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CURVE ARRANGEMENTS, PENCILS, AND JACOBIAN

SYZYGIES

ALEXANDRU DIMCA1

Abstract. Let C : f = 0 be a curve arrangement in the complex projective plane.
If C contains a curve subarrangement consisting of at least three members in a
pencil, then one obtains an explicit syzygy among the partial derivatives of the
homogeneous polynomial f . In many cases this observation reduces the question
about the freeness or the nearly freeness of C to an easy computation of Tjurina
numbers. Some consequences for Terao’s conjecture in the case of line arrangements
are also discussed.

1. Introduction

Let S = C[x, y, z] be the graded polynomial ring in the variables x, y, z with
complex coefficients and let C : f = 0 be a reduced curve of degree d in the complex
projective plane P2. The minimal degree of a Jacobian syzygy for f is the integer
mdr(f) defined to be the smallest integer r ≥ 0 such that there is a nontrivial relation

(1.1) afx + bfy + cfz = 0

among the partial derivatives fx, fy and fz of f with coefficients a, b, c in Sr, the
vector space of homogeneous polynomials of degree r. The knowledge of the invari-
ant mdr(f) allows one to decide if the curve C is free or nearly free by a simple
computation of the total Tjurina number τ(C), see [8], [4], and Corollary 4.7 and
Theorem 1.12 below for nice geometric applications.

When C is a free (resp. nearly free) curve in the complex projective plane P2, such
that C is not a union of lines passing through one point, then the exponents of A
denoted by d1 ≤ d2 satisfy d1 = mdr(f) ≥ 1 and one has

(1.2) d1 + d2 = d− 1,

(resp. d1 + d2 = d). Moreover, all the pairs d1, d2 satisfying these conditions may
occur as exponents, see [7]. For more on free hypersurfaces and free hyperplane
arrangements see [16], [13], [20], [17]. A useful result is the following.

Theorem 1.1. Let C : f = 0 be a reduced curve of degree d. If r0 ≤ mdr(f) for
some integer r0 ≥ 1, then C is free with exponents (r0, d− r0 − 1) if and only if

τ(C) = (d− 1)2 − r0(d− r0 − 1).
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In particular, the set F (d, τ) of free curves in the variety C(d, τ) ⊂ P(Sd) of reduced
plane curves of degree d with a fixed global Tjurina number τ is a Zariski open subset.

The interested reader may state and prove the completely similar result for nearly
free curves. If the curve C is reducible, one calls it sometimes a curve arrangement.
When the curve C can be written as the union of at least three members of one pencil
of curves, we say that C is a curve arrangement of pencil type. Such arrangements
play a key role in the theory of line arrangements, see for instance [11], [14] and the
references therein.

In this note we show that the existence of a subarrangement C′ in a curve arrange-
ment C : f = 0, with C′ of pencil type, gives rise to an explicit Jacobian syzygy for
f . We start with the simplest case, when C = A is a line arrangement and the pencil
type subarrangement C′ comes from an intersection point having maximal multiplic-
ity, say m = m(A), in A. This case was considered from a different point of view in
the paper [10] by D. Faenzi and J. Vallès. However, the construction of interesting
syzygies from points of high multiplicity in A is very explicit and elementary in our
note, see the formula (2.4), while in [10] the approach involves a good amount of
Algebraic Geometry. This explicit construction allows us to draw some additional
conclusions for the nearly free line arrangements as well.

Our first main result is the following.

Theorem 1.2. If A : f = 0 is a line arrangement and m = m(A) is the maximal
multiplicity of its intersection points, then either mdr(f) = d − m, or mdr(f) ≤
d−m− 1 and then one of the following two cases occurs.

(1) mdr(f) ≤ m − 1. Then equality holds, i.e. mdr(f) = m − 1, one has the
inequality 2m < d + 1 and the line arrangement A is free with exponents
d1 = mdr(f) = m− 1 and d2 = d−m;

(2) m ≤ mdr(f) ≤ d−m− 1, in particular 2m < d.

Theorem 1.1 can be used to identify the free curves in the case (2) above. We
show by examples in the third section that all the cases listed in Theorem 1.2 can
actually occur inside the class of free line arrangements. A number of corollaries of
Theorem 1.2 on the multiplicity m(A) of a free or nearly free line arrangement A
are given in the second section.

On the other hand, as a special case of a result in [5] recalled in subsection 2.7
below, we have the following.

Proposition 1.3. If A : f = 0 is a line arrangement, then

m ≥ 2d

mdr(f) + 2
.

In particular, if A is free or nearly free with exponents d1 ≤ d2, then

m ≥ 2d

d1 + 2
.

This inequality is sharp, i.e. an equality, for some arrangements, see Example 3.8.
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We say that Terao’s Conjecture holds for a free hyperplane arrangement A if any
other hyperplane arrangement B, having an isomorphic intersection lattice L(B) =
L(A), is also free, see [13], [22]. This conjecture is open even in the case of line
arrangements in the complex projective plane P2, in spite of a lot of efforts, see
for instance [1], [2]. For line arrangements, since the total Tjurina number τ(A) is
determined by the intersection lattice L(A), it remains to check that A : f = 0 and
B : g = 0 satisfy mdr(f) = mdr(g) and then apply [8], [4]. Theorem 3.1 in [10] and
our results above imply the following fact, to be proved in section 3.

Corollary 1.4. Let A be a free line arrangement with exponents d1 ≤ d2. If

m = m(A) ≥ d1,

then Terao’s Conjecture holds for the line arrangement A. In particular, this is the
case when one of the following conditions hold.

(1) d1 = d−m;
(2) m ≥ d/2;
(3) d1 ≤

√
2d+ 1− 1.

Remark 1.5. (i) The fact that the Terao’s Conjecture holds for the line arrangement
A when m = m(A) ≥ d1 + 2 was established in [9] by an approach not involving
Jacobian syzygies. The result for m = m(A) ≥ d1 is implicit in [10], see Theorem
3.1 coupled with Remarks 3.2 and 3.3. Moreover, the case m = m(A) = d1 − 1 for
some real line arrangements is discussed in Theorem 6.2 in [10].

(ii) The cases d1 = d − m and m ≥ d/2 in Corollary 1.4 follow also from the
methods described in [22], see in particular Proposition 1.23 (i) and Theorem 1.39.
Corollary 1.4 follows also from [1], Theorem 1.1., the claims (1) and (3).

(iii) The case (3) in Corollary 1.4 improves Corollary 2.5 in [4] saying that Terao’s
conjecture holds for A if d1 ≤

√
d− 1.

It is known that Terao’s Conjecture holds for the line arrangement A when d =
|A| ≤ 12, see [10]. This result and the case (3) in Corollary 1.4 imply the following.

Corollary 1.6. Let A be a free line arrangement with exponents d1 ≤ d2. If

d1 ≤ 4,

then Terao’s Conjecture holds for the line arrangement A.

In the case of nearly free line arrangements we have the following result, which
can be proved by the interested reader using the analog of Theorem 1.1 for nearly
free arrangements.

Corollary 1.7. Let A be a nearly free line arrangement with exponents d1 ≤ d2. If

m = m(A) ≥ d1,

then any other line arrangement B, having an isomorphic intersection lattice L(B) =
L(A), is also nearly free.

Now we present our results for curve arrangements. First we assume that C is
itself an arrangement of pencil type.
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Theorem 1.8. Let C : f = 0 be a curve arrangement in P2 such that the defining
equation has the form

f = q1q2 · · · qm,
for some m ≥ 3, where deg q1 = · · · = deg qm = k ≥ 2 and the curves Ci : qi = 0 for
i = 1, ..., m are members of the pencil uC1 + vC2, assumed to contain only reduced
curves. Then either mdr(f) = 2k − 2, or m = 3, mdr(f) ≤ 2k − 3 and in addition
one of the following two cases occurs.

(1) k ≥ 4 and mdr(f) ≤ k + 1. Then equality holds, i.e. mdr(f) = k + 1, and
the curve arrangement C is free with exponents d1 = k + 1 and d2 = 2k − 2;

(2) k ≥ 5 and k + 2 ≤ mdr(f) ≤ 2k − 3.

Using [8], [4] we get the following consequence.

Corollary 1.9. Let C be a curve arrangement of pencil type such that the corre-
sponding pencil uC1 + vC2 contains only reduced curves. If the number m of pencil
members, which are curves of degree k, is at least 4, then mdr(f) = 2k − 2. In
particular, in this case the curve C is free if and only if

τ(C) = (d− 1)2 − 2(k − 1)(d− 2k + 1),

resp. C is nearly free if and only if

τ(C) = (d− 1)2 − 2(k − 1)(d− 2k + 1)− 1.

And again Theorem 1.1 can be used to identify the free curves in the case (2)
above. Now we discuss the case of a curve arrangement containing a subarrangement
of pencil type.

Theorem 1.10. Let C : f = 0 be a curve arrangement in P
2 such that the defining

equation has the form

f = q1q2 · · · qmh,
for some m ≥ 2, where deg q1 = · · · = deg qm = k and the curves Ci : qi = 0 for
i = 1, ..., m are reduced members of the pencil uC1 + vC2. Assume that the curves
C1 : q1 = 0, C2 : q2 = 0 and H : h = 0 have no intersection points and that the curve
H is irreducible. Then either mdr(f) = 2k − 2 + deg(h) = d − (m − 2)k − 2, or
mdr(f) ≤ d− (m− 2)k − 3 and then one of the following two cases occurs.

(1) mdr(f) ≤ (m − 2)k + 1. Then equality holds, i.e. mdr(f) = (m − 2)k + 1,
and the curve arrangement C is free with exponents d1 = (m − 2)k + 1 and
d2 = d− (m− 2)k − 2;

(2) (m− 2)k + 2 ≤ mdr(f) ≤ d− (m− 2)k − 3.

In fact, this result holds also when k = 1 and H is just reduced, see Remark 2.3.

Remark 1.11. Note that when C is a line arrangement, containing strictly the pencil
type arrangement C′ and such that deg h > 1, (i.e. C contains at least two lines not in
C′), then it is not clear whether the Jacobian syzygy constructed in (4.3) is primitive.
Due to this fact, Theorem 1.2 cannot be regarded as a special case of Theorem 1.10.
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Exactly as in Corollary 1.9, when mdr(f) = d − (m − 2)k − 2, the freeness or
nearly freeness of C is determined by the global Tjurina number τ(C). This can be
seen in the examples given in the fourth section as well as in Corollary 4.7 and in
the following result.

Theorem 1.12. Let C : f = 0 be a curve arrangement in P2 such that the defining
equation has the form

f = q1q2 · · · qm,
for some m ≥ 3, where deg q1 = · · · = deg qm = k ≥ 2 and the curves Ci : qi = 0 for
i = 1, ..., m are members of the pencil spanned by C1 and C2. Assume that the pencil
uC1+ vC2 is generic, i.e. the curves C1 and C2 meet transversely in exactly k2 points.
Then the following properties are equivalent.

(1) Any singularity of any singular member Cs
j of the pencil uC1+vC2 is weighted

homogeneous and all these singular members Cs
j are among the m curves Ci

in the curve arrangement C;
(2) The curve C is free with exponents (2k − 2, mk − 2k + 1).

This result was essentially stated and partially proved in [21], see also the Erratum
to that paper.

2. Multiple points and Jacobian syzygies

2.1. Proof of Theorem 1.1. If C is free with exponents (r0, d − r0 − 1), then the
formula for τ(C) is well known, see for instance [6]. Suppose now that τ(C) is given
by the formula in Theorem 1.1. Suppose first that r0 < r = mdr(f) ≤ (d − 1)/2.
Then one has

(2.1) τ(C) = (d− 1)2 − r0(d− 1− r0) > φ1(r) := (d− 1)2 − r(d− 1− r),

since the function φ1(r) is stricly deceasing on [0, (d− 1)/2], which contradicts The-
orem 3.2 in [8]. Next suppose that r0 < r and (d− 1)/2 < r ≤ d− r0 − 1. It follows
then from Theorem 3.2 in [8] that one has

(2.2) τ(C) ≤ φ2(r) := (d− 1)2 − r(d− r − 1)−
(

2r + 2− d

2

)

.

The function φ2(r) is strictly decreasing on ((d− 4)/2,+∞) and moreover

φ1

(

d− 1

2

)

= φ2

(

d− 1

2

)

.

This yields a contradiction with (2.1), thus showing that the strict inequality r > r0
is impossible. It follows that r = r0 and one may use [8], [4] to complete the proof
of the first claim.

To prove the second claim, consider the closed subvariety Xr in P(S3

r ) × P(Sd)
given by

Xr = {((a, b, c), f) : afx + bfy + cfz = 0}.
Note that a polynomial f ∈ Sd satisfies mdr(f) ≤ r if and only if [f ] ∈ P(Sd) is in
the image Zr of Xr under the second projection. If there is 0 < r0 ≤ (d− 1)/2 such
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that τ = φ1(r0), then by the above discussion, F (d, τ) is exactly the complement
of Zr0−1 ∩ C(d, τ) in C(d, τ). If such an r0 does not exist, then F (d, τ) = ∅, which
completes the proof.

2.2. Proof of Theorem 1.2. We show first that an intersection point p of multi-
plicity m gives rise to a syzygy

(2.3) Rp : apfx + bpfy + cpfz = 0

where deg ap = deg bp = deg cp = d−m and such that the polynomials ap, bp, cp have
no common factor in S. Let f = gh, where g (resp. h) is the product of linear factors
in f corresponding to lines in A passing (resp. not passing) through the point p. If
we choose the coordinates on P

2 such that p = (1 : 0 : 0), then g is a homogeneous
polynomial in y, z of degree m, while each linear factor L in h contains the term in
x with a non zero coefficient aL. Moreover, deg h = d−m. It follows that

fx = ghx = gh
∑

L

aL
L

= f
P

h
,

where P is a polynomial of degree d − m − 1 such that P and h have no common
factors. This implies that

(2.4) dhfx = dPf = xPfx + yPfy + zPfz,

i.e. we get the required syzygy Rp by setting ap = xP − dh, bp = yP and cp = zP .
Now, by the definition ofmdr(f), we get mdr(f) ≤ d−m and it remains to analyse

the case mdr(f) < d −m. Let R1 be the syzygy of degree mdr(f) among fx, fy, fz.
It follows that Rp is not a multiple of R1, and hence when

degR1 + degRp = mdr(f) + d−m ≤ d− 1

we can use Lemma 1.1 in [18] and get the case (1). The case (2) is just the situation
when the case (1) does not hold, so there is nothing to prove.

Remark 2.3. The method of proof of Theorem 1.2 gives a proof of Theorem 1.10
when k = 1 and H is a reduced curve, not necessarily irreducible. Indeed, H reduced
implies that h and hx cannot have any common factor. Any such irreducible common
fact would be a line passing through the point p = (1 : 0 : 0), and h does not have
such factors by assumption.

Theorem 1.2 clearly implies the following Corollary, saying that the highest mul-
tiplicity of a point of a (nearly) free line arrangement cannot take arbitrary values
with respect to the exponents.

Corollary 2.4. (i) If A is a free line arrangement with exponents d1 ≤ d2, then
either m = d2 + 1 or m ≤ d1 + 1.
(ii) If A is a nearly free line arrangement with exponents d1 ≤ d2, then either m = d2
or m ≤ d1.

The first claim (i) in Corollary 2.4 should be compared with the final claim in
Corollary 4.5 in [10] and looks like a dual result to Corollary 1.2 in [1]. As a special
case of Corollary 2.4 we get the following.
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Corollary 2.5. (i) If A is a free line arrangement with exponents d1 ≤ d2 and
m > d/2, then m = d2 + 1.
(ii) If A is a nearly free line arrangement with exponents d1 ≤ d2 and m ≥ d/2, then
m = d2.

The following consequence of Theorem 1.2 is also obvious.

Corollary 2.6. If A is a line arrangement such that 2m = d, then either mdr(f) =
m and A is not free, or mdr(f) = m− 1 and A is free with exponents m− 1, m.

2.7. Proof of Proposition 1.3. For the reader’s convenience, we recall some facts
from [5], see also [6]. Let C be a reduced plane curve in P2 defined by f = 0.
Let αC be the minimum of the Arnold exponents αp of the singular points p of C.
The plane curve singularity (C, p) is weighted homogeneous of type (w1, w2; 1) with
0 < wj ≤ 1/2, if there are local analytic coordinates y1, y2 centered at p and a
polynomial g(y1, y2) =

∑

u,v cu,vy
u
1
yv
2
, with cu,v ∈ C and where the sum is over all

pairs (u, v) ∈ N2 with uw1 + vw2 = 1. In this case one has

(2.5) αp = w1 + w2,

see for instance [5]. With this notation, Corollary 5.5 in [5] can be restated as follows.

Theorem 2.8. Let C : f = 0 be a degree d reduced curve in P2 having only weighted
homogeneous singularities. Then AR(f)r = 0 for all r < αCd− 2.

In the case of a line arrangement C = A, a point p of multiplicity k has by the
above discussion the Arnold exponent αp = 2/k. It follows that, for m = m(A), one
has

(2.6) αC =
2

m
,

and hence Theorem 2.8 implies

(2.7) mdr(f) ≥ 2

m
d− 2.

In other words

(2.8) m ≥ 2d

mdr(f) + 2
,

i.e. exactly what is claimed in Proposition 1.3.

2.9. Proof of Corollary 1.7. Let B be defined by g = 0. Then Corollary 2.5 (ii)
applied to A implies that d1 = d−m, and hence in particular

τ(A) = (d− 1)2 − (d−m)(m− 1)− 1,

see [4]. Note that τ(A) = τ(B) as for a line arrangement the total Tjurina number is
determined by the intersection lattice, see for instance [7], section (2.2). If mdr(g) =
d − m, then our characterisation of nearly free arrangements in [4] via the total
Tjurina number implies that B is also nearly free.
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On the other hand, if mdr(g) < d −m, Theorem 1.2 applied to the arrangement
B implies that the only possibility given the assumption m ≥ d/2 is that B is free
with exponents m− 1, d−m, in particular

τ(B) = (d− 1)2 − (d−m)(m− 1).

This is a contradiction with the above formula for τ(A), so this case is impossible.

3. On free line arrangements

3.1. Proof of Corollary 1.4. The proof of Corollary 1.4 is based on Theorem 3.1
in [10], which we recall now in a slightly modified form, see also [7], section (2.2).

Theorem 3.2. Let B be an arrangement of d lines in P2 and suppose that there are
two integers k ≥ 1 and ℓ ≥ 0 such that d = 2k + ℓ + 1 and there is an intersection
point in B of multiplicity e such that

(3.1) k ≤ e ≤ k + ℓ+ 1.

Then the arrangement B is free with exponents (k, k + ℓ) if and only if the total
Tjurina number of B satisfies the equality

(3.2) τ(B) = (d− 1)2 − ℓ(k + ℓ).

Remark 3.3. A new proof of Theorem 3.2 can be given using our Theorem 1.1,
Theorem 1.2 and Theorem 3.2 in [8].

To prove the first claim of Corollary 1.4, we apply Theorem 2 in [10] to the ar-
rangement B. Corollary 2.5 implies that m = m(A) = m(B) ≤ d2 + 1. Then we can
set k = d1, ℓ = d2 − d1 and e = m and we get

k = d1 ≤ e = m ≤ k + ℓ+ 1 = d2 + 1.

It follows that τ(B) = τ(A) = (d − 1)2 − d1d2 and hence the line arrangement B is
free with exponents d1, d2.

The last claim of Corollary 1.4 follows since m < d1 implies via Proposition 1.3
that

2d

d1 + 2
< d1.

But this quadratic inequality in d1 holds if and only if d1 >
√
2d+ 1− 1.

3.4. Some examples of free line arrangements. Now we consider some examples
of line arrangements. First we show by examples that all the cases listed in Theorem
1.2 and Corollary 2.6 can actually occur inside the class of free line arrangements.

Example 3.5. The line arrangement

A : f = xyz(x− z)(x+ z)(x − y) = 0

is free with exponents (2, 3) and has m = 4 > d/2 = 3. Hence we are in the situation
d1 = mdr(f) = 2 = d−m.
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Example 3.6. The line arrangement

A : f = xyz(x− z)(x+ z)(x− y)(x+ y)(y − z) = 0

is free with exponents (3, 4) and has m = 4 = d/2. Hence we are in the situation
d1 = mdr(f) < 4 = d−m and d1 = mdr(f) = m− 1, as in Corollary 2.6.

Similarly, the line arrangement

A : f = xyz(x− z)(x+ z)(x − y)(x+ y)(y − z)(y + z) = 0

is free with exponents (3, 5) and has m = 4 < d/2. Hence we are in the situation
d1 = mdr(f) < 5 = d−m and d1 = mdr(f) = m− 1.

Example 3.7. The line arrangement

A : f = xyz(x− z)(x+ z)(x− y)(x+ y)(y − z)(y + z)(x + 2y)(x− 2y)

(x+ 2z)(x− 2z)(y − 2z)(y + 2z)(x+ y − z)(x − y + z)(−x + y + z)(x + y + z) = 0

is free with exponents (9, 9) and has m = 6 < 19/2. Hence we are in the situation
m = 6 ≤ mrd(f) = d1 = 9 < d−m = 13.

Finally we give an example showing that the inequality in Proposition 1.3 is sharp.

Example 3.8. The line arrangement

A : f = (x3 − y3)(y3 − z3)(x3 − z3) = 0

is free with exponents (4, 4) and has

m = 3 =
2d

d1 + 2
.

4. Pencils and Jacobian syzygies

Let C : f = 0 be a curve arrangement in P2 such that the defining equation has
the form

f = q1q2 · · · qmh = gh,

for some m ≥ 2, where deg q1 = · · · = deg qm = k and the curves Ci : qi = 0 for
i = 1, ..., m are reduced members of the pencil uC1+vC2, which contains only reduced
curves. In terms of equations, one can write

(4.1) qi = q1 + tiq2,

for i = 3, ..., m and some ti ∈ C∗ distinct complex numbers. In other words, the
curve subarrangement C′ : g = 0 of C consists of m ≥ 2 reduced members of a pencil.

To find a Jacobian syzygy for f as in (1.1) is equivalent to finding a homogeneous
2-differential form ω on C3 with polynomial coefficients such that

(4.2) ω ∧ df = 0.
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4.1. The case when C is a pencil. When h = 1, i.e. when C = C′ is a pencil itself,
then one can clearly take

(4.3) ω = dq1 ∧ dq2,

see also Lemma 2.1 in [21]. This form yields a primitive syzygy of degree 2k − 2 if
we show that
(i) ω 6= 0, and
(ii) ω is primitive, i.e. ω cannot be written as eη, for e ∈ S with deg e > 0 and η a
2-differential form on C

3 with polynomial coefficients. Such a polynomial e is called
a divisor of ω.

The first claim follows from Lemma 3.3 in [4], since q1 = 0 is a reduced curve and
q1 and q2 are not proportional. The claim (ii) is a consequence of Lemma 2.5 in [21],
or can easily be proven directly by the interested reader.

4.2. The case when C is a not pencil. If deg h = d− km > 0, then we set

(4.4) ω = adq1 ∧ dq2 + bdq1 ∧ dh+ cdq2 ∧ dh,

with a, b, c ∈ S to be determined. The condition (4.2) becomes

g

[

a− bh

(

1

q2
+

t3
q3

+ · · ·+ tm
qm

)

+ ch

(

1

q1
+

1

q3
+ · · ·+ 1

qm

)]

dq1 ∧ dq2 ∧ dh = 0.

We have the following result.

Lemma 4.3. Assume that the curves C1 : q1 = 0, C2 : q2 = 0 and H : h = 0 have
no common point. Then the 2-form ω = adq1 ∧ dq2 + bdq1 ∧ dh + cdq2 ∧ dh with
a = −mh, b = −q2 and c = q1 is non-zero and satisfies ω ∧ df = 0. Moreover, any
divisor of ω is a divisor of the Jacobian determinant J(q1, q2, h) of the polynomials
q1, q2, h and of h. In particular, if h is irreducuble, then ω is primitive.

Proof. Since the ideal (q1, q2, h) is m-primary, where m = (x, y, z), it follows that

dq1 ∧ dq2 ∧ dh = J(q1, q2, h)dx ∧ dy ∧ dz 6= 0,

see [12], p. 665. This shows in particular that ω 6= 0. Indeed, one has

ω ∧ dq1 = q1J(q1, q2, h)dx ∧ dy ∧ dz

and
ω ∧ dq2 = q2J(q1, q2, h)dx ∧ dy ∧ dz.

Since q1 and q2 have no common factor, these equalities show that any divisor e of
ω divides J(q1, q2, h).

Let ∆ be the contraction of differential forms with the Euler vector field, see
Chapter 6 in [3] for more details if needed. Then one has

J(q1, q2, h)∆(dx ∧ dy ∧ dz) = ∆(dq1 ∧ dq2 ∧ dh) =

= kq1dq2 ∧ dh− kq2dq1 ∧ dh+ (d−mk)hdq1 ∧ dq2 =

= kω + d · hdq1 ∧ dq2.

This implies that any divisor e of ω and of J(q1, q2, h) divides h as well. Since h does
not divide J(q1, q2, h), see [12], p. 659, the last claim follows. �
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The main results based on the above facts are Theorems 1.8 and 1.10, stated in
the Introduction. Their proofs are exactly the same as the proof of Theorem 1.2
using the discussion above.

Remark 4.4. The case r = d−m in Theorem 1.2, the case r = 2k − 2 in Theorem
1.8, or the case r = 2k − 2 + deg(h) in Theorem 1.10 can sometimes be discarded if
r = mdr(f) > (d− 1)/2 using the inequality (2.2).

Now we illustrate these results by some examples.

Example 4.5. (i) The line arrangement

A : f = (xk − yk)(yk − zk)(xk − zk) = 0

for k ≥ 2 is seen to be free with exponents (k + 1, 2k− 2) using Theorem 1.12. This
arrangement has m(A) = k for k ≥ 3, hence the Jacobian syzygy constructed in the
proof of Theorem 1.2 has degree d−m(A) = 2k. The Jacobian syzygy constructed
in (4.3) has degree d2 = 2k − 2, hence we are in the case (1) of Theorem 1.8 when
k ≥ 4. Theorems 1.1 and 1.2 give an alternative proof for the freeness of A. The
same method shows that the arrangement

A′ : f = xyz(xk − yk)(yk − zk)(xk − zk) = 0

for k ≥ 2 is free with exponents (k + 1, 2k + 1).
(ii) The curve arrangement

C : f = xyz(x3 + y3 + z3)[(x3 + y3 + z3)3 − 27x3y3z3] = 0

is just the Hesse arrangement from [21] with one more smooth member of the pencil
added. One has k = 3 and m = 5, hence r = mdr(f) = 4 follows from Theorem 1.8.
Moreover, the Jacobian syzygy constructed in (4.3) has minimal degree r = mdr(f),
and this is always the case by Theorem 1.8 when k = 3 or when m > 3. To compute
the total Tjurina number τ(C) of C, note that the 9 base points of the pencil are
ordinary 5-fold points, hence each contributes with 16 to τ(C). There are four singular
members of the pencil in C, each a triangle, hence we should add 12 to τ(C) for these
12 nodes which are the vertices of the four triangles. It follows that

τ(C) = 9× 16 + 12 = 156 = (d− 1)2 − r(d− r − 1) = 142 − 4× 10,

which shows that C is free with exponents (4, 10) using [8], [4].

Example 4.6. (i) The line arrangement

A : f = (xk − yk)(yk − zk)(xk − zk)x = 0

is seen by a direct computation to be free with exponents (k + 1, 2k − 1). This
arrangement has m(A) = k + 1 for k ≥ 2, hence the Jacobian syzygy constructed
in the proof of Theorem 1.2 has degree d − m(A) = 2k. The Jacobian syzygy
constructed in (4.3) has degree d2 = 2k− 1, hence we are in the case (1) of Theorem
1.10.

(ii) Consider the curve arrangement C : f = x(xm−1 − ym−1)(xy + z2) for m ≥ 3.
Here k = 1 and d = m + 2. Theorem 1.10 implies that r = mdr(f) = deg(h) = 2.
To compute the total Tjurina number τ(C) of C, note that (0 : 0 : 1) is an ordinary
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m-fold point, hence it contributes to τ(C) by (m − 1)2. Each of the (m − 1) lines
in xm−1 − ym−1 meets the smooth conic H : xy + z2 = 0 in two points, so has
a contribution to τ(C) equal to 2. The line x = 0 is tangent to H at the point
p = (0 : 1 : 0) and hence at p the curve C has an A3 singularity. It follows that

τ(C) = (m− 1)2 + 2(m− 1) + 3 = m2 + 2 = (d− 1)2 − r(d− r − 1)− 1.

Using [4], we infer that the curve C is nearly free with exponents (2, m). The same
method shows that the curve arrangement C′ : f = xy(xm−2 − ym−2)(xy + z2) for
m ≥ 3 is free with exponents (2, m− 1).

We end this section with a more general and geometric example.

Corollary 4.7. Let H : h = 0 be a smooth curve of degree e ≥ 2 and let p be a
generic point in P2, such that there are exactly m = e(e− 1) simple tangent lines to
H, say L1, ..., Lm, passing through p. Then the curve C = H ∪ L1 ∪ ... ∪ Lm is free
with exponents (e, e2 − e− 1).

Proof. It is known that the degree of the dual curve H∗ is given by e∗ = e(e−1), see
[12], p. 282, hence the existence of points p as claimed is clear. We apply Theorem
1.10 to the curve C, with k = 1, d = m + e = e2. When e = 2, we are in the case
(1), hence C is free with exponents (1, 2). For e ≥ 3, we get r = mdr(f) = e. Then
a computation of the global Tjurina number as in Example 4.6 (ii) (each line Lj

contains e− 2 nodes of C and an A3 singularity corresponding to the point where Lj

is tangent to H) shows that

τ(C) = e4 − e3 − e2 + e+ 1 = (d− 1)2 − r(d− r − 1).

Hence C is free with exponents (r, d− r − 1) = (e, e2 − e− 1) using [8], [4]. �

5. The case of generic pencils

Let C : f = 0 be a curve arrangement in P2 such that the defining equation has
the form

f = q1q2 · · · qm,
for some m ≥ 2, where deg q1 = · · · = deg qm = k and the curves Ci : qi = 0 for
i = 1, ..., m are members of the pencil spanned by C1 and C2. We say that this pencil
is generic if the following condition is satisfied: the curves C1 and C2 meet transversely
in exactly k2 points. If this holds, then the generic member of this pencil is smooth,
and any member of the pencil uC1 + vC2 is smooth at any of the k2 base points. Let
us denote by Cs

j for j = 1, ..., p all the singular members in this pencil. One has the
following result.

Proposition 5.1. If the pencil uC1+vC2 is generic, then the sum of the total Milnor
numbers of the singular members Cs

j in the pencil satisfies
∑

j=1,p

µ(Cs
j ) = 3(k − 1)2.
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Proof. First recall that µ(Cs
j ) is the sum of the Milnor numbers of all the singularities

of the curve Cs
j . Then we consider two smooth members D1 : g

′

1
= 0 and D2 : g

′

2
= 0

in the pencil and consider the rational map φ : X → C, where X = P2 \D1 and

φ(x : y : z) =
g′
2
(x, y, z)

g′
1
(x, y, z)

.

Then it follows that φ is a tame regular function, see [19], whose singular points are
exactly the union of the singular points of the curves Cs

j for j = 1, ..., p. From the
general properties of tame functions it follows that

∑

j=1,p

µ(Cs
j ) =

∑

a∈X

µ(φ, a) = χ(X,X ∩D2).

Since the Euler characteristic of complex constructible sets is additive we get

χ(X,X ∩D2) = χ(P2)− χ(D1)− χ(D2) + χ(D1 ∩D2) =

= 3 + 2k(k − 3) + k2 = 3(k − 1)2.

�

5.2. Proof of Theorem 1.12. First we assume (1) and prove (2). For this, we
compute the total Tjurina number τ(C), taking into account the fact that the singu-
larities of C are of two types: the ones coming from the singularities of the singular
members Cs

j and the k2 base points, each of which is an ordinary m-fold point. It
follows that

(5.1) τ(C) =
∑

j=1,p

τ(Cs
j ) + k2(m− 1)2 = 3(k − 1)2 + k2(m− 1)2,

since τ(Cs
j ) = µ(Cs

j ), all the singularities being weighted homogeneous.
Assume first that m ≥ 4. Then Corollary 1.9 implies that r = mdr(f) = 2k − 2

and the equation (5.1) yields τ(C) = (d− 1)2 − r(d− 1− r), i.e. C is free.
Consider now the case m = 3. If r = mdr(f) = 2k − 2, the same proof as above

works. Moreover, if we are in the case (1) of Theorem 1.8, i.e. mdr(f) = k+ 1 = r0,
then again we get

τ(C) = (d− 1)2 − r0(d− 1− r0),

and hence C is free in this case as well. It remains to discuss the case (2) in Theorem
1.8. This can be done using Theorem 1.1, thus completing the proof of the implication
(1) ⇒ (2). The implication (2) ⇒ (1) is obvious using [15].
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