g ≤ x and Λ ∈ Cliq(Γ),

αg,x,Λ(r) =




∑

v∈C(g,x)

(−1)|g
−1v|r2|v(1,Λ)|+|v(2,Λ)|





1
2

.(5.1)

Lemma 5.2. Let x,w ∈ W . Let w = w′w′′ be the decomposition with |w| =
|w′| + |w′′| such that |w′′x| = |x| − |w′′| and |wx| = |x| − |w′′| + |w′|. Take
(w′′)−1 ≤ g ≤ x. Then, for v ∈ C(g,x),

(5.2) (wv)(2, (wg)(2, ∅)\g(2, ∅)) = v(2,g(2, ∅)\(wg)(2, ∅))
and

|(wv)(1, (wg)(2, ∅)\g(2, ∅))| = |v(1,g(2, ∅)\wg(2, ∅))| − |w′′|+ |w′|.(5.3)

Proof. Let v ∈ C(g,x). The clique v(2, ∅) consists of the clique g−1v plus all
letters in g(2, ∅) that commute with g−1v. Therefore v(2,g(2, ∅)\(wg)(2, ∅)) is the
clique consisting of g−1v plus all letters in (wg)(2, ∅) ∩ g(2, ∅) that commute with
g−1v. On the other hand (wv)(2, ∅) consists of the clique g−1v together with all
letters in (wg)(2, ∅) that commute with g−1v. Then (wv)(2, (wg)(2, ∅)\g(2, ∅))
equals g−1v together with all elements in (wg)(2, ∅) ∩ g(2, ∅) that commute with
g−1v. So we conclude (5.2). Therefore,

|(wv)(1, (wg)(2, ∅)\g(2, ∅))|
=|wv| − |(wv)(2, (wg)(2, ∅)\g(2, ∅))|
=|v| − |w′′|+ |w′| − |v(2,g(2, ∅)\(wg)(2, ∅))|
=|v(1,g(2, ∅)\wg(2, ∅))| − |w′′|+ |w′|.

(5.4)
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�

Corollary 5.3. With the same notation as Lemma 5.2 we have:

r|w
′|−|w′′|αg,x,g(2,∅)\(wg)(2,∅) = αwg,wx,wg(2,∅)\g(2,∅).

Proof. This now follows from the definition of αg,x,Λ and both (5.2) and (5.3). �

Lemma 5.4. Let x,w ∈ W and decompose w = w′w′′ such that |w| = |w′| +
|w′′|, |w′′x| = |x| − |w′′| and |wx| = |x| − |w′′|+ |w′|. Let (w′′)−1 ≤ g ≤ x. Then:

(1) g(2, ∅)\(wg)(2, ∅) = g(2, ∅)\(w′′g)(2, ∅);
(2) For v ∈ C(g,x) we have

(5.5) v(2,v(2, ∅)\(w′′v)(2, ∅)) = v(2,g(2, ∅)\(w′′g)(2, ∅)).
Proof. (1) Because (w′′)−1 ≤ g ≤ x we also have |w′′g| = |g| − |w′′| and |wg| =
|g| − |w′′| + |w′|. So w′ creates letters in w′′g so that g(2, ∅)\(wg)(2, ∅) =
g(2, ∅)\(w′′g)(2, ∅).

(2) Let A be the set of letters in g(2, ∅) that commute with g−1v. The clique
v(2, ∅) consists of g−1v ∪ A . This means that v(2,v(2, ∅)\(w′′v)(2, ∅)) consists
of g−1v ∪ A intersected with (w′′v)(2, ∅). The intersection of (w′′v)(2, ∅) with
g−1v is g−1v so that v(2,v(2, ∅)\(w′′v)(2, ∅)) = g−1v∪ (A∩ (w′′v)(2, ∅)). On the
other hand v(2,g(2, ∅)\(w′′g)(2, ∅)) equals g−1v∪(A∩(w′′g)(2, ∅)) and as g(2, ∅)∩
(w′′g)(2, ∅) = g(2, ∅) ∩ (w′′v)(2, ∅) clearly (A ∩ (w′′v)(2, ∅)) = (A ∩ (w′′g)(2, ∅)).
This proves (5.5).

�

Corollary 5.5. Let x,w ∈ W and decompose w = w′w′′ such that |w| = |w′| +
|w′′|, |w′′x| = |x| − |w′′| and |wx| = |x| − |w′′|+ |w′|. Then,

αg,x,g(2,∅)\(wg)(2,∅)(r)
2

=
∑

v∈C(g,x)

(−1)|g
−1v|r2|v(1,v(2,∅)\(wv)(2,∅))|+|v(2,v(2,∅)\(wv)(2,∅))|.

Proof. This directly follows from the definition (5.1) and Lemma 5.4. �

5.2. Radial multipliers. In this subsection we construct radial multipliers,

(5.6) Φr : Mq → Mq : Tw 7→ r|w|Tw, 0 < r ≤ 1,

and show that these maps are completely bounded with complete bound uniform
in 0 < r ≤ 1. Note that radial multipliers were also considered in for example
[Haa10] (and [HoRi11]). The results from [Haa10] typically apply to free products.
As our situation is somewhat different we present a self-contained proof of complete
boundedness of (5.6) by constructing an explicit Stinespring dilation.

Remark 5.6. Note that we may identify ℓ2(W ) with basis δx,x ∈ W with L2(Mq)

with basis TxΩ. This way T
(1)
w acts on ℓ2(W ) by means of the left regular repre-

sentation.

We borrow the following construction from [Oza08]. We let Bf (W ) be the set of

finite subsets of W . For A ∈ Bf(W ) we define ξ̃±A to be the vectors in ℓ2(Bf (W ))
given by

ξ̃+A (ω) =

{
1 if ω ⊆ A,
0 otherwise,

ξ̃−A (ω) =

{
(−1)|ω| if ω ⊆ A,
0 otherwise,
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The reader may verify the following lemma using the binomial formula.

Lemma 5.7 (Lemma 4 of [Oza08]). We have ‖ξ̃±A‖2 = 2|A| and

〈ξ̃+A , ξ̃−B 〉 =
{

0 A ∩B 6= ∅,
1 otherwise.

We let B be the linear span of the elements Pw,w ∈ W . In particular Qw ∈ B,
c.f. (5.8) below. We define for 0 < r ≤ 1 and Λ a clique the map,

ΦΛ
r : B → B

by the prescription Pe → Pe and Pw 7→ r2|w(1,Λ)|+|w(2,Λ)|Pw, |w| ≥ 1. Define the
following Stinespring dilation for ± ∈ {+,−},

V ±
r : ℓ2(W ) → ℓ2(W )⊗ ℓ2(W )⊗ ℓ2(W )⊗ ℓ2(Bf (W )),

δx 7→
∑

g≤x

∑

Λ≤g(2,∅)
αg,x,Λ(r)δg−1x ⊗ δg ⊗ δg(2,Λ) ⊗ ξ̃±Λ .(5.7)

It may not directly be clear that V ±
r is bounded but we will soon prove this. We

let Qw be the Dirac delta function at w ∈ W . We let Pw be the indicator function
of the set {x ∈ W | w ≤ x}.
Lemma 5.8. For w ∈ W we have,

(5.8) Qw =




∑

v∈C(w,+)

(−1)|w
−1v|Pv


 .

Proof. Let x ∈ W . In case w 6≤ x then,

Qw(x) = 0 =




∑

v∈C(w,+)

(−1)|w
−1v|Pv


 (x).

Also clearly,

Qw(w) = 1 = Pw(w) =




∑

v∈C(w,+)

(−1)|w
−1v|Pv



 (x).

In case w < x then,



∑

v∈C(w,+)

(−1)|w
−1v|Pv


 (x) =




∑

v∈C(w,x)

(−1)|w
−1v|Pv


 (x)

=
∑

v∈C(w,x)

(−1)|w
−1v|

and this expression equals 0 by the binomial formula. Indeed, it equals

|Λw,x|∑

l=0

∑

v∈C(w,x),|w−1v|=l

(−1)|w
−1v| =

|Λw,x|∑

l=0

(
|Λw,x|

l

)
(−1)|w

−1v| = 0.

�

Lemma 5.9. For w ≤ x in W and Λ a clique we have,

ΦΛ
r (Qw)(x) = αw,x,Λ(r)

2.
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Proof. We have,

ΦΛ
r (Qw)(x)

=ΦΛ
r




∑

v∈C(w,+)

(−1)|w
−1v|Pv


 (x)

=




∑

v∈C(w,+)

(−1)|w
−1v|r2|w(1,Λ)|+|w(2,Λ)|Pv


 (x)

=
∑

v∈C(w,x)

(−1)|w
−1v|r2|w(1,Λ)|+|w(2,Λ)|

=αw,x,Λ(r)
2.

�

Proposition 5.10. The Stinespring maps V ±
r are bounded uniformly in 0 < r ≤ 1.

Proof. Note that the images of V ±δx,x ∈ W are orthogonal by the first two tensor
legs of (5.7) so that it suffices to show that there exists a constant C such that
‖V ±δx‖ ≤ C. We have by Lemma 5.7,

‖V ±δx‖2 =‖
∑

g≤x

∑

Λ≤g(2,∅)
αg,x,Λ(r)δg−1x ⊗ δg ⊗ δg(2,Λ) ⊗ ξ̃±Λ ‖2

=
∑

g≤x

∑

Λ≤g(2,∅)
α2
g,x,Λ(r)2

|Λ|

≤ Const ×
∑

g≤x

∑

Λ≤g(2,∅)
α2
g,x,Λ(r)

≤ Const ×
∑

Λ∈Cliq(Γ)

∑

g≤x

α2
g,x,Λ(r).

(5.9)

From Lemma 5.9 one sees that
∑

g≤x

α2
g,x,Λ(r) =

∑

g≤x

ΦΛ
r (Qg)(x)

=ΦΛ
r (1± projections not supported at x)(x) = 1.

so that (5.9) is bounded with bound uniform in x. �

We are now able to show the existence of suitable radial multipliers as in (5.15).

Lemma 5.11. Let x,w ∈ W and decompose w = w′w′′ such that |w| = |w′| +
|w′′|, |w′′x| = |x| − |w′′| and |wx| = |x| − |w′′|+ |w′|. Then,

(5.10)
∑

(w′′)−1≤g≤x

α2
g,x,g(2,∅)\(wg)(2,∅)(r) = r2|w

′′|.

Proof. Define Φr : B → B by

Pv 7→ r2|v(1,v(2,∅)\(wv)(2,∅))|+|v(2,v(2,∅)\(wv)(2,∅))|Pv.
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As in Lemma 5.9, one checks for the first following equality that for g ≤ x we have,

Φr(Qg)(x) =
∑

v∈C(g,x)

(−1)|g
−1v|r2|v(1,v(2,∅)\(wv)(2,∅))|+|v(2,v(2,∅)\(wv)(2,∅))|

=α2
g,x,g(2,∅)\(wg)(2,∅)(r),

(5.11)

where the second equality is Corollary 5.5. Note that writing w̃ for (w′′)−1 we
have w̃(2, w̃(2, ∅)\(ww̃)(2, ∅)) = w̃(2, w̃(2, ∅)) which is the empty word. And so
w̃(1, w̃(2, ∅)\(ww̃)(2, ∅)) = w̃. Then taking sums and using this in the third equal-
ity yields,

∑

(w′′)−1≤g≤x

α2
g,x,g(2,∅)\(wg)(2,∅)(r) =

∑

(w′′)−1≤g≤x

Φr(Qg)(x)

=Φr(P(w′′)−1 ± projections not supported at x)(x)

=r2|w
′′|P(w′′)−1(x)

=r2|w
′′|.

(5.12)

�

Lemma 5.12. Let w ∈ W , let (w′,Γ0,w
′′) ∈ Aw and decompose T

(1)
w′ PV Γ0T

(1)
w′′ =

T
(1)
u′ PuV Γ0T

(1)
u′′ as in Lemma 2.5. Then,

(5.13)
∑

(u′′)−1uV Γ0≤g≤x

α2
g,x,g(2,∅)\(wg)(2,∅)(r) = r2|u|+2|u′′|+|V Γ0|.

Proof. As in Lemma 5.11 define Φr : B → B by

Pv 7→ r2|v(1,v(2,∅)\(u
′u′′v)(2,∅))|+|v(2,v(2,∅)\(u′u′′v)(2,∅))|Pv.

As in Lemma 5.11 , for g ≤ x we have,

Φr(Qg)(x) = α2
g,x,g(2,∅)\(u′u′′g)(2,∅)(r).(5.14)

From this point set w̃ := (u′′)−1uV Γ0. First suppose that u is the empty word.
Then w̃(2, w̃(2, ∅)\(u′u′′w̃)(2, ∅)) = V Γ0 and so w̃(1, w̃(2, ∅)\(u′u′′w̃)(2, ∅)) =
(u′′)−1. If u is not the empty word, then let s ∈ W be a final letter of u (i.e.
|us| = |u|−1). Then s cannot commute with V Γ0 as this would violate the equation

T
(1)
u′ PuV Γ0T

(1)
u′′ = T

(1)
w′ PV Γ0T

(1)
w′′ . Therefore again w̃(2, w̃(2, ∅)\(u′u′′w̃)(2, ∅)) =

w̃(2, ∅) = V Γ0 and so w̃(1, w̃(2, ∅)\(u′u′′w̃)(2, ∅)) = (u′′)−1.
Then taking sums and using the previous paragraph for the third equation,

∑

(u′′)−1uV Γ0≤g≤x

α2
g,x,g(2,∅)\(wg)(2,∅)(r)

=
∑

(u′′)−1uV Γ0≤g≤x

Φr(Qg)(x)

=Φr(P(u′′)−1uV Γ0
± projections not supported at x)(x)

=r2|u|+2|u′′|+|V Γ0|P(u′′)−1uV Γ0
(x) = r2|u|+2|u′′|+|V Γ0|.

�
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Theorem 5.13. Let (W,S) be a right angled Coxeter system. Let 0 < r ≤ 1. There
exists a normal completely bounded map Φr : Mq → Mq that is determined by the
formula:

(5.15) Φr(Tw) = r|w|Tw.

Moreover ‖Φr‖CB ≤ C for a constant independent of r.

Proof. We show that Φr is given by the Stinespring dilation

B(ℓ2(W )) → B(ℓ2(W )),

x 7→ (V −
r )∗(1 ⊗ x⊗ 1⊗ 1)V +

r .

In order to do so we will treat the following cases from which this claim follows
using Lemma 2.7.

Claim 1. For w ∈ W we have,

(5.16) (V −
r )∗(1⊗ T (1)

w ⊗ 1⊗ 1)V +
r = r|w|T (1)

w .

Proof of the claim. We have,

〈(V −
r )∗(1⊗ T (1)

w ⊗ 1⊗ 1)V +
r δx, δy〉

=

〈
∑

g≤x

∑

Λ≤g(2,∅)
αg,x,Λ(r)δg−1x ⊗ T (1)

w δg ⊗ δg(2,Λ) ⊗ ξ̃+Λ ,

∑

h≤y

∑

Λ′≤h(2,∅)
αh,y,Λ′(r)δh−1y ⊗ δh ⊗ δh(2,Λ′) ⊗ ξ̃−Λ

〉
.

(5.17)

By looking at the first and second tensor leg we see that this expression can only be
non-zero if wg = h and g−1x = h−1y so that wx = y. Then the only summands
that can be non-zero are the ones where g(2,Λ) = h(2,Λ′) and Λ ∩ Λ′ = ∅. This
precisely means that

Λ = g(2, ∅)\(wg)(2, ∅), Λ′ = (wg)(2, ∅)\g(2, ∅).
We decompose w = w′w′′ with |w| = |w′| + |w′′|, |w′′x| = |x| − |w′′| and |y| =
|x|− |w′′|+ |w′|. So w′′ annihilates the first letters of x and then w′ creates letters
at the start of w′′x. We therefore find using the previous remarks for the first
equality and then Corollary 5.3 and Lemma 5.11,

(5.17) =
∑

(w′′)−1≤g≤x

αg,x,g(2,∅)\(wg)(2,∅)(r)αwg,wx,(wg)(2,∅)\g(2,∅)(r)

=
∑

(w′′)−1≤g≤x

α2
g,x,(wg)(2,∅)\g(2,∅)(r)r

|w′|−|w′′|

=r2|w
′′|r|w

′|−|w′′| = r|w|.

(5.18)

So we conclude that applying the functional 〈 · δx, δy〉 to both sides of (5.16) gives
the same result.

Claim 2. Let w ∈ W and let (w′,Γ0,w
′′) ∈ Aw, c.f. Definition 2.4. Then,

(5.19) (V −
r )∗(1⊗ T

(1)
w′ PV Γ0T

(1)
w′′ ⊗ 1⊗ 1)V +

r = r|w|T (1)
w′ PV Γ0T

(1)
w′′ .
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Proof of the claim. Let u,u′,u′′ be as in Lemma 4.9 so that T
(1)
w′ PV Γ0T

(1)
w′′ =

T
(1)
u′ PuV Γ0T

(1)
u′′ . We have,

〈(V −
r )∗(1⊗ T

(1)
u′ PuV Γ0T

(1)
u′′ ⊗ 1⊗ 1)V +

r δx, δy〉

=

〈
∑

g≤x

∑

Λ≤g(2,∅)
αg,x,Λ(r)δg−1x ⊗ T

(1)
u′ PuV Γ0T

(1)
u′′ δg ⊗ δg(2,Λ) ⊗ ξ̃+Λ ,

∑

h≤y

∑

Λ′≤h(2,∅)
αh,y,Λ′(r)δh−1y ⊗ δh ⊗ δh(2,Λ′) ⊗ ξ̃−Λ

〉
.

(5.20)

By looking at the first and second leg we see that this expression can only be non-

zero if T
(1)
u′ PuV Γ0T

(1)
u′′ δg = δh and g−1x = h−1y so that T

(1)
u′ PuV Γ0T

(1)
u′′ δx = δy. In

the non-zero case, the choice of u′ and u′′ is not necessarily unique, but we may
always assume that |y| = |x| − |u′′| + |u′|. So u′′ annihilates the first letters of x
and then u′ creates letters at the start of u′′x. Then the only summands that can
be non-zero are the ones where g(2,Λ) = h(2,Λ′) and Λ ∩ Λ′ = ∅. As in (5.18)
we therefore find the following. Where we used Lemma 5.11 we use Lemma 5.12
instead. So,

(5.20) =
∑

(u′′)−1uV Γ0≤g≤x

αg,x,g(2,∅)\(u′u′′g)(2,∅)(r)αu′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅)(r)

=
∑

(u′′)−1uV Γ0≤g≤x

α2
g,x,g(2,∅)\(u′u′′g)(2,∅)(r)r

|u′|−|u′′|

=r2(|u|+|u′′|)+|Γ0|r|u
′|−|u′′| = r|w|,

as |w| = |u′| + |u′′|+ 2|u|+ |V Γ0|. The claim follows again as applying 〈 · δx, δy〉
to both sides of (5.19) yields the same result. �

5.3. Weak-∗ completely bounded approximation property. Let Aq be the
∗-algebra generated by the operators Tw,w ∈ W . So Mq is the σ-weak closure of
Aq. We define

Ψ≤n : Aq → Mq : Tw 7→
{

Tw |w| ≤ n,
0 otherwise.

We also set Ψn = Ψ≤n − Ψ≤(n−1). The crucial part we need to prove is that Ψ≤n

is completely bounded with a complete bound that can be upper estimated in n
polynomially. In order to do so we first introduce 3 auxiliary maps.

Auxiliary map 1. Recall that M1 is just the group von Neumann algebra of the
right-angled Coxeter group W . For k ∈ N define the multiplier,

ρk(T
(1)
w ) = δ|w|,kT

(1)
w .

By [Oza08, Theorem 1 (2)] this map is completely bounded and moreover ‖ρk‖CB ≤
C(k + 1) for some constant C independent of k. By the Bozejko-Fendler Theorem
2.8 we may extend ρk uniquely to a σ-weakly continuous L∞(W )-bimodule map
B(ℓ2(W )) → B(ℓ2(W )) with the same completely bounded norm. Using Lemma
2.7 we see that

Ψ≤n =

n∑

k=0

ρk ◦Ψ≤n.
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Auxiliary map 2. Let T be the unit circle in C. For z ∈ T we define,

Wz : ℓ2(W ) → ℓ2(W ) : δw 7→ z|w|δw.

We set for i ∈ Z,

Φi : B(ℓ2(W )) → B(ℓ2(W )) : x 7→
∫

T

z−iW ∗
z xWzdz,

where the measure is the normalized Lebesgue measure on T. Using Lemma 2.7 we
see that

Ψ≤n =

n∑

i=−n

Φi ◦Ψ≤n.

Auxiliary map 3. For a ∈ N we define Stinespring dilations,

(5.21) U±
a : ℓ2(W ) → ℓ2(W )⊗ ℓ2(W )⊗ ℓ2(W )⊗ ℓ2(Bf (W )),

by mapping δx to (see Section 5.1 for notation),
∑

g≤x

∑

Λ≤g(2,∅)
β±
g,x,Λ,aδg−1x ⊗ δg ⊗ δg(2,Λ) ⊗ ξ̃±Λ .

Here
β+
g,x,Λ,a =

∑

v∈C(g,x)

(−1)|g
−1v|FΛ,a(v),

where FΛ,a(v) = 1 if
2|v(1,Λ)|+ |v(2,Λ)| ≤ a,

and else FΛ,a(v) = 0. We let β−
g,x,Λ,a = 1 if β+

g,x,Λ,a 6= 0 and β−
g,x,Λ,a = 0 otherwise.

Then set,
σa,b(x) = U−

a (1⊗ x⊗ 1⊗ 1)U+
b .

The map U±
a is bounded as follows from the fact that g 7→ β+

g,x,Λ,a finitely supported
and in fact this bound is uniform in a.

Lemma 5.14. Let x ∈ W . Let u′,u′′ ∈ W be such that |u′′x| = |x| − |u′′|,
|u′u′′x| = |x| − |u′′|+ |u′| and (u′′)−1 ≤ v ≤ x. Then,

∑

v≤g≤x

β+
g,x,g(2,∅)\(u′u′′g)(2,∅),aβ

−
u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),a−2|u′|+2|u′′|

=

{
1 in case 2|v(1,v(2, ∅)\(u′u′′v)(2, ∅))|+ |v(2,v(2, ∅)\(u′u′′v)(2, ∅))| ≤ a,
0 otherwise.

(5.22)

Proof. By Equations (5.2) and (5.3) for v ≤ g we get,

β+
g,x,g(2,∅)\(u′u′′g)(2,∅),a

=
∑

w∈C(g,x)

Fg(2,∅)\(u′u′′g)(2,∅),a(w)

=
∑

w∈C(u′u′′g,u′u′′x)

F(u′u′′g)(2,∅)\g(2,∅),a−2|u′′|+2|u′|(w)

=β+
u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),a−2|u′|+2|u′′|.

Therefore also

β−
g,x,g(2,∅)\(u′u′′g)(2,∅),a = β−

u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),a−2|u′|+2|u′′|.
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We therefore have that the left hand side of (5.22) equals,

∑

v≤g≤x

β+
g,x,g(2,∅)\(u′u′′g)(2,∅),aβ

−
g,x,g(2,∅)\(u′u′′g)(2,∅),a =

∑

v≤g≤x

β+
g,x,g(2,∅)\(u′u′′g)(2,∅),a

To compute this sum define the mapping κa : B → B : Pv 7→ Fv(2,∅)\(u′u′′v)(2,∅),a(v)Pv .

As in the proof of Lemma 5.11 one checks that κa(Qg)(x) = β+
g,x,g(2,∅)\(u′u′′g)(2,∅),a.

And therefore,

∑

v≤g≤x

β+
g,x,g(2,∅)\(u′u′′g)(2,∅),a =

∑

v≤g≤x

κa(Qg)(x)

=κa(Pv ± projections not supported at x)(x).

This expression equals 1 if Fv(2,∅)\(u′u′′v)(2,∅),a(v) = 1 and 0 otherwise which cor-
responds exactly to the statement of the lemma.

�

Lemma 5.15. We have for n ∈ N:

Ψ≤n =
n∑

i=−n

σn−i,n+i ◦ Φi ◦Ψ≤n.

Proof. Let Tw ∈ Mq with |w| ≤ n. We need to show that,

Tw =
n∑

k=0

n∑

i=−n

σn−i,n+i ◦ Φi ◦ ρk(Tw).

We split

Tw = T (1)
w +

∑

(w′,Γ0,w′′)∈Aw

T
(1)
w′ PV Γ0T

(1)
w′′ ,

and show that
∑n

k=0

∑n
i=−n σn−i,n+i◦Φi◦ρk applied to each of these summands acts

as the identity. Let us consider the summands T
(1)
w′ PV Γ0T

(1)
w′′ with (w′,Γ0,w

′′) ∈
Aw. Let u,u′,u′′ be as in Lemma 2.5 so that T

(1)
w′ PV Γ0T

(1)
w′′ = T

(1)
u′ PuV Γ0T

(1)
u′′ . We

have

ρk(T
(1)
u′ PuV Γ0T

(1)
u′′ ) =

{
T

(1)
u′ PuV Γ0T

(1)
u′′ if k = |u′|+ |u′′|,

0 otherwise.

So assume k = |u′|+ |u′′| so that it remains to show that for x,y ∈ W ,

(5.23) 〈
n∑

i=−n

σn−i,n+i ◦ Φi(T
(1)
u′ PuV Γ0T

(1)
u′′ )δx, δy〉 = 〈T (1)

u′ PuV Γ0T
(1)
u′′ δx, δy〉.

As in the proof of Theorem 5.13 both sides are 0 unless T
(1)
u′ PuV Γ0T

(1)
u′′ δx = δy.

In the non-zero case there is a choice for u′,u′′ for which |u′′x| = |x| − |u′′| and
|u′u′′x| = |x| − |u′′| + |u′|. And in this case i = |u′| − |u′′| is the only non-zero
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summand. Then we find, as in the proof of Theorem 5.13,

〈(1⊗ T
(1)
u′ PuV Γ0T

(1)
u′′ ⊗ 1⊗ 1)U+

n−iδx, U
−
n+iδy〉

=〈
∑

g≤x

∑

Λ≤g(2,∅)
β+
g,x,Λ,n−iδg−1x ⊗ T

(1)
u′ PuV Γ0T

(1)
u′′ δg ⊗ δg(2,∅) ⊗ ξ̃+Λ ,

∑

h≤y

∑

Λ′≤h(2,∅)
β−
h,y,Λ′,n+iδh−1x ⊗ δh ⊗ δh(2,∅) ⊗ ξ̃−Λ 〉

=
∑

(u′′)−1uV Γ0≤g≤x

β+
g,x,g(2,∅)\(u′u′′g)(2,∅),n−iβ

−
u′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),n+i

(5.24)

We claim that this expression is 1 by verifying Lemma 5.14. Indeed set w :=
(u′′)−1uV Γ0. First suppose that u is the empty word. Thenw(2,w(2, ∅)\(u′u′′w)(2, ∅)) =
V Γ0 and so w(1,w(2, ∅)\(u′u′′w)(2, ∅)) = (u′′)−1. If u is not the empty word, then
let s ∈ W be a final letter of u (i.e. |us| = |u| − 1). Then s cannot commute with

V Γ0 as this would violate the equation T
(1)
u′ PuV Γ0T

(1)
u′′ = T

(1)
w′ PV Γ0T

(1)
w′′ . Therefore

againw(2,w(2, ∅)\(u′u′′w)(2, ∅)) = w(2, ∅) = V Γ0 and sow(1,w(2, ∅)\(u′u′′w)(2, ∅)) =
(u′′)−1. Further our constructions give that |u′′| = k−i

2 and 2|u| + |V Γ0| =
|w| − |u′| − |u′′| = |w| − k. So we have,

2|w(1,w(2, ∅)\(u′u′′w)(2, ∅))|+ |w(2,w(2, ∅)\(u′u′′w)(2, ∅))|
=2|(u′′)−1|+ (2|u|+ |V Γ0|)

=2
k − i

2
+ (|w| − k)

=|w| − i ≤ n− i,

(5.25)

so that by Lemma 5.14 we see that (5.24) is 1. So we conclude that (5.23) holds.

For the summand T
(1)
w instead of T

(1)
w′ PV Γ0T

(1)
w′′ the proof follows similarly.

�

Lemma 5.16. We have for n ∈ N,−n ≤ i ≤ n:

σn−i,n+i ◦Φi ◦Ψ≤n = σn−i,n+i ◦Φi.

Proof. We need to show that the right hand side applied to Tw with |w| > n equals

0. Therefore we may look at the summands T
(1)
w′ PV Γ0T

(1)
w′′ with (w′,Γ0,w

′′) ∈ Aw

which can be further decomposed as T
(1)
u′ PuV Γ0T

(1)
u′′ with u,u′,u′′ as in Lemma 2.5.

The summand T
(1)
w can be treated in the same manner. Consider,

(5.26) 〈σn−i,n+i ◦ Φi ◦ ρk(T (1)
u′ PuV Γ0T

(1)
u′′ )δx, δy〉,

and this expression is 0 in case |u′|+ |u′′| 6= k. If |u′|+ |u′′| = k then

(5.26) = 〈σn−i,n+i ◦ Φi(T
(1)
u′ PuV Γ0T

(1)
u′′ )δx, δy〉.

So (5.26) equals 0 unless T
(1)
u′ PuV Γ0T

(1)
u′′ δx = δy. In the latter case there is a choice

for u′,u′′ for which |u′′x| = |x| − |u′′| and |u′u′′y| = |y| − |u′′|+ |u′|. In that case
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i = |u′| − |u′′| and as in (5.24),

(5.26) =〈(1 ⊗ T
(1)
u′ PuV Γ0T

(1)
u′′ ⊗ 1⊗ 1)U+

n−iδx, U
−
n+iδy〉

=
∑

(u′′)−1uV Γ0≤g≤x

βg,x,g(2,∅)\(u′u′′g)(2,∅),n−iβu′u′′g,u′u′′x,(u′u′′g)(2,∅)\g(2,∅),n+i.

(5.27)

As for w := (u′′)−1uV Γ0 we have again as in (5.25),

2|w(1,w(2, ∅)\(u′u′′w)(2, ∅))|+ |w(2,w(2, ∅)\(u′u′′w)(2, ∅))| = |w| − i > n− i,

the expression (5.27) is zero by Lemma 5.14. �

Proposition 5.17. We have ‖Ψ≤n‖CB ≤ P (n) for some polynomial P .

Proof. By Lemmas 5.15 and 5.16 we have,

Ψ≤n =
n∑

i=−n

σn−i,n+i ◦ Φi ◦Ψ≤n

=

n∑

i=−n

σn−i,n+i ◦ Φi,

and the right hand side is completely bounded with polynomial bound in n. �

Definition 5.18. A von Neumann algebra M has the weak-∗ completely bounded
approximation property (wk-∗ CBAP) if there exists a net of normal finite rank
maps Φi : M → M such that Φi(x) → x in the σ-weak topology and moreover
supi ‖Φi‖CB < ∞.

Theorem 5.19. Let (W,S) be a right angled Coxeter system and let q > 0. The
Hecke von Neumann algebra Mq has the wk-∗ CBAP.

Proof. The proof goes back to Haagerup [Haa78]. Consider the completely bounded
map Ψ≤n ◦ Φr : Aq → Mq. Clearly as n → ∞ and r ր 1 this map converges to
the identity in the point σ-weak topology. Furthermore,

‖Ψ≤n ◦ Φr‖CB ≤ ‖(Ψ≤n − Id) ◦ Φr‖CB + ‖Φr‖CB ≤
( ∞∑

i=n+1

rn‖Ψn‖CB
)

+ ‖Φr‖CB,

which shows using Proposition 5.17 and Theorem 5.13 that we may let r ր 1 and
then choose n := nr converging to ∞ such that ‖Ψ≤nr

◦ Φr‖CB ≤ C for some
constant.

The map Φr is normal by Theorem 5.13. Also Ψ≤n is normal by a standard
argument: indeed using duality and Kaplansky’s density theorem one sees that Ψn

maps L1(Mq) → L1(Mq) boundedly. Then taking the dual of this map yields that
Ψn : Mq → Mq is a normal map. We may extend Ψ≤n ◦ Φr to a normal map
Mq → Mq. Then using a standard approximation argument yields the result. �

Remark 5.20. Recall that if the finite rank maps in the definition of the wk-∗
CBAP can be chosen contractive then we call this the weak-∗ completely contractive
approximation property (wk-∗ CCAP). We do not know if Mq has the wk-∗ CCAP
(nor we obtain the Haagerup property, see [BrOz08]). If the radial multipliers we
constructed are ucp maps then Mq possesses these properties.
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6. Strong solidity

We prove that the II1 summand of Mq – see Theorem 2.2 – is a strongly solid
von Neumann algebra.

6.1. Preliminaries on strongly solid algebras. The normalizer of a von Neu-
mann subalgebra P of M is defined as NM(P) = {u ∈ U(M) | uPu∗ = P}. A von
Neumann algebra is called diffuse if it does not contain minimal projections.

Definition 6.1. A II1-factor M is strongly solid if for any diffuse injective von
Neumann subalgebra P ⊆ M the von Neumann algebra generated by the normalizer
NM(P)′′ is again injective.

In [OzPo10] Ozawa and Popa proved that free group factors are strongly solid
and consequently they could give the first examples of II1 factors that have no
Cartan subalgebras. A general source for strongly solid von Neumann algebras are
group von Neumann algebras of groups that have the weak-∗ completely bounded
approximation property and are bi-exact (see [ChSi13], [CSU13], [PoVa14]; we also
refer to these sources for the definition of bi-exactness). The following definition
and subsequent theorem were then introduced and proved in [Iso15]. For standard
forms of von Neumann algebras we refer to [Tak03].

Definition 6.2. Let M ⊆ B(H) be a von Neumann algebra represented on the
standard Hilbert space H with modular conjugation J . We say that M satisfies
condition (AO)+ if there exists a unital C∗-subalgebra A ⊆ M that is σ-weakly
dense in M and which satisfies the following two conditions:

(1) A is locally reflexive.
(2) There exists a ucp map θ : A⊗min JAJ → B(H) such that θ(a⊗ b)− ab is

a compact operator on H.

Theorem 6.3 ([Iso15]). Let M be a II1-factor with separable predual. Suppose that
M satisfies condition (AO)+ and has the weak-∗ completely bounded approximation
property. Then M is strongly solid.

A maximal abelian von Neumann subalgebra P ⊆ M of a II1 factor M is called
a Cartan subalgebra if NM(P)′′ = M. It is then obvious that ifM is a non-injective
strongly solid II1-factor, then M cannot contain a Cartan subalgebra. Therefore
we will now prove that the Hecke von Neumann algebra Mq (in the factorial case)
satisfies condition (AO)+.

6.2. Crossed products. Let A be a C∗-algebra that is represented on a Hilbert
space H. Let α : G y A be a continuous action of a locally compact group G on
A. The reduced crossed product A ⋊r G is the C∗-algebra of operators acting on
H⊗ ℓ2(G) generated by operators

(6.1) ug :=
∑

h∈G

1⊗egh,h, g ∈ G, and π(x) :=
∑

h∈G

h−1 ·x⊗eh,h, x ∈ A.

Here the convergence of the sums should be understood in the strong topology.
There is also a universal crossed product A⋊u G for which we refer to [BrOz08] (in
the case we need it, it turns out to equal the reduced crossed product).
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6.3. Gromov boundary and condition (AO)+. Let again (W,S) be a Coxeter
system. Let Λ be the associated Cayley tree. A geodesic ray starting at a point
w ∈ Λ is a sequence (w,wv1,wv1v2, . . .) such that |wv1 . . . vn| = |w| + n. We
typically write ω = (ω(0), ω(1), . . .) for a geodesic ray. Let δW be the Gromov
boundary of W which is the collection of all geodesic rays starting at the identitiy
of W . δW may be topologized with the smallest topology that contains the open
sets Uw = {ω ∈ δW | ω(|w|) = w}. Then δW is a compact space. We topologize
W ∪ δW with the smallest topology making the functions Pw ∪ χUw

continuous
(here χ is an indicator function). Note that the topology of δW is then inherited
from W ∪ δW .

Let W y W be the action by means of left translation. The action extends
continuously to W ∪ δW and then restricts to an action W y δW . We may pull
back this action to obtain W y C(δW ). As W is a hyperbolic group the action
W y δW is well-known to be amenable [BrOz08] which implies that C(δW )⋊uW =
C(δW ) ⋊r W and furthermore this crossed product is a nuclear C∗-algebra. Let

f ∈ C(δW ), let f̃1, f̃2 ∈ C(W ∪ δW ) be two continuous extensions of f and let f1
and f2 be their respective restrictions to W . Then f1 − f2 ∈ C0(W ). That is, the
multiplication map f1 − f2 acting on ℓ2(W ) determines a compact operator. So
the assignment f 7→ f1 is a well-defined ∗-homomorphism C(δW ) → B(ℓ2(W ))/K
where K are the compact operators on ℓ2(W ). It is easy to check that this map is
W -equivariant and thus we obtain a ∗-homomorpism:

(6.2) π1 : C(δW ) ⋊u W → B(ℓ2(W ))/K.

Let again W y W be the action by means of left translation which may be
pulled back to obtain an action W y ℓ∞(W ). Let

ρ : ℓ∞(W )⋊r W → B(ℓ2(W ))

be the σ-weakly continuous ∗-isomorphism determined by ρ : uw 7→ T
(1)
w and

ρ : π(x) 7→ x (see [Vae01, Theorem 5.3]). In fact ρ is an injective map (this follows
immediately from [Com11, Theorem 2.1] as the operator G in this theorem equals
the mutliplicative unitary/struture operator [Tak03, p. 68]). Let C∞(W ) be the

C∗-algebra generated by the projections Pw,w ∈ W . Take f ∈ C∞(W ) and let f̃

be the continuous extension of f to W ∪ δW . The map f 7→ f̃ |δW determines a ∗-
homomorphism σ : C∞(W ) → C(δW ) that is W -equivariant. Therefore it extends
to the crossed product map

σ ⋊r Id : C∞(W )⋊r W → C(δW )⋊r W.

Theorem 6.4. The von Neumann algebra Mq satisfies condition (AO)+.

Proof. We let Aq be the unital C
∗-subalgebra ofMq generated by operators Tw,w ∈

W . It is easy to see that Aq is preserved by the multipliers that we constructed
in order to prove that Mq had the wk-∗ CBAP, see Section 5 (indeed these were
compositions of radial multipliers (5.6) and word length projections). Therefore
Aq has the CBAP, hence by the remarks before [HaKr94, Theorem 2.2] it is exact.
Therefore Aq is locally reflexive [BrOz08], [Pis02, Chapter 18].

It remains to prove condition (2) of Definition 6.2. By Lemma 2.7 we see that Aq

is contained in the C∗-subalgebra of B(ℓ2(W )) generated by the operators Pw, T
(1)
w

with w ∈ W . So ρ−1(Aq) is contained in C∞(W )⋊r W and therefore we may set

γ : Aq → C(δW )⋊r W as γ = (σ ⋊r Id) ◦ ρ−1.
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The mapping π2 : JAqJ → B(ℓ2(W ))/K : b 7→ b is a ∗-homomorphism and its image
commutes with the image of π1 of (6.2) (as was argued in [HiGu04, Lemma 6.2.8]).
By definition of the maximal tensor product there exists a ∗-homomorphism:

(π1 ⊗ π2) : (C(δW ) ⋊u W )⊗max JAqJ → B(ℓ2(W ))/K : a⊗ JbJ 7→ π1(a)JbJ.

We may now consider the following composition of ∗-homomorphisms:

(6.3) Aq ⊗min JAqJ
γ⊗id

// (C(δW ) ⋊r W )⊗min JAqJ

≃
��

B(ℓ2(W ))/K (C(δW )⋊u W )⊗max JAqJ._
?π1⊗π2

oo

By construction this map is given by:

(6.4) a⊗ JbJ 7→ aJbJ +K, where a, b ∈ Aq.

The map π1 is nuclear because we already observed that C(δW ) ⋊u W is nuclear.
Also π2 is nuclear as it equals J( · )J ◦ π1 ◦ γ ◦ J( · )J . It therefore follows that
the mapping π1 ⊗ π2 : (C(δW )⋊r W )⊗min JAqJ → B(ℓ2(W ))/K in diagram (6.3)
is nuclear and we may apply the Choi-Effros lifting theorem [ChEf76] in order to
obtain a ucp lift θ : (C(δW ) ⋊r W ) ⊗min JAqJ → B(ℓ2(W )). Then θ ◦ (γ ⊗ Id)
together with (6.4) witness the result. �

Corollary 6.5. Let (W,S) be a reduced Coxeter system with |S| ≥ 3 and q > 0.
Then the Hecke von Neumann algebra Mq has no Cartan subalgebra.

Proof. This is a consequence of Theorem 6.3 together with Theorems 4.11, 5.19
and 6.4. �
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