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Abstract

The q-theory approach to the cosmological constant problem is reconsidered. The new observation

is that the effective classical q-theory gets modified due to the backreaction of particle production by

spacetime curvature, a well-established quantum effect. Also, an arbitrary cosmological constant

can be added to the energy density ǫ(q) of the action, in order to represent the effects from

zero-point energies and phase transitions. The resulting dynamical equations of a spatially-flat

Friedmann–Robertson–Walker universe are then found to give a steady approach to the Minkowski

vacuum, with attractor behavior for a finite domain of initial boundary conditions on the fields.

The approach to the Minkowski vacuum is slow and gives rise to an inflationary behavior of the

particle horizon.
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I. INTRODUCTION

Several years ago, we have proposed a particular approach to the cosmological constant

problem [1], whose motivation relies on thermodynamics and Lorentz invariance and which

goes under the name of q-theory [2]. The basic idea of q–theory is to give the proper macro-

scopic description of the Lorentz-invariant quantum vacuum where the gravitational effects

of a (Planck-scale) cosmological constant Λ have been cancelled dynamically by appropriate

microscopic degrees of freedom. In general, there are one or more of these vacuum variables

(denoted by q, with or without additional suffixes) to characterize the thermodynamics of

this static physical system in equilibrium. Several realizations of q–theory have been given,

but the most elegant is the one with q arising from a four-form field strength F (details

and references are given below). The outstanding issue is the dynamics, namely, how the

cosmological constant Λ is cancelled dynamically and the equilibrium state is approached.

In a follow-up paper [3], we have established the dynamic relaxation of the vacuum energy

density to zero, provided the chemical potential µ has the equilibrium value µ0 corresponding

to the Minkowski vacuum. But, then, the cosmological constant problem is replaced by

another problem [4], namely, why does µ have the “right” value µ0.

Here, we discuss how quantum effects can modify the classical q-theory and give rise

to the decay of the vacuum energy density (i.e., decay of the effective chemical potential).

Related work on vacuum energy decay has been presented in Refs. [5–11], but the feedback

on q-theory has not been considered in detail.

Throughout, we use natural units with c = 1 and ~ = 1, unless otherwise stated.

II. REALIZATION OF CLASSICAL Q-THEORY

Start by neglecting the quantum-dissipative exchange between vacuum and matter. Then,

the dynamics is described by the following classical action [3]:

S = −
∫

R4

d4x
√−g

(
R

16πG(q)
+ ǫ(q) + LM(q, ψ)

)
, (2.1a)

q2 ≡ − 1

24
Fκλµν F

κλµν , Fκλµν ≡ ∇[κAλµν] , (2.1b)

Fκλµν = q
√
−g ǫκλµν , F κλµν = q ǫκλµν/

√
−g , (2.1c)

where Eqs. (2.1b) and (2.1c) give a particular realization of the vacuum q-field in terms of

the 4-form field strength F from a three-form gauge field A [12–19]. Furthermore, in (2.1b),

the symbol ∇µ denotes the covariant derivative and the square bracket around spacetime

indices stands for complete anti-symmetrization. In (2.1c), ǫκλµν is the Levi–Civita symbol.

In the action (2.1a), LM(q, ψ) is the Lagrange density of the standard-model matter fields

ψ. The parameters of the matter action depend, in principle, on the vacuum variable q. Here,

we neglect this q dependence of the standard-model parameters, LM = LM(ψ). But, for the

moment, we allow for a q dependence of the gravitational coupling, G = G(q).
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The variation of the action (2.1a) over the three-form gauge field A gives the generalized

Maxwell equations for the four-form F field,

∇ν

(√−g F
κλµν

q

[
dǫ(q)

dq
+

R

16π

dG−1(q)

dq

])
= 0 . (2.2)

In the spatially-flat (k = 0) Friedmann–Robertson–Walker (FRW) universe this can be

written as

∂t

(
dǫ(q)

dq
− 3

8π

[
∂tH + 2H2

] dG−1(q)

dq

)
= 0 , (2.3)

for Ricci scalar R = −6 (∂tH + 2H2) according to our curvature conventions [3]. Solving

(2.3) gives the integration constant µ,

dǫ(q)

dq
− 3

8π

[
∂tH + 2H2

] dG−1(q)

dq
= µ . (2.4)

Based on the thermodynamic discussion of Ref. [2], the integration constant µ may be

called the “chemical potential,” where the chemical potential µ is conjugate to the conserved

quantity q in flat spacetime.

III. ENERGY EXCHANGE BETWEEN MATTER AND VACUUM

We are, now, interested in the quantum-dissipative exchange between vacuum and matter.

In this case, the chemical potential µ is no longer constant and can relax in the evolving

universe. We replace Eq. (2.3) by

∂t

(
dǫ(q)

dq
− 3

8π

[
∂tH + 2H2

] dG−1(q)

dq

)
= S , (3.1)

where a possible Ansatz for the source term is given by

S = Γq (∂t q)
2 + ΓH (∂tH)2 , (3.2)

with decay constants Γq and ΓH . The crucial question is if the system will approach the

de-Sitter asymptote (with H = const > 0) or the Minkowski vacuum (with H = 0).

The Einstein equations are still valid and are obtained by variation of the action (2.1a)

over the metric gµν ,

1

8πG(q)

(
Rµν −

1

2
Rgµν

)
+

1

16π
q
dG−1(q)

dq
R gµν

+
1

8π

(
∇µ∇ν G

−1(q)− gµν �G−1(q)
)
−

(
ǫ(q)− q

dǫ(q)

dq

)
gµν + TM

µν = 0 , (3.3)

where � is the invariant d’Alembertian and TM
µν is the energy-momentum tensor of the

matter fields (without dependence on q as discussed in Sec. II).
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IV. CONSTANT–G CASE

For the present article, it suffices to consider the simplest possible Ansatz for the function

G(q), namely a constant function,

G(q) = GN , (4.1)

with GN Newton’s gravitational constant. The generalized Einstein and Maxwell equations

from Sec. III become

1

8πGN

(
Rµν −

1

2
Rgµν

)
= ρV (q) gµν − TM

µν , (4.2)

−q ∂t
(
dǫ(q)

dq

)
= ∂tρV (q) = −q S , (4.3)

with the source term of the gravitational equation (4.2) containing the following vacuum

energy density:

ρV (q) ≡ ǫ(q)− q
dǫ(q)

dq
. (4.4)

Note that the definition (4.4) also explains the first equality in (4.3).

The Einstein equations for the spatially-flat FRW universe give two Friedmann equations:

3H2 = 8πGN (ρV + ρM) , (4.5a)

2∂tH = −8πGN(ρM + PM) . (4.5b)

The evolution equations for vacuum and matter are

∂t ρV = −q S , (4.6a)

∂t ρM = −3H
(
PM + ρM

)
+ q S . (4.6b)

Now, consider matter with a constant equation-of-state parameter,

wM ≡ ρM/PM = const. (4.7)

Then, the following two ordinary differential equations (ODEs) suffice to determine q(t) and

H(t) in a spatially-flat FRW universe:

∂t

(
dǫ(q)

dq

)
= S , (4.8a)

2

1 + wM

∂tH + 3H2 = 8πGN ρV (q) , (4.8b)

with ρV (q) from Eq. (4.4) and S from Eq. (3.2) or otherwise.

In fact, a companion paper [20] will focus on the source term (3.2), which keeps de Sitter

spacetime stable, whereas the present paper looks for another type of source term which

gives Minkowski spacetime. Most importantly, we do not wish to take some ad hoc source

term but will try to get a term with a clear physical motivation.
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V. PARTICLE PRODUCTION AND BACKREACTION

Consider the production of massless particles (e.g., gravitons) by the curved spacetime of

the spatially-flat FRW universe with appropriate boundary conditions on the matter fields

and background [21–23]. Then, the increase of particle number density is given by [21]

∂tnM ∼ R2 ∼ (∂tH + 2H2)2 , (5.1a)

for Ricci scalar R = −6 (∂tH + 2H2). The typical particle energy (E = ~ω) is determined

by the Hubble expansion rate [22],

EM ∼ ~H , (5.1b)

with ~ temporarily reinstated. From (5.1a) and (5.1b), the standard adiabatic change of the

particle energy density gets modified by a source term on the right-hand side,

∂t ρM + 3H (1 + wM) ρM ∼ ~H R2 , (5.2)

where wM equals 1/3 for the massless particles considered and, from now on, ~ will again

be set to 1 [admittedly, our display of ~ is somewhat cavalier, as (5.1a) is also eminently

quantum mechanical]. Introducing a dimensionless constant γ̃, the matter evolution equation

reads

∂t ρM + 3H (1 + wM) ρM = γ̃ H R2 ≡ SM . (5.3)

In a consistent classical description based on general relativity and diffeomorphism in-

variance, we must have (cf. Appendix E.1 of Ref. [29]) that the vacuum evolution equation

has precisely the opposite source term compared to (5.3),

∂t ρV = −SM = −γ̃ H R2 = −γ H (∂tH + 2H2)2 , (5.4)

with γ = 36 γ̃ ∼ 1/(8π) for graviton production [21, 23]. Hence, the right-hand side of

(5.4) can be interpreted as describing the backreaction of the particle production given by

Eq. (5.2).

Let us end this section with two general remarks. First, the result (5.1a) does not apply

to de Sitter spacetime. In fact, the result (5.1a) relies on being able to define an adiabatic

vacuum, which is possible if the expansion rate vanishes asymptotically in the past and in the

future [21–23]. For a massless scalar, the imaginary part of the effective action, calculated to

quadratic order in the curvature, is given by the spacetime integral of Eq. (29) in Ref. [23].

For a spatially-flat (k = 0) FRW universe, the spacetime integral reduces to an integral over

the sum of the R2 term and the Gauss–Bonnet term. For asymptotically-flat k = 0 FRW

universes, the Gauss–Bonnet term integrates to zero, leaving the single R2 term.

Second, it is well-known that the gravitational backreaction of quantum matter fields is

a subtle problem, which is not completely solved [22, 29]. Our description is the simplest

possible: keep the form of the energy-momentum tensor on the ride-hand sides of Eqs. (4.5a)

and (4.5b) and modify both the evolution equation of the matter component (5.3) and the

evolution equation of the vacuum component (5.4). Other modifications are certainly to be

expected, but our minimal description suffices for an exploratory study.
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VI. Q-THEORY MODEL OF VACUUM-ENERGY DECAY

Henceforth, we use the same dimensionless variables as in Ref. [3], obtained by rescal-

ing with appropriate powers of the Planck energy EP ≡
√
~c5/GN ≈ 1.22 × 1019GeV and

denoted by lower-case letters. Specifically, we have the dimensionless time τ and the dimen-

sionless Hubble parameter h. The 4-form field strength (2.1b) gives rise to the scalar field

q of mass dimension 2 and rescaling this scalar field q (denoted F in Ref. [3]) produces the

dimensionless variable f . The overdot will denote differentiation with respect to τ and the

prime differentiation with respect to f .

We now present the q-theory equivalent of the source term found in Sec. V, which physi-

cally corresponds to the backreaction from the particle production by curved spacetime. In

addition, we allow for a dimensionless cosmological constant λ ≡ Λ/(EP )
4 in the dimension-

less energy density ǫ(f).

Specifically, the generalized Maxwell equation (4.8a) with the specific source term from

(5.4) and the generalized Friedmann equation (4.8b) give

f ḟ ǫ′′ = γ h
(
ḣ+ 2h2

)2

, (6.1a)

2

1 + wM

ḣ + 3 h2 = 3 rV , (6.1b)

with

rV (f) = ǫ(f)− f ǫ′(f) , (6.2a)

ǫ(f) = λ+ f 2 + 1/f 2 , (6.2b)

where the left-hand side of (6.1a) equals −ṙV according to (6.2a). The Ansatz (6.2b) has two

important properties [other Ansätze for ǫ(f) are certainly possible]: first, the corresponding

values of rV range over (−∞,∞) for q2 ∈ (0,∞) and any finite value of λ; second, the

corresponding vacuum compressibility [2] χ ≡ (f 2d2ǫ/df 2)−1 is positive for any q2 ∈ (0,∞).

The two ODEs (6.1) are to be solved simultaneously and the matter energy density is

obtained from the two solutions f(τ) and h(τ) by

rM = h
2 − rV [f ] . (6.3)

The numerical solutions of the ODEs (6.1) will be presented in the next section.

Note that, strictly speaking, the ODEs (6.1) can be written solely in terms of rV (τ) and

h(τ), without need of the q-type field f(τ). But this is only because of the special case

considered, G(q) = const. For generic G(q), the q field appears explicitly on the left-hand

side of the generalized Maxwell equation (3.1). Moreover, precisely q theory in the four-form

realization gives rise to the ρV evolution equation as a field equation, namely, the generalized

Maxwell equation (2.3) for the classical theory. For these reasons, it is appropriate to speak

of a q-theory model of vacuum-energy decay.
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VII. MINKOWSKI-VACUUM ATTRACTOR

From the ODEs (6.1a) and (6.1b) follows that the curves for rV (τ) and h(τ) are mono-

tonically decreasing, provided that rM(τ) = h(τ)2 − rV [f(τ)] is nonnegative for all values

of τ . Numerical solutions are given in Figs. 1 and 2 for λ = ±1, showing that the rV = 0

Minkowski vacuum is approached without need of fine-tuning. Similar numerical results

have been obtained for λ = 0. Note that the decay-constant value used for these numerical

results, γ = 1/10, is entirely realistic (see Sec. V).

The numerical results also establish the existence of the rV = 0 attractor for λ ∈
{−1, 0, +1} with a finite domain of boundary conditions {h(1), f(1)} = {6± 1, 0.6± 0.2};
see Fig. 3. The actual domain of attraction for |λ| ≤ 1 may be larger than this rectangle.

As regards the approach of the Minkowski vacuum, the asymptotic behavior from (6.1) is

given by

h(τ) ∼ (6 γ τ)−1/3 , (7.1a)

rV (τ) ∼ (6 γ τ)−2/3 . (7.1b)

Remark that the attractor behavior found here is qualitatively similar to the one of Dolgov

theory [24, 25] shown numerically in Fig. 2 of Ref. [4] and proven mathematically in App.

A of Ref. [26]. But the Dolgov theory as such ruins the standard Newtonian dynamics [27]

and needs to be modified significantly [26, 28].

Three final remarks are in order. First, the asymptotic decay of the Hubble expansion

parameter is slow, giving rise to an inflationary behavior (cf. Refs. [30–32]) of the particle

horizon,

dhor(τ) ≡ d1 + a(τ)

∫ τ

1

dτ ′

a(τ ′)
∼ exp

[
3

2

(
τ 2/3 − 1

)

(6 γ)1/3

]
, (7.2)

where d1 is the contribution from times before τ = 1 (a radiation-dominated universe with an

initial singularity at τ = 0 gives d1 = 2) and a(τ) is the expansion factor defined by h = ȧ/a

for h(τ) given by (7.1a). But there is the following caveat: this inflationary behavior only

holds as long as the particle production is given by the R2 term in (5.2), which may not be

the case forever [see the last paragraph of Sec. V].

Second, the same type of slow asymptotic decay, h(τ) ∝ τ−1/3 and rV (τ) ∝ τ−2/3, has

also been found in a nonconstant–G model with the same Ansätze for G(f) and ǫ(f) as in

Ref. [3], but now with an arbitrary cosmological constant λ added to ǫ(f).

Third, returning to the constant–G model considered here, it needs to be emphasized that

we remain within the framework of standard general relativity (with certain quantum effects

of the matter fields included, as discussed in Sec. V). Moreover, there are essentially no free

parameters in the equation system (6.1), as the decay constant γ has been calculated [21, 23]

to be of order 1/10 for massless particles (wM = 1/3).
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FIG. 1: Numerical solution of the ODEs (6.1) with auxiliary functions (6.2). The model parameters

are {λ,wM , γ} = {1, 1/3, 1/10} and the boundary conditions are {h(1), f(1)} = {6, 3/5}. The

initial energy densities are {rV (1), rM (1)} = {8.97333, 27.0267}. The final value of the vacuum

energy density is rV (10
5) = 6.5× 10−4.
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FIG. 2: Same parameters and boundary conditions as in Fig. 1, except for a different value

of the cosmological constant, λ = −1. The initial energy densities are {rV (1), rM (1)} =

{6.97333, 29.0267}. The final value of the vacuum energy density is rV (10
5) = 6.5× 10−4.
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FIG. 3: Numerical solutions of the ODEs (6.1) with auxiliary functions (6.2) for λ = 1 (top row)

and λ = −1 (bottom row). Further model parameters are {wM , γ} = {1/3, 1/10}. The functions

f, h and rV [f ] are plotted versus the compactified time coordinate θ ≡ (τ − 1)/(τ + τmid − 2) with

τmid = 11/10. Four sets of boundary conditions at θ = 0 are used: {h(0), f(0)} = {6±1, 3/5±1/5}.
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VIII. CONCLUSION

In this article, we have again addressed the cosmological constant problem, which can

be formulated as follows: how can it be that the vacuum state does not have an effective

cosmological constant Λ (or vacuum energy density ρV = Λ and vacuum pressure PV = −Λ)

with an energy scale of the order of the known energy scales of elementary particle physics? A

particular adjustment-type solution of the cosmological constant problem involves so-called

q fields, which are scalars composites of higher-spin fields (for example, q as a composite

from a gauge field Aµνρ and the metric gµν).

By considering the energy exchange between this q field and massless particles produced

by the spacetime curvature, we have found that an arbitrary Planck-scale cosmological

constant Λ can be cancelled by the q-field dynamics without fine-tuning. As mentioned

previously, this cancellation occurs within the realm of standard general relativity.

The Minkowski vacuum with ρV = −PV = 0 appears as an attractor of the dynamical

equations. As the approach to the vacuum is rather slow, there occurs an inflationary

behavior of the particle horizon, provided the nature of the particle production does not

change. Indeed, the outstanding question is the microscopic origin of the particle-production

feedback on the vacuum energy density.

The q-theory framework serves as the proper tool for studying physical processes related

to the quantum vacuum. It describes, in particular, the relaxation of the vacuum energy

density (cosmological constant) as the backreaction of the deep vacuum to different types of

perturbations, such as the Big Bang, inflation, cosmological phase transition, and vacuum

instability in gravitational or other backgrounds.
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