
Robust non-linear regression analysis: A greedy approach

employing kernels and application to image denoising

George Papageorgiou∗, Pantelis Bouboulis†and Sergios Theodoridis‡

January 5, 2016

Abstract

We consider the task of robust non-linear estimation in the presence of both bounded
noise and outliers. Assuming that the unknown non-linear function belongs to a Reproducing
Kernel Hilbert Space (RKHS), our goal is to accurately estimate the coefficients of the kernel
regression matrix. Due to the existence of outliers, common techniques such as the Kernel
Ridge Regression (KRR), or the Support Vector Regression (SVR) turn out to be inadequate.
Instead, we employ sparse modeling arguments to model and estimate the outliers, adopting a
greedy approach. In particular, the proposed robust scheme, i.e., Kernel Greedy Algorithm for
Robust Denoising (KGARD), is a modification of the classical Orthogonal Matching Pursuit
(OMP) algorithm. In a nutshell, the proposed scheme alternates between a KRR task and
an OMP-like selection step. Convergence properties as well as theoretical results concerning
the identification of the outliers are provided. Moreover, KGARD is compared against other
cutting edge methods (using toy examples) to demonstrate its performance and verify the
aforementioned theoretical results. Finally, the proposed robust estimation framework is
applied to the task of image denoising, showing that it can enhance the denoising process
significantly, when outliers are present.

1 Introduction

The problem of function estimation has attracted significant attention in the machine learning
community over the past decades. In this paper, we target the specific task of regression, which is
typically described as follows: given a data set of the form D = {(yi,xi)}Ni=1, we aim to estimate
the input-output relation between xi and yi, i.e., a function f , such that f(xi) is “close” to yi,
for all i. This is usually achieved by employing a loss function, i.e., a function C(xi, yi, f(xi)),
that measures the deviation between the observed values, yi, and the predicted values, f(xi),

and minimizing the so called Empirical Risk, i.e.
∑N
i=1 C(xi, yi, f(xi)). For example, in the

least squares regression, one adopts the squared error, i.e., C(xi, yi, f(xi)) := (yi − f(xi))
2

and
minimizes a quadratic function.

Naturally, the choice for f strongly depends on the underlying true model. For example,
assuming that our observations are generated via yi = xTi θ¯

+ vi, i = 1, ..., N , where vi’s are
random noise variables or y = Xθ

¯
+ v more compactly, it is reasonable to adopt a linear input-

output relation f(x) = xTθ aiming to estimate θ
¯
∈ RM . This is the case of linear ridge regression,

where the goal is to minimize L2(θ) := ‖y −Xθ‖22 + λ‖θ‖22, λ ≥ 0. In the particular case where
N < M , additional sparsity constraints on θ lead to the case of sparse modelling, which has gained
in popularity in the recent years. For example, one might choose to find the sparsest θ that keeps
the squared error low (i.e., minimize ‖θ‖0 subject to the constraint ‖Xθ−y‖22 ≤ ε) or modify the
ridge regression task to include an `1 norm regularization term (i.e., minimize the cost function
L1(θ) := ‖y −Xθ‖22 + λ‖θ‖1).

∗geopapag@di.uoa.gr
†panbouboulis@gmail.com
‡stheodor@di.uoa.gr

1

ar
X

iv
:1

60
1.

00
59

5v
1

 [
cs

.L
G

]
 4

 J
an

 2
01

6

In this paper, we assume that f belongs to a RKHS. These are inner product function spaces,
in which every function is reproduced by an associated (space defining) kernel; that is for every
x ∈ X , there exists κ(·,x) ∈ H, such that f(x) = 〈f, κ(·,x)〉H. This is the case that has been
addressed (amongst others) by two very popular and well-established methods which are commonly
referred to as the Kernel Ridge Regression (KRR) and the Support Vector Regression (SVR).

Another important issue that determines the quality of the estimation is the underlying noise
model. Undeniably, the aforementioned least squares methods are optimum for the linear regres-
sion task (in the maximum likelihood sense), in the presence of white Gaussian noise [1]. However,
this is not the case when outliers are present or when the noise distribution exhibits long tails;
this task is widely known as robust linear regression and has been thoroughly studied over the
years.

Initially, it should be pointed out that, in order to be able to handle this task, even in the
linear case, a few assumptions are necessary. First of all, the regression matrix should be full rank.
This is a condition required even for the non-robust case. In fact, if we let rank(X) = r < M ,
then the solution to the LS task is not unique [2, 3]. Hence, for the linear case, we should impose
N > M . The proposed methods for solving the task of linear robust estimation are divided into
two categories. The first one includes methods that penalize large residuals, while the second,
comprises methods where explicit outlier modelling is employed. The latter approach is quite
recent, whereas the first one has been developed during the 70’s. The primary representative
of the first approach is the family of weighted least squares (WLS) methods which uses weights
(weighting coefficients) in order to penalize large residuals. This method is also known as M-
estimator, with a large number of variations established over the years [4, 5, 6, 7, 8, 9, 10]. The
second approach employs sparsity arguments, while assuming that the noise vector v is decomposed
into two parts, a dense vector η of inlier noise and a sparse outlier one u, i.e., v = u + η. As a
result, sparsity constraints are only applied to vector u. Such methods are based on the so-called
`1 minimization techniques (LASSO formulation task) solvable by a variety of methods such as the
alternating direction method of multipliers (ADMM) [11, 12], sparse Bayesian learning techniques
[13, 14, 1] and greedy selection methods [3].

Although the problem of robust regression has been extensively studied for the linear case and
many algorithms have been established, the more general non-linear case employing kernels has
been addressed only recently [15, 16]. In this case, yi is assumed to be generated by

yi = f
¯
(xi) + vi, i = 1, ..., N, (1)

where vi are random noise variables which may contain outliers. The present paper focuses on
this task in the special case where the unknown function, f

¯
, is assumed to lie in an RKHS, H.

It should be noted that both SVR and KRR can be employed to address this problem, but the
presence of outliers reduces significantly their performance due to over-fitting, [17, 18]. Of course,
in SVR this effect is not as dominant as in typical KRR, due to the `1 loss that it is employed.
Hence, a more specific treatment is required in order to establish a robust estimator for the KRR
task.

Our proposed method adopts a model of the form y = f(x), where f ∈ H and, also, a
decomposition of the noise into two parts, the inlier vector η and the sparse outlier vector u, in a
way similar to the aforementioned robust linear regression methods. Then, it employs a two step
algorithmic procedure attempting to estimate both the outliers and also the original function f

¯
.

The algorithm alternates between a greedy method based on the popular Orthogonal Matching
Pursuit (OMP) [19, 20, 21], that selects the dominant outlier in each step, and a kernel ridge
regression task to update the estimate of f

¯
. Results regarding convergence as well as theoretical

properties of the recovery of the outlier’s support are also provided. Moreover, comparisons against
the previously published approaches based on the Bayesian framework and on the minimization
of the `1-norm for the sparse outlier vector are performed.

The rest of the paper is organized as follows. In section 2, the basic properties of RKHS and
greedy methods, under the sparsity-aware learning umbrella, are presented, and in section 3, the
problem is formulated and comparable state-of-the-art methods are reviewed. Next, in section

2

4 the proposed scheme is introduced and described in detail. Section 5 provides the theoretical
results, regarding the convergence of the scheme as well as the identification of the outliers. In
section 6, extended tests of the proposed scheme against other cutting edge methods are performed.
There, the efficiency of the proposed method in terms of both the achieved mean squared error
as well as the complexity is investigated. Finally, in section 7, the method is applied to the task
of robust denoising for images, in order to remove the mix of impulsive and Gaussian noise from
images.

Notation: Throughout this work, capital calligraphic letters are employed to denote sets,
e.g., S, where Sc denotes the complement of S. Small letters denote scalars, e.g., ε, while bold
capital letters denote matrices, e.g., X, bold lowercase letters are reserved for vectors, e.g., θ (each
vector is regarded as a column vector) and the symbol ·T denotes the transpose of the respective
matrix/vector. Also diag(a), where a is a vector, denotes the respective square diagonal matrix1,
while supp(a) denotes the support set of the vector a. The j−th column of matrix X is denoted
by xj and the element of the i−th row and j−th column of matrix X by xij . Moreover, the i−th
element of vector θ is denoted by θi. An arithmetic index in parenthesis, i.e., (k), k = 0, 1, . . . is
reserved to declare an iterative (algorithmic) process, e.g., on matrixX and vector r the iteratively
generated matrix and vector are denoted by X(k) and r(k), respectively. Following this rationale,
r(k),i is reserved for the i−th element of the iteratively generated vector r(k). The notation XS
denotes the matrix X restricted over the set S, i.e., the matrix that comprises the columns of X,
whose indices belong to the ordered index set S = {j1 < · · · < js}. Accordingly, the notation
uS denotes the elements of vector u, restricted over the set S ⊆ supp(u). Finally, the identity
matrix of dimension N will be denoted as IN where ej is its j−th column vector, the zero matrix
of dimension N × N , as ON , the vector of zero elements of appropriate dimension as 0 and the
columns of matrix IN restricted over the set S, as IS .

2 Preliminaries

2.1 Reproducing Kernel Hilbert Spaces

In this section, an overview of some of the basic properties of the RKHS is provided [22, 23, 24, 25].
A RKHS [26], is a Hilbert space H over a field F for which there exists a positive definite

function κ : X × X → F with the following two important properties:

• For every x ∈ X , κ(·,x) belongs to H and

• κ has the so called reproducing property, i.e., f(x) = 〈f, κ(·,x)〉H, for all f ∈ H, in particular
κ(x,y) = 〈κ(·,y), κ(·,x)〉H.

The Gram matrix K corresponding to the kernel κ, i.e., the matrix with elements κij := κ(xi,xj),
is positive definite for any selection of finite number of points x1,x2, . . . ,xN , N ∈ N∗. The
following popular theorem establishes that although a RKHS may have infinite dimension, the
solution of any regularized risk regression optimization task lies in the span of N specific kernels.

Theorem 1 (Representer Theorem). Denote by Ω : [0,+∞)→ R a strictly monotonic increasing
function, by X a nonempty set and by L : X × R2 → R ∪ {∞} an arbitrary loss function. Then
each minimizer f ∈ H of the regularized minimization problem:

min
f

{
N∑
i=1

L (xi, yi, f(xi)) + Ω (||f ||H)

}
,

admits a representation of the form f =
∑N
j=1 αjκ(·,xj).

1This matrix has the vector’s coefficients on its diagonal, while all other entries are equal to zero.

3

In many applications a bias term, c, is often included to the aforementioned expansion; in
other words, we assume that f admits the following representation:

f =

N∑
j=1

αjκ(·,xj) + c. (2)

The use of the bias factor is theoretically justified by the Semi-parametric Representer Theorem
[22, 1].

Although there are many kernels to choose from, in this paper the experiments are focused on
the real Gaussian radial basis function (RBF), i.e., κσ(x,x′) := exp

(
−‖x− x′‖2/σ2

)
, defined for

x,x′ ∈ RM , where σ, is a free positive parameter that defines the shape of the kernel function. In
the following, κ is adopted to denote the Gaussian RBF. An important property of this kernel is
presented in the following theorem.

Theorem 2 (Full Rank of Gaussian RBF Gram Matrix). Suppose that x1,x2, ...,xN ⊂ X ⊆ Rν
are distinct points and σ > 0. The matrix K given by

κij := exp(−||xi − xj ||
2

σ2
)

has full rank.

The significance of the theorem is that the points κ(·,x1), κ(·,x2), ..., κ(·,xN) ∈ H are linearly
independent, i.e. span the N -dimensional subspace of H [22].

2.2 Sparse Modeling and the Orthogonal Matching Pursuit (OMP)

Undeniably, sparsity-aware learning techniques is one among the most prominent fields in the
area of machine learning and signal processing and has gained considerable attention over the
last decade. Sparsity is the feature of a model that is represented via an economic form, i.e.,
one which contains as many zero elements as possible. The goal of obtaining sparse/economic
representations [27, 1], can be reached via various seemingly distinct directions, such as convex
optimization (based on `1 minimization), greedy selection techniques and non-convex optimization.
Amongst those, the present paper is focused on the greedy approach.

The core, for the greedy family of methods, is the Orthogonal Matching Pursuit (OMP) al-
gorithm [19, 20, 21]. The scheme is based on the classic Matching Pursuit method, which was
proposed for signal compression [28, 29, 30], although the method was already familiar to statis-
ticians. Apart from OMP, other variants also exist [31, 32, 33, 34, 35], although they fall out of
the scope of this paper.

Let A ∈ RN×M , with N < M , be full-rank matrix. Since A is an overcomplete dictionary, the
linear system of equations b = Ax has infinitely many solutions. The fact that no unique solution
exists, is reinforced when our observations are corrupted by additive noise η, i.e., assuming that
b = Ax+η. Thus, only additional constraints, imposed to the unknown vector, restrict the set of
all possible solutions. Hence, if we wish to acquire a sparse solution/estimate, the `0 (pseudo)-norm
should be employed. The OMP scheme attempts to solve the following minimization problem:

min
x
‖x‖0 s.t. ‖b−Ax‖2 ≤ ε, (3)

a task known as sparse denoising. Although (3) is a NP-Hard combinatorial problem, thus not
solvable in polynomial time, under certain assumptions [27, 1], the OMP algorithm (as other
methods too) succeeds to provide sufficiently good and simultaneously sparse solutions. The
algorithm sequentially selects columns of A that correspond to non-zero elements of the sparse
vector x. The scheme is presented in Algorithm 1.

Steps 6 and 8 are of great importance, since the proposed non-linear method, i.e., KGARD,
builds upon similar arguments. At the selection step (step 6), the method identifies the column

4

Algorithm 1 Orthogonal Matching Pursuit: OMP

1: procedure OMP(A, b, ε)
2: x̂← 0
3: r ← b−Ax̂ = b
4: S ← ∅
5: while ‖r‖2 > ε do

6: jk := arg maxj
|〈r,aj〉|
‖aj‖22

. Selection step.

7: S ← S ∪ {jk}
8: x̂ := arg minx ‖b−ASx‖22 . Least Squares solution step.
9: r ← b−Ax̂

10: Output: a sparse vector x̂.

of matrix A, which is more correlated with the residual up to this point. Then, the support set of
the active columns S (associated with indices of previously selected columns) is augmented by the
newly selected column and the Least Squares minimization task is performed (step 8), restricted
over the subspace that originates from the columns aj of A that belong to the set S, i.e., columns
of AS . At this point, we should emphasize, that once a column is selected at a particular step,
it cannot be selected again (in future steps), since its inner product with any future residual, i.e.,
〈r,aj〉, is zero.

3 Problem Formulation and Related Works

3.1 Robust Ridge Regression in RKHS

Assume that a specific RKHS H and the data set D = {(yi,xi)}Ni=1 are given, so that each
measurement yi is produced from xi, via

yi = f
¯
(xi) + u

¯i
+ ηi, i = 1, . . . , N (4)

where f
¯
∈ H, u

¯i
represents a possible outlier and ηi a bounded noise component. In a more

compact form, this can be cast as y = f
¯

+ u
¯

+ η, where f
¯

is the vector containing the values
f
¯
(xi) for all i = 1, . . . , N . As u

¯
represents the vector of the (unknown) outliers, it is reasonable

to assume that this is a sparse vector. Our goal is to estimate the input-output relation f
¯

from
the noisy observations of the data set D. This can be interpreted as the task of of simultaneously
estimating both a sparse vector u and as well as a function f ∈ H, that maintains a low squared
error for L(D, f,u) =

∑N
i=1 (yi − f(xi)− ui)2

. Moreover, motivated by the representer theorem,
we adopt the representation in (2), as a means to represent the solution for f . Under these
assumptions, equation (4) could be expressed in a compact form as

y = Kα
¯

+ c
¯
1 + u

¯
+ η = X(0)

(
α
¯
c
¯

)
+ v, (5)

where K is the kernel matrix, X(0) = [K 1] and v = u
¯

+ η is the total noise vector (inlier and
outlier). Accordingly, the squared error can be written, in terms of the corresponding estimates,
as

L(D,α, c,u) = ‖y −Ka− c1− u‖22,

and the respective task can be cast as:

min
u,a∈RN ,c∈R

‖u‖0
subject to ‖y −Ka− c1− u‖22 ≤ ε1,∥∥∥∥(ac

)∥∥∥∥2

2

≤ ε2,

(6)

5

for some ε1, ε2 > 0, where we have also included a constraint that keeps the norm of the vector
of the kernel expansion coefficients low (as an attempt to guard against overfitting). This can be
equivalently expressed using regularization terms as follows:

min
u,a∈RN ,c∈R

‖u‖0
subject to ‖y −Ka− c1− u‖22 + λ‖a‖22 + λc2 ≤ ε,

(7)

for some predefined parameters ε, λ > 0. An alternative regularization strategy, which is common
in the respective literature (based on KRR), is to include the norm of f , i.e., ‖f‖2H = aTKa,
instead of the norm of the coefficients’ vector, leading to the following task:

min
u,a∈RN ,c∈R

‖u‖0
subject to ‖y −Ka− c1− u‖22 + λaTKa ≤ ε.

(8)

3.2 Convex Relaxation: Refined Alternating Directions Method of Mul-
tipliers (RAM)

It is evident that the problems (7), (8) constitute non-convex optimization tasks. In order to
achieve stable solutions and mobilize the rich toolbox of convex optimization, many authors prefer
to consider an alternative convex task, which is closely related to the original minimization prob-
lem, using a convex relaxation technique. This can be achieved by substituting the `0 “norm” of
the sparse outlier vector u with the closest convex norm, i.e., the `1 norm. Thus, problem (8) can
be cast as:

min
u,f∈H

||u||1

s.t.

{
N∑
i=1

(yi − f(xi)− ui)2
+ λ||f ||2H

}
≤ ε,

(9)

for ε, λ > 0. Considering the linear representation f =
∑N
j=1 αjκ(·,xj) (no bias factor c was used

in [15]), the constraint task (9) is equivalent to

min
α,u

{
‖y −Kα− u‖22 + λαTKα+ µ||u||1

}
, (10)

for values of µ > 0 depending on values of ε > 0, where α is the vector of the kernel’s coeffi-
cients and u is the outlier vector [15]. The respective convex minimization form is known as the
(generalized) LASSO task [36, 37], which is solvable by a large variety of methods, e.g., using
the Alternating Direction Method of Multipliers (ADMM) or its efficient implementation, i.e.,
the so-called AM solver [15]. This scheme is further improved, by using a non-convex relaxation
technique that attempts to solve

min
α,u

{
‖y −Kα− u‖22 + λαTKα+ µ

N∑
i=1

log (|ui|+ δ)

}
,

for δ > 0 sufficiently small in order to avoid numerical instability. Since the additional regular-
ization term is now concave, the overall problem is non-convex. However, it can be replaced with
the local linear approximation of the logarithmic function via the use of the reweighted `1-norm
technique [38], leading to

[â(k), û(k)] := arg minα,u

{
‖y −Kα− u‖22 + λαTKα+ µ

N∑
i=1

w(k),i|ui|

}
, (11)

where the coordinates of w(k) are given by

w(k),i :=
(∣∣u(k−1),i

∣∣+ δ
)−1

, i = 1, ..., N. (12)

6

Algorithm 2 (Weighted) Alternating directions solver: WAM

1: procedure WAM(K, y, µ, λ, w)
2: û(0) ← 0
3: for k = 1, 2, ... do
4: α̂(k) ← [K + λIN]

−1 (
y − û(k−1)

)
5: r(k) ← y −Kα̂(k), û(k),i ← S

(
r(k),i,

wiµ
2

)
, i = 1, ...N

6: Output: α̂(k) and û(k) after k iterations.

Algorithm 3 Refined AM solver: RAM

1: procedure RAM(K, y, µ, λ, δ)
2:

[
α̂(0), û(0)

]
←WAM(K,y, µ, λ,1)

3: for k = 1, 2, ... do
4: w(k),i = (|û(k−1),i|+ δ)−1, i = 1, ..., N ,

5:
[
α̂(k), û(k)

]
←WAM(K,y, µ, λ,w(k))

6: Output: α̂(k) and û(k) after k iterations.

The Refined AM solver scheme is summarized in Algorithms 3 and 2, where S denotes the
soft-thresholding operator S(z, γ) := sign(z) · max(0, |z| − γ). It should also be noted that, the
original AM solver (an improved implementation of ADMM), could be obtained from Algorithm 2,
for weights equal to one, i.e., setting w = 1; the WAM solver is a more general scheme. Finally, the
scheme could be implemented more efficiently, by applying the Cholesky factorization (with cost
O(N2) after the factorization) instead of an inversion, since matrix [K+λIN] remains unchanged.
The aforementioned refinement step was shown to greatly improve the performance of the original
AM solver [15]. Moreover, in practice, more than 2 iterations do not offer significant improvements
on its performance. Furthermore, we should emphasize that the optimum parameters (λ∗, µ∗) to
be used with RAM (in terms of MSE), are not identical to the parameters of AM (λ, µ) in (10)
(WAM with w = 1). Thus, for µ∗ > µ (fluctuation of the step size), the convergence speed of
the RAM scheme is also improved. Finally, theoretical properties of the method indicate that
for small values of δ > 0, the method attempts to approximate the `0 norm of the sparse outlier
vector u.

3.3 Sparse Bayesian Learning: Robust Relevance Vector Machine (RB-
RVM)

Another kernel-based related method is via the Bayesian approach. The Sparse Bayesian learning
scheme, i.e., the Robust Bayesian-RVM (RB-RVM), is an RVM modified scheme that employees
the use of hyper-parameters to impose sparsity on the outlier estimates. [16, 39, 1].

Assuming that f admits the linear representation in (2), the authors suggest the reformulation
of (5), in the form y = Xz

¯
+ η, where X = [K 1 IN], z

¯
= (θ

¯
T ,u

¯
T)T and θ

¯
= (α

¯
T , c

¯
)T , which

is the vector of the coefficients to be estimated. Then, the joint posterior distribution of θ
¯

and u
¯

(assumed independent) is estimated via:

p(θ
¯
,u
¯
|y) =

p(θ
¯
)p(u

¯
)p(y|θ

¯
,u
¯

)

p(y)
,

where p(y|θ
¯
,u
¯

) = N (Xz
¯
, σ2IN) and assuming that the elements of inlier noise vector η belong

to a Gaussian distribution with variance σ2. Next, priors which ‘promote sparsity’ are assigned
to the vectors θ

¯
and u

¯
. To this end,

p(s|h) =

N∏
i=0

N (si|0, h−1)

7

holds for both vectors θ
¯

and u
¯

, with hyper-parameters β = [β, . . . , βN+1]T and δ = [δ1, . . . , δN]T ,
respectively, where each of the hyper-parameters follows a uniform distribution. The maximization
of p(y|β, δ, σ2) is performed by an EM algorithm, the parameters β̂, δ̂ and σ̂2 are estimated and
then used for computing the posterior covariance and mean given by

R =
(
σ−2XTX +A

)−1
and m = σ−2RXTy,

whereA = diag
(
β̂1, ..., β̂N+1, δ̂1, ..., δ̂N

)
. Finally, prediction is accomplished, using the covariance

and mean of the posterior distribution, for the parameter part θ
¯

of z
¯
, i.e., Rθ

¯
= R{1:N+1,1:N+1}

and mθ
¯

= m{1:N+1}. The difference of the scheme, related to the classic RVM formulation, is
that instead of inferring just the parameter vector θ

¯
to the RVM algorithm, it infers the joint

parameter-outlier vector z
¯
. This is accomplished by replacing the matrix [K 1] with the matrix

[K 1 IN].

4 Kernel Greedy Algorithm for Robust Denoising (KGARD)

4.1 Motivation and Proposed Scheme

Our proposed scheme, alternates between a regularized Least Squares step and an OMP selection
step based on the residual. It is well known that raw residuals can fail to detect outliers at leverage
points; this is also known as swamping and masking of the outliers, [4]. In [40], for the linear case
of the robust regression task, it is shown that the method successfully identifies all possible outliers
under sufficient conditions (bounds). Our analysis there is based on the smallest principal angle
between the regression subspace and all possible outlier subspaces. In practise, this condition
eliminates occurrences of leverage points. However, such a condition cannot be applied to the
non-linear case, which is our focus in the current manuscript. To this end the following discussion
is of interest.

The i-th residual for the (non regularized) Least Squares step according to the model in (5)
and regardless of the statistics of the joint noise vector v, is written as

ri = (1− hii)yi −
N∑
j=1
j 6=i

hijyj , (13)

whereH = X(0)(X
T
(0)X(0))

−1XT
(0) is the hat matrix, [4]. From (13), it is evident that the diagonal

of the hat matrix (with values between 1/N and 1) contains extremely useful information. More
importantly, it characterizes whether or not an outlier in the observations is detectable via the
Least Squares solution residual. If hii tends to 1, the evaluation can be misleading. To this end,
in the the chapter dealing with the asymptotics of robust regression estimates in [4], the diagonal
elements of the hat matrix H are assumed to be uniformly small, i.e., max1≤i≤N hii = h << 1.
Furthermore, by applying the SVD decomposition of matrix X(0), i.e., X(0) = QSV T , we notice
that H = QQT . Thus, it seems natural that such an assumption could also be adopted for the
non-linear case. However, since at the first step (and also at every next step) of the non-linear
task a regularized Least Squares task is solved the H matrix is replaced by

H̃ = X(0)(X
T
(0)X(0) + λIN+1)−1XT

(0) = QGQT , (14)

where G is a diagonal matrix with elements gii =
σ2
i

σ2
i +λ

, λ > 0 is the regularization parameter and

σi the i−th singular value of the matrix X(0). Thus, this leads to an expression similar to (13),

simply by replacing matrix H, by H̃. Hence, it is a matter of simple manipulations to establish
from (14), for the diagonal elements of the new hat matrix, that it satisfies

h̃ii =
σ2
i

σ2
i + λ

hii. (15)

8

Equation (15) is of great importance, since it guarantees that h̃ii < hii for any λ > 0. Furthermore,
as λ → 0 the Least Squares solution residual tends to become more sensitive to the correct
detection of an outlier, while as λ → ∞ then h̃ii → 0 and thus occurrences of leverage points
tend to disappear. In simple words, the regularization performed on the specific task guards the
method against occurrences of leverage points. Of course, this fact alone does not guarantee that
one could safely detect an outlier via the residual. This is due to the following two reasons: a)
the outliers values could be too small (engaging with the inlier noise) or b) the fraction of outliers
contaminating the data could be enormously large; in such cases the summation term in (13)
could easily be the dominant one. Based on the previous discussion, for the rest of the paper,
we adopt the assumptions that the outliers are relatively few (the vector u

¯
is sparse) and also

that the outlier values are (relatively) large. From a practical point of view, the latter assumption
is natural, since we want to detect relatively large values of outlier noise. The first assumption
is, also, in line with the use of the greedy approach. It is well established by now that greedy
techniques work well for relatively small sparsity levels. These assumptions are also verified by
the obtained experimental results.

In the following, we build upon the two formulations (7) and (8), that attempt (and indeed
succeed) to solve the robust least squares task. Obviously, the difference lies solely on the reg-
ularization term. In the first approach, the regularization is performed using the `2-norm of
the unkown kernel parameters (which is a standard regularization technique in linear methods).
In contrast, in the alternative formulation we perform the regularization via the H-norm of f .
The reason for this modification was the improved performance obtained in practice via the first
approach, as it will be demonstrated next.

Since both tasks in (7) and (8) are known to be NP-hard, a straight-forward computation of
a solution seems impossible. However, under certain assumptions, greedy-based techniques often
manage to provide accurate solutions to `0-norm minimization tasks, which are also guaranteed to
be close to the optimal solution. The proposed KGARD algorithm, which is based on a modifica-
tion of the popular Orthogonal Matching Pursuit (OMP), has been adapted to both formulations,
i.e., (7) and (8).

First, one should notice that, the quadratic inequality constraint could also be written in a
more compact form as follows:

J(z) = ‖y −Xz‖22 + λzTBz ≤ ε, (16)

where

X =
[
K 1 IN

]
, z =

αc
u

 , (17)

and for the choice of matrix B either one of the following matrices could be used,

B =

 IN 0 ON
0T 1 0T

ON 0 ON

 or

K 0 ON
0T 0 0T

ON 0 ON

 , (18)

depending on whether the model (7) or (8) is adopted, respectively.
The proposed method, as presented in Algorithm 4, attempts to solve the task (7) or (8),

via a sparse greedy-based approach. The algorithm alternates between an LS task and a column
selection step, that enlarges the solution subspace at each step, in order to minimize the residual
error. The scheme shares resemblances to the OMP algorithm. Its main differences, are: (a) the
solution of a regularized LS task at each iteration (instead of a simple LS task), i.e.,

min
z
Jk(z) = min

z

{
‖y −XSkz‖22 + λzTBSkz

}
, (19)

and (b) the use of a specific initialization on the solution and the residual. These differences
lead to a completely distinctive performance analysis for the method. The scheme is specified
best, with the use of subsets, corresponding to a set of active and inactive columns, for any given

9

Algorithm 4 Kernel Greedy Algorithm for Robust Denoising: KGARD

1: procedure KGARD(K, y, λ, ε)
2: k ← 0
3: S0 ← {1, 2, ..., N + 1}, Sc0 ← {N + 2, ..., 2N + 1}
4: ẑ(0) ←

(
XT
S0XS0 + λBS0

)−1
XT
S0y . Initial reg. least squares solution step.

5: r(0) ← y −XS0 ẑ(0)

6: while ‖r(k−1)‖2 > ε do
7: k ← k + 1
8: jk ← arg maxj∈S̃c

k
|r(k−1),j | . Selection step (S̃ck is defined in (20)).

9: Sk ← Sk ∪ {jk +N + 1}, Sck ← Sck − {jk +N + 1}
10: ẑ(k) ←

(
XT
SkXSk + λBSk

)−1
XT
Sky . Reg. Least squares solution step.

11: r(k) ← y −XSk ẑ(k)

12: Output: ẑ(k) =
(
α̂T(k), ĉ(k), û

T
(k)

)T
after k iterations.

matrix. In particular, the 2N + 1 column vectors of the matrices X and B are divided into two
complementary subsets: the active set, Sk, which contains the indices of the active columns of the
matrix at step k, and the inactive set, Sck, which contains the remaining ones, i.e., those that do
not participate in the representation. Thus, XSk and BSk denote the column vectors of matrices
X and B, respectively, restricted over the subset Sk. Moreover, we define the set of indices

S̃ck := {i−N − 1| i ∈ Sck} , (20)

which is very helpfull for the description of the proposed method. While the set Sck refers to the

columns of the augmented matrix X, the set S̃ck refers to the columns of the identity matrix (the

last part of matrixX), i.e., matrix IN . In other words, S̃ck originates by subtracting the value N+1
from each one of the elements of Sck. Initially, only the first N + 1 columns of matrices X and B,
have been activated. Thus, k = 0, leads to the initialization of the active set S0 = {1, 2, . . . , N+1}
with the corresponding matrices:

XS0 = [K 1],

and

BS0 = IN+1 or

[
K 0
0T 0

]
,

depending on the model selection, i.e., (7) or (8) respectively. Hence, the solution to the initial
LS problem, is given by

ẑ(0) := arg minz{J0(z)} =
(
XT
S0XS0 + λBS0

)−1
XT
S0y.

Next, the method computes the residual r(0) = y − XS0 ẑ(0) and identifies an outlier2, as the

largest value of the residual vector. The corresponding index, say j1 ∈ S̃ck, is added into the set
of active columns, i.e., S1 = S0 ∪ {jk +N + 1}. Thus, the matrix XS0 is augmented by a column,
drawn from matrix IN , forming matrix XS1 . Accordingly, the matrix BS0 is augmented by a zero
row and a zero column, forming BS1 . The new LS task is solved again (using matrices XS1 , BS1)
and a new residual r(1) is computed. The process is repeated, until the residual drops below a
predefined threshold.

The gains of the robust estimation (with KGARD) over the standard KRR task are demon-
strated in the following pilot experiment. We consider our input data as 400 equidistant points
over the interval [0, 1) and generate our uncorrupted data with a non-linear function f

¯
∈ H as

a (sparse) linear combination of Gaussian kernels with σ = 0.1 centered at a small number (i.e.,
8 − 35) of those points (randomly selected). Next, the data is separated into two subsets, the

2If outliers are not present the algorithm terminates and no outlier estimate exists in the solution ẑ(0).

10

0 50 100 150 200
−80

−60

−40

−20

0

20

40

60

80

(a) Noisy data

0 50 100 150 200
−40

−30

−20

−10

0

10

20

30

40

(b) KRR

0 50 100 150 200
−40

−30

−20

−10

0

10

20

30

40

(c) KGARD

Figure 1: The significance of robust estimation: (a) Data corrupted by both inlier and 10% of
outlier noise. (b) The black and the red dashed lines, correspond to the uncorrupted data and the
non-robust estimation performed, respectively, over the training set with MSEtr = 10.79. (c) The
black and the green dashed lines, correspond to the uncorrupted data and the robust estimation
performed with KGARD, respectively, over the training set with MSEtr = 1.21.

training and the validation (testing) subset. The training subset consists of the 200 odd indexed
points of the entire set (first, third, e.t.c.) and the validation subset includes the remaining ones
(even indices). The noisy data, emerge from (4), where η corresponds to white Gaussian noise with
σ = 4 and u

¯i
to outlier values ±40 at a fraction of 10% (uniformly distributed over the support

set). Finally, the MSE is measured over 1000 “Monte Carlo” runs (independent experiments) for
both the training and the validation set (more details on the experiment can be found in section
6.2).

In Figure 1(a), we have plotted the noisy data (blue dots) of the training set (for a specific
simulation), which is generated via (4). The red dashed line in Figure 1(b) corresponds to the
estimation performed by a simple KRR task; the disadvantage of not performing robust estimation
is clear. On the other hand, in Figure 1(c), the advantages of the robust estimation performed
with KGARD are depicted (for either choice of matrix B); it is evident that, the estimation has
not been affected by the presence of outliers. Although, both approaches, (7) and (8), are suitable
for dealing with the sparse minimization task, in practise the selection of (7) proves to be better
choice. In order to justify our claim, we performed the following evaluation. The MSE attained via
the H-norm regularization, is MSE = 1.35 for both the training and the validation set. However,

11

when performing the estimation with the `2-norm regularization, the respective value for both the
training and the validation set is reduced to MSE = 1.21; that is, the performance is improved
by 10.4%. To this end, in the future, the model (7) is adopted and thus the respective B matrix
is used. Finally, it should be noted that all λ and ε parameters have been optimized accordingly.

Remark 1. In order to simplify the notation, in the next sections, we adopt X(k) and B(k) to
refer to the matrices XSk and BSk at the k step.

Remark 2. Once a column has been selected at the k step, it cannot be selected again in any
subsequent step, since the corresponding residual coordinate is zero. In other words, the algorithm
always selects a column from the last part of X, i.e., matrix IN , that is not included in Sk.

4.2 Efficient Implementations

Since the outliers often comprise a small fraction of the data set, i.e., k << N , this leads to a
fast implementation time for OMP-like schemes such as KGARD. Initially, the inversion of matrix
XT

(0)X(0) +λB(0) plus the multiplication of XT
(0)y, requires O

(
(N + 1)3

)
flops. At each one of the

subsequent steps, the required complexity is O
(
(N + k + 1)3

)
, while the total cost for the method

is O
(
(N + 1)3(k + 1) + (5/2)N2k2 + (4/3)Nk3 + k4/4

)
, which is acceptable, since k << N is

assumed. However, the complexity of the method could be further reduced, since a large part of
the inverted matrix remains unchanged. To this end, several methods could be employed, e.g.,
[41].

The first technique, which has been applied to the proposed scheme, is the matrix inversion
lemma (MIL). The initial computational cost requirement is cubic, due to the inversion of the
matrix

M(0) := XT
(0)X(0) + λB(0) =

[
KTK + λIN KT1

1TK N + λ

]
. (21)

In the subsequent steps, the column vector ejk is selected from matrix IN and the new matrix
needs to be inverted. However, with the application of MIL, the inversion at each step is avoided.
Instead, we compute M(k) and its inverse recursively, i.e.,

M(k) :=

[
M(k−1) XT

(k−1)ejk
eTjkX(k−1) 1

]
.

Thus, the required operations are O
(
(N + 1 + k)2

)
per iteration, with a total cost of

O
(
2N3 + 2kN2 + k3/3 + (3/2)k2N

)
.

An alternative technique, which is even more efficient and is basically used throughout this
paper, is the Cholesky decomposition for matrix M(k). This is summarized in the following steps:

• Replace the initial reg. least squares solution step 4 of algorithm 4, with:

Factorization step: M(0) = L(0)L
T
(0)

Solve L(0)L
T
(0)z = XT

(0)y using:

– forward substitution L(0)q = XT
(0)y

– backward substitution LT(0)z = q

Complexity: O
(
(N + 1)3/3 + (N + 1)2

)
and the regularized Least squares solution step 10 of algorithm 4, with:

Compute d such that: L(k−1)d = XT
(k−1)ejk

Compute: b =
√

1− ||d||22
Matrix Update: L(k) =

[
L(k−1) 0
dT b

]

12

Solve L(k)L
T
(k)z = XT

(k)y using:

– forward substitution L(k)p = XT
(k)y

– backward substitution LT(k)z = p

Complexity: O
(
(9/2)N2 + 5Nk + (3/2)k2

)
per iteration.

Employing the Cholseky decomposition plus the update step leads to a reduction of the total
computational cost to O

(
(N + 1)3/3 + (N + 1)2 + k3/2 + (5/2)Nk2

)
, which is the faster imple-

mentation for this problem (recall that k << N).

4.3 Further Improvements on KGARD’s Performance

In order to simplify the theoretical analysis and reduce the corresponding equations, the proposed
algorithm employs the same regularization parameter for all kernel coefficients. However, one may
employ a more general scheme as follows:

min
u,a∈RN ,c∈R

‖u‖0
subject to ‖y −Ka− c1− u‖22 + ‖Ψa‖22 + λc2 ≤ ε,

(22)

where Ψ is a more general regularization matrix (Tikhonov matrix). For example, as the accuracy
of kernel based methods usually drops near the border of the input domain, it is reasonable to
increase the regularization effect at these points. This can be easily implemented by employing
a diagonal matrix with positive elements on the diagonal and increase the regularization factors
that correspond to the points near the border. This is demonstrated in the experimental section
6.

5 Theoretical Analysis

In the current section, we study the theoretical properties of the proposed robust kernel regression
method, i.e., KGARD. Firstly, we establish that the method always converges in finite time and
that the reconstruction error of the method is strictly decreasing. Next, we provide the necessary
conditions so that the proposed method succeeds in identifying first the locations of all the outliers,
for the case where only outliers exist in the noise. The derived theoretical conditions for the second
part (i.e., the outlier identification) are rather tight. However, as demonstrated in the experiments,
the method achieves to recover the correct support of the sparse outlier vector in many cases where
the theoretical result doesn’t hold. This leads to the conclusion that the provided conditions can
be loosen up significantly in the future. Moreover, in practice, where inlier noise also exists, the
method succeeds to correctly identify the majority of the outliers. The reason that, the analysis
is carried out for the case where inlier noise is not present, is due to the fact that the analysis gets
highly involved. The absence of the inlier noise makes the analysis easier and it highlights some
theoretical aspects on why the method works. It must be emphasized that, such a theoretical
analysis is carried out for the first time and it is absent in the previously published works.

5.1 Convergence Analysis

Our main focus in this section is to examine some important properties of the proposed algorithmic
scheme. Firstly, we discuss the convergence of the algorithm. In particular, it is easy to check
that the proposed algorithm will always converge in finite time. Indeed, assuming the worst case
scenario, where the algorithm continues until all columns of IN are selected, we can easily see that
the norm of the residual vector will eventually drop below ε. Of course, this is something that
occurs in the case where the parameter ε is set extremely low. As a consequence, the procedure will
continue and model all noise samples (even those originating from a Gaussian source) as impulses,
filling up the vector u and producing a residual vector equal to 0. Obviously, if ε is carefully tuned

13

and the outliers are sufficiently sparse, the algorithm will stop well before that. Hence, sensible
tuning of ε should be applied.

Moreover, note that, for all ε ≥ 0, there exists z such that Jk(z) ≤ ε. This implies that
the feasible set of (7) is always nonempty3. It is straightforward to prove that the set of normal
equations, obtained from the minimization of (19), at step k, is

(XT
(k)X(k) + λB(k))z = XT

(k)y,

where (XT
(k)X(k) + λB(k)) is invertible, i.e., (19) has a unique minimum, for all k.

Lemma 1. The matrix M(k) := XT
(k)X(k) + λB(k) is (strictly) positive definite, hence invertible.

Proof. Consider a non-zero vector z ∈ R2N+1 so that z =
(
αT , β,γT

)T
is decomposed such that

α ∈ RN , β ∈ R and γ ∈ Rk. Then it is easy to show that

zTM(k)z = ‖Kα+ β1 + ISkγ‖
2
2 + λ ‖α‖22 + λβ2 > 0,

which implies that M(k) is a (strictly) positive definite matrix.

Alternatively, one could express (19) as follows4:

minz Jk(z) =

∥∥∥∥(y0
)
−D(k)z

∥∥∥∥2

2

, (23)

where D(k) =

[
X(k)√
λB(k)

]
. Problem (23) has a unique solution, if and only if the nullspaces of X(k)

and B(k) intersect only trivially, i.e., N (X(k))∩N (B(k)) = {0} [42, 43]. Hence, M(k) is (strictly)
positive definite, as the columns of D(k) are linearly independent, and the minimizer z∗ ∈ R2N+1

of (19), is unique [2].
Furthermore, similarly to the discussion in Section 3, an equivalent formulation for (19) is

min
z
||y −Xz||22, s.t. ||Bz||2 ≤ δ, (24)

for some δ > 0. In (24), the regularization term is replaced by a quadratic constraint. Equivalence
between (19) and (24) has been well studied and established [44]. The reason for resorting to the
latter formulation is to be used for the proof of the following lemma.

Lemma 2. The norm of the residual for KGARD is strictly decreasing.

Proof. Recall that during initialization, KGARD sets S0 to include only the first N+1 columns of
matrices X, B and let ẑ(0) denote the initial solution of (24) and r(0) = y−X(0)ẑ(0) be the initial
residual. Since our goal is to remove the unknown/unwanted additive noise, it is expected that
y /∈ R(X(0)) (the range of the matrix), regardless of the statistics of the additive noise (Gaussian,
impulse or both). Suppose, now, that the `2 norm of the residual r(0) is below our threshold
parameter ε. In this case, the method is forced to stop; either no outlying values are identified or
the threshold parameter is tuned extremely high. Nevertheless, the case of greater importance,
is when outliers are present; the algorithm continues expanding the set of active columns with
columns from the identity matrix and thus a sparse outlier vector is generated.

At each subsequent iteration, k, the algorithm selects an index from the set Sck−1 of inactive
columns from matrix X. Then, Sk−1 is enlarged by the selected index (say jk) and the matrix
X(k−1) is augmented by the column vector ejk forming Sk and X(k), respectively. Finally, the

solution ẑ(k) ∈ RN+k+1 and the residual r(k) = y − X(k)ẑ(k) are computed, respectively, by

3For example, if we select z =
(
0T , 0,yT

)T
, then Jk(z) = 0.

4Notice that B is a projection matrix (this holds only for the regularization performed with the `2 norm).

14

solving (24) (step 10 of the algorithm). At k + 1 step, the process is repeated and the matrices
are augmented. At this stage we have,

X(k+1) = [X(0) ej1 · · · ejk ejk+1
] = [X(k) ejk+1

].

Now, let ẑ(k+1) ∈ RN+k+2 be the unique minimizer of Lk+1(z) = ||y − X(k+1)z||22 subject to
the constraint ‖B(k+1)z‖2 ≤ δ, i.e., the minimization of (24) at the k + 1 step. Also let z(k+1) =
(ẑT(k), r(k),jk+1

)T . Observe that z(k+1) belongs to the feasible set defined by the inequality constraint

of (24) at the current step5, and hence Lk+1(ẑ(k+1)) ≤ Lk+1(z(k+1)). Moreover, we have that

Lk+1(z(k+1)) =

∥∥∥∥y − [X(k) ejk+1

]
·
(

ẑ(k)

r(k),jk+1

) ∥∥∥∥2

2

=
∥∥y − X(k)ẑ(k) − r(k),jk+1

ejk+1

∥∥2

2

=
∥∥r(k) − r(k),jk+1

ejk+1

∥∥2

2
<
∥∥r(k)

∥∥2

2
, (25)

where the last strict inequality is due to the fact that |r(k),jk+1
| > 0 (if r(k),jk+1

= 0, then r(k)

is a zero vector, since its maximum value is 0 and the algorithm should have been terminated at
iteration k). Thus, we conclude that

‖r(k+1)‖22 = Lk+1(ẑ(k+1)) ≤ Lk+1(z(k+1)) < ‖r(k)‖22,

which proves the claim.

Remark 3. It should be noted that, despite the fact that the error is strictly decreasing, there
are no theoretical guarantees on the accuracy of the approximation. In other words, we cannot be
sure whether our solution is good or bad, even for the case where only outliers exist in the noise.
However, in practise, extended experimentation have shown that the approximation is fairly good,
even in the existence of both inlier and outlier noise.

5.2 Identification of the Outliers for the Noiseless Case

The following theorem establishes a bound on the largest singular value of matrix X0, which
guarantees that the method first identifies the correct locations of all the outliers, for the case
where only outliers exist in the noise. However, since the ε parameter controls the number of
iterations, for which the method identifies an outlier, it is not guaranteed that it will stop, once
all the outliers are identified, unless the correct value is somehow given. Thus, it is possible that
a few other locations, that do not correspond to outliers, are also identified. Notable is also the
fact that, such a result has never been established before by other comparative methods.

Theorem 3. Let K be a full rank, square, real valued matrix. Suppose, that

y = [K 1]

(
α
¯
c
¯

)
︸ ︷︷ ︸
θ
¯

+u
¯
,

where u
¯

is a sparse (outlier) vector. KGARD is guaranteed to identify first the correct locations
of all the outliers6, if the maximum singular value of matrix X(0) := [K 1], satisfies:

σM (X(0)) < γ
√
λ, (26)

where

γ =

√
min |u

¯
| −
√

2λ||θ
¯
||2

2||u
¯
||2 −min |u

¯
|+
√

2λ||θ
¯
||2
, (27)

5Geometrically the feasible set remains the same, while matrix B is augmented by zero elements at each step.
6However, the theorem does not guarantee that only the locations of the outliers will be identified. If the value

of ε is too small, then KGARD will next identify locations that do not correspond to true outlier indices.

15

min |u
¯
| is the smallest absolute value of the sparse vector over the non-zero coordinates and λ > 0

is a sufficiently large7 regularization parameter for KGARD.

The proof is presented in the Appendix section.
Careful tuning of the ε parameter seems to play an important role regarding the performance of

KGARD. This is the user-defined parameter, that controls the number of iterations for the method
(thus the convergence speed) and also the sparsity for the outlier estimate vector. Assuming that
the ε value is set to a relatively small value, the algorithm will first select the correct locations
of the outliers and then continue until all columns of IN are selected (in such case k = N is the
maximum number of iterations for KGARD). Consequently, we can easily see that the norm of the
residual vector will eventually drop below ε > 0 (and if all columns are selected r(k) = 0). Simply
stated, the procedure will continue and model other samples (not originating from an outlier noise
source) as outliers filling up the outlier estimate vector û, which will no longer be sparse. On the
other hand, if ε is set to relatively large values, the algorithm will stop within a few only iterations,
which leads to the identification of only a few of the true outliers in the dataset. Hence, sensible
tuning of ε should be applied. Finally, it should be stated that the algorithm is not very sensitive
to the choice of ε, i.e., small changes in its value do not affect much the sparsity level of the outlier
estimate.

Remark 4. The theorem does not guarantee that only the locations of the true outliers will be
identified. If the value of is too small, then KGARD once it identifies the location of the true
outliers, it will next identify locations that do not correspond to outlier indices.

6 Experiments

For the entire section of experiments, the Gaussian (RBF) kernel is employed and all results
are averaged over 1000 “Monte Carlo” runs (independent simulations). At each experiment, the
parameters are optimized (via cross-validation) and the respective parameter values are given (for
each method), so that results are reproducible. The specific (MATLAB) code can be found in
http://bouboulis.mysch.gr/kernels.html.

6.1 Recovery of the Sparse Outlier Vector’s Support

In the current section, our main concern is to test on the validity of the condition (26) in practise.
To this end, we have performed the following experiment, for the case where only outliers exist in
the noise.

We consider N = 100 equidistant points over the interval [0, 1] and generate the output data

via f
¯
(xi) =

∑N
j=1 α¯j

κ(xi, xj), where κ is the Gaussian kernel with σ = 0.1 and the vector of
coefficients α

¯
= [α

¯1, . . . , α¯N
] is a sparse vector with the number of non-zero coordinates ranging

between 2 and 23 and their values drawn from N (0, 0.52). Since no inlier noise exists, our corrupted
data is given from (4) for ηi = 0 and outlier values ±u

¯
. Moreover, since the condition (26) is valid

for fixed values of the parameters involved, we have measured the ability of KGARD to recover the
support of the sparse outlier vector, i.e., T = supp(u

¯
), while varying the values of the outliers. In

Figure 2, the ability of KGARD to identify the exact sparse outlier vector support is demonstrated,
for a fraction of outliers at 10%. On the vertical axis we have measured the percentage of correct
and wrong indices recovered, while varying the value u of the outliers. In parallel, the bar chart
demonstrates the validity of the introduced condition (26). It is clear that, if the condition holds,
KGARD identifies the correct support of the sparse outlier vector successfully. However, even if
the condition is rarely satisfied, e.g., for u

¯
= 100, the method still manages to identify the correct

support. This fact leads to the conclusion that the condition imposed by (26) is rather strict. This
is in line with most sparse modeling related conditions, which, in practice, fall short in predicting
the exact recovery conditions.

7Since the regularization parameter is defined by the user, we assume that such a value can be achieved, so that
the γ parameter makes sense. More details can be found in the proof at the appendix section.

16

http://bouboulis.mysch.gr/kernels.html

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 r

ec
ov

er
y

Recovery of the support for KGARD

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

P
er

ce
nt

ag
e

of
 v

al
id

at
io

n

Outlier values

Figure 2: Percentage of the correct (green pointing up) and wrong (orange pointing down) indices
that KGARD has identified, while varying the values ±u

¯
of the outliers at the fixed fraction

of 10%. Although the condition (26) is valid only for values greater than ±600 (and with high
probability valid for values 400-599), the support of the sparse outlier vector has been correctly
identified for much smaller values of outlier noise, too.

Outlier fraction Correct support Wrong support Outlier value u
5 % 100 % 0 % 450
10 % 100 % 0 % 600
15 % 100 % 0 % 650
20 % 100 % 0 % 700
25 % 100 % 0 % 750
30 % 100 % 0 % 950

Table 1: Percentage of correct and wrong indices identified for all outlier values u
¯

ranging from
50 to 1000. The correct support corresponds to true outliers (indices in T), while the wrong one
corresponds to points which are wrongly classified as outliers (thus do not belong to T). In the
final column the minimum value u

¯
of outliers for which the support recovery condition is valid, is

listed.

Finally, in Table 1, the previous experiment has been performed for various fractions of outliers.
In the second and third column, we have listed the percentage of correct and wrong indices (truly)
identified by the method, for all values of outliers ranging from 50 to 1000. Moreover, in the
final column, the minimum value of outliers, which renders the condition valid, is shown. For
example, in the second row and for 10% of outliers, the condition is valid only for values greater
than 600 (last column of Table 1). However, the method manages to correctly identify the support
(one-to-one index - columns two and three), not only for values u

¯
greater than 600, but for all

outlier values, i.e, from the minimum value of 50 to the maximum value of 1000. It should also
be noted that, experiments have been performed with the use of various non-linear functions (not
only linear combinations of kernels) and results were similar to the ones presented here.

6.2 Evaluation of the Method: Mean-Square-Error (MSE)

In the current section, the previously established methods that deal with the non-linear robust
estimation with kernels, i.e., the Bayesian approach RB-RVM and the weighted `1-norm approxi-
mation method (RAM), are compared against KGARD in terms of the mean-square-error (MSE)
performance. Additionally, the evaluation is enhanced with a list of the percentage of the cor-
rect and wrong indices that each method has identified, for all methods except for the Bayesian

17

Method MSEtr MSEval Cor. supp Wr. supp MIT (sec) Inlier - Outlier

RB-RVM 0.0850 0.0851 - - 0.298 20 dB - 5%
RAM (λ = 0.07, µ = 2.5) 0.0344 0.0345 100 % 0.2 % 0.005 20 dB - 5%
KGARD (λ = 0.2, ε = 10) 0.0285 0.285 100 % 0 % 0.004 20 dB - 5%

RB-RVM 0.0911 0.0912 - - 0.298 20 dB - 10%
RAM (λ = 0.07, µ = 2.5) 0.0371 0.0372 100 % 0.1 % 0.007 20 dB - 10%
KGARD (λ = 0.2, ε = 10) 0.0305 0.0305 100 % 0 % 0.008 20 dB - 10%

RB-RVM 0.0992 0.0994 - - 0.299 20 dB - 15%
RAM (λ = 0.07, µ = 2) 0.0393 0.0393 100 % 0.6 % 0.008 20 dB - 15%

KGARD (λ = 0.3, ε = 10) 0.0330 0.0330 100 % 0 % 0.012 20 dB - 15%

RB-RVM 0.1189 0.1184 - - 0.305 20 dB - 20%
RAM (λ = 0.07, µ = 2) 0.0421 0.0422 100 % 0.4 % 0.010 20 dB - 20%
KGARD (λ = 1, ε = 10) 0.0626 0.0626 100 % 0 % 0.017 20 dB - 20%

RB-RVM 0.3630 0.3631 - - 0.327 15 dB - 5%
RAM (λ = 0.15, µ = 5) 0.1035 0.1036 100% 0.7 % 0.005 15 dB - 5%

KGARD (λ = 0.3, ε = 15) 0.0862 0.0862 100 % 0.1 % 0.005 15 dB - 5%

RB-RVM 0.3828 0.3830 - - 0.319 15 dB - 10%
RAM (λ = 0.15, µ = 5) 0.1117 0.1118 100% 0.4 % 0.006 15 dB - 10%

KGARD (λ = 0.3, ε = 15) 0.0925 0.0925 100 % 0 % 0.008 15 dB - 10%

RB-RVM 0.4165 0.4166 - - 0.317 15 dB - 15%
RAM (λ = 0.15, µ = 5) 0.1186 0.1186 100% 0.3 % 0.007 15 dB - 15%

KGARD (λ = 0.3, ε = 15) 0.1001 0.1003 100 % 0 % 0.012 15 dB - 15%

RB-RVM 0.4793 0.4798 - - 0.312 15 dB - 20%
RAM (λ = 0.15, µ = 4) 0.1281 0.1282 100% 1.4 % 0.008 15 dB - 20%

KGARD (λ = 0.7, ε = 15) 0.1340 0.1349 100 % 0 % 0.016 15 dB - 20%

Table 2: Computed MSE for f
¯
(x) = 20sinc(2πx) over the training and validation set, percentage

of correct and wrong support recovered and mean implementation time (MIT), for each level of
inlier noise and fraction of outliers.

approach (not provided directly by the RB-RVM method). Moreover, the mean implementation
time (MIT) is measured for each experiment. Finally, following section 4.3, for the first two ex-
periments we have increased the regularization value λ of KGARD near the edge points/borders,
as a means to improve the performance. In particular, at the 5 first and 5 last points (borders),
the regularizer is automatically multiplied by the factor of 5, with respect to the predefined value
λ which is used on the interior points. The experiments are described in more detail next.

• For the first experiment, we have selected the sinc function, which is a popular one in
machine learning. We consider 398 equidistant points over the interval [−0.99, 1) for the
input values and generated the uncorrupted output values via f

¯
(xi) = 20sinc(2πxi). Next,

the set of points is split into two subsets, the training and the validation subset. The training
subset, with points denoted by (yi, xi), consists of the N = 199 odd indexed points (first,
third, e.t.c.), while the validation subset comprises the remaining points (denoted as (y′i, x

′
i)).

The original data of the training set, is then contaminated by noise, as (4) suggests. The
inlier part is considered to be random Gaussian noise of appropriate variance (measured in
dB), while the outlier part consists of various fractions of outliers, with constant values ±15,
distributed uniformly over the support set. Finally, the kernel parameter σ has been set
equal to σ = 0.15.

Table 2 depicts the performance of each method, where the best results are marked in bold.
In terms of the computed MSE, it is clear that KGARD attains a lower MSE for both the
training and the validation error for all fractions of outliers, except for the fraction of 20%.
This fact is also aligned with the theoretical properties of the sparse greedy methods, since
their performance boosts as the sparsity level of the approximation is low. On the other
hand, the RAM solver seems more suitable for larger fractions of outliers. Moreover, the
computational cost is comparable for both methods (RAM and KGARD), for small fractions
of outliers. Regarding the identification of the sparse outlier vector support, although both
methods correctly identify the indices that belong to the sparse outlier vector’s support, i.e.,

18

Method MSEtr MSEval Cor. supp Wr. supp MIT (sec) Outliers

RB-RVM 3.3405 3.3436 - - 0.309 5%
RAM (λ = 0.15, µ = 33) 1.2459 1.2473 100% 0 % 0.005 5%
KGARD (λ = 0.3, ε = 57) 1.1567 1.1580 99.8 % 1.2 % 0.004 5%

RB-RVM 3.6111 3.6176 - - 0.308 10%
RAM (λ = 0.15, µ = 31) 1.3085 1.3100 100% 0.1 % 0.005 10%
KGARD (λ = 0.3, ε = 55) 1.2110 1.2120 99.9 % 0.9 % 0.008 10%

RB-RVM 3.7902 3.7950 - - 0.308 15%
RAM (λ = 0.15, µ = 28) 1.3945 1.3972 100% 0.2 % 0.006 15%
KGARD (λ = 0.3, ε = 53) 1.2922 1.2942 100 % 0.8 % 0.012 15%

RB-RVM 4.0685 4.0705 - - 0.307 20%
RAM (λ = 0.15, µ = 24) 1.5110 1.5109 100% 0.8 % 0.007 20%
KGARD (λ = 0.3, ε = 52) 1.5173 1.5262 99.9 % 0.4 % 0.016 20%

Table 3: Performance evaluation for each method, for the case where the input data lies on
the 1-dimensional space and the output f

¯
∈ H is considered as a linear combination of a few

kernels. The inlier noise is considered random Gaussian with σ = 4 and for various fractions of
outliers, the training and validation MSE, the percentage of correct support recovered and the
mean implementation time (MIT), is listed.

T = supp(u
¯

), RAM (wrongly) identifies more indices as outliers than KGARD.

• For the second experiment, the performance for each method is evaluated for the following
set-up. The input data consists of 400 equidistant points over the interval [0, 1) and the

uncorrupted observations are generated via f
¯
(xi) =

∑400
j=1 α¯j

κ(xj , xi) with the Gaussian
(RBF) kernel with parameter σ = 0.1, employing a sparse coefficient vector α

¯
, with the

number of non-zero values ranging between 4% − 18% and their values randomly drawn
from the Gaussian distribution N (0, 202). In the sequel, the set of points is split into two
subsets, the training and the validation subset. Similar to the first experiment, the training
subset consists of the N = 200 odd indexed points (first, third, e.t.c.), while the remaining
(even indices) correspond to the validation/test subset. The uncorrupted observations of the
training set are generated via (4) and contaminated by random Gaussian with variance 4.
Various fractions of outliers have been used (distributed uniformly over the training points)
with values ±40.

In Table 3, the performance for each method is shown. Once again, KGARD attains the
lowest MSE for all fractions of outliers up to 15%. It is readily seen that, this holds despite
the fact that the support of the sparse outlier vector is not fully recovered (due to the
existence of heavy inlier noise). Also, for the case where 20% of outlier values are present,
the MSE for RAM is lower than KGARD’s, for both the training and the validation set.

• For the final pilot experiment, KGARD’s performance is tested for the case where the input
data lies on a two-dimensional subspace. To this end, we consider 31 points in [0, 1] and
separate these points, to form the training set, which comprises 16 odd indices and the rest 15,
forming the validation set. Next, the 312 points are distributed over a squared lattice in plane

[0, 1]×[0, 1], where each uncorrupted measurement is generated by f
¯
(xi) =

∑312

j=1 α¯j
κ(xi,xj),

(σ = 0.2) and a sparse coefficient vector α
¯

= [α
¯1, . . . , α¯31] with non-zero values ranging

between 4%− 17.5% and their values randomly drawn from N (0, 25.62). Thus, the training
subset, consists of N = 162 points, while the remaining 152 correspond to the validation/test
subset. According to equation (4), the original observations of the training set are corrupted
by inlier noise originating from N (0, 32) and outlier values ±40. The results are given in
Table 4 for various fractions of outliers, with the best values of the MSE marked in bold.
It is evident that, for the 2-dimensional non-linear denoising task, KGARD’s performance
outperforms its competitors (in terms of MSE), for all fractions of the outliers.

Finally, it should also be noted that, although RB-RVM does not perform at the highest
level, has the advantage that needs no tuning of parameters, albeit at substantially increased

19

Method MSEtr MSEval Cor. supp Wr. supp MIT (sec) Outliers

RB-RVM 3.9825 3.6918 - - 0.416 5%
RAM (λ = 0.2, µ = 22) 2.0534 1.8592 100% 0.1 % 0.010 5%

KGARD (λ = 0.15, ε = 46) 1.7381 1.5644 100 % 0.3 % 0.009 5%

RB-RVM 4.2382 3.8977 - - 0.419 10%
RAM (λ = 0.2, µ = 18) 2.2281 1.9926 100% 0.9 % 0.013 10%

KGARD (λ = 0.15, ε = 44) 1.8854 1.6750 100 % 0.5 % 0.016 10%

RB-RVM 4.5749 4.2181 - - 0.418 15%
RAM (λ = 0.2, µ = 17) 2.5944 2.2846 100% 1.6 % 0.016 15%

KGARD (λ = 0.2, ε = 42) 2.1968 1.9375 99.9 % 0.9 % 0.024 15%

RB-RVM 5.7051 5.0540 - - 0.418 20%
RAM (λ = 0.2, µ = 16) 3.0593 2.6703 99.9% 2.3 % 0.020 20%

KGARD (λ = 0.4, ε = 42) 3.0293 2.6113 99.9 % 1 % 0.033 20%

Table 4: Performance evaluation for each method, for the case where the input data lies on
the 2-dimensional space and the output f

¯
∈ H is considered as a linear combination of a few

kernels. The inlier noise is considered random Gaussian with σ = 3 and for various fractions of
outliers, the training and validation MSE, the percentage of correct support recovered and the
mean implementation time (MIT), is listed.

computational cost. On the contrary, the pair of tuning parameters for RAM, renders the method
very difficult to be fully optimized (in terms of MSE), in practise. In contrast, taking into account
the physical interpretation of ε and λ associated with KGARD, in the noise denoising task, we
have developed a method for automatic user-free choice of these variables.

7 Application in Image Denoising

In this section, in order to test the capabilities and verify the performance of the proposed al-
gorithmic scheme, we use the KGARD framework to address one of the most popular problems
that rise in the field of image processing: the task of removing noise from a digital image. The
source of noise in this case can be either errors of the imaging system itself (e.g., hardware or
software errors, transmission errors, quantization errors), errors that occur due to limitations of
the imaging system (e.g., small size of the sensor), or errors that are generated by the environment
(e.g., low light, heat, e.t.c.). Typically, the noisy image is modeled as follows:

g(x, x′) = g
¯
(x, x′) + v(x, x′),

for x, x′ ∈ [0, 1], where g
¯

is the original noise-free image and v the additive noise. Given the noisy
image g, the objective of any image denoising method is to obtain an estimate of the original
image g

¯
. In most cases, we assume that the image noise is Gaussian additive, independent at each

pixel, and independent of the signal intensity, or that it contains spikes or impulses (i.e., salt and
pepper noise). However, there are cases where the noise model follows other probability density
functions (e.g., the Poisson distribution or the uniform distribution). Typical methods that have
been proposed to address the image denoising task include (a) the wavelet-based image denoising
methods, which dominate the research in recent years [45, 46, 47], (b) methods based on Partial
Differential Equations [48], (c) neighborhood filters, and (d) methods of non linear modeling using
local expansion approximation techniques [49]. The majority of these methods assume a specific
type of noise model. In fact, most of them require some sort of a priori knowledge of the noise
distribution. In contrast to this approach, the more recently introduced denoising methods based
on kernel ridge regression (KRR) make no assumptions about the underlying noise model, and
thus, they can effectively treat more complex models [18].

In this section, we demonstrate how the proposed KGARD algorithmic scheme can be used to
treat the image denoising problem in cases where the noise model includes impulses. To this end,
we adopt a more complex additive noise model that can be decomposed into two parts: a bounded
noise component and a sparse noise model that comprises impulses. We will present two different

20

(a) (b)

Figure 3: (a) A square N ×N region of intest (ROI). (b) Rearranging the pixels of a ROI.

denoising methods to deal with this type of noise. The first one is directly based on KGARD
algorithmic scheme, while the second method splits the denoising procedure into two parts: the
identification and removal of the impulses is first carried out, via the KGARD and then the output
is fed into a cutting edge wavelet based denoising method to remove the bounded component. In
the following, we describe both methods in more detail.

7.1 Splitting the Image into ROIs

In the proposed denoising method, we adopt the well known and popular strategy of dividing the
“noisy” image into smaller N ×N square regions of interest (ROIs), as it is illustrated in Figure
3. Then, we rearrange the pixels so that to form a row vector. Instead of applying the denoising
process to the entire image, we process each ROI individually in sequential order. This is done for
two reasons: (a) Firstly, the time needed to solve the optimization tasks considered in the next
sections increases polynomially with N2 and (b) working with each ROI separately enables us to
change the parameters of the model in an adaptive manner, to account for the different level of
details in each ROI. The rearrangement shown in Figure 3 implies that, the pixel (i, j) (i.e., i-th
row, j-th column) is placed at the n-th position of the respective vector, where n = (i− 1) ·N + j.

7.2 Modeling the Image and the Noise

In kernel ridge regression denoising methods, one assumes that each ROI represents the points on
the surface of a continuous function, g

¯
, of two variables defined on [0, 1]× [0, 1]. The pixel values of

the noise-free and the noisy digitized ROIs are represented as ζ
¯ij

= g
¯
(xi, x

′
j) and ζij respectively

(both taking values in the interval [0, 255]), where xi = (i − 1)/(N − 1), x′j = (j − 1)/(N − 1),
for i, j = 1, 2, ..., N . Moreover, as the original image g

¯
is a relatively smooth function (with the

exception close to the edges), we assume that it lies in an RKHS induced by the Gaussian kernel,
i.e., g

¯
∈ H, for some σ > 0. Specifically, in order to be consistent with the representer theorem,

we will assume that g
¯

takes the form of a finite linear representation of kernel functions, i.e.,

g
¯

=

N∑
i,j=1

α
¯ij
κ(·, (xi, x′j)). (28)

After pixel rearrangement, equation (28) can be cast as:

g
¯

=

N2∑
n=1

α
¯n
κ(·,xn),

21

Figure 4: Two consecutive N ×N ROIs. Observe that the two ROIs overlap.

where n = (i− 1) ·N + j and xn = (xi, x
′
j). Hence, the intensity of the n-th pixel is given by

ζ
¯n

= g
¯
(xn) =

N2∑
m=1

α
¯m

κ(xn,xm). (29)

The model considered in this paper assumes that the intensity of the pixels of the noisy ROI
can be decomposed as follows:

ζij = ζ
¯ij

+ u
¯ij

+ ηij ,

for i, j = 1, 2, ..., N , where ηij denotes the bounded noise component and u
¯ij

the possible appear-
ance of an outlier at that pixel. In vector notation (after rearrangement), we can write

ζ = ζ
¯

+ u
¯

+ η, (30)

where ζ
¯
, ζ,u

¯
,η,∈ RN2

, ‖η‖2 ≤ ε and u
¯

is a sparse vector. Moreover, as the elements of ζ
¯

take
the form (29), we can write ζ

¯
= K · α

¯
, where κnm = κ(xn,xm). In this context, we can model

the denoising task as the following optimization problem:

minimizea,u∈RN2 ,c∈R ‖u‖0
subject to ‖ζ −Ka− c1− u‖22 + λ‖a‖22 + λc2 ≤ ε, (31)

for some predefined λ, ε > 0. In a nutshell, problem (31) solves for the sparsest outlier’s vector
u and the respective a (i.e., the coefficients of the kernel expansion) that keep the error low,
while at the same time preserve the smoothness of the original noise-free ROI (this is done via
the regularization of the constraint’s inequality). The regularization parameter λ controls the

smoothness of the solution. The larger the λ is, the smoother the solution becomes, i.e., ζ̂ = Kα̂.

7.3 Implementation

The main mechanism of both algorithms that are presented in this section is simple. The image is
divided into N×N ROIs and the KGARD algorithm is applied in each individual ROI sequentially.
However, as the reconstruction accuracy of KRR methods drops near the borders of the respective
domain, we have chosen to discard the values at those points. This means that although KGARD
is applied to the N ×N ROI, only the L×L values are used in the final reconstruction (those that
are at the center of the ROI). In the sequel, we will name the L× L centered region as “reduced
ROI” or rROI for short. Alternatively, one may consider that the image is actually divided into
L×L non-overlapping regions (the rROIs) and these regions are extended to the size N ×N . This

22

(a) (b)

Figure 5: (a) The algorithm has reached the right end of the image, hence it moves L pixels below.
(b) In this example, L = 8, N = 12. The image has been padded using 2 pixels in all dimensions.
The Figure shows the 8 first rROIs.

means that the ROIs contain overlapping parts. We will also assume that the dimensions of the
image are multipliers of L (if they are not, we can add dummy pixels to the end) and select N so
that N − L is an even number.

After the reconstruction of a specific rROI, the algorithm moves to the next one, i.e., it moves
L pixels to the right (see Figure 4), or, if the algorithm has reached the right end of the image, it
moves at the beginning of the line, which is placed L pixels below (see Figure 5(a)). Observe that,
for this procedure to be valid, the image has to be padded by adding (N − L)/2 pixels along all
dimensions. In this paper, we chose to pad the image by repeating border elements8. For example,
if we select L = 8 and N = 12 to apply this procedure on an image with dimensions9 32× 32, we
will end up with a total of 16 overlapping ROIs, 4 per line (see Figure 5(b)).

Another important aspect of the denoising algorithm is the automated selection of the param-
eters λ and ε, that are involved in KGARD. This is an important feature, as these parameters
largely control both the quality of the estimation and the recovery of the outliers and have to be
tuned for each specific ROI. Naturally, it would have been intractable to require a user pre-defined
pair of values (i.e., λ, ε) for each specific ROI. Hence, we devised simple methods to adjust these
values in each ROI depending on its features.

7.3.1 Automatic Selection of the Regularization Parameter λ

This parameter controls the smoothing operation of the denoising process. The user enters a
specific value for λ0 to control the strength of the smoothening and then the algorithm adjusts
this value at each ROI separately, so that λ is small at ROIs that contain a lot of “edges” and
large at ROIs that contain smooth areas. Whether a ROI has edges or not is determined by the
mean magnitude of the gradient at each pixel. The rationale is described in algorithm 5.

7.3.2 Automatic Computation of the Termination Parameter ε

The stopping criterion for KGARD, that has been adopted for the image denoising task, is slightly
different than the one employed in Algorithm 4. In this case, instead of requiring the norm of
the residual vector to drop below ε, i.e., ‖r(k)‖2 ≤ ε, we require the maximum absolute valued

coordinate of r(k) to drop below ε (
∥∥r(k)

∥∥
∞ ≤ ε). The estimation of ε for each particular ROI is

carried out as follows. Initially, a user defined parameter E0 is selected. At each step, a histogram

chart with elements |r(k),i| is generated, using
[
N2

10

]
+ 1 equally spaced bins along the x-axis,

8This can be done with the ’replicate’ option of MatLab’s function padarray.
9Observe that L divides 32.

23

Algorithm 5 Selection of the regularization parameter λ

1: Select a user-defined value λ0.
2: Compute the magnitude of the gradient at each pixel.
3: Compute the mean gradient of each ROI, i.e., the mean value of the gradient’s magnitude of

all pixels that belong to the ROI.
4: Compute the mean value, m, and the standard deviation, s, of the aforementioned mean

gradients.
5: ROIs with mean gradient larger than m+ s are assumed to be areas with fine details and the

algorithm sets λ = λ0.
6: All ROIs with mean gradient lower than m − s/10 are assumed to be smooth areas and the

algorithm sets λ = 15λ0.
7: For all other ROIs the algorithm sets λ = 5λ0.

between the minimum and maximum values of |r(k),i|. Let h denote the heights of the bars of the
histogram and hm be the minimum height of the histogram bars. Next, two real numbers, i.e., E1,
E2, are defined. In particular, the number E1 represents the left endpoint of the first occurrence
of a minimum-height bar (i.e., the first bar with height equal to hm, moving from left to right).
The number E2 represents the left endpoint of the first bar, `, with height h` (moving from left
to right) that satisfies both h` − h`−1 ≥ 1 and h`−1 ≤ hm + 5, ` ≥ 2. This roughly corresponds
to the first increasing bar, which in parallel is next to a bar with height close to the minimum
height. Figure 6 demonstrates some typical examples regarding the computation of these numbers.
Both E1 and E2 are reasonable choices for the value of ε (meaning that the bars to the right of
these values may be assumed to represent outliers). Finally, the algorithm determines whether the
histogram can be clearly divided into two parts; the first one represents the usual errors and the

other the errors due to outliers by using a simple rule: if

√
var(h(k))

mean(h(k))
> 0.9, then we the two areas

can be clearly distinguished (e.g., Figure 6(a)-(c)), otherwise it is harder to separate these areas
(e.g., Figure 6(d)). Note that, we use the notation h(k) to refer to the heights of the histogram
bar at the k step of the algorithm. The final computation of ε (at step k) is carried out as follows:

ε(k) =

{
min{E0, E1, E2}, if

√
var(h(k))

mean(h(k))
> 0.9

min{E0, E1}, otherwise.
(32)

It should be noted that, the user defined parameter E0 has little importance in the evaluation of
ε. One may set it constantly to a value near 40 (as we did in all provided simulations). However,
in cases where the image is corrupted by outliers only, a smaller value may be advisable, although
it does not have a great impact on the reconstruction quality.

7.3.3 Direct KGARD Implementation

The first denoising method, which we call “Kernel GARD Denoising” (or KGARD for short), is
described in Algorithm 6. The algorithm requires five user-defined parameters: (a) the regular-
ization parameter, λ0, (b) the Gaussian kernel width, σ, (c) the OMP termination parameter ε,
(d) the size of the ROI, N and (e) the size of the rROIs, that are used in the reconstruction, i.e.,
L. However, these parameters are somehow interrelated. We will discuss these issues in the next
sections.

7.3.4 KGARD Combined with BM3D (KGARD-BM3D)

The second denoising method is actually a two-step procedure, that combines the outliers detection
properties of KGARD with the denoising capabilities of a standard off-the-shelf denoising method.
The KGARD algorithm is applied onto the noisy image, but this time the obtained denoised
image Î is discarded and only the positions and values of the reconstructed outliers are taken into

24

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

E
1

E
2

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

E
1

E
2

(a) (b)

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

E
2

E
1

0 20 40 60 80 100 120
0

5

10

15

20

25

30

E
1 E

2

(c) (d)

Figure 6: Histograms of the residual vectors used in the automatic computation of ε.

consideration. These are subtracted from the original noisy image and a cutting edge wavelet-
based method with the name BM3D is applied to the result [47]. In this setting (which is the one
we propose) the KGARD is actually used to detect the outliers and remove them, while the BM3D
methods takes over afterwards to clean the bounded noise. Figure 7 illustrates this procedure.
This method requires the same parameters as KGARD, plus the parameter s, which is needed by
the BM3D algorithm10.

7.4 Parameter Selection

This section is devoted on providing guidelines for the selection of the user defined parameters
for the proposed denoising algorithms. Typical values of N range between 8 and 16. Values of
N near 8, or even lower, increase the time required to complete the denoising process with no
significant improvements in most cases. However, if the image contains a lot of “fine details” this
may be advisable. In these cases, smaller values for the width of the Gaussian kernel, σ, may also
enhance the performance, since in this case the regression task is more robust to abrupt changes.
However, we should note that σ is inversely associated with the size11 of the ROI, N , hence if one
increases N , one should decrease σ proportionally, i.e., keeping the product N · σ constant. We

10BM3D is built upon the assumption that the image is corrupted by Gaussian noise. Hence, the parameter s is
the variance of that Gaussian noise, if this is known a-priori, or some user-defined estimate. However, it has been
demonstrated that BM3D can also efficiently remove other types of noise, if s is adjusted properly [18].

11For example, if N = 12 and σ = 0.3, then the kernel width is equal to 3.6 pixels. It is straightforward to see
that, if N decreases to say 8, then the kernel width that will provide a length of 3.6 pixels is σ = 0.45.

25

Algorithm 6 KGARD for image denoising

1: Input: the original noisy image I and the parameters λ0, σ, E0, N , L.
2: Output: the denoised image Î and the outliers’ image Ô.
3: Build the kernel matrix K.
4: if the dimensions of the original image are not multiplies of L then
5: Add initial padding

6: Form Î and Ô so that they have the same dimensions as I.
7: Add padding with size N − L around the image.
8: Divide the image into N × N ROIs and compute the regularization parameters of each ROI

according to algorithm 5.
9: for each ROI R do

10: Rearrange the pixels of R to form the vector ζ.
11: Run the modified KGARD algorithm on the set ζ with parameter λ and stoping criterion

as described in section 7.3.2.
12: Let â, û be the solution according to KGARD algorithm.
13: Compute the denoised vector ζ̂ = Kâ.
14: Rearrange the elements of ζ̂ to form the denoised ROI R̂.
15: Extract the centered L× L rROI from R̂.
16: Use the values of the rROI to set the values of the corresponding pixels in Î.
17: Rearrange the elements of û to form the outliers’ ROI.
18: Extract the centered L× L values of the outliers’ ROI.
19: Use these values to set the values of the corresponding outliers in Ô.
20: Move to the next ROI.
21: Remove the initial padding on Î and Ô (if needed).

Figure 7: The KGARD-BM3D denoising method. First the KGARD is applied on the noisy image
to extract the outliers and then BM3D removes the bounded noise.

have observed that the values N = 12 and σ = 0.3 (which result to a product equal to N ·σ = 3.6)
are adequate to remove moderate noise from a typical image. In cases where the image has many
details and edges, N and σ should be adjusted to provide a lower product (e.g., N = 12 and
σ = 0.15, so that N · σ = 1.8). For images corrupted by high noise, this product should become
larger. Finally, λ controls the importance of regularization on the final result. Large values imply
a strong smoothing operation, while small values (close to zero) reduce the effect of regularization
leading to a better fit, however, it may lead to overfitting.

For the experiments presented in this paper, we fixed the size of the ROIs using N = 12 and
L = 8. These are reasonable choices that provide fast12 results with high reconstruction accuracy.
Hence, only the values for σ and λ0 need to be adjusted according to the density of the details
in the image and the amount of noise. We have found that the values of σ that provide adequate
results range between 0.1 and 0.4. Similarly, typical values of λ0 range from 0.1 to 1. Finally, the
constant E0 was set equal to 40 for all cases.

The parameter s of the BM3D method is adjusted according to the amount of noise presented
in the image. It ranges between very small values (e.g, 5), when only a small amount of bounded

12A typical denoising task using either KGARD or KGARD-BM3D implemented in MATLAB takes less than a
minute on a moderate computer.

26

noise is present, to significantly larger values (e.g., 20 or 40) if the image is highly corrupted.

7.5 Experiments on Images Corrupted by Synthetic Noise

In this section, we present an extensive set of experiments on grayscale images that have been
corrupted by mixed noise, which comprises a Gaussian component and a set of impulses (±100).
The intensity of the gaussian noise has been ranged between 15 dB and 25 dB and the percentage
of impulses from 5% to 20%. The tests were performed on three very popular images: the Lena,
the boat and the Barbara images, that are included in Waterloo’s image repository. Each test
has been performed 50 times and the respective mean PSNRs are reported. The parameters have
been tuned so that to provide the best result (in terms of MSE). In Table 5, the two proposed
methods are applied to the Lena image and they are compared with BM3D (the state of the art
wavelet-based method) and an image denoising method based on (RB-RVM). For the latter, we
chose a simple implementation, similar to the one we propose in our methods: the image is divided
into ROIs and the RB-RVM algorithm is applied to each ROI sequentially. The parameters were
selected to provide the best possible results in terms of PSNR. Tables 6 and 7 apply BM3D and
KGARD-BM3D on the boat and Barbara images. The size of the ROIs has been set to N = 12
and L = 8 for the Lena and boat image. As the Barbara image has more finer details (e.g., the
stripes of the pants) we have set N = 12 and L = 4 for this image. Moreover, one can observe
that for this image, we have used a lower value for σ and λ as indicated in section 7.4. Figures
8, 9 and 10 show the obtained denoised images on a specific experiment (20 dB Gaussian noise
and 10% outliers). The experiments show that the proposed method (KGARD-BM3D) enhances
significantly the denoising capabilities of BM3D, especially for low and moderate intensities of
the Gaussian noise. If the Gaussian component becomes prominent (e.g., at 15 dB) then the two
methods provide similar results.

Finally, it is noted that we chose not to include RAM or any `1-based denoising method, as
this would require efficient techniques to adaptively control its parameters, i.e., λ, µ at each ROI
(similar to the case of KGARD), which remains an open issue. Having to play with both param-
eters, makes the tuning computationally demanding. This is because the number of iterations for
the method to converge to a reasonable solution increases substantially, once the parameters are
moved away from their optimal (in terms of MSE) values13.

13If the parameters are not optimally tuned, the denoising process may take more than an hour to complete in
MATLAB on a moderate computer.

27

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 30 25 dB 5% 32.2 dB

RB-RVM σ = 0.3 25 dB 5% 31.78 dB

KGARD σ = 0.3, λ = 1 25 dB 5% 33.91 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 5% 36.2 dB

BM3D s = 30 25 dB 10% 30.84 dB

RB-RVM σ = 0.3 25 dB 10% 31.25 dB

KGARD σ = 0.3, λ = 1, ε = 40 25 dB 10% 33.49 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 10% 35.67 dB

BM3D s = 45 25 dB 20% 29.28 dB

RB-RVM σ = 0.4 25 dB 20% 30.3 dB

KGARD σ = 0.4, λ = 1 25 dB 20% 32.04 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 15 25 dB 20% 33.69 dB

BM3D s = 30 20 dB 5% 31.83 dB

RB-RVM σ = 0.4 20 dB 5% 29.3 dB

KGARD σ = 0.3, λ = 1 20 dB 5% 32.35 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 5% 34.24 dB

BM3D s = 35 20 dB 10% 30.66 dB

RB-RVM σ = 0.4 20 dB 10% 29.09 dB

KGARD σ = 0.3, λ = 1 20 dB 10% 31.94 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 33.81 dB

BM3D s = 50 20 dB 20% 29.86 dB

RB-RVM σ = 0.4 20 dB 20% 28.29 dB

KGARD σ = 0.4, λ = 1 20 dB 20% 30.72 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 15 20 dB 20% 32.06 dB

BM3D s = 35 15 dB 5% 30.87 dB

RB-RVM σ = 0.6 15 dB 5% 26.74 dB

KGARD σ = 0.3, λ = 1.5 15 dB 5% 29.12 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 5% 31.18 dB

BM3D s = 40 15 dB 10% 29.94 dB

RB-RVM σ = 0.4 15 dB 10% 25.85 dB

KGARD σ = 0.3, λ = 2 15 dB 10% 28.47 dB

KGARD-BM3D σ = 0.3, λ = 1 s = 25 15 dB 10% 30.77 dB

BM3D s = 40 15 dB 20% 28.78 dB

RB-RVM σ = 0.4 15 dB 20% 25 dB

KGARD σ = 0.4, λ = 3 15 dB 20% 27.87 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 35 15 dB 20% 29.66 dB

Table 5: Denoising performed on the Lena image corrupted by various types and intensities of
noise using the proposed methods, the robust RVM approach and the state of the art wavelet
method BM3D.

28

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 25 25 dB 5% 30.57 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 5% 34.61 dB

BM3D s = 30 25 dB 10% 29.41 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 25 dB 10% 33.86 dB

BM3D s = 45 25 dB 20% 27.64 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 15 25 dB 20% 31.62 dB

BM3D s = 30 20 dB 5% 30.16 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 10 20 dB 5% 32.19 dB

BM3D s = 35 20 dB 10% 28.97 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 15 20 dB 10% 31.52 dB

BM3D s = 50 20 dB 20% 27.49 dB

KGARD-BM3D σ = 0.4, λ = 1 s = 15 20 dB 20% 29.7 dB

BM3D s = 35 15 dB 5% 29.1 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 5% 28.54 dB

BM3D s = 40 15 dB 10% 28.13 dB

KGARD-BM3D σ = 0.3, λ = 1, s = 25 15 dB 10% 28.11 dB

BM3D s = 50 15 dB 20% 27.07 dB

KGARD-BM3D σ = 0.4, λ = 1, s = 40 15 dB 20% 26.99 dB

Table 6: Denoising performed on the boat image corrupted by various types and intensities of
noise the state of the art wavelet method BM3D with and without detection of outliers.

Method Parameters Gaussian Noise Impulses (±100) PSNR

BM3D s = 25 25 dB 5% 31.06 dB

KGARD-BM3D σ = 0.15, λ = 0.1, s = 15 25 dB 5% 33.45 dB

BM3D s = 30 25 dB 10% 29.4 dB

KGARD-BM3D σ = 0.15, λ = 0.1, s = 20 25 dB 10% 31.25 dB

BM3D s = 45 25 dB 20% 27.78 dB

KGARD-BM3D σ = 0.15, λ = 0.2, s = 30 25 dB 20% 28.03 dB

BM3D s = 25 20 dB 5% 30.69 dB

KGARD-BM3D σ = 0.15, λ = 0.1, s = 15 20 dB 5% 32.24 dB

BM3D s = 35 20 dB 10% 29.2 dB

KGARD-BM3D σ = 0.15, λ = 0.1, s = 20 20 dB 10% 30.43 dB

BM3D s = 50 20 dB 20% 27.68 dB

KGARD-BM3D σ = 0.15, λ = 0.15, s = 30 20 dB 20% 27.48 dB

BM3D s = 30 15 dB 5% 29.71 dB

KGARD-BM3D σ = 0.15, λ = 0.1, s = 25 15 dB 5% 29.97 dB

BM3D s = 40 15 dB 10% 28.41 dB

KGARD-BM3D σ = 0.15, λ = 0.1, s = 30 15 dB 10% 28.73 dB

BM3D s = 50 15 dB 20% 27.27 dB

KGARD-BM3D σ = 0.15, λ = 0.1, s = 45 15 dB 20% 26.39 dB

Table 7: Denoising performed on the Barbara image corrupted by various types and intensities of
noise using the state of the art wavelet method BM3D with and without detection of outliers.

29

(a) (b)

(c) (d)

Figure 8: (a) The Lena image corrupted by 20 dB of Gaussian noise and 10% outliers. (b)
Denoising with BM3d (30.66 dB). (c) Denoising with KGARD (31.94 dB). (d) Denoising with
joint KGARD-BM3D (33.81 dB).

30

(a) (b) (c)

Figure 9: (a) The boat image corrupted by 20 dB of Gaussian noise and 10% outliers. (b) Denoising
with BM3d (28.97 dB). (c) Denoising with joint KGARD-BM3D (31.52 dB).

(a) (b) (c)

Figure 10: (a) The Barbara image corrupted by 20 dB of Gaussian noise and 10% outliers. (b)
Denoising with BM3d (29.2 dB). (c) Denoising with joint KGARD-BM3D (30.43 dB).

31

Appendix A. Proof of Theorem 3

Proof. Our analysis is based on the singular value decomposition (SVD) for matrix X(0) = [K 1].
Since matrix XT

(0)X(0) is positive semi-definite, all of its eigenvalues are non-negative. Let X(0) =

QSV T , where Q,V are orthogonal, i.e., QTQ = QQT = IN and V TV = V V T = IN+1 and S
is the matrix of dimension N × (N + 1) of the form S =

[
Σ 0

]
, where Σ is a diagonal matrix,

with diagonal entries σi ≥ 0, i = 1, ..., N . For simplification, the notation σM will be used to
denote the maximum singular value of matrix X(0).

The proposed method, attempts to solve at each step, the regularized Least Squares (LS) task
(19) for the selection of matrix B. The latter task is equivalent to a LS problem in the augmented

space14 at each k-step, i.e., (23), where D(k) =

[
X(k)√
λB(k)

]
, θ =

(
α
c

)
, X(k) =

[
X(k−1) ejk

]
and

B(k) =

[
B(k−1) 0

0T 0

]
. Thus, the LS solution at each k-step could be expressed as:

ẑ(k) = (DT
(k)D(k))

−1DT
(k)

(
y
0

)
= (XT

(k)X(k) + λB(k))
−1XT

(k)y (33)

and the respective residual of the lower dimensional space is

r(k) = y −X(k)ẑ(k) = y −X(k)(X
T
(k)X(k) + λB(k))

−1XT
(k)y. (34)

Step k = 0:
Initially,B(0) = IN+1 and S0 = {1, . . . , N+1} (no index has been selected for the outlier estimate),
thus X(0) = [K 1]. Hence, the expression for the initial LS solution ẑ(0), is obtained from equation
(34) for k = 0. Employing the SVD decomposition for matrix X(0), we have

XT
(0)X(0) + λIN+1 = V

[
Σ2 + λIN 0

0T λ

]
︸ ︷︷ ︸

Λ

V T = V ΛV T . (35)

Combining (34) for k = 0 with (35), leads to

r(0) = y −QGQTy, (36)

where G = Σ(Σ2 + λIN)−1Σ is a diagonal matrix with entries

gii =
σ2
i

σ2
i + λ

, i = 1, 2, ..., n.

Furthermore, since y = X(0)θ¯
+ u

¯
, substituting in (36) leads to

r(0) = u
¯

+QFV Tθ
¯
−QGQTu

¯
, (37)

where F = S −GS = [Σ−GΣ︸ ︷︷ ︸
Φ

0]. Matrix Φ is also diagonal, with values

φii =
λσi

σ2
i + λ

, i = 1, 2, ..., N.

At this point it is required to explore some of the unique properties of matrices G and F . Recall
that the (matrix) 2-norm of a diagonal matrix is equal to the maximum absolute value of the
diagonal entries. Hence, it is clear that

||G||2 = σ2
M/(σ

2
M + λ) and ||F ||2 = ||Φ||2 ≤

√
λ/2, (38)

14This is due to the fact that B is a projection matrix (based on the `2 regularization model).

32

since g(σ) = σ2

σ2+λ is a strictly increasing function of σ ≥ 0 and φ(σ) = λσ
σ2+λ receives a unique

maximum, which determines the upper bound for the matrix 2-norm.
Finally, it should be noted that if no outliers exist in the noise,the algorithm terminates due

to the fact that the norm of the initial residual is less than (or equal to) ε. However, this scenario
is rather insignificant since no robust modeling is required. Thus, if our goal is for the method to
be able to handle various types of noise that includes outliers (e.g. Gaussian noise plus impulses),
we assume that ‖r(0)‖2 > ε. In such a case, KGARD identifies an outlier selecting an index from

the set S̃c0 = {1, 2, ..., N}.
At the first selection step, as well as at every next step, we should impose a condition, so that

the method identifies and selects an index that belongs to the support of the sparse outlier vector.
To this end, let T denote the support of the sparse outlier vector u

¯
. In order for KGARD to select

a column ei from matrix IN that belongs to T , we should impose

|r(0),i| > |r(0),j |, for all i ∈ T and j ∈ T c. (39)

The key is to establish appropriate bounds, which guarantee the selection of a correct index that
belongs to T . Therefore, we first need to develop bounds on the following inner products. Using
(38), the Cauchy-Schwarz inequality and the fact that Q,V are orthonormal, it is easy to verify
that

|〈el,QFV Tθ
¯
〉| =

∣∣(QTel)
TFV Tθ

¯

∣∣ ≤ ∥∥QTel
∥∥

2

∥∥FV Tθ
¯

∥∥
2

≤ ‖F ‖2
∥∥V Tθ

¯

∥∥
2
≤
√
λ

2
‖θ
¯
‖2 (40)

as well as

|〈el,QGQTu
¯
〉| =

∣∣(QTel)
TGQTu

¯

∣∣ ≤ ∥∥QTel
∥∥

2

∥∥GQTu
¯

∥∥
2

≤ ‖G‖2
∥∥QTu

¯

∥∥
2

=
σ2
M

σ2
M + λ

‖u
¯
‖2 , (41)

for all l = 1, 2, ..., N . Thus, we have that

|r(0),i| = |〈r(0), ei〉| = |〈u¯ +QFV Tθ
¯
−QGQTu

¯
, ei〉| ≥

≥ |u
¯i
| − |〈ei,QFV Tθ

¯
〉| − |〈ei,QGQTu

¯
〉| ≥

≥ min |u
¯
| −
√
λ

2
‖θ
¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 >

> min |u
¯
| −
√

2λ

2
‖θ
¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 , (42)

for any i ∈ T and

|r(0),j | = |〈r(0), ej〉| = |〈QFV Tθ
¯
−QGQTu

¯
, ej〉| ≤

≤ |〈ej ,QFV Tθ
¯
〉|+ |〈ej ,QGQTu

¯
〉| ≤

≤
√
λ

2
‖θ
¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 <

<

√
2λ

2
‖θ
¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (43)

for all j ∈ T c, where equation (37) and inequalities (40) and (41), have also been used. Hence,
imposing (39), leads to (26). It should be noted, that a reason that could lead to the violation
of (26), is for the term min |u

¯
| −
√

2λ ‖θ
¯
‖2 to be non-positive. Thus, since the regularization

parameter is fine tuned by the user, we should select λ < (min |u
¯
|/ ‖θ

¯
‖2)

2
/2. If the condition is

33

guaranteed, then at the first selection step, a column indexed j1 ∈ T is selected. The set of active
columns that participates in the LS solution of the current step is then S1 = {j1} ⊆ T and thus

X(1) =
[
X0 ej1

]
and B(1) =

[
IN+1 0
0T 0

]
.

Step k = 1:
After the selection of the first column, follows the inversion of matrix

DT
(1)D(1) = XT

(1)X(1) + λB(1) =

[
XT

(0)X(0) + λIN+1 XT
(0)ej1

eTj1X(0) 1

]
.

Applying the Matrix inversion Lemma, combined with (35), leads to

(DT
(1)D(1))

−1 =

[
V Λ−1V T + 1

βV ΓTQTej1e
T
j1
QΓV T − 1

βV ΓTQTej1
− 1
βe

T
j1
QΓV T 1

β

]
,

where Γ = [Σ(Σ2 + λIN)−1 0] and β = 1− eTj1QGQ
Tej1 = 1−

∥∥G1/2QTej1
∥∥2

2
. The regularized

least squares solution is obtained from (33), for k = 1, and after substitution into (34), leads to
the new residual vector:

r(1) = y −X(1)ẑ(1) = P(1)u¯
+ P(1)QFV

Tθ
¯
− P(1)QGQ

Tu
¯
, (44)

where P(1) = IN + 1
βQGQ

Tej1e
T
j1
− 1

βej1e
T
j1

.

The process of the augmentation of the active set, by the selection of an atom/column, con-
tinues, until the norm/length of the residual vector drops below the user-defined threshold. Thus,
in order for KGARD to select an index from the set T , we should impose

|r(1),i| > |r(1),j |, for all i ∈ T /S1 and j ∈ T c.

In order to simplify (44), we need to decompose the sparse vector u
¯

into two parts, i.e.,
u
¯

= u
¯T /S1

+ u
¯S1

and with the use of simple linear algebra we have that P(1)(u¯
−QGQTu

¯
) =

u(1)−QGQTu(1), where u(1) = u
¯T /S1

+ 1
β

(
eTj1QGQ

Tu
¯T /S1

)
· ej1 . Notice here, that supp(u

¯
) =

supp(u(1)) = T and that the first and third terms of the residual are independent of matrix P(1).
Hence, the final form of the residual at step k = 1, is:

r(1) = u(1) + P(1)QFV
Tθ

¯
−QGQTu(1). (45)

Since matrix P(1) could not be excluded from the second term of the residual, it is required to
track down at properties. Here, it should be noted, that we are interested in the norm of the
vector P T

(1)el for every l 6= j1, instead of the 2-norm of the matrix. Therefore, the l-th row of
matrix P(1), i.e.,

P T
(1)el = el + ω · ej1 ,

is a 2-sparse vector, with ω = 1
β

(
eTj1QGQ

Tel
)
. Moreover, it is readily seen that,

|ω| ≤ 1

β
‖G‖2 ≤

σ2
M

λ
< 1, (46)

since 1/β ≤ (σ2
M + λ)/λ and σM <

√
λ as observed from (26) (also notice that γ < 1). Thus, we

have that ∥∥∥P T
(1)el

∥∥∥
2

=
√

1 + |ω|2 <
√

2. (47)

Exploiting the latter bound, we have that

|〈el,P(1)QFV
Tθ

¯
〉| =

∣∣∣(QTP T
(1)el)

TFV Tθ
¯

∣∣∣ ≤ ∥∥∥P T
(1)el

∥∥∥
2

∥∥FV Tθ
¯

∥∥
2
<

<
√

2 ‖F ‖2 ‖θ¯‖2 ≤
√

2λ

2
‖θ
¯
‖2 . (48)

34

Moreover, ∣∣∣∣ 1β eTj1QGQTu
¯T /S1

∣∣∣∣ ≤ σ2
M

λ
‖u

¯T /S1
‖2 < min |u

¯
| ≤

∣∣u
¯j1
∣∣ ,

which leads to ∥∥u(1)

∥∥
2
< ‖u

¯
‖2 . (49)

Similarly, we have that

|r(1),i| = |〈r(1), ei〉| = |〈u(1) + P(1)QFV
Tθ

¯
−QGQTu(1), ei〉| ≥

≥ |u
¯i
| − |〈ei,P(1)QFV

Tθ
¯
〉| − |〈ei,QGQTu(1)〉| >

> min |u
¯
| −
√

2λ

2
‖θ
¯
‖2 −

σ2
M

σ2
M + λ

∥∥u(1)

∥∥
2
>

> min |u
¯
| −
√

2λ

2
‖θ
¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 , (50)

for any i ∈ T /S1 and

|r(1),j | = |〈r(1), ej〉| = |〈P(1)QFV
Tθ

¯
−QGQTu(1), ej〉| ≤

≤ |〈ej ,P(1)QFV
Tθ

¯
〉|+ |〈ej ,QGQTu(1)〉| <

<

√
2λ

2
‖θ
¯
‖2 +

σ2
M

σ2
M + λ

∥∥u(1)

∥∥
2
<

<

√
2λ

2
‖θ
¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (51)

for all j ∈ T c, where (41), (45), (48) and (49) were used. Thus, once again, by imposing that
the lower bound in (50) has to be greater than the upper bound in (51), we are led to (26).
Hence, it is guaranteed, that at the current step, the column indexed j2 ∈ T is selected and thus
S2 = {j1, j2} ⊆ T . Now that we have demonstrated how the method works for the first simple
step, we present the general selection step of KGARD.

General k step:

At the k step, Sk = {j1, j2, ..., jk} ⊂ T and thusX(k) =
[
X(0) ISk

]
andB(k) =

[
IN+1 O(N+1)×k

OT
(N+1)×k Ok

]
.

The least squares step, after the selection of the first column, requires the inversion of the matrix

DT
(k)D(k) = XT

(k)X(k) + λB(k) =

[
XT

(0)X(0) + λIN+1 XT
(0)ISk

ITSkX(0) Ik

]
.

Applying the Matrix inversion Lemma, combined with (35), leads to

(DT
(k)D(k))

−1 =

[
V Λ−1V T + V ΓTQT ISkW

−1
(k) I

T
SkQΓV T −V ΓTQT ISkW

−1
(k)

−W−1
(k) I

T
SkQΓV T W−1

(k)

]
,

where W(k) = Ik − ITSkQGQ
T ISk . Thus, substitution into (34) leads to:

r(k) = P(k)u¯
+ P(k)QFV

Tθ
¯
− P(k)QGQ

Tu
¯
, (52)

where P(k) = IN + QGQT ISkW
−1
(k) I

T
Sk − ISkW

−1
(k) I

T
Sk . To select an index from the set T , we

should impose
|r(k),i| > |r(k),j |, for all i ∈ T /Sk and j ∈ T c.

Now P(k)(u¯
−QGQTu

¯
) = u(k) −QGQTu(k), where u(k) = u

¯T /Sk
+ ISkW

−1
(k) I

T
SkQGQ

Tu
¯T /Sk

.

Hence, the final form of the residual is:

r(k) = u(k) + P(k)QFV
Tθ

¯
−QGQTu(k). (53)

35

Following a similar path, for l /∈ Sk, we conclude that

P T
(k)el = el + ISkW

−1
(k) I

T
SkQGQ

Tel,

is a (k + 1)-sparse vector. Furthermore, it is readily seen that,∥∥∥W−1
(k) I

T
SkQGQ

Tel

∥∥∥
2
≤ σ2

M

λ
< 1, (54)

which leads to
∥∥∥P T

(k)el

∥∥∥
2
<
√

2. Moreover,

|〈el,P(k)QFV
Tθ

¯
〉| <

√
2λ

2
‖θ
¯
‖2 and ‖u(k)‖2 < ‖u¯‖2. (55)

Accordingly, the bounds for the residual are now expressed as

|r(k),i| = |〈r(k), ei〉| > min |u
¯
| −
√

2λ

2
‖θ
¯
‖2 −

σ2
M

σ2
M + λ

‖u
¯
‖2 , (56)

for any i ∈ T /Sk, and

|r(k),j | = |〈r(k), ej〉| <
√

2λ

2
‖θ
¯
‖2 +

σ2
M

σ2
M + λ

‖u
¯
‖2 , (57)

for all j ∈ T c, where (53) and (55) are used. Finally, imposing the lower bound of (56) to be
greater than the upper bound of (57), leads to the condition (26). At the k step, it has been
proved that unless the residual length is below the predefined threshold the algorithm will select
another correct atom from the identity matrix and the procedure will repeat until Sk = T . At
this point, KGARD has correctly identified all possible outliers and it is up to the tuning of the ε
parameter whether the procedure terminates (and thus no extra indices are classified as outliers)
or it continues and models other extra samples as outliers.

References

[1] S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective. Academic
Press, 2015.

[2] Å. Björck, Numerical methods for least squares problems. Society for Industrial and Applied
Mathematics, 1996, no. 51.

[3] G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust linear regression analysis-a
greedy approach,” IEEE Transactions on Signal Processing, vol. 63, no. 15, pp. 3872–3887,
2014.

[4] P. J. Huber, Wiley Series in Probability and Mathematics Statistics. Wiley Online Library,
1981.

[5] R. A. Maronna, R. D. Martin, and V. J. Yohai, Robust statistics. J. Wiley, 2006.

[6] P. J. Rousseeuw and A. M. Leroy, Robust regression and outlier detection. John Wiley &
Sons, 2005, vol. 589.

[7] P. J. Huber, “The 1972 wald lecture robust statistics: A review,” The Annals of Mathematical
Statistics, pp. 1041–1067, 1972.

[8] P. J. Rousseeuw and B. C. Van Zomeren, “Unmasking multivariate outliers and leverage
points,” Journal of the American Statistical Association, vol. 85, no. 411, pp. 633–639, 1990.

36

[9] A. M. Leroy and P. J. Rousseeuw, “Robust regression and outlier detection,” J. Wiley&Sons,
New York, 1987.

[10] S. A. Razavi, E. Ollila, and V. Koivunen, “Robust greedy algorithms for compressed sensing,”
in Signal Processing Conference (EUSIPCO), Proceedings of the 20th European. IEEE, 2012,
pp. 969–973.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and
statistical learning via the alternating direction method of multipliers,” Foundations and
Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[12] S. Boyd, “Alternating direction method of multipliers,” in Talk at NIPS Workshop on Opti-
mization and Machine Learning, 2011.

[13] D. P. Wipf and B. D. Rao, “Sparse bayesian learning for basis selection,” IEEE Transactions
on Signal Processing, vol. 52, no. 8, pp. 2153–2164, 2004.

[14] Y. Jin and B. D. Rao, “Algorithms for robust linear regression by exploiting the connection to
sparse signal recovery,” in International Conference on Acoustics Speech and Signal Processing
(ICASSP). IEEE, 2010, pp. 3830–3833.

[15] G. Mateos and G. B. Giannakis, “Robust nonparametric regression via sparsity control with
application to load curve data cleansing,” IEEE Transactions on Signal Processing, vol. 60,
no. 4, pp. 1571–1584, 2012.

[16] K. Mitra, A. Veeraraghavan, and R. Chellappa, “Robust RVM regression using sparse outlier
model,” in Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010,
pp. 1887–1894.

[17] P. Bouboulis and S. Theodoridis, “Kernel methods for image denoising,” in Regularization,
optimization, kernels, and support vector machines, J. Suykens, M. Signoretto, and A. Ar-
gyriou, Eds., 2015.

[18] P. Bouboulis, K. Slavakis, and S. Theodoridis, “Adaptive kernel-based image denoising em-
ploying semi-parametric regularization,” IEEE Transactions on Image Processing, vol. 19,
no. 6, pp. 1465–1479, 2010.

[19] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet decomposition,” in Conference on Sig-
nals, Systems and Computers, Conference Record of The Twenty-Seventh Asilomar. IEEE,
1993, pp. 40–44.

[20] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,” IEEE Transac-
tions on Information Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[21] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal
matching pursuit,” IEEE Transactions on Information Theory, vol. 53, no. 12, pp. 4655–4666,
2007.

[22] A. J. Smola and B. Schölkopf, Learning with Kernels. The MIT Press, 2002.

[23] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other
kernel-based learning methods. Cambridge University Press, 2000.

[24] K. Slavakis, P. Bouboulis, and S. Theodoridis, Signal Processing Theory and Machine Learn-
ing: Online Learning in Reproducing Kernel Hilbert Spaces, ser. Academic Press Library in
Signal Processing, 2014, ch. 17.

[25] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Edition. Academic press,
2008.

37

[26] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American Mathematical
Society, vol. 68, no. 3, pp. 337–404, May 1950.

[27] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse solutions of systems of equations
to sparse modeling of signals and images,” SIAM review, vol. 51, no. 1, pp. 34–81, 2009.

[28] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE
Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[29] M. Vetterli and T. Kalker, “Matching pursuit for compression and application to motion
compensated video coding,” in IEEE International Conference on Image Processing, 1994
(ICIP-94.), vol. 1. IEEE, 1994, pp. 725–729.

[30] S. Mallat, A wavelet tour of signal processing: the sparse way. Academic press, 2008.

[31] L. Rebollo-Neira and D. Lowe, “Optimized orthogonal matching pursuit approach,” Signal
Processing Letters, IEEE, vol. 9, no. 4, pp. 137–140, 2002.

[32] D. Needell and R. Vershynin, “Signal recovery from incomplete and inaccurate measurements
via regularized orthogonal matching pursuit,” IEEE Journal of Selected Topics in Signal
Processing, vol. 4, no. 2, pp. 310–316, 2010.

[33] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from incomplete and inac-
curate samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301–321,
2009.

[34] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underdetermined
systems of linear equations by stagewise orthogonal matching pursuit,” IEEE Transactions
on Information Theory, vol. 58, no. 2, pp. 1094–1121, 2012.

[35] J. Wang, S. Kwon, and B. Shim, “Generalized orthogonal matching pursuit,” IEEE Trans-
actions on Signal Processing, vol. 60, no. 12, pp. 6202–6216, 2012.

[36] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Sta-
tistical Society. Series B (Methodological), pp. 267–288, 1996.

[37] R. J. Tibshirani et al., “The lasso problem and uniqueness,” Electronic Journal of Statistics,
vol. 7, pp. 1456–1490, 2013.

[38] E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by reweighted 1 minimiza-
tion,” Journal of Fourier analysis and applications, vol. 14, no. 5-6, pp. 877–905, 2008.

[39] M. E. Tipping, “Sparse Bayesian learning and the relevance vector machine,” The journal of
machine learning research, vol. 1, pp. 211–244, 2001.

[40] G. Papageorgiou, P. Bouboulis, and S. Theodoridis, “Robust kernel-based regression using
orthogonal matching pursuit,” in Machine Learning for Signal Processing (MLSP), 2013
IEEE International Workshop on. IEEE, 2013, pp. 1–6.

[41] B. L. Sturm and M. G. Christensen, “Comparison of orthogonal matching pursuit imple-
mentations,” in Signal Processing Conference (EUSIPCO), Proceedings of the 20th European.
IEEE, 2012, pp. 220–224.

[42] W. Gander, On the linear least squares problem with a quadratic constraint. Computer
Science Department, Stanford University, 1978.

[43] ——, “Least squares with a quadratic constraint,” Numerische Mathematik, vol. 36, no. 3,
pp. 291–307, 1980.

38

[44] M. Rojas and D. C. Sorensen, “A trust-region approach to the regularization of large-scale
discrete forms of ill-posed problems,” SIAM Journal on Scientific Computing, vol. 23, no. 6,
pp. 1842–1860, 2002.

[45] J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image denoising using scale mix-
tures of gaussians in the wavelet domain,” IEEE Transactions on Image Processing, vol. 12,
no. 11, pp. 1338–1351, 2003.

[46] L. Sendur and I. Selesnick, “Bivariate shrinkage functions for wavelet-based denoising ex-
ploiting interscale dependency,” IEEE Transactions on Signal Processing, vol. 50, no. 11, pp.
2744–2756, 2002.

[47] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by sparse 3d transform-
domain collaborative filtering,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp.
2080–2095, 2007.

[48] K. Seongjai, “PDE-based image restoration : A hybrid model and color image denoising,”
IEEE Transactions on Image Processing, vol. 15, no. 5, pp. 1163–1170, 2006.

[49] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image processing and recon-
struction,” IEEE Tranactions on Image Processing, vol. 16, no. 2, pp. 349–366, 2007.

39

	1 Introduction
	2 Preliminaries
	2.1 Reproducing Kernel Hilbert Spaces
	2.2 Sparse Modeling and the Orthogonal Matching Pursuit (OMP)

	3 Problem Formulation and Related Works
	3.1 Robust Ridge Regression in RKHS
	3.2 Convex Relaxation: Refined Alternating Directions Method of Multipliers (RAM)
	3.3 Sparse Bayesian Learning: Robust Relevance Vector Machine (RB-RVM)

	4 Kernel Greedy Algorithm for Robust Denoising (KGARD)
	4.1 Motivation and Proposed Scheme
	4.2 Efficient Implementations
	4.3 Further Improvements on KGARD's Performance

	5 Theoretical Analysis
	5.1 Convergence Analysis
	5.2 Identification of the Outliers for the Noiseless Case

	6 Experiments
	6.1 Recovery of the Sparse Outlier Vector's Support
	6.2 Evaluation of the Method: Mean-Square-Error (MSE)

	7 Application in Image Denoising
	7.1 Splitting the Image into ROIs
	7.2 Modeling the Image and the Noise
	7.3 Implementation
	7.3.1 Automatic Selection of the Regularization Parameter
	7.3.2 Automatic Computation of the Termination Parameter
	7.3.3 Direct KGARD Implementation
	7.3.4 KGARD Combined with BM3D (KGARD-BM3D)

	7.4 Parameter Selection
	7.5 Experiments on Images Corrupted by Synthetic Noise

