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Spatial, spectral and temporal coherence of ultra-intense twin beams
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Using the model of parametric interaction based on the spatio-spectral Schmidt modes and gen-
eralized parametric approximation, we analyze coherence and mode structure of ultra-intense twin
beams generated in the regime with pump depletion. We show that the increase of spatial and
spectral coherence with the increasing pump power observed for moderate powers is replaced by
the decrease for the pump powers at which pump depletion occurs. This behavior of coherence
is opposed to that exhibited by the number of spatio-spectral modes effectively constituting the
twin beam. The conditions for maximal coherence are analyzed considering pump-beam parame-
ters (spectral width, transverse radius). The existence of additional coherence maxima occurring
at even higher pump powers is predicted and explained by the oscillatory evolution of the modes’
populations.
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I. INTRODUCTION

Parametric down-conversion (PDC) has been used the
most frequently in its ’weak’ spontaneous regime where
it provides entangled photon pairs with genuine quan-
tum properties. On the other hand, it provides the so-
called twin beams containing a large number of photon
pairs when intensively pumped. Such twin beams ex-
hibit ideally perfect correlations in the photon numbers
(or intensities) of the signal and idler fields that consti-
tute the twin beam [1–4]. These correlations in photon
numbers occur in the spectrum as well as in the fields’
transverse planes as a consequence of energy conserva-
tion and phase-matching conditions, respectively. How-
ever, as pulsed pumping is needed to generate intense
twin beams and the nonlinear interaction is restricted to
a final volume of the nonlinear material, neither spectral
nor spatial correlations inside the twin beam are ideal.
For this reason, we introduce spectral and spatial inten-
sity correlation functions to characterize properties of the
real twin beams.

The spectral and spatial intensity correlation functions
of twin beams have been experimentally analyzed in three
regions differing by intensity. In each of them, different
behavior has been observed. It has been shown that the
coherence of individual photon pairs generated in the
spontaneous regime is preserved even for relatively in-
tense twin beams [5, 6]. In this first region, the pump field
is sufficiently intense relative to the overall strength of the
nonlinear interaction (including the interaction length) so
that no pump depletion occurs. The twin beam is thus
composed of a large number of weakly populated signal
and idler modes.

An increase in the spatial and spectral coherence of a
twin beam is characteristic for the second region [7–12].
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The theory and its comparison with the experimentally
determined numbers of twin-beam modes have revealed
that greater mean photon numbers in individual signal
and idler Schmidt modes occur in this region [13]. More-
over, the mean photon numbers of the most intense signal
and idler modes are such that the pump depletion has to
occur during the interaction. The increase of coherence
observed in this region has been explained by the dom-
inance of the Schmidt modes with the greatest Schmidt
coefficients over the other Schmidt modes. The reason
is that the number of highly-populated modes is smaller
and so the twin beam exhibits better coherence proper-
ties. Decrease in the number of modes accompanying the
increase of coherence has been experimentally confirmed
in [14].

Finally, the third region reached with ultra-intense
pump beams has been investigated experimentally only
recently [14–16]. Here, the coherence of the twin beam
decreases whereas the number of modes increases. As
shown in this paper, this behavior can be explained, sim-
ilarly as in the second region, by considering the evolution
of mean photon numbers of the individual signal and idler
Schmidt modes. However, in this region the signal and
idler Schmidt modes with the greatest Schmidt coeffi-
cients already loose their energy during the propagation,
in favor of the pump modes that originally provided their
energy at the beginning of the nonlinear interaction.

The three intensity regions are easily identified when
the twin-beam intensity is considered as a function of
pump power. An initial exponential increase of the twin-
beam intensity occurs in the first region. The area where
the exponential increase is gradually replaced by the lin-
ear one forms the second region. Finally, the pump pow-
ers at which a nearly linear increase of twin-beam in-
tensity is found belong to the third region. The values
of pump powers at which such behavior is observed de-
pend strongly on the properties of nonlinear medium. It
holds in general that the smaller is the number of spatio-
spectral modes, the smaller are the pump powers. Also,
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the stronger is the nonlinear interaction, the smaller are
the pump powers. From this point of view, the pump
powers lower by several orders in magnitude are expected
in nonlinear photonic structures (e.g., waveguides) com-
pared to bulk crystals analyzed in this paper.

Here, we develop the theory explaining the behavior
of intense twin beams in the third intensity region, i.e.
when the pump depletion is substantial for twin-beam
properties. We introduce the generalized parametric ap-

proximation in which the pump beam is depleted dur-
ing its propagation in accordance with the classical so-
lution of the nonlinear interaction. We decompose the
twin beam together with the pump beam into multi-
ple triplets of individual spatio-spectral modes defined in
the signal, idler and pump beams. We adopt the signal
and idler spatio-spectral Schmidt modes defined for weak
twin beams [17–20] following the approach elaborated in
[13]. The presented theory represents a generalization of
the theory given in [13] that assumes un-depleted pump
beams. As such, it also covers the first and the second
intensity regions.

The behavior of twin beams in the region with pump
depletion has been successfully described replacing the
initial vacuum quantum state of a twin beam by a clas-
sical statistical ensemble and then finding the nonlinear
evolution numerically [14, 21]. The loss of coherence for
high pump powers as well as spectral and spatial defor-
mations of the pump beam have been revealed in this
approach. On the other hand, the relation between the
coherence and the twin-beam internal structure cannot
be analyzed in this approach. For this reason, we general-
ize the model of Ref. [13] based on the Schmidt modes to
the region with pump depletion. This allows us, among
others, to predict additional coherence maxima found at
high pump powers.

We note that a theory of intense twin beams based
upon the quasi-monochromatic and quasi-plane-wave
pump-field approximations has been developed for the
pump powers belonging to the second region [22–25].
Similarly as the presented theory, this theory has been
based on the solution of the linear Heisenberg equa-
tions. The suggested generalized parametric approxi-
mation could be applied also here with the potential to
generalize the existing theory into the region with pump
depletion.

The developed theory is suitable not only for paramet-
ric interactions [26]. It can be applied also to nonlinear
resonant interactions involving four-wave mixing in cold
atomic ensembles [27–29] in which high effective nonlin-
ear coupling constants occur.

The paper is organized as follows. In Sec. II, the the-
ory of intense twin beams in the pump-depleted regime
is developed and quantities characterizing twin beams
are defined. Spatial, spectral and temporal coherence of
twin beams is discussed in Sec. III. Multiple coherence
maxima observed with the increasing pump power and
their relation to the twin-beam structure are analyzed
in Sec. IV. A model with an extended interaction length

is briefly discussed in Sec. V. Conclusions are drawn in
Sec. VI.

II. THE MODEL OF ULTRA-INTENSE TWIN

BEAMS INVOLVING PUMP DEPLETION

An intense twin beam is generated in the process of
PDC in which the pump field interacts nonlinearly with
the signal and idler fields. The signal and idler fields
are assumed initially in the vacuum states. They take
energy from the pump field during the interaction. The
nonlinear interaction mediated by the material with χ(2)

nonlinearity is described by the following nonlinear inter-
action momentum operator Ĝint [26, 30, 31]:

Ĝint(z) = 2ǫ0

∫

dxdy

∫

dt

[

χ(2)Ê(+)
p (r, t)Ê(−)

s (r, t)Ê
(−)
i (r, t) + h.c.

]

; (1)

r = (x, y, z). In Eq. (1), Ê
(+)
p denotes the

positive-frequency pump electric-field operator ampli-

tude whereas Ê
(−)
s [Ê

(−)
i ] stands for the negative-

frequency part of the signal [idler] electric-field operator
amplitude. The vacuum permittivity is denoted as ǫ0
and h.c. replaces the Hermitian conjugated term. The
electric-field amplitudes Êa, a = p, s, i, are assumed to
be decomposed into the basis of monochromatic plane
waves that have their photon annihilation and creation
operators.
To reveal a spatio-spectral structure of the fields suit-

able for describing the nonlinear interaction we first con-
sider the generation of individual photon pairs in the
weak nonlinear interaction. In this case, the pump
field is treated classically and an emitted photon pair
is described by a quantum state |ψ〉si obtained by the
first-order perturbation solution of the corresponding
Schrödinger equation. This solution allows us to find
suitable spatio-spectral Schmidt dual modes (identified
by triple indices mlq) and then to associate with them

the signal- and idler-field creation operators â†s,mlq and

â†i,mlq, respectively. Assuming for simplicity the factor-

ization of modes into their spatial (indices ml) and spec-
tral (q) parts, the state |ψ〉si is written as (for more de-
tails, see [13]):

|ψ〉si = t⊥f‖
∑

m,l,q

λ⊥mlλ
‖
q â

†
s,mlq â

†
i,mlq|vac〉; (2)

|vac〉 stands for the signal- and idler-field vacuum state.

The coefficients λ⊥ml (λ
‖
q) give the probability ampli-

tudes of having an ml-th (q-th) spatial (spectral) mode
in the generated state. Symbol t⊥ (f‖) denotes an
appropriate spatial (spectral) normalization constant.

The Schmidt-mode creation operators â†b,mlq occurring in

Eq. (2) are given as linear combinations of the monochro-
matic (frequency ωb) plane-wave (radial transverse wave-
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vector coordinates k⊥b and ϕb) mode creation operators

â†b(k
⊥
b , ϕb, ωb):

â†b,mlq =

∫ ∞

0

dk⊥b

∫ 2π

0

dϕb

∫ ∞

0

dωb tb,ml(k
⊥
b , ϕb)

× fb,q(ωb)â
†
b(k

⊥
b , ϕb, ωb), b = s, i. (3)

In Eq. (3), the Schmidt mode functions tb,ml and fb,q de-
fined in the beam’s transverse wave-vector plane [32, 33]
and the frequency domain [34], respectively, have been
used.
Modes in the pump field can be assigned to individual

pairs of the signal and idler Schmidt modes obtained at
the single photon-pair level. This results in mutually
independent modes’ triplets. They can be conveniently
used for rewriting the momentum operator Ĝint in the
approximative form:

Ĝav
int(z) = −ih̄K

∞

∑

m=−∞

∞
∑

l,q=0

âp,mlq(z)â
†
s,mlq(z)â

†
i,mlq(z)

+ h.c.; (4)

h̄ stands for the reduced Planck constant. A common
coupling constant K introduced in Eq. (4) includes mul-
tiplicative factors t⊥f‖ quantifying the strength of non-
linear interaction in the medium of length L and nor-
malization with respect to photon numbers (ξp); K =

t⊥f‖/(Lξp). The pump power Pp, its repetition rate f
and its central frequency ω0

p determine the overall pump-

field amplitude ξp in the form ξp =
√

Pp/(fh̄ω0
p). It is

assumed that the pump power Pp can be divided into
individual pump modes indexed by mlq linearly propor-

tionally to their squared Schmidt coefficients (λ⊥mlλ
‖
q)2.

This means that an initial classical (coherent) amplitude

AN
p,mlq(0) = λ⊥mlλ

‖
qξp is assigned to an (mlq)-th mode.

The Heisenberg equations derived from the momentum
operator Ĝav

int in Eq. (4) are written for individual modes’
triplets as follows:

dâs,mlq(z)

dz
= Kâp,mlq(z)â

†
i,mlq(z),

dâi,mlq(z)

dz
= Kâp,mlq(z)â

†
s,mlq(z),

dâp,mlq(z)

dz
= −Kâs,mlq(z)âi,mlq(z). (5)

The operator equations (5) are nonlinear. They can be
solved exactly only for the interacting fields with small
photon numbers invoking numerical approach. Here, we
find an approximative solution using the fact that the
pump field remains strong during the interaction. We
treat it classically and express its evolution along the
nonlinear medium using the solution of classical nonlin-
ear equations. We further pay attention to one typical
modes’ triplet and omit the indices mlq for simplicity.
We transform the Heisenberg operator equations (5) into

their classical analog written for fields’ amplitudes deter-
mined for the symmetric ordering of fields’ operators:

dAs(z)

dz
= KAp(z)Ai(z),

dAi(z)

dz
= KAp(z)As(z),

dAp(z)

dz
= −KAs(z)Ai(z). (6)

In the symmetric ordering, Ap(0) =
√

(AN
p )2(0) + 1/2

and As(0) = Ai(0) = 1/
√
2 for the initial vacuum signal-

and idler-field amplitudes.
As the signal and idler fields occur symmetrically in

PDC and they both begin the interaction in the vacuum
state, their classical amplitudes are equal, i.e. As(z) =
Ai(z). This together with the integral of motion A2

p(z)+

A2
s (z) = A2

p(0) + A2
s (0) ≡ A2

ps and assumption of real
amplitudes Ap, As and Ai and real coupling constant K
allows to solve Eqs. (6) analytically. In detail, the third
equation in (6) is transformed into a differential equation
for Ap(z) that can be solved by direct integration. The
integral of motion then provides the signal- and idler-field
amplitudes As(z) and Ai(z):

Ap(z) = Aps
Apcosh(KApsz)−Apssinh(KApsz)

Apscosh(KApsz)−Apsinh(KApsz)
, (7)

As(z) =
AsAps

Apscosh(KApsz)−Apsinh(KApsz)
; (8)

Ap ≡ Ap(0) and As ≡ As(0). The solution written in
Eqs. (7) and (8) has been obtained for the nonzero pump
field Ap(z). The pump field is completely depleted at

z = z0 for which Ap(z0) = As = 1/
√
2:

z0 =
1

2KAps
ln

[

1 +
2Aps

Aps +As

Ap −As

Aps −Ap

]

. (9)

At this point, the phases of the interacting fields change
such that the pump field begins to take its energy back
from the signal and idler fields. At the point z = 2z0
all energy is back in the pump field and the evolution
repeats. In the interval z0 ≤ z ≤ 2z0, the fields’ evolution
is again described by Eqs. (7) and (8) with the variable
z substituted by 2z0 − z.
After finding the classical solution we return back to

the operator equations (5). We assume the pump field in
the classical form described in Eq. (7). This generalizes
the usual parametric approximation in which the pump
field is treated as a constant. We call this approach as
the generalized parametric approximation. The Heisen-
berg equations for the signal- and idler-field annihilation
operators then form a linear system of operator equa-
tions:

dâs(z)

dz
= KAp(z)â

†
i (z),

dâi(z)

dz
= KAp(z)â

†
s(z). (10)
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The solution of Eqs. (10) can be found for an arbitrary
pump-field profile Ap(z) in the form generalizing that
found in the parametric approximation:

âs(z) = U(z)âs(0) + V (z)â†i (0),

âi(z) = U(z)âi(0) + V (z)â†s(0) (11)

and

U(z) = cosh[ϕ(z)], V (z) = sinh[ϕ(z)]; (12)

ϕ(z) =
∫ z

0 dz
′KAp(z

′). We have for the pump-field am-
plitude Ap(z) given in Eq. (7):

ϕ(z) = KApsz−ln

[

Aps +Ap

2Aps
+
Aps − Ap

2Aps
exp(2KApsz)

]

.

(13)
We note that ϕ(z) = KApsz in the usual parametric ap-
proximation. We also note that, similarly as the paramet-
ric approximation, the generalized parametric approxi-
mation does not conserve the energy during the nonlinear
interaction. In fact the energy in the signal (and idler)
field given by the solution (11) is lower than that de-
rived classically from Eq. (8). However, it can be shown
that the intensity auto- and cross-correlation functions
as well as numbers of modes are practically unaffected
by this drawback.
The solution (11) allows us to determine physical quan-

tities characterizing twin beams. Here, as an example, we
define suitable quantities in the frequency domain. The
definitions of temporal quantities as well as quantities in
the transverse wave-vector plane are analogous. They
can be found in [13].
The signal-field intensity spectrum ns,ω averaged over

the transverse modes is defined as follows:

ns,ω(ωs) = 〈â†s(ωs, L)âs(ωs, L)〉⊥
=

∑

ml

∑

q

|fs,q(ωs)|2V 2
mlq. (14)

Symbol 〈〉⊥ stands for quantum mechanical averaging
combined with averaging in the transverse wave-vector
plane. The number Ns of generated signal photons is
easily obtained by the formula

Ns =

∫ ∞

0

dωs ns,ω(ωs) =
∑

ml

∑

q

V 2
mlq . (15)

The averaged signal-field spectral intensity correlations
are described by the fourth-order correlation function
As,ω defined as:

As,ω(ωs, ω
′
s) = 〈N : ∆[â†s(ωs, L)âs(ωs, L)]

×∆[â†s(ω
′
s, L)âs(ω

′
s, L)] :〉⊥

=
∑

ml

∣

∣

∣

∣

∣

∑

q

f∗
s,q(ωs)fs,q(ω

′
s)V

2
mlq

∣

∣

∣

∣

∣

2

; (16)

symbol N :: means the normal ordering of fields’ opera-
tors.

Similarly, the spectral intensity cross-correlations be-
tween the signal and idler fields are described using the
following fourth-order correlation function:

Cω(ωs, ωi) = 〈N : ∆[â†s(ωs, L)âs(ωs, L)]

×∆[â†i (ωi, L)âi(ωi, L)] :〉⊥

=
∑

ml

∣

∣

∣

∣

∣

∑

q

fs,q(ωs)fi,q(ωi)UmlqVmlq

∣

∣

∣

∣

∣

2

.

(17)

We determine entanglement dimensionality K of the
twin beam [35, 36] according to the formula

K =

(

∑

mlq〈âs,mlg(L)âi,mlg(L)〉2
)2

∑

mlq〈âs,mlg(L)âi,mlg(L)〉4

=

(

∑

mlq U
2
mlqV

2
mlq

)2

∑

mlq U
4
mlqV

4
mlq

(18)

that arises after defining suitable photon-pair creation
and annihilation operators [37]. It quantifies the number
of paired modes found in a twin beam. We note that
formula (18) reduces to the usual Schmidt number [19] for
weak twin beams. We also note that several quantifiers
of entanglement dimensionality have been compared in
[13, 38, 39].

The number of paired modes effectively present in any
physical variable of the twin beam can be estimated by
the corresponding Fedorov ratio K∆ [40]. It is defined
as the ratio of the width ∆ns of the signal-field intensity
profile and the width ∆Cs of the corresponding intensity
cross-correlation function in a given variable, i.e.

K∆ =
∆ns

∆Cs
. (19)

In the following discussion, we consider a pump
field with Gaussian spectrum and Gaussian transverse
profile. Its positive-frequency electric-field amplitude

E
(+)
p (x, y, 0, t) in front of the crystal is expressed as fol-

lows:

E(+)
p (x, y, 0, t) =

√

Pp

ǫ0cf

√

2

π

1

wp
exp

[

−x
2 + y2

w2
p

]

×
√

√

2

π

1

τp
exp

[

− (1 + iap)t
2

τ2p

]

exp(−iω0
pt). (20)

In Eq. (20), wp gives the pump-beam radius, τp stands
for the pump-pulse duration and ap is the pump-pulse
chirp parameter. Symbol c denotes the speed of light in
vacuum.
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III. SPATIAL, SPECTRAL AND TEMPORAL

COHERENCE OF TWIN BEAMS

To demonstrate the behavior of twin beams when the
pump power Pp varies, we consider two BBO crystals
4-mm and 8-mm long both cut for non-collinear type-
I process (eoo) for the spectrally-degenerate interaction
pumped by the pulses at wavelength λp = 349 nm gen-
erated with the repetition rate f = 400 s−1. These
pulses are experimentally produced by the third har-
monics of the Nd:YLF laser operating at the wavelength
1.047 µm. Assuming the pump field at normal inci-
dence, the signal and idler fields at the central wave-
lengths λ0s = λ0i = 698 nm (ϑBBO = 36.3 deg) prop-
agate outside the crystal under the radial emission an-
gles ϑ0s = ϑ0i = 8.45 deg. The spectral and transverse
wave-vector Schmidt modes have been determined in [20]
and applied for the analysis of twin beams assuming un-
depleted pump beams in [13]. The analyzed configuration
is symmetric for the signal and idler fields. That is why
we further pay attention to only the signal-field proper-
ties, together with the joint signal-idler fields’ properties.
In this section, we first analyze the evolution of photon-
pair numbers and effective numbers of twin-beam modes
(Subsec. A). Then, we study spectral (Subsec. B), spa-
tial (Subsec. C) and temporal (Subsec. D) coherence of
the twin beams.

A. Photon-pair numbers, numbers of modes

The number Ns of emitted photon pairs naturally in-
creases with the increasing pump power Pp. Whereas
the increase is exponential for smaller values of power
Pp, this increase is gradually replaced by the linear one
for greater powers Pp (see Fig. 1). This change origi-
nates in the fact that the mean photon numbers of the
down-converted modes with the greatest Schmidt coef-
ficients λ, that have the initial fastest growth and thus
form the initial exponential growth, become saturated
and even loose their energy, due to pump depletion. The
initial fast exponential growth leads to the dominance
of the modes with the greatest Schmidt coefficients λ
over the other modes. This reduces the number K of
twin-beam modes (see Fig. 2). When this dominance is
lost at greater pump powers Pp due to pump depletion,
the number K of modes begins to increase for the pow-
ers Pp greater than a certain threshold power Pp,th. At
this power, the down-converted modes with the greatest
Schmidt coefficients λ begin to send their energy back to
the corresponding pump modes whereas the modes with
smaller Schmidt coefficients λ still take energy from their
pump modes. This assures the continuation of the in-
crease of the overall energy in the down-converted fields.

For a given crystal, the smaller the number K of modes
(depending on pump-beam parameters), the faster the
increase of the number Ns of emitted photon pairs with

FIG. 1: Mean numbers Ns of signal photons emitted from
4-mm (solid curves) and 8-mm (dashed curves) long crystals
as functions of pump power Pp for ∆λp = 1× 10−9 m (plain
curves), ∆λp = 7 × 10−10 m (curves with ∗), ∆λp = 5 ×
10−10 m (curves with △), and ∆λp = 3 × 10−10 m (curves
with ⋄); log denotes decimal logarithm; wp = 1× 10−3 m.

FIG. 2: Numbers K of twin-beam modes for 4-mm (solid
curves) and 8-mm (dashed curves) long crystals as they de-
pend on pump power Pp for ∆λp = 1×10−9 m (plain curves),
∆λp = 7×10−10 m (curves with ∗), ∆λp = 5×10−10 m (curves
with △), and ∆λp = 3×10−10 m (curves with ⋄); log denotes
decimal logarithm; wp = 1× 10−3 m.

the power Pp. This originates from the fact that when di-
viding the overall power Pp into individual pump modes
the pump powers of the individual modes are greater for
smaller numbers K of modes. As a consequence the non-
linear interaction inside a smaller number of individual
triplets is effectively more developed. This is documented
in Fig. 1 for the twin beams generated by pump pulses
with different spectral widths ∆λp. The analysis pre-
sented in [20] shows that, for the considered spectral
widths, the wider the spectral width ∆λp, the greater
the number K of modes and so the slower the increase
of the number Ns of emitted photon pairs. The compar-
ison of curves plotted in Fig. 1 for the 4-mm and 8-mm
long crystals reveals that the numbers Ns of emitted pho-
ton pairs obtained in the longer crystal are smaller than
those reached in the shorter crystal. This is given by the
fact that individual mode triplets interact longer in the
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8-mm long crystal and thus a greater number of down-
converted modes faces pump depletion. For comparison,
only around 1 % of the pump-pulse energy is transferred
to the down-converted fields of the 8-mm long crystal
for Pp ≈ 0.2 W, whereas around 8 % of the pump-pulse
energy occurs in the down-converted fields of the 4-mm
long crystal.
The curves in Fig. 2 show that the number K of modes

considered as a function of power Pp reaches minimum
for a certain threshold value Pp,th. The comparison of
curves in Figs. 1 and 2 reveals that this threshold power
Pp determines a boundary between the areas with ex-
ponential and linear growths of the twin-beam intensity.
Moreover, as discussed in the next subsection it also char-
acterizes the power at which maximal coherence of the
twin beam is reached. It is worth noting that the num-
ber K of modes of the 8-mm long crystal is smaller than
that of the 4-mm long crystal assuming the pump-beam
parameters fixed. This originates in more strict phase-
matching conditions of the longer crystal.

B. Spectral coherence

The number of modes present in a twin beam deter-
mines its coherence. As follows from the comparison
of curves in Figs. 3(a) and 4 giving the widths ∆Cs,ω

of spectral intensity cross-correlation function and num-
ber K∆

ω of spectral modes for different pump spectral
widths, the greater the number K∆

ω of spectral modes,
the narrower the width ∆Cs,ω of spectral intensity cross-
correlation function. This behavior stems from the prop-
erties of the spectral Schmidt modes. A q-th mode has
q − 1 minima in its intensity profile. Also, the larger
the mode index q, the more complex the phase profile of
the mode. The increasing power Pp prefers the modes
with small numbers q (and great values of the Schmidt
coefficients λmlq) which naturally leads to the broaden-
ing of the intensity spectral cross-correlation function.
When the threshold value Pr,th of the power is reached,
the number K∆

ω of spectral modes begins to increase,
modes with greater values of index q become more im-
portant and, as a consequence, the twin-beam spectral
coherence decreases. The pump spectral width ∆λp and
crystal length L are two critical parameters determining
the spectral coherence of twin beam. Decrease of the
pump spectral width ∆λp (until certain width is reached
[13, 32]) results in the decrease of the numberK∆

ω of spec-
tral modes, which leads to the growth of spectral coher-
ence and, hand in hand, to lower values of the threshold
power Pp,th.
The spectra of down-converted fields as well as their

intensity auto- and cross-correlation functions for the 8-
mm long crystal are narrower than those of the 4-mm
long crystal due to the more strict phase-matching con-
ditions along the z axis [compare the solid and dashed
curves in Fig. 3(a)]. The number K∆

ω of spectral modes
in the longer crystal is greater compared to the shorter

(a)

(b)

FIG. 3: Widths ∆Cs,ω of spectral intensity cross-correlation
functions (FWHM, full width at half maximum) as they de-
pend on pump power Pp for 4-mm (solid curves) and 8-mm
(dashed curves) long crystals for (a) ∆λp = 1 × 10−9 m
(plain curves), ∆λp = 7 × 10−10 m (curves with ∗), ∆λp =
5×10−10 m (curves with △), and ∆λp = 3×10−10 m (curves
with ⋄); wp = 1 × 10−3 m and (b) wp = 1 × 10−3 m (plain
curve), wp = 5×10−4 m (curve with ∗) and wp = 3×10−4 m
(curve with △); ∆λp = 1× 10−9 m.

FIG. 4: Numbers K∆
ω of spectral modes given by the Fedorov

ratio versus the pump power Pp for 4-mm (solid curves) and
8-mm (dashed curves) long crystals for ∆λp = 1 × 10−9 m
(plain curves), ∆λp = 7 × 10−10 m (curves with ∗), ∆λp =
5×10−10 m (curves with △), and ∆λp = 3×10−10 m (curves
with ⋄); wp = 1× 10−3 m.
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crystal under the same conditions (compare the solid and
dashed curves in Fig. 4). However, the overall numbers
of spatio-spectral modes of the longer crystal are smaller
(see Fig. 2) and so the threshold powers Pp,th determined
for the longer crystal are smaller. Also, the longer inter-
action length of the 8-mm long crystal and thus the more
intense energy transfer in this crystal contribute to the
smaller threshold powers Pp,th.

The pump-beam radius wp influences the spectral co-
herence only indirectly, through the number of modes.
The number of transverse modes decreases with the de-
creasing pump-beam radius wp (for details, see [20]). In-
dividual modes’ triplets then attain greater pump-field
energies and the effect of pump depletion occurs for
smaller powers Pp. As a consequence, the maxima in
the spectral coherence are reached for smaller threshold
powers Pp,th, as documented in Fig. 3(b). The maximal
attainable value of the width ∆Cs,ω of spectral intensity
cross-correlation function is practically not affected by
the pump-beam radius wp.

For the analyzed range of pump powers Pp, the in-
tensity auto- As,ω and cross-correlation Cs,ω functions
practically coincide [13]. Spectra of the down-converted
beams considered as functions of the power Pp behave
in the opposed way than the correlation functions, i.e.
they are becoming narrower with the increasing power
Pp until the threshold power Pp,th is reached. For greater
powers Pp they broaden. This behavior originates in the
fact that the intensity spectral mode profiles |fs,q(ω)|2
broaden with the increasing index q. As the modes with
small numbers q dominate in the area around the thresh-
old power Pp,th, the spectra are narrower there.

Spectral coherence of the twin beam is also affected
by the pump-pulse chirp parameter ap. In general, a
nonzero chirp parameter ap introduces additional phase
modulation to the two-photon spectral amplitude in the
direction perpendicular to the direction ωs + ωi = const.
This influences the Schmidt decomposition. If the pump-
field spectrum is sufficiently narrow (and enforces more
strict conditions for the nonlinear interaction compared
to the phase-matching condition along the z axis), the
more complex phase modulation caused by the chirp re-
sults in greater numbers K∆

ω of spectral modes. That
is why the twin-beam spectral coherence decreases with
the increasing chirp parameter ap and also the threshold
power Pp,th increases (see the solid curves in Fig. 5 ob-
tained for the pump-field spectrum 0.3 nm wide). On the
other hand, if the pump-field spectrum is broader such
that the phase-matching condition along the z axis causes
a larger phase modulation, interference of this modula-
tion with that coming from the pump-field chirp occurs.
This may result in the increase of spectral coherence, as
documented in Fig. 5 for the pump-field spectrum 0.7 nm
wide.

FIG. 5: Widths ∆Cs,ω of intensity cross-correlation functions
(FWHM) as they depend on pump power Pp for ∆λp = 3×
10−10 m (solid curves) and ∆λp = 7×10−10 m (dashed curves)
assuming ap = 0 (plain curves), ap = 0.5 (curves with ∗) and
ap = 1 (curves with △); wp = 1× 10−3 m, L = 4× 10−3 m.

C. Spatial coherence

Spatial coherence of the twin beam defined in the wave-
vector transverse plane (far field) behaves qualitatively in
the same way as the spectral coherence provided that we
consider the pump-beam radius wp instead of the pump-
field spectral width ∆λp. Coherence in the radial as
well as azimuthal directions of the transverse plane in-
creases with the decreasing pump-beam radius wp [see
Fig. 6(a) for the radial direction and Fig. 6(b) for the
azimuthal direction]. This behavior stems from the de-
crease of the number of Schmidt modes in the transverse
plane observed for the decreasing pump-beam radius wp

(for details, see [13]). Similarly as in the spectral domain,
this is accompanied by decreasing values of the thresh-
old power Pp,th. Contrary to the maximal widths ∆Cs,k

and ∆Cs,ϕ of the radial and azimuthal intensity cross-
correlation functions, respectively, the threshold powers
Pp,th depend also on the pump-field spectral width ∆λp.
As the number K of modes decreases with the decreas-
ing spectral width ∆λp, the threshold power Pp,th also
decreases.

It is worth noting that, in Fig. 6, the azimuthal widths
∆Cs,ϕ are approx. 7-times wider than the radial widths
∆Cs,k. This is caused by the strong influence of the
phase-matching condition along the z axis when deter-
mining the radial correlation functions. Despite this, the
influence of pump power Pp to the coherence is quite sim-
ilar in both cases. We note that the intensity auto- and
cross-correlation functions nearly coincide in both radial
and azimuthal directions for the analyzed range of powers
Pp.

The number of modes in the transverse plane is typi-
cally by several orders in magnitude larger than the num-
ber K∆

ω of spectral modes. On the other hand, the num-
ber of modes in the radial direction is usually of the same
order as the number of spectral modes. Moreover, their
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(a)

(b)

FIG. 6: (a) [(b)] Widths ∆Cs,k [∆Cs,ϕ] of radial [azimuthal]
transverse intensity cross-correlation functions (FWHM) as
they depend on pump power Pp for ∆λp = 1× 10−9 m, wp =
1× 10−3 m (plain solid curve), wp = 5× 10−4 m (solid curve
with ∗), wp = 3 × 10−4 m (solid curve with △) and wp =
1×10−3 m, ∆λp = 7×10−10 m (dashed curve with ∗), ∆λp =
3× 10−10 m (dashed curve with △); L = 4× 10−3 m.

profiles behave in the similar way as the profiles of the
spectral modes. That is why, we observe narrowing of
the emission ring with the increasing power Pp until the
threshold value Pp,th is reached. The ring then widens
with the increasing power Pp. Comparing the 4-mm and
8-mm long crystals, the number of radial modes is larger
in the shorter crystal whereas the number of azimuthal
modes is similar in both crystals.
We note that the Fourier transform of mode profiles in

the transverse wave-vector plane gives the Schmidt mode
profiles in the crystal output plane. These modes, how-
ever, have a specific structure analyzed in [13] that as-
sures practical independence of the intensity correlation
functions on the pump power Pp.

D. Temporal coherence

Temporal intensity auto- and cross-correlation func-
tions mutually differ. The intensity auto-correlation
functions As,t are in general narrower than their cross-
correlation counterparts Cs,t (see Fig. 7). Their behavior
with respect to the change of pump power Pp depends

FIG. 7: Widths ∆Cs,t (solid curves) and ∆As,t (dashed
curves) of temporal intensity auto- and cross-correlation func-
tions (FWHM) as they depend on pump power Pp for ∆λp =
3× 10−10 m (plain curves) and ∆λp = 1.2× 10−9 m (curves
with ∗); wp = 1× 10−3 m, L = 4× 10−3 m.

on the pump-field spectral width ∆λp. Provided that
the pump-field spectral width ∆λp is sufficiently small,
the auto- and cross-correlation functions behave in the
same way as their spectral counterparts. Both of them
exhibit their maxima at the threshold pump power Pp,th

determined in the spectral domain [compare the curves
in Figs. 7 and 3(a) for ∆λp = 3×10−10 m]. This behavior
can be explained in the same way as in the spectrum be-
cause the profiles of temporal modes are similar to those
of the spectral modes. We note that the Schmidt-mode
structure and the varying mean photon numbers of the
modes suppress the natural characteristic of the Fourier
transform that assigns longer pulses to narrower spectra.
However, when the pump-field spectral width ∆λp is

wider so that the nonlinear phase mismatch introduces
greater phase modulations in the two-photon spectral
amplitude, we observe decrease in the width ∆Cs,t of
intensity cross-correlation function for the pump pow-
ers around Pp,th (see the solid curve drawn for ∆λp =
1.2 × 10−9 m in Fig. 7). In this area, the twin beam is
composed of a reduced number of spectral modes that
have the greatest Schmidt coefficients λ and exhibit only
mild phase modulation. The strong phase spectral mod-
ulation described in a weak twin beam by the modes with
smaller Schmidt coefficients are suppressed thus allowing
shortening of the temporal cross-correlations. The inten-
sity auto-correlation function As,t is not sensitive to the
phase modulation and so it evolves with the pump power
Pp in the same manner as its spectral counterpart. Also,
the signal-field pulse duration shortens with the increas-
ing power Pp up to its threshold value Pp,th, where it
begins to lengthen.

IV. MULTIPLE COHERENCE MAXIMA

The origin of coherence maxima discussed above and
observed simultaneously in the spectrum (see Fig. 8) and
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FIG. 8: Width ∆Cs,ω of spectral intensity cross-correlation
functions (FWHM) as it depends on pump power Pp; ∆λp =
3× 10−10 m, wp = 1× 10−3 m, L = 4× 10−3 m.
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FIG. 9: (Color online) (a) Mean number ns,λ of signal photons
in modes with the Schmidt coefficients λ as they depend on
pump power Pp and (b) density ̺λ of modes revealed by the

Schmidt decomposition; nλ = 〈â†
s,mlq âs,mlq〉 for mlq such that

λmlλq = λ; parameters are given in the caption to Fig. 8.

radial and azimuthal directions in the wave-vector trans-
verse plane has been explained by the reduction of the
number of spatio-spectral twin-beam modes. This reduc-
tion is a consequence of different evolution of the mean
photon numbers in the down-converted modes belonging
to different modes’ triplets. The modes with the greatest
Schmidt coefficients λ take energy from the correspond-
ing pump modes faster and so they grow more rapidly.
That is why, they completely deplete their pump modes
for smaller powers Pp (keeping the crystal length fixed)
and reach their maximal mean photon numbers ns,λ [see
Fig. 9(a)]. For larger powers Pp, the down-converted
modes reach their maximal photon numbers inside the
crystal and they return certain part of their energy back
to their pump modes before leaving the crystal. For cer-
tain pump power depending on the triplet, the down-
converted modes of the appropriate triplet leave the crys-
tal in the vacuum state. Above this power, the triplet’s
evolution repeats from the beginning. As a consequence,
the modes with the greatest Schmidt coefficients λ again
reach their maximal mean photon numbers ns,λ for a suf-
ficiently high power Pp,th1. These maximal photon num-

FIG. 10: Spectral intensity cross-correlation functions
Cr

s,ω(ωs) ≡ Cs,ω(ωs, ω
0
i )/Cs,ω(ω

0
s , ω

0
i ) are plotted for Pp =

1 × 10−7 W (plain curve), Pp = 4 × 10−2 W (curve with ∗);
Pp = 6.1 × 10−1 W (curve with △), and Pp = 1.3 W (curve
with ⋄); parameters are given in the caption to Fig. 8.

bers are now considerably greater than those reached for
Pp,th as the incident power Pp is greater and the mode
structure is assumed independent on the pump power.
Owing to the same reason as discussed for the powers
around Pp,th, there again occur local maxima in the spec-
tral and spatial intensity correlation functions. As the
incident pump powers belonging to individual modes’
triplets are greater compared to those found around the
power Pp,th, the effect of modes’ number reduction is even
stronger and so even wider intensity correlation functions
are observed. However, the coherence properties in this
case are influenced also by another group of modes with
smaller Schmidt coefficients [see Fig. 9(a)]. These modes
have much lower mean photon numbers compared to
the modes with the greatest Schmidt coefficients on one
hand, on the other hand their number is much larger [see
the density ̺λ of modes plotted in Fig. 9(b)]. They form a
narrower peak in the intensity cross-correlation function
Cs,ω, on the top of a broader peak created by the modes
with the greatest Schmidt coefficients λ (see Fig. 10).
For the range of powers Pp investigated in Fig. 8, we
even observe the third threshold power Pp,th2. As three
different groups of modes coexist in the twin beam for
the powers around Pp,th2, the coherence peak is less pro-
nounced. Also, the profile of intensity cross-correlation
function Cs,ω is more complex. This behavior is illus-
trated in Fig. 10 where the profile of cross-correlation
function Cs,ω is drawn for the pump powers Pp ≈ 0 W,
Pp,th, Pp,th1, and Pp,th2.

V. MODEL WITH THE EXTENDED CRYSTAL

LENGTH

In the crystals like BBO in the considered type-I in-
teraction configuration there occurs walk-off of the inter-
acting fields due to anisotropy of the pump beam [32].
Owing to the walk-off, the modes’ triplets interacting at
the beginning of the crystal gradually loose their mutual
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FIG. 11: Widths ∆Cs,ω of spectral intensity cross-correlation
functions (FWHM) as they depend on pump power Pp for
∆λp = 1× 10−9 m (plain curve), ∆λp = 7× 10−10 m (curves
with ∗), ∆λp = 5 × 10−10 m (curves with △), and ∆λp =
3×10−10 m (curves with ⋄); wp = 5×10−4 m, L = 4×10−3 m,
Lext = 8× 10−3 m.

overlap in the transverse plane which effectively weak-
ens the nonlinear interaction. On the other hand, new
modes’ triplets can be seeded as the pump beam propa-
gates along the crystal. This poses the question about an
effective interaction length for individual modes’ triplets
and also about an appropriate crystal length that de-
termines the Schmidt-mode profiles. We note that the
shorter the crystal, the wider the spectral and radial spa-
tial modes. This affects coherence of the twin beam. The
developed model is not able to incorporate the influence
of crystal anisotropy directly. On the other hand, we may
consider two different crystal lengths in the model. The
first length L determines the extension of mode profiles
whereas the second length Lext characterizes an effective
length of the nonlinear interaction.
To reveal the main features of the twin beams in such

a model, we consider a crystal 8-mm long and twin-beam
modes appropriate for a 4-mm long crystal. Widths
∆Cs,ω of spectral intensity cross-correlation functions de-
pending on the pump power Pp are plotted in Fig. 11 for
several pump-field spectral widths ∆λp. The compari-
son of widths ∆Cs,ω drawn in Fig. 11 with those plotted
in Fig. 3(a) for the crystal 4-mm long reveals that the
maximal spectral widths ∆Cs,ω are approximately the
same for both cases. However, the threshold pump pow-
ers Pp,th are more than 4-times lower for the 8-mm long
crystal. This arises from the fact that the interaction
strength scales as L

√

Pp. In other words, a crystal two

times longer needs only one quarter of the incident power
to provide the same interaction. The vacuum contribu-
tions to the evolution of modes’ triplets even move the
threshold powers Pp,th to slightly lower values. For this
reason, we observe the second threshold powers Pp,th1 in
Fig. 11 for the pump powers Pp considerably lower than
in the case of the 4-mm long crystal.

VI. CONCLUSIONS

Using the spatio-spectral Schmidt dual signal and idler
modes and the corresponding pump modes, we have de-
veloped the model of intense parametric down-conversion
applicable in the regime with pump depletion. Con-
trary to the usual parametric approximation, the model
assumes a classical pump beam that undergoes deple-
tion during its propagation (the generalized parametric

approximation). Due to the pump depletion, the ini-
tial increase of spectral, temporal and transverse wave-
vector coherence on the pump-power axis is replaced by
a decrease. This occurs as a consequence of the back-
flow of energy from the down-converted modes into the
pump modes observed in the most strongly interacting
modes’ triplets (with the greatest Schmidt coefficients).
The change of twin-beam coherence reflects the relative
change of mean photon numbers in individual twin-beam
modes. The better the coherence the smaller the number
of well-populated modes and vice versa. The threshold
pump power at which the best coherence is reached has
been analyzed as it depends on the pump spectral width
and spatial radius. The relationship between the coher-
ence and the twin-beam mode structure predicts the ex-
istence of additional threshold pump powers at which the
local coherence functions reach their maxima. The curves
obtained for the 4-mm and 8-mm long BBO crystals in
the typical experimental configuration have provided a
deeper insight into the twin-beam properties useful, e.g.,
in interpreting the experimental results.
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