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ABSTRACT

Cognitive Radio (CR) is an emerging wireless communication paradigm to improve the spectrum

utilization. Cognitive Radio users, also known as secondary users (SUs), are allowed to transmit over

the channels as long as they do not cause harmful interference to the primary users (PUs) who have

licensed access to those channels. The quality of service (QoS) associated with this transmission scheme

might deteriorate if those channels are not utilized efficiently by these SUs. In addition, SUs located

physically close to PUs might cause more harmful interference than those who are far. This might

degrade the QoS of those SUs since they will be allocated the channel less frequently to protect the

PUs.

In this report, we study the packet delay as a QoS metric in CR systems. The packet delay is defined

as the average time spent by a packet in the queue waiting for transmission as well as that spent during

the transmission process. The former is referred to as the queue waiting time while the latter is the

service time. In real-time applications, the average delay of packets needs to be below a prespecified

threshold to guarantee an acceptable QoS. In this work, we study the effect of both the scheduling

and the power allocation algorithms on the delay performance of the SUs. We study how these two

parameters affect both the service time as well as the queue waiting time.

To study the delay due to the service time we study the effect of multiple channels on a single SU

and, thus, ignore the scheduling problem. Specifically, in a multichannel system where the channels are

sensed sequentially, we study the tradeoff between throughput and delay. The problem is formulated as

an optimal stopping rule problem where it is required to decide at which channel the SU should stop

sensing and begin transmission. We provide a closed-form solution for this optimal stopping problem
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and specify the optimal amount of power that this SU should be transmitting with over this channel.

The algorithm trades off the service time versus the throughput to guarantee a maximum throughput

performance subject to a bound on the average service time. This tradeoff results from skipping low-

quality channels to seek the possibility of finding high-quality ones in the future at the expense of a

higher probability of being blocked from transmission since these future channels might be busy.

On the other hand, the queue waiting time is studied by considering a multi-SU single channel

system. Specifically, we study the effect of scheduling and power allocation on the delay performance

of all SUs in the system. We propose a delay optimal algorithm to this problem that schedules the

SUs to minimize the delay while protecting the PUs from harmful interference. One of the contribu-

tions of this algorithm is that it can provide differentiated service to the users even if their channels

are statistically heterogeneous. In heterogeneous-channels system, users with statistically low channel

quality are expected to have worse delay performances. However, the proposed algorithm guarantees a

prespecified delay performance to each SU without violating the PU’s interference constraint. Existing

scheduling algorithms do not provide such guarantees if the interference channels are heterogeneous.

This is because they are developed for conventional non-CR wireless systems that neglect interference

since channels are orthogonal.

Finally, we present two potential extensions to these studied problems. In the first one, instead of

imposing a constraint on the average delay as assumed in this report, we impose strict deadlines by

which the packets need to be transmitted. Problems with strict deadlines have their applications in live

streaming and online gaming where packets are expected to reach their destination before a prespecified

deadline expires. If a packet misses its deadline it is dropped from the system and does not count

towards the throughput. However, these applications can tolerate a small percentage out of the total

packets missing their deadlines. We have solved the single-SU version of this problem in Chapter 2.

Extensions to the multi-user case is an interesting problem.
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The second extension is to study the scheduling problem at hand aiming at finding scheduling

algorithms that are throughput optimal and delay optimal at the same time. Except for special cases of

our problem, the proposed scheduling and power allocation policy does not achieve the capacity region.

However, our preliminary results show that their exist throughput-optimal scheduling algorithms that

are well studied in the literature that can be developed to be delay optimal as well.
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CHAPTER 1

Introduction

Cognitive Radio (CR) systems are emerging wireless communication systems that allow efficient

spectrum utilization [1]. CRs refer to devices that coexist with the licensed spectrum owners called the

primary users (PUs), and that are capable of detecting their presence. Once PU’s activity is detected on

some frequency channel, the CR user refrains from any further transmission on this channel. This may

result in service disconnection for the CR user, thus degrading the quality of service (QoS). If the CR

users have access to other channels, the QoS can be improved by switching to another frequency channel

instead of completely stopping transmission. If not, then they should control their transmission power to

avoid harmful interference to the PUs. Hence, CR users are required to adjust their transmission power

levels, and -thus- their rates, according to the interference level the PUs can tolerate. This adjustment

could lead to severe degradation in the QoS provided for the CR users, if not designed carefully.

1.1 Cognitive Radio Transmission Schemes

There are two main transmission schemes that CR systems may follow to coexist with the PUs;

the overlay and the underlay. In the overlay, CR users, also referred to as the secondary users (SUs),

transmit their signal only when the PUs are not using the channel. In other words, the SUs look for the

spectrum holes to transmit their data as in Fig. 1.1. Hence, unlike conventional radios, SUs’s radios are

equipped with a spectrum sensor that is used to sense the spectrum before beginning the transmission

phase. In this sensing phase, the SUs listen to all frequency channels to overhear the PUs’ transmission
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Figure 1.1: Spectrum holes are the locations of the unused spectrum in time and frequency.

so as to decide which channels are free from PUs and which are not. Upon this detection process, the

SU picks up a channel, or more, out of the detected-free channels to transmit its data over for a limited

amount of time. Once the channel is occupied again by the PU, the SU is expected to refrain from

transmission over this channel but allowed to use a different channel after performing the sensing phase

again. A practical spectrum sensor might yield wrong decisions, namely, it might detect the presence of

a PU on some channel although this channel is actually free, or might miss-detect the PU when it is using

the channel. These events are referred to as the false-alarm and miss-detection events, respectively. The

higher the false-alarm probability the higher the SU misses transmission opportunities and, thus, the

lower the SU’s throughput is. Similarly, the higher the probability of miss-detection the more the SU’s

packet collides with the PU’s and leading to a lower throughput since collided packets are lost. While the

false-alarm probability affects the SU’s throughput alone, the miss-detection probability affects both the

SU and the PU. As the sensing phase duration increases, these two probabilities decrease simultaneously.
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Figure 1.2: The sensing phase is used to sense M channels to detect the presence of the PU. The SU
starts transmitting its data in the transmission phase on one of the free channels.

However, increasing the sensing phase duration comes at the expense of the transmission phase duration

thus decreasing the throughput. This tradeoff has been studied extensively in the literature [2].

In the underlay scheme, the SU is allowed to transmit over any frequency channel at any time as

long as the PU can tolerate the interference caused by this transmission. This tolerable level is referred

to as the interference temperature as dictated by the Federal Communications Commission (FCC) [3].

In order to guarantee this protection for the PU, the SU has to adjust its transmission power according

to the gain of the channel to the primary receiver referred to as the interference channel. The knowledge

of this gain instantaneously is essential at the SU’s transmitter. While this channel knowledge might be

infeasible in CR systems that assume no cooperation between the PU and the SU, in some scenarios the

SU might be able to overhear the pilots sent by the primary receiver when it is acting as a transmitter

if the PU is using a time division duplex scheme.

In both cases, the overlay and the underlay, the SU might interfere with the PU. This in turn dictates

that the SU should adopt its channel access scheme in such a way that this interference is tolerable so

that the PU’s quality of service (QoS) is not degraded. With that being said, we might expect that

the SUs located physically closer to the PUs might suffer larger degradation in their QoS compared

to those that are far because closer SUs transmit with smaller amounts of power. This problem does

not appear in conventional non CR cellular systems since frequency channels tend to be orthogonal in
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non CR systems. In other words, in non CR systems, all users are allocated the channels via some

scheduler that guarantees those users do not interfere with each other. While in CR systems, since SUs

interfere with PUs, we need to develop scheduling and power control algorithms that prevent harmful

interference to PUs, as well as guaranteeing acceptable QoS for the SUs.

1.2 Guaranteeing Quality of Service in Cognitive Radio Systems

Since CR users operate in an interference limited environment, they are expected to experience lower

QoS than in conventional systems. However, the QoS provided needs to fall within the acceptable level

that varies with the application. For example, the average delay of a packet in online streaming is

required to not more than 300ms while that in online gaming should not exceed 50ms. However, these

two applications might tolerate small losses in their transmitted packets which is not the case with some

other applications as file sharing and email applications that, on the other hand, might tolerate packet

delays.

The QoS can include, but is not limited to, throughput, delay, bit-error-rate, interference caused to

the PU. Out of these metrics the most two major ones are the throughput and the delay that have gained

strong attention in the literature recently [4]. The throughput metric is defined as the average amount

of packets (or bits) per channel-use that can be delivered in the SU’s network without violating the

PU’s interference constraints. On the other hand, the delay refers to as the amount of time elapsed from

the instant a packet joins the SU’s buffer until it is successfully and fully transmitted to its intended

receiver. A higher throughput is usually achieved by the efficient power allocation algorithms while

better delay performances are usually achieved by efficient scheduling of users.

The problem of scheduling and/or power control has been widely studied in the literature (see [5–11],

and references therein). These works aim at optimizing the throughput, providing delay guarantees

and/or guaranteeing protection from interference. In real-time applications, such as audio/video confer-

ence calls, one of the most important QoS metrics is the delay metric. The delay is defined as the average
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amount of time a packet spends in the system starting from the instant it arrives to the buffer until it

is completely transmitted. In real-time applications, packets are expected to arrive at the destination

before a prespecified deadline [12]. Thus, the average packet delay needs to be as small as possible to

prevent jitter and to guarantee acceptable QoS for these applications [10,11].

There are two different factors that cause delay in data networks. The first is the service time which

is the amount of time required to transmit this packet. The second is the queue-waiting time which is

the time spent by a packet in the queue waiting for its transmission to begin. The sum of both yields

the delay. Thus, in order to optimize over the delay we should study both factors.

1.3 Service Time

The service time is affected by the amount of resources allocated to the packet at the time of

transmission. Resources might include power, channel bandwidth, coding rate and transmission time.

Several works have been studied to address how to optimally allocate these resources over time and

users. However, from a practical implementation point of view, the most challenging resource is channel

bandwidth. This is because increasing the bandwidth requires allocating multiple channels to a user

which might require the user to be equipped with high cost transmitters (receivers) capable of trans-

mitting (receiving) over multiple channels simultaneously. On the other hand, allocating a single fixed

channel to a user is not optimal.

The problem of channel allocation in multi-channel CR systems has gained attention in recent works

due to the challenges associated with the sensing and access mechanisms in a multichannel CR system.

Practical hardware constraints on the SUs’ transceivers may prevent them from sensing multiple channels

simultaneously to detect the state of these channels (free/busy). This leads the SU to sense the channels

sequentially, then decide which channel should be used for transmission [13,14]. In a time slotted system

if sequential channel sensing is employed, the SU senses the channels one at a time and stops sensing

when a channel is found free. But due to the independent fading among channels, the SU is allowed to
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skip a free channel if its quality, measured by its power gain, is low and sense another channel seeking

the possibility of a higher future gain. Otherwise, if the gain is high, the SU stops at this free channel

to begin transmission. The question of when to stop sensing can be formulated as an optimal stopping

rule problem [14–17]. In [15] the authors present the optimal stopping rule for this problem in a non-CR

system. The work in [14] develops an algorithm to find the optimal order by which channels are to be

sequentially sensed in a CR scenario, whereas [16] studies the case where the SUs are allowed to transmit

on multiple contiguous channels simultaneously. The authors presented the optimal stopping rule for

this problem in a non-fading wireless channel. Transmissions on multiple channels simultaneously may

be a strong assumption for low-cost transceivers especially when they cannot sense multiple channels

simultaneously.

In general, if a perfect sensing mechanism is adopted, the SU will not cause interference to the PU

since the former transmits only on spectrum holes (referred to as an overlay system). Nevertheless,

if the sensing mechanism is imperfect, or if the SU’s system is an underlay one (where the SU uses

the channels as long as the interference to the PU is tolerable), the transmitted power needs to be

controlled to prevent harmful interference to the PU. References [18] and [5] consider power control

and show that the optimal power control strategy is a water-filling approach under some interference

constrain imposed on the SU transmitter. Yet, all of the above work studies single channel systems

which cannot be extended to multiple channels in a straightforward manner. A multiuser CR system

was considered in [19] in a time slotted system. To allocate the frequency channel to one of the SUs,

the authors proposed a contention mechanism that does not depend on the SUs’ channel gains, thus

neglecting the advantage of multiuser diversity. A major challenge in a multichannel system is the

sequential nature of the sensing where the SU needs to take a decision to stop and begin transmission,

or continue sensing based on the information it has so far. This decision needs to trade-off between

waiting for a potentially higher throughput and taking advantage of the current free channel. Moreover,
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if transmission takes place on a given channel, the SU needs to decide the amount of power transmitted

to maximize its throughput given some average interference and average power constraints.

In Chapter 2, we model the overlay and underlay scenarios of a multi-channel CR system that are

sensed sequentially. The problem is solved for a single SU first then we discuss extensions to a multi-SU

scenario. For the single SU case, the problem is formulated as a joint optimal-stopping-rule and power-

control problem with the goal of maximizing the SU’s throughput subject to average power and average

interference constraints. This formulation results in increasing the expected service time of the SU’s

packets. The expected service time is the average number of time slots that pass while the SU attempts

to find a free channel, before successfully transmitting a packet. The increase in the service time is due

to skipping free channels, due to their poor gain, hoping to find a future channel of sufficiently high gain.

If no channels having a satisfactory gain were found, the SU will not be able to transmit its packet, and

will have to wait for longer time to find a satisfactory channel. This increase in service time increases

the queuing delay. Thus, we solve the problem subject to a bound on the expected service time which

controls the delay. In the multiple SUs case, we show that the solution to the single SU problem can be

applied directly to the multi-SU system with a minor modification. We also show that the complexity

of the solution decreases when the system has a large number of SUs.

To the best of our knowledge, this is the first work to study the joint power-control and optimal-

stopping-rule problem in a multi channel CR system. Our contribution in this work is the formulation

of a joint power-control and optimal-stopping-rule problem that also incorporates a delay constraint

and present a low complexity solution in the presence of interference/collision constraint from the SU

to the PU due to the imperfect sensing mechanism. The preliminary results in [20] consider an overlay

framework for single user case while neglecting sensing errors. But in this work, we also study the

problem in the underlay scenario where interference is allowed from the secondary transmitter (ST)

to the primary receiver (PR) and extend to multiple SU case. We also generalize the solution to the

multi-SU case when the number of SUs is large. We discuss the applicability of our formulation in
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typical delay-constrained scenarios where packets arrive simultaneously and have a same deadline. We

show that the proposed algorithm can be used to solve this problem offline, to maximize the throughput

and meet the deadline constraint at the same time. Moreover, we propose an online algorithm that

gives higher throughput compared to the offline approach while meeting the deadline constraint.

1.4 Queue-Waiting Time

Unlike the service time, the delay due to queue-waiting time is affected by the scheduling algorithm.

The more frequently a user is allocated the channel for transmission, the less its queue-waiting time is,

but the more the queue-waiting times for the other users are. Delay due to the queue-waiting time is

also well studied recently in the literature and scheduling algorithms have been proposed to guarantee

small delay for users in conventional systems [21–23]. In [21], the authors study the joint scheduling-

and-power-allocation problem in the presence of an average power constraint. Although in [21] the

proposed algorithm offers an acceptable delay performance, all users are assumed to transmit with the

same power. A power allocation and routing algorithm is proposed in [23] to maximize the capacity

region under an instantaneous power constraint. While the authors show an upper bound on the average

delay, this delay performance is not guaranteed to be optimal.

Although queuing theory, that was originally developed to model packets at a server, can be applied

to wireless channels, the challenges are different. One of the main challenges is the fading nature of

the wireless channel that changes from a slot to another. Fading requires adapting the user’s power

and/or rate according to the channel’s fading coefficient. The idea of power and/or rate adaptation

based on the channel condition does not have an analogy in server problems and, thus, is absent in the

aforementioned references. Instead, existing works treat wireless channels as on-off fading channels and

do not consider multiple fading levels. Among the relevant references that consider a more general fading

channel model are [23], which was discussed above, [24, 25] where the optimization over the scheduling
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algorithm was out of the scope of their work, and [26] that neglects the interference constraint since it

considers a non CR system.

In contrast with [6–9, 27] that do not optimize the queuing delay, the problem of minimizing the

sum of SUs’ average delays is considered in this work. The proposed algorithm guarantees a bound on

the instantaneous interference to the PUs, a guarantee that is absent in [21, 23]. Based on Lyapunov

optimization techniques [21], an algorithm that dynamically schedules the SUs as well as optimally

controlling their transmission power is presented. The contributions in this work are: i) Proposing a

joint power-control and scheduling algorithm that is optimal with respect to the average delay of the SUs

in an interference-limited system; ii) Showing that the proposed algorithm can provide differentiated

service to the different SUs based on their heterogeneous QoS requirements. Moreover, the complexity

of the algorithm is shown to be polynomial in time since it is equivalent to that of sorting a vector of

N numbers, where N is the number of SUs in the system.
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CHAPTER 2

Delay Due To Service Time

In this chapter we study the delay resulting from the service time of packets and neglect the delay

resulting from the waiting time in the queues. We treat the cognitive radio system as a single secondary

user (SU) accessing a multi-channel system. The main problem studied in this chapter is the tradeoff

between the service time and the throughput. We assume the SU senses the channels sequentially

to detect the presence of the primary user (PU), and stops its search to access a channel if it offers

a significantly high throughput. The tradeoff exists because stopping at early-sensed channels gives

low average service time but, at the same time, gives low throughput since early channels might have

low gains. The joint optimal stopping rule and power control problem is formulated as a throughput

maximization problem with an average service time and power constraint. We note that in this chapter

we use the word delay to refer to the service time.

2.1 Overlay System Model

Consider a PU network that has a licensed access to M orthogonal frequency channels. Time is

slotted with a time slot duration of T seconds. The SU’s network consists of a single ST (SU and ST

will be used interchangeably) attempting to send real-time data to its intended secondary receiver (SR)

through one of the channels licensed to the PU. Before a time slot begins, the SU is assumed to have

ordered the channels according to some sequence (we note that the method of ordering the channels is

outside the scope of this work. The reader is referred to [14] for further details about channel ordering),
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labeled 1, ...,M . The set of channels is denoted byM = {1, ...,M}. Before the SU attempts to transmit

its packet over channel i, it senses this channel to determine its availability “state” which is described

by a Bernoulli random variable bi with parameter θi (θi is called the availability probability of channel

i). If bi = 0 (which happens with probability θi), then channel i is free and the SU may transmit over it

until the on-going time slot ends. If bi = 1, channel i is busy, and the SU proceeds to sense channel i+1.

Channel availabilities are statistically independent across frequency channels and across time slots.

We assume that the SU has limited capabilities in the sense that no two channels can be sensed

simultaneously. This may be the case when considering radios having a single sensing module with a

fixed bandwidth, so that it can be tuned to only one frequency channel at a time. The reader is referred

to [28], [29] and [30] for detailed information on advanced spectrum sensing techniques. Therefore, at

the beginning of a given time slot, the SU selects a channel, say channel 1, senses it for τ seconds

(τ � T/M), and if it is free, the SU transmits on this channel if its channel gain is high enough1.

Otherwise, the SU skips this channel and senses channel 2, and so on until it finds a free channel. If all

channels are busy (i.e. the PU has transmission activities on all M channels) then this time slot will

be considered as “blocked”. In this case, the SU waits for the following time slot and begins sensing

following the same channel sensing sequence. As the sensing duration increases, the transmission phase

duration decreases which decreases the throughput. But we cannot arbitrarily decrease the value of τ

since this decreases the reliability of the sensing outcome. This trade-off has been studied extensively

in the literature, e.g. [31], [32]. In this work we study the impact of sequential channel sensing on the

throughput rather than the sensing duration on the throughput. Hence we assume that τ is a fixed

parameter and is not optimized over. For details on the trade-off between throughput and sensing

duration in this sequential sensing problem the reader is referred to [2].

1How “high” is “high” is going to be explained later
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….

Transmission PhaseSensing Phase

seconds

….

Figure 2.1: Sensing and transmission phases in one time slot. The SU senses each channel for τ seconds,
determines its state, then probes the gain if the channel is found free. The sensing phase ends if the
probed gain γi > γth (i), in which case k∗ = i. Hence, k∗ is a random variable that depends on the
channel states and gains.

The fading channel between ST and SR is assumed to be flat fading with independent, identically

distributed (i.i.d.) channel gains across the M channels. To achieve higher data rates, the SU adapts

its data rate according to the instantaneous power gain of the channel before beginning transmission

on this channel. To do this, once the SU finds a free channel, say channel i, the gain γi is probed. The

data rate will be proportional to log(1 + P1,i(γi)γi), where P1,i(γi) is the power transmitted by the SU

at channel i as a function of the instantaneous gain [33]. Fig. 2.1 shows a potential scenario where the

SU senses k∗ channels, skips the first k∗− 1, and uses the k∗th channel for transmission until the end of

this on-going time slot. In this scenario the SU “stops” at the k∗th channel, for some k∗ ∈M. Stopping

at channel i depends on two factors: 1) the availability of channel bi, and 2) the instantaneous channel

gain γi. Clearly, bi and γi are random variables that change from one time slot to another. Hence, k∗,

that depends on these two factors, is a random variable. More specifically, it depends on the states

[b1, ..., bM ] along with the gains of each channel [γ1, ..., γM ]. To understand why, consider that the SU

senses channel i, finds it free and probes its gain γi. If γi is found to be low, then the SU skips channel

i (although free) and senses channel i+ 1. This is to take advantage of the possibility that γj � γi for

j > i. On the other hand, if γi is sufficiently large, the SU stops at channel i and begins transmission.

In that latter case k∗ = i. Defining the two random vectors b = [b1, ..., bM ]T and γ = [γ1, ..., γM ]T , k∗ is

a deterministic function of b and γ.
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We define the stopping rule by defining a threshold γth (i) to which each γi is compared when the

ith channel is found free. If γi ≥ γth (i), channel i is considered to have a “high” gain and hence the

SU “stops” and transmits at channel i. Otherwise, channel i is skipped and channel i + 1 sensed. In

the extreme case when γth (i) = 0, the SU will not skip channel i if it is found free. Increasing γth (i)

allows the SU to skip channel i whenever γi < γth (i), to search for a better channel, thus potentially

increasing the throughput. Setting γth (i) too large allows channel i to be skipped even if γi is high.

This constitutes the trade-off in choosing the thresholds γth (i). The optimal values of γth (i) i ∈ M,

determine the optimal stopping rule.

Let P1,i(γ) denote the power transmitted at the ith channel when the instantaneous channel gain is

γ, if channel i was chosen for transmission. Since the SU can transmit on one channel at a time, the

power transmitted at any time slot at channel i is P1,i(γi)1 (i = k∗), where 1 (i = k∗) = 1 if i = k∗ and

0 otherwise. Define ci , 1 − iτ
T

as the fraction of the time slot remaining for the SU’s transmission

if the SU transmits on the ith channel in the sensing sequence. The average power constraint is

Eγ,b[ck∗Pk∗(γk∗)] ≤ Pavg, where the expectation is with respect to the random vectors γ and b. We will

henceforth drop the subscript from the expected value operator E. This expectation can be calculated

recursively from

Si(Γth(i),P1,i) = θici

∫ ∞
γth(i)

P1,i(γ)fγi(γ) dγ +
[
1− θiF̄γi(γth (i))

]
Si+1(Γth(i+ 1),Pi+1), (2.1)

i ∈ M, where P1,i , [P1,i(γ), ..., P1,M(γ)]T and Γth(i) , [γth (i) , ..., γth (M)]T are the vectors of the

power functions and thresholds respectively, with SM+1(Γth(M+1),PM+1) , 0, fγi(γ) is the Probability

Density Function (PDF) of the gain γi of channel i, and F̄γi(x) ,
∫∞
x
fγi(γ) dγ is the complementary

cumulative distribution function. The first term in (2.1) is the average power transmitted at channel i

given that channel is chosen for transmission (i.e. given that k∗ = i). The second term represents the

case where channel i is skipped and channel i + 1 is sensed. It can be shown that S1(Γth(1),P1,1) =

E [ck∗Pk∗(γ)]. Moreover, we will also drop the index i from the subscript of fγi(γ) and F̄γi(γ) since

channels suffer i.i.d. fading. Although we have only included an average power constraint in our
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problem, we will modify, after solving the problem, the solution to include an instantaneous power

constraint as well.

The SU’s average throughput is defined as E[ck∗ log(1 +Pk∗(γk∗)γk∗)]. Similar to the average power,

we denote the expected throughput as U1(Γth(1),P1,1) which can be derived using the following recursive

formula

Ui(Γth(i),P1,i) = θici

∫ ∞
γth(i)

log (1 + P1,i(γ)γ) fγ(γ) dγ+[
1− θiF̄γ(γth (i))

]
Ui+1 (Γth(i+ 1),Pi+1) (2.2)

i ∈ M, with UM+1(·, ·) , 0. U1(Γth(1),P1,1) represents the expected data rate of the SU as a function

of the threshold vector Γth(1) and the power function vector P1,1.

If the SU skips all channels, either due to being busy, due to their low gain or due to a combination

of both, then the current time slot is said to be blocked. The SU has to wait for the following time slot

to begin searching for a free channel again. This results in a delay in serving (transmitting) the SU’s

packet. Define the delay D as the number of time slots the SU consumes before successfully transmitting

a packet. That is, D− 1 is a random variable that represents the number of consecutively blocked time

slots. In real-time applications, there may exist some average delay requirement D̄max on the packets

that must not be exceeded. Since the availability of each channel is independent across time slots, D

follows a geometric distribution having E[D] = (Pr[Success])−1 where Pr[Success] = 1 − Pr[Blocking].

In other words, Pr[Success] is the probability that the SU finds a free channel with high enough gain so

that it does not skip all M channels in a time slot. It is given by Pr[Success] , p1(Γth(1)) which can

be calculated recursively using the following equation

pi(Γth(i)) = θiF̄γ(γth (i)) +
[
1− θiF̄γ(γth (i))

]
pi+1(Γth(i+ 1)), (2.3)

i ∈M, where pM+1 , 0. Here, pi(Γth(i)) is the probability of transmission on channel i, i+ 1,..., or M .

14



2.2 Problem Statement and Proposed Solution

From equation (2.2) we see that the SU’s expected throughput U1 depends on the threshold vec-

tor Γth(1) and the power vector P1,1. The goal is to find the optimum values of Γth(1) ∈ RM and

functions P1,1 that maximize U1 subject to an average power constraint and an expected packet delay

constraint. The delay constraint can be written as E[D] ≤ D̄max or, equivalently, p1(Γth(1)) ≥ 1/D̄max.

Mathematically, the problem becomes

maximize U1(Γth(1),P1,1)
subject to S1(Γth(1),P1,1) ≤ Pavg

p1(Γth(1)) ≥ 1
D̄max

variables Γth(1),P1,1,

(2.4)

where the first constraint represents the average power constraint, while the second is a bound on the

average packet delay. We allow the power P1,i to be an arbitrary function of γi and optimize over this

function to maximize the throughput subject to average power and delay constraints. Even though

(2.4) is not proven to be convex, we provide closed-form expressions for the optimal thresholds and

power-functions vector. To this end, we first calculate the Lagrangian associated with (2.4). Let λP

and λD be the dual variables associated with the constraints in problem (2.4). The Lagrangian for (2.4)

becomes

L (Γth(1),P1,1, λP, λD) = U1 (Γth(1),P1,1)−

λP (S1(Γth(1),P1,1)− Pavg) + λD

(
p1(Γth(1))− 1

D̄max

)
. (2.5)

Differentiating (2.5) with respect to each of the primal variables P1,i(γ) and γth (i) and equating the

resulting derivatives to zero, we obtain the KKT equations below which are necessary conditions for

15



optimality [34], [35]:

P ∗1,i(γ) =

(
1

λ∗P
− 1

γ

)+

, γ > γ∗th (i) , (2.6)

log

(
1 +

(
1

λ∗P
− 1

γ∗th (i)

)+

γ∗th (i)

)
− λ∗P

(
1

λ∗P
− 1

γ∗th (i)

)+

=
U∗i+1 − λ∗PS∗i+1 − λ∗D ·

(
1− p∗i+1

)
ci

, (2.7)

S∗1 ≤ Pavg , p∗1 ≥
1

D̄max

, λ∗P ≥ 0 , λ∗D ≥ 0, (2.8)

λ∗P · (S∗1 − Pavg) = 0, (2.9)

λ∗D ·
(
p∗1 −

1

D̄max

)
= 0, (2.10)

i ∈ M. We use U∗i+1 , Ui+1

(
Γ∗th (i+ 1) ,P∗i+1

)
while S∗i+1 , Si+1

(
Γ∗th (i+ 1) ,P∗i+1

)
and p∗i+1 ,

pi+1 (Γ∗th (i+ 1)) for brevity in the sequel. We note that UM+1 (·, ·) = SM+1 (·, ·) = pM+1 (·) , 0 by

definition. We observe that these KKT equations involve the primal (Γ∗th (1) and P∗1) and the dual

(λ∗P and λ∗D) variables. Our approach is to find a closed-form expression for the primal variables in

terms of the dual variables, then propose a low-complexity algorithm to obtain the solution for the

dual variables. The optimality of this approach is discussed at the end of this section (in Section 2.2.3)

where we show that, loosely speaking, the KKT equations provide a unique solution to the primal-dual

variables. Hence, based on this unique solution, and on the fact that the KKT equations are necessary

conditions for the optimal solution, then this solution is not only necessary but sufficient as well, and

hence optimal.

2.2.1 Solving for Primal Variables

Equation (2.6) is a water-filling strategy with a slight modification due to having the condition

γ > γth (i). This condition comes from the sequential sensing of the channels which is absent in the

classic water-filling strategy [33]. Equation (2.6) gives a closed-form solution for P1,1. On the other

hand, the entries of the vector Γ∗th (1) are found via the set of equations (2.7). Note that equation (2.7)

indeed forms a set of M equations, each solves for one of the γ∗th (i), i ∈ M. We refer to this set as
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the “threshold-finding” equations. For a given value of i, solving for γ∗th (i) requires the knowledge of

only γ∗th (i+ 1) through γ∗th (M), and does not require knowing γ∗th (1) through γ∗th (i− 1). Thus, these

M equations can be solved using back-substitution starting from γ∗th (M). To solve for γ∗th (i), we use

the fact that γ∗th (i) ≥ λ∗P that is proven in the following lemma.

Lemma 1. The optimal solution of problem (2.4) satisfies γ∗th(i) ≥ λ∗P ∀i ∈M.

Proof. See Appendix A for proof.

The intuition behind Lemma 1 is as follows. If, for some channel i, γ∗th (i) < λ∗P was possible, and the

instantaneous gain γi happened to fall in the range [γ∗th (i) , λ∗P) at a given time slot, then the SU will not

skip channel i since γi > γ∗th (i). But the power transmitted on channel i is P1,i(γi) = (1/λ∗P − 1/γi)
+ = 0

since γi < λ∗P. This means that the SU will neither skip nor transmit on channel i, which does not

make sense from the SU’s throughput perspective. To overcome this event, the SU needs to set γ∗th (i)

at least as large as λ∗P so that whenever γi < λ∗P, the SU skips channel i rather than transmitting with

zero power.

Lemma 1 allows us to remove the (·)+ sign in equation (2.7) when solving for γ∗th (i). Rewriting (2.7)

we get

−λ∗P
γ∗th (i)

exp

(
−λ∗P
γ∗th (i)

)
=

− exp

(
−
U∗i+1 − λ∗PS∗i+1 − λ∗D ·

(
1− p∗i+1

)
ci

− 1

)
, i ∈M, (2.11)

Equation (2.11) is now on the form W exp(W ) = c, whose solution is W = W0(c), where W0(x) is the

principle branch of the Lambert W function [36] and is given by W0(x) =
∑∞

n=1
(−n)n−1

n!
xn. The only

solution to (2.11) which satisfies Lemma 1 is given for i ∈M by

γ∗th (i) =
−λ∗P

W0

(
− exp

(
−(U∗

i+1−λ∗PS
∗
i+1−λ∗D(1−p∗i+1))

+

ci
− 1

)) . (2.12)
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Hence, Γ∗th (1) and P∗1 are found via equations (2.12) and (2.6) respectively which are one-to-one

mappings from the dual variables (λ∗P, λ
∗
D). And if we had an instantaneous power constraint P1,i(γ) ≤

Pmax, we could write down the Lagrangian and solve for P1,i(γ). The details are similar to the case

without an instantaneous power constraint and are, thus, omitted for brevity. The reader is referred

to [5] for a similar proof. The expression for P ∗1,i(γ) is given by

P ∗1,i(γ) =

{ (
1
λ∗P
− 1

γ

)+

if 1
λ∗P
− 1

γ
< Pmax

Pmax otherwise.
(2.13)

Since the optimal primal variables are explicit functions of the optimal dual variables, once the

optimal dual variables are found, the optimal primal variables are found and the optimization problem

is solved. We now discuss how to solve for these dual variables.

2.2.2 Solving for Dual Variables

The optimum dual variable λ∗P must satisfy equation (2.9). Thus if λ∗P > 0, then we need S∗1−Pavg =

0. This equation can be solved using any suitable root-finding algorithm. Hence, we propose Algorithm

1 that uses bisection [37]. In each iteration n, the algorithm calculates S∗1 given that λP = λ
(n)
P , and

given some fixed λD, compares it to Pavg to update λ
(n+1)
P accordingly. The algorithm terminates when

S∗1 = Pavg, i.e. λ
(n)
P = λ∗P. The superiority of this algorithm over the exhaustive search is due to the use

of the bisection algorithm that does not go over all the search space of λP. In order for the bisection to

converge, there must exist a single solution for equation S∗1 = Pavg. This is proven in Theorem 1.

Theorem 1. S∗1 is decreasing in λ∗P ∈ [0,∞) given some fixed λ∗D ≥ 0. Moreover, the optimal value λ∗P

satisfying S∗1 = Pavg is upper bounded by λmax
P ,

∑M
i=1 θici/Pavg.

Proof. See Appendix B for the proof.

We note that Algorithm 1 can be systematically modified to call any other root-finding algorithm

(e.g. the secant algorithm [37] that converges faster than the bisection algorithm).

Now, to search for λ∗D, we state the following lemma.
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Algorithm 1 Finding λ∗P given some λD

1: Initialize n← 1, λmin
P ← 0, λmax

P ←
∑M

i=1 θici/Pavg, λ
(1)
P ←

(
λmin

P + λmax
P

)
/2

2: while |S∗1 − Pavg| > ε do

3: Calculate S∗1 given that λ∗P = λ
(n)
P . Call it S(n).

4: if S(n) − Pavg > 0 then

5: λmin
P = λ

(n)
P

6: else
7: λmax

P = λ
(n)
P

8: end if
9: λ

(n+1)
P ←

(
λmin

P + λmax
P

)
/2

10: n← n+ 1
11: end while
12: λ∗P ← λ

(n)
P

Lemma 2. The optimum value λ∗D that solves problem (2.4) satisfies 0 ≤ λ∗D < λmax
D , where

λmax
D ,

c1 [log (t)− t+ 1] + Umax
2

1− pmax
2

(2.14)

with t ,
(

min
(
λmax

P , F̄−1
γ

(
1

θ1D̄max

)))
/
(
F̄−1
γ

(
1

θ1D̄max

))
and Umax

2 is an upper bound on U∗2 and is

given by
(∫∞

λmax
P

log (γ/λmax
P ) fγ(γ) dγ

)(∑M
i=2 θici

)
, while pmax

2 is an upper bound on p∗2 and is given by∑M
i=2

∏i−1
j=2 (1− θj) θi.

Proof. See Appendix C.

Lemma 2 gives an upper bound on λ∗D. This bound decreases the search space of λ∗D drastically

instead of searching over R. Thus the solution of problem (2.4) can be summarized on 3 steps: 1)

Fix λ∗D ∈ [0, λmax
D ) and find the corresponding optimum λ∗P using Algorithm 1. 2) Substitute the pair

(λ∗P, λ
∗
D) in equations (2.6) and (2.12) to get the power and threshold functions, then evaluate U∗1 from

(2.2). 3) Repeat steps 1 and 2 for other values of λ∗D until reaching the optimum λ∗D that satisfies

p∗1 = 1/D̄max. If there are multiple λ∗D’s satisfying p∗1 = 1/D̄max, then the optimum one is the one that

gives the highest U∗1 .

Although the order by which the channels are sensed is assumed fixed, the proposed algorithm

can be modified to optimize over the sensing order by a relatively low complexity sorting algorithm.
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Particularly, the dynamic programming proposed in [14] can be called by Algorithm 1 to order the

channels. The complexity of the sorting algorithm alone is O(2M) compared to the O(M !) of the

exhaustive search to sort the M channels. The modification to our proposed algorithm would be in step

3 of Algorithm 1, where S∗1 would be optimized over the number of channels (as well as Γ∗th (1)).

2.2.3 Optimality of the Proposed Solution

Since the problem in (2.4) is not proven to be convex, the KKT conditions provide only necessary

conditions for optimality and need not be sufficient [38]. This means that there might exist multiple

solutions (i.e. multiple solutions for the primal and/or dual variables) satisfying the KKT conditions,

at least one of which is optimal. But since Theorem 1 proves that there exists one unique solution to

λ∗P given λ∗D, then Γ∗th (1) and P∗1 are unique as well (from equations (2.6) and (2.12)) given some λ∗D.

Hence, by sweeping λ∗D over [0, λmax
D ), we have a unique solution satisfying the KKT conditions, which

means that the KKT conditions are sufficient as well and our approach is optimal for problem (2.4).

2.3 Generalization of Deadline Constraints

In the overlay and underlay schemes discussed thus far, we were assuming that each packet has a

hard deadline of one time slot. If a packet is not delivered as soon as it arrives at the ST, then it is

dropped from the system. But in real-time applications, data arrives at the ST’s buffer on a frame-by-

frame structure. Meaning multiple packets (constituting the same frame) arrive simultaneously rather

than one at a time. A frame consists of a fixed number of packets, and each packet fits into exactly

one time slot of duration T . Each frame has its own deadline and thus, packets belonging to the same

frame have the same deadline [39]. This deadline represents the maximum number of time slots that

the packets, belonging to the same frame, need to be transmitted by, on average.

In this section we solve this problem for the overlay scenario. The solution presented in Section 2.2

can be thought of as a special case of the problem presented in this section where the deadline was

equal to 1 time slot and each frame consists of one packet. We show that the solution presented in
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Section 2.2 can be used to solve this generalized problem in an offline fashion (i.e. before attempting to

transmit any packet of the frame). Moreover, we propose an online update algorithm that updates the

thresholds and power functions each time slot and show that this outperforms the offline solution.

2.3.1 Offline Solution

Assume that each frame consists of K packets and that the entire frame has a deadline of tf time

slots (tf > K). If the SU does not succeed in transmitting the K packets before the tf time slots,

then the whole frame is considered wasted. Since instantaneous channel gains and PU’s activities are

independent across time slots, the probability that the SU succeeds in transmitting the frame in tf time

slots or less is given by

Pframe (K, tf ) =

tf∑
n=K

(
tf
n

)
pn (1− p)tf−n (2.15)

where p is the probability of transmitting a packet on some channel in a single time slot and is given

by (2.3) or (2.21) if the SU’s system was overlay or underlay respectively. Pframe (K, tf ) represents the

probability of finding K or more free time slots out of a total of tf time slots.

In order to guarantee some QoS for the real-time data the SU needs to keep the probability of

successful frame transmission above a minimum value denoted rmin, that is Pframe ≥ rmin. Hence

the problem becomes a throughput maximization problem subject to some average power and QoS

constraints as follows
maximize U1(Γth(1),P1,1)
subject to S1(Γth(1),P1,1) ≤ Pavg

Pframe(K, tf ) ≥ rmin

variables Γth(1),P1,1.

(2.16)

This is the optimization problem assuming an overlay system since we used equations (2.2) and (2.1) for

the throughput and power, respectively. It can also be modified systematically to the case of an underlay

system. Since there exists a one-to-one mapping between Pframe(K, tf ) and p, then there exists a value

for D̄max such that the inequality p ≥ 1/D̄max is equivalent to the QoS inequality Pframe (K, tf ) ≥ rmin.

That is, we can replace inequality Pframe(K, tf ) ≥ rmin by p ≥ 1/D̄max for some D̄max that depends

on rmin, K and tf that are known a priori. Consequently, problem (2.16) is reduced to the simpler,
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yet equivalent, single-time-slot problem (2.4) and the SU can solve for P∗1 and Γ∗th (1) vectors following

the approach proposed in Section 2.2. The SU solves this problem offline (i.e. before the beginning

of the frame transmission) and uses this solution each time slot of the tf time slots. With this offline

scheme, the SU will be able to meet the QoS and the average power constraint requirements as well as

maximizing its throughput.

2.3.2 Online Power-and-Threshold Adaptation

In problem (2.4), we have seen that as 1/D̄max decreases, the system becomes less stringent in terms

of the delay constraint. This results in an increase in the average throughput U∗1 . With this in mind,

let us assume, in the generalized delay model, that at time slot 1 the SU succeeds in transmitting a

packet. Thus, at time slot 2 the SU has K − 1 remaining packets to be transmitted in tf − 1 time slots.

And from the properties of equation (2.15), Pframe(K − 1, tf − 1) > Pframe(K, tf ). This means that the

system becomes less stringent in terms of the QoS constraint after a successful packet transmission. This

advantage appears in the form of higher throughput. To see how we can make use of this advantage,

define Pframe(K(t), tf − t+ 1) as

Pframe (K(t), tf − t+ 1) =
tf−t+1∑
n=K(t)

(
tf − t+ 1

n

)
(p(t))n (1− p(t))tf−t+1−n, (2.17)

where K(t) is the remaining number of packets before time slot t ∈ {1, ..., tf} and p(t) is the probability

of successful transmission at time slot t. At each time slot t ∈ {1, ...tf}, the SU modifies the QoS

constraint to be Pframe(K(t), tf − t + 1) ≥ rmin instead of Pframe(K, tf ) ≥ rmin, that was used in the

offline adaptation, and solve the following problem

maximize U1(Γth(1),P1,1)
subject to S1(Γth(1),P1,1) ≤ Pavg

Pframe(K(t), tf − t+ 1) ≥ rmin

variables Γth(1),P1,1,

(2.18)

to obtain the power and threshold vectors. When the delay constraint in (2.18) is replaced by its

equivalent constraint p ≥ 1/D̄max, the resulting problem can be solved using the overlay approach
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proposed in Section 2.2 without much increase in computational complexity since the power functions

and thresholds are given in closed-form expressions. With this online adaptation, the average throughput

U∗1 increases while still satisfying the QoS constraint.

2.4 Underlay System

In the overlay system, the SU tries to locate the free channels at each time slot to access these

spectrum holes without interfering with the PUs. Recently, the FCC has allowed the SUs to interfere

with the PU’s network as long as this interference does not harm the PUs [40]. If the interference

from the SU measured at the PU’s receiver is below the tolerable level, then the interference is deemed

acceptable.

In order to model the interference at the PR, we assume that the SU uses a channel sensing technique

that produces the sufficient statistic zi at channel i [41,42]. The SU is assumed to know the distribution

of zi given channel i is free and busy, namely fz|b (zi|bi = 0) and fz|b (zi|bi = 1) respectively. For brevity,

we omit the subscript i from bi whenever it is clear from the context. The value of zi indicates how

confident the SU is in the presence of the PU at channel i. Thus the SU stops at channel i according

to how likely busy it is and how much data rate it will gain from this channel (i.e. according to

zi and γi respectively). Hence, when the SU senses channel i to acquire zi, the channel gain γi is

probed and compared to some function γth(i, zi); if γi ≥ γth(i, zi) transmission occurs on channel i,

otherwise, channel i is skipped and i + 1 is sensed. Potentially, γth(i, zi) is a function in the statistic

zi. This means that, at channel i, for each possible value that zi might take, there is a corresponding

threshold γth (i, z). Before formulating the problem we note that this model can capture the overlay

with sensing errors model as a special case where fz|b (z|bi = 1) = (1 − PMD)δ(z − zb) + PMDδ(z − zf)

while fz|b (z|bi = 0) = PFAδ(z − zb) + (1 − PFA)δ(z − zf), where PMD and PFA are the probabilities of

missed-detection and false-alarm respectively, while δ(z) is the Dirac delta function, and zb and zf that

represent the values that z takes when the channel is busy and free, respectively. Hence, the interference
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constraint, which will soon be described, can be modified to a detection probability constraint and/or

a false alarm probability constraint.

The SU’s expected throughput is given by U1(Γth (1, z) ,P1) which can be calculated recursively

from
Ui (Γth (i, z) ,Pi) =

ci
∫∞
−∞

∫∞
γth(i,z)

log(1 + Pi (γ) γ)fγ(γ) dγfz(z) dz+

pskip
i Ui+1(Γth (i+ 1, z) ,Pi+1), i ∈M,

(2.19)

where UM+1(Γth (M + 1, z) ,PM+1) , 0, Γth (i, z) , [γth (i, z) , ..., γth (M, z)]T , fz(z) , θifz|b (z|bi = 0)+

(1−θi)fz|b (z|bi = 1) is the PDF of the random variable zi and pskip
i ,

∫∞
−∞

∫ γth(i,z)

0
fγ(γ) dγfz(z) dz. The

first term in (2.19) is the SU’s throughput at channel i averaged over all realizations of zi and that

of γi ≥ γth (i, z). The second term is the average throughput when the SU skips channel i due to its

low gain. Also, let the average interference from the SU’s transmitter to the PU’s receiver, aggregated

over all M channels, be I1(Γth (1, z) ,P1). This represents the total interference affecting the PU’s

network due to the existence of the SU. The SU is responsible for guaranteeing that this interference

does not exceed a threshold Iavg dictated by the PU’s network. I1(Γth (1, z) ,P1) can be derived using

the following recursive formula

Ii(Γth (i, z) ,Pi) =
(1− θi) ci

∫∞
−∞

∫∞
γth(i,z)

Pi (γ) fγ(γ) dγfz|b (z|bi = 1) dz

+pskip
i Ii+1(Γth (i+ 1, z) ,Pi+1), i ∈M,

(2.20)

where IM+1(Γth (M + 1, z) ,PM+1) , 0. This interference model is based on the assumption that the

channel gain from the SU’s transmitter to the PU’s receiver is known at the SU’s transmitter. This

is the case for reciprocal channels when the PR acts as a transmitter and transmits training data to

its intended primary transmitter (when it is acting as a receiver) [43]. The ST overhears this training

data and estimates the channel from itself to the PR. Moreover, the gain at each channel from the ST

to the PR is assumed unity for presentation simplicity. This could be extended easily to the case of

non-unity-gain by multiplying the first term in (2.20) by the gain from the ST to the PR at channel i.

Finally, p1(Γth (1, z)) is the probability of a successful transmission in the current time slot and can be
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calculated using

pi(Γth (i, z)) =
∫∞
−∞

∫∞
γth(i,z)

fγ(γ) dγfz(z) dz+

pskip
i pi+1(Γth (i+ 1, z)),

(2.21)

i ∈M, pM+1(Γth (M + 1, z)) , 0. Given this background, the problem is

maximize U1(Γth (1, z) ,P1)
subject to I1(Γth (1, z) ,P1) ≤ Iavg

p1(Γth (1, z)) ≥ 1
D̄max

variables Γth (1, z) ,P1,

(2.22)

Let λI and λD be the Lagrange multipliers associated with the interference and delay constraints of

problem (2.22), respectively. Problem (2.22) is more challenging compared to the overlay case. This

is because, unlike in (2.4), the thresholds in (2.22) are functions rather than constants. The KKT

conditions for (2.22) are given by

P ∗i (γ) =

(
1

λ∗I Pr [bi = 1|z]
− 1

γ

)+

, i ∈M. (2.23)

γ∗th (i, z) =

−λ∗I Pr [bi = 1|z]

W0

(
− exp

(
−(U∗

i+1−λ∗I I
∗
i+1−λ∗D(1−p∗i+1))

+

ci
− 1

)) , i ∈M, (2.24)

in addition to the primal feasibility, dual feasibility and the complementary slackness equations given

in (2.8), (2.9) and (2.10), where U∗i+1 , U1 (Γ∗th (1, z) , P ∗1 (γ)), I∗i+1 , I1 (Γ∗th (1, z) , P ∗1 (γ)) and p∗i+1 ,

p1 (Γ∗th (1, z)) while Pr [bi = 1|z] is the conditional probability that channel i is busy given zi and is given

by

Pr [bi = 1|z] =
(1− θi) fz|b (z|bi = 1)

fz (z)
. (2.25)

Note that P ∗i (γ) is increasing in γ and is upper bounded by the term 1/ (λ∗I Pr [bi = 1|z]). Hence,

as Pr [bi = 1|z] increases, the SU’s maximum power becomes more limited, i.e. the maximum power

decreases. This is because the PU is more likely to be occupying channel i. Thus the power transmitted

from the SU should decrease in order to protect the PU.

Algorithm 1 can also be used to find λ∗I . Only a single modification is required in the algorithm which

is that S∗1 would be replaced by I∗1 . Thus the solution of problem (2.22) can be summarized on 3 steps:
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1) Fix λ∗D ∈ R+ and find the corresponding optimum λ∗I using the modified version of Algorithm 1. 2)

Substitute the pair (λ∗I , λ
∗
D) in equations (2.23) and (2.24) to get the power and threshold functions,

then evaluate U∗1 from (2.19). 3) Repeat steps 1 and 2 for other values of λ∗D until reaching the optimum

λ∗D that satisfies p∗1 = 1/D̄max and if there are multiple λ∗D’s satisfying p∗1 = 1/D̄max, then the optimum

one is the one that gives the highest U∗1 . This approach yields the optimal solution. Next, Theorem 2

asserts the monotonicity of I∗1 in λ∗I which allows using the bisection to find λ∗I given some fixed λ∗D.

Theorem 2. I∗1 is decreasing in λ∗I ∈ [0,∞) given some fixed λ∗D ≥ 0.

Proof. We differentiate I∗1 with respect to λ∗I given that P ∗i (γ) and γ∗th (i, z) are given by equations

(2.23) and (2.24) respectively, then show that this derivative is negative. The proof is omitted since it

follows the same lines of Theorem 1.

Although the interference power constraint is sufficient for the problem to prevent the power functions

from going to infinity, in some applications one may have an additional power constraint on the SUs.

Hence, problem (2.22) can be modified to introduce an average power constraint that is given by

S1(Γth (1, z) ,P1) ≤ Pavg where

Si(Γth (i, z) ,Pi) = ci
∫∞
−∞

∫∞
γth(i,z)

Pi (γ) fγ(γ) dγfz(z) dz

+pskip
i Si+1(Γth (i+ 1, z) ,Pi+1).

(2.26)

It can be easily shown that the solution to the modified problem is similar to that presented in equations

(2.23) and (2.24) which is

P ∗i (γ) =

(
1

λ∗P + λ∗I Pr [bi = 1|z]
− 1

γ

)+

, (2.27)

γ∗th (i, z) =

− (λ∗P + λ∗I Pr [bi = 1|z])

W0

(
− exp

(
−(U∗

i+1−λ∗I I
∗
i+1−λ∗PS

∗
i+1−λ∗D(1−p∗i+1))

+

ci
− 1

)) , (2.28)

∀i ∈M where S∗i , Si(Γ
∗
th (i, z) , P ∗i (γ)). This solution is more general since it takes into account both

the average interference and the average power constraint besides the delay constraint. Moreover, it
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allows for the case where the power constraint is inactive which happens if the PU has a strict average

interference constraint. In this case the optimum solution would result in λ∗P = 0 making equations

(2.27) and (2.28) identical to equations (2.23) and (2.24) respectively.

2.5 Multiple Secondary Users

In this section, we show how our single SU framework can be extended to multiple SUs in a multiuser

diversity framework without increase in the complexity of the algorithm. We will show that when

the number of SUs is high, with slight modifications to the definitions of the throughput, power and

probability of success, the single SU optimization problem in (2.4) (or (2.22)) can capture the multi-SU

scenario. Moreover, the proposed solution for the overlay model still works for the multi-SU scenario.

Finally, at the end of this section, we show that the proposed algorithm provides a throughput-optimal

and delay-optimal solution with even a lower complexity for finding the thresholds compared to the

single SU case, if the number of SUs is large.

Consider a CR network with L SUs associated with a centralized secondary base station (BS) in a

downlink overlay scenario. Before describing the system model, we would like to note that when we say

that channel i will be sensed, this means that each user will independently sense channel i and feedback

the sensing outcome to the BS to make a global decision. Although we neglect sensing errors in this

section, the analysis will work similarly in the presence of sensing errors by using the underlay model.

At the beginning of each time slot the L SUs sense channel 1. If it is free, each SU observes it free with

no errors and probes the instantaneous channel gain and feeds it back to the BS. The BS compares the

maximum received channel gain among the L received channel gains to γth (1). Channel 1 is assigned

to the user having the maximum channel gain if this maximum gain is higher than γth (1), while the

remaining L − 1 users continue to sense channel 2. On the other hand if the maximum channel gain

is less than γth (1), channel 1 is skipped and channel 2 is sensed by all L users. Unlike the case in the

single SU scenario where only a single channel is claimed per time slot, in this multi-SU system, the BS
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can allocate more than one channel in one time slot such that each SU is not allocated more than one

channel and each channel is not allocated to more than one SU. Based on this scheme, the expected

per-SU throughput UL
1 is calculated from

U l
i =

θici
l

∫ ∞
γth(i)

log (1 + P1,i(γ)γ) fl(γ) dγ+

θiF̄l(γth (i))

(
1− 1

l

)
U l−1
i+1 +

(
1− θiF̄l(γth (i))

)
U l
i+1 (2.29)

i ∈ M and l ∈ {L − i + 1, ..., L} with initialization U l
M+1 = 0. Here fl(γ) represents the density of

the maximum gain among l i.i.d. users’ gains, while F̄l(γ) is its complementary cumulative distribution

function. We study the case where L� M , thus when a channel is allocated to a user we can assume

that the remaining number of users is still L. Thus we approximate l with L ∀l ∈ {L − i, ..., L} and

∀i ∈ M. Similar to the the throughput derived in (2.29), we could write the exact expressions for the

per-SU average power and per-SU probability of transmission. And since L�M , we can approximate

Sli with SLi and pli with pLi , ∀l ∈ {L− i + 1, ..., L} and ∀i ∈ M. The per-SU expected throughput UL
1 ,

the average power SL1 and the probability of transmission pL1 can be derived from

UL
i (Γth(i),P1,i) =

θici
L

∫ ∞
γth(i)

log (1 + P1,i(γ)γ) fL(γ) dγ+[
1− θiF̄L(γth (i))

L

]
UL
i+1 (Γth(i+ 1),Pi+1) (2.30)

SLi (Γth(i),P1,i) =
θici
L

∫ ∞
γth(i)

P1,i(γ)fL(γ) dγ+[
1− θiF̄L(γth (i))

L

]
SLi+1(Γth(i+ 1),Pi+1), (2.31)

pLi (Γth(i)) =
θi
L
F̄L(γth (i))+[
1− θiF̄L(γth (i))

L

]
pLi+1(Γth(i+ 1)), (2.32)

i ∈M, respectively, with UL
M+1 = SLM+1 = pLM+1 = 0. To formulate the multi-SU optimization problem,

we replace U1, S1 and p1 in (2.4) with UL
1 , SL1 and pL1 derived in equations (2.30), (2.31) and (2.32),

respectively. Taking the Lagrangian and following the same procedure as in Section 2.2, we reach at the
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solution for P ∗1,i and γ∗th (i) as given by equations (2.6) and (2.12) respectively. Hence, equations (2.6)

and (2.12) represent the optimal solution for the multi-SU scenario. The details are omitted since they

follow those of the single SU case discussed in Section 2.2.

Next we show that this solution is optimal with respect to the delay as well as the throughput when

L is large. We show this by studying the system after ignoring the delay constraint and show that the

resulting solution of this system (which is what we refer to as the unconstrained problem) is a delay

optimal one as well. The solution of the unconstrained problem is given by setting λ∗D = 0 in (2.12)

arriving at

γ∗th (i) |λ∗D=0 =
−λ∗P

W0

(
− exp

(
−(UL∗

i+1−λ∗PS
L∗
i+1)

+

ci
− 1

)) . (2.33)

∀i ∈ M. As the number of SUs increases, the per-user expected throughput UL
1 decreases since these

users share the total throughput. Moreover, UL
i decreases as well ∀i ∈M decreasing the value of γ∗th (i)

(from equation (2.33) until reaching its minimum (i.e. γ∗th (i) = λ∗P) (the right-hand-side of (2.33) is

minimum when its denominator is as much negative as possible. That is, when W0(x) = −1 since

W0(x) ≥ −1, ∀x ∈ R) as L→∞. From (2.32), it can be easily shown that pL1 (Γth(1)) is monotonically

decreasing in γth (i) ∀i ∈M. Thus the minimum possible average delay (corresponding to the maximum

pL1 (Γth(1))) occurs when γth (i) is at its minimum possible value for all i ∈ M. Consequently, having

γ∗th (i) = λ∗P means that the system is at the optimum delay point. That is, the unconstrained problem

cannot achieve any smaller delay with an additional delay constraint. Hence, the multi-SU problem,

that is formulated by adding a delay constraint to the unconstrained problem, achieves the optimum

delay performance when L is asymptotically large.

Recall that the overall complexity of solution for the single SU case is due to three factors: 1)

evaluating the Lambert W function in Algorithm 1, 2) the bisection algorithm in Algorithm 1 and 3)

the search over λD. On the other hand, the complexity of solution for the multi-SU case decreases

asymptotically (as L → ∞). This is because of two reasons: 1) When L � M , γ∗th (i) → λ∗P∀i ∈ M.
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Which means that we will not have to evaluate the Lambert W function in (2.12) but instead we set

γ∗th (i) = λ∗P, since L � M . 2) When γ∗th (i) = λ∗P there will be no need to find λ∗D since the delay is

minimum (we recall that in the single SU case, we need to calculate λ∗D to substitute it in (2.12) to

evaluate γ∗th (i), but in the multi-SU case γ∗th (i) = λ∗P).

2.6 Numerical Results

We show the performance of the proposed solution for the overlay and underlay scenarios. The slot

duration is taken to be unity (i.e. all time measurements are taken relative to the time slot duration),

while τ = 0.05T . Here, we use M = 10 channels that suffer i.i.d. Rayleigh fading. The availability

probability is taken as θi = 0.05i throughout the simulations. The power gain γ is exponentially

distributed as fγ (γ) = exp (γ/γ̄) /γ̄ where γ̄ is the average channel gain and is set to be 1 unless

otherwise specified.

Fig. 2.2 plots the expected throughput U∗1 for the overlay scenario after solving problem (2.4). U∗1

is plotted using equation (2.2) that represents the average number of bits transmitted divided by the

average time required to transmit those bits, taking into account the time wasted due to the blocked

time slots. We plot U∗1 with D̄max = 1.02T and with D̄max = ∞ (i.e. neglecting the delay constraint).

We refer to the former problem as constrained problem, while to the latter as unconstrained problem.

We also compare the performance to the non optimum stopping rule case (No-OSR) where the SU

transmits at the first available channel. We expect the No-OSR case to have the best delay and the

worst throughput performances. We can see that the unconstrained problem has the best throughput

amongst all constrained problems.

Examining the constrained problem for different sensing orders of the channels, we observe that

when the channels are sorted in an ascending order of θi, the throughput is higher. This is because a

channel i has a higher chance of being skipped if put at the beginning of the order compared to the

case if put at the end of the order. This is a property of the problem no matter how the channels are
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ordered, i.e. this property holds even if all channels have equal values of θi. Hence, it is more favorable

to put the high quality channels at the end of the sensing order so that they are not put in a position

of being frequently skipped. However, this is not necessarily optimum order, which is out of the scope

of this work and is left as a future work for this delay-constrained optimization problem.

We also plot the expected throughput of a simple stopping rule that we call K-out-of-M scheme,

where we choose the highest K channels in availability probability and ignore the remaining channels as

if they do not exist in the system. The SU senses those K channels sequentially, probes the gain of each

free channel, if any, and transmits on the channel with the highest gain. This scheme has a constant

fraction Kτ/T of time wasted each slot. Yet it has the advantage of choosing the best channel among

multiple available ones. In Fig. 2.2 we can see that the degradation of the throughput when K = 5

compared to the optimal stopping rule scheme. The reason is two-fold: 1) Due to the constant wasted

fraction of time, and 2) Ignoring the remaining channels that could potentially be free with a high gain

if they were considered as opposed to the constrained problem.

The delay is shown in Fig. 2.3 for both the constrained and the unconstrained problems. We see

that the unconstrained problem suffers around 6% increase in the delay, at Pavg = 10, compared to the

constrained one.

Studying the system performance under low average channel gain is essential. A low average channel

gain represents a SU’s channel being in a permanent deep fade or if there is a relatively high interference

level at the secondary receiver. Fig. 2.4 shows γ∗th (i) versus the γ̄. At low γ̄, the throughput is expected

to be small, hence γ∗th (i) is close to its minimum value λ∗P so that even if γi is relatively small, i should

not be skipped. In other words, at low average channel gain, the expected throughput is small, thus a

relatively low instantaneous gain will be satisfactory for stopping at channel i. While when the average

channel gain increases, γ∗th (i) should increase so that only high instantaneous gains should lead to

stopping at channel i. In both cases, high and low γ̄ there still is a trade-off between choosing a high

versus a low value of γ∗th (i).
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Figure 2.2: The expected throughput for the overlay scenario for four cases: 1) Proposed constrained
problem: with average delay constraint for three channel ordering possibilities (ascending ordering
of channel availability probabilities, descending ordering, and random ordering), 2) Unconstrained
problem that ignores the delay constraint, 3) No optimum stopping rule (No-OSR) where the
SU transmits at the first free channel and 4) K-out-of-M scheme where the SU assumes the system
has only K = 5 channels and ignores the remaining M −K channels.
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Figure 2.3: The expected delay for the overlay scenario for problem (2.4). The unconstrained problem
can suffer arbitrary high delay. The constrained problem has a guaranteed average delay for all ordering
strategies. The No-OSR scenario, on the other hand, has the best delay performance since the SU uses
the first free channel.
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Figure 2.4: The gap between the optimum threshold γ∗th (i) and its minimum value λ∗P increases as the
average gain increases. This is because as γ̄ increases, Ui+1 increases as well. Hence γ∗th (i) increases so
that only sufficiently high instantaneous gains should lead to stopping at channel i.
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The sensing channel (i.e. the channel between the PT and ST over which the ST overhears the PT

activity) is modeled as AWGN with unit variance. The distributions of the energy detector output z

(average energy of N samples sampled from this sensing channel) under the free and busy hypotheses

are the Chi-square and a Noncentral Chi-square distributions given by

fz|b (z|bi = 0) =

(
N

σ2

)N
zN−1

(N − 1)!
exp

(
−Nz
σ2

)
, (2.34)

fz|b (z|bi = 1) =(
N

σ2

)( z
E

)N−1
2

exp

(
−N (z + E)

σ2

)
IBes
N−1

(
2N
√
Ez

σ2

)
, (2.35)

where σ2, which is set to 1, is the variance of the Gaussian noise of the energy detector, E is the amount

of energy received by the ST due to the activity of the PT and is taken as E = 2σ2 throughout the

simulations, while IBes
i (x) is the modified Bessel function of the first kind and ith order, and N = 10.

The main problem we are addressing in this chapter is the optimal stopping rule that dictates for

the SU when to stop sensing and start transmitting. As we have seen, this is identified by the threshold

vector Γ∗th (1, z). If the SU does not consider the optimal stopping rule problem and rather transmits

as soon as it detects a free channel, then it will be wasting future opportunities of possibly higher

throughput. Hence, we expect a degradation in the throughput. We plot the two scenarios in Fig. 2.5

for the underlay system with no delay constraint.

Throughout this chapter, we use bold fonts for vectors and asterisk to denote that x∗ is the optimal

value of x; all logarithms are natural, while the expected value operator is denoted E[·] and is taken

with respect to all the random variables in its argument. Finally, we use (x)+ , max(x, 0) and R to

denote the set of the real numbers.

For the multiple SU scenario, the numerical analysis were run for the case of L = 30 SUs while

M = 10 channels. We assumed the fading channels are i.i.d. among users and among frequency

channels. Each channel is exponentially distributed with unity average channel gain. And since L

is large, the distribution of the maximum gain among L random gains converges in distribution to
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Figure 2.5: The underlay expected throughput versus the average interference threshold Iavg. Two
scenarios are shown: with and without the optimal stopping rule formulation. In the latter, the SU
transmits as soon as a channel is found free.
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the Gumbel distribution [44] having a cumulative distribution function of exp (− exp (−γ/γ̄)). The

per-user throughput UL∗
1 is plotted in Fig. 2.6 where the throughput of the delay-constrained and of

the unconstrained optimization problems coincide. This is because when L � M , the solution of the

unconstrained problem is delay optimal as well. Hence, adding a delay constraint does not sacrifice the

throughput, when L is large. Moreover, the delay performance shown in Fig. 2.7 shows that the delay

does not change with and without considering the average delay constraint since the system is delay-

(and throughput-) optimal already.

We have simulated the system for the online algorithm of Section 2.3 for K(1) = 2 packets and

tf = 4 time slots. We simulated the system at rmin = 0.95 which means that the QoS of the SU requires

that at least 95% of the frames to be successfully transmitted. Fig. 2.8 shows the improvement in the

throughput of the online over the offline adaptation. This is because the SU adapts the power and

thresholds at each time slot to allocate the remaining resources (i.e. remaining time slots) according

to the remaining number of packets and the desired QoS. This comes at the expense of re-solving the

problem at each time slot (i.e. tf times more).
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Figure 2.6: Per user throughput of the system at L = 30 SUs. The throughput of the constrained and
unconstrained problem coincide since the system is throughput (and delay) optimal.

38



0 2 4 6 8 10
6.8

6.9

7

7.1

7.2

7.3

7.4

Average Power (Pavg)

E
x
p
ec
te
d
D
el
ay

p
er

S
U
(T

im
e
S
lo
ts
)

 

 

Constrained Problem
Unconstrained Problem

Figure 2.7: The average delay seen by each user in the system at L = 30 SUs. The delay of the
constrained and unconstrained problems coincide since the system is delay (and throughput) optimal.
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Figure 2.8: The performance of the online adaptation algorithm for the general delay case.
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CHAPTER 3

Delay Due to Queue-Waiting Time

In this chapter we study the delay resulting from the service time as well as that from queue-waiting

time. The service time is affected by the power transmitted by the SU, while the queue-waiting time

is affected by the scheduling algorithm. We propose a delay-optimal scheduling-and-power-allocation

algorithm that guarantees bounds on the SUs’ delays while causing an acceptable interference to the

PUs. This algorithm is useful to provide fair delay guarantees to the SUs when delay fairness cannot

be achieved due to the heterogeneity in SUs’ channel statistics.

3.1 Network Model

We assume a CR system consisting of a single secondary base station (BS) serving N secondary

users (SUs) indexed by the set N , {1, · · ·N} (Fig. 3.1). We are considering the uplink phase where

each SU has its own queue buffer for packets that need to be sent to the BS. The SUs share a single

frequency channel with a single PU that has licensed access to this channel. The CR system operates

in an underlay fashion where the PU is using the channel continuously at all times. SUs are allowed

to transmit as long as they do not cause harmful interference to the PU. In this work, we consider two

different scenarios where the interference can be considered as harmful. The first is an instantaneous

interference constraint where the interference received by the PU at any given slot should not exceed a

prespecified threshold Iinst, while the second is an average interference constraint where the interference

received by the PU averaged over a large duration of time should not exceed a prespecified threshold
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Figure 3.1: The CR system considered is an uplink one with N SUs (in this figure N = 2) communicating
with their BS. There exists an interference link between each SU and the existing PU. The PU is assumed
to be using the channel continuously.

Iavg. Moreover, in order for the secondary BS to be able to decode the received signal, no more than

one SU at a time slot is to be assigned the channel for transmission.

3.1.1 Channel and Interference Model

We assume a time slotted structure where each slot is of duration T seconds, and equal to the

coherence time of the channel. The channel between SU i and the BS is block fading with instantaneous

power gain γ
(t)
i , at time slot t, following the probability mass function fγi(γ) with mean γ̄i and i.i.d.

across time slots, and γmax is the maximum gain γ
(t)
i could take. The channel gain is also independent

across SUs but not necessary identically distributed allowing heterogeneity among users. SUs use a rate

adaptation scheme based on the channel gain γ
(t)
i . The transmission rate of SU i at time slot t is

R
(t)
i = log

(
1 + P

(t)
i γ

(t)
i

)
bits, (3.1)
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where P
(t)
i is the power by which SU i transmits its bits at slot t. We assume that there exists a finite

maximum rate Rmax that the SU cannot exceed. This rate is dictated by the maximum power Pmax and

the maximum channel gain γmax.

The PU experiences interference from the SUs through the channel between each SU and the PU. The

interference channel between SU i and the PU, at slot t, has a power gain g
(t)
i following the probability

mass function fgi(g) with mean ḡi, and having gmax as the maximum value that g
(t)
i could take. These

power gains are assumed to be independent among SUs but not identically distributed. We assume that

SU i knows the value of γ
(t)
i as well as g

(t)
i , at the beginning of slot t through some channel estimation

phase [45]. The channel estimation to acquire g
(t)
i can be done by overhearing the pilots transmitted

by the primary receiver, when it is acting as a transmitter, to its intended transmitter [45, Section VI].

The channel estimation phase is out of the scope of this work, however the effect of channel estimation

errors will be discussed in Section 3.6.

3.1.2 Queuing Model

Arrival Process

We assume that packets arrive to the SU i’s buffer at the beginning of each slot. The number

of packets arriving to SU i’s buffer follows a Bernoulli process with a fixed parameter λi packets per

time slot. Following the literature, packets are buffered in infinite-sized buffers [46, pp. 163] and are

served according to the first-come-first-serve discipline. Each packet has a fixed length of L bits that

is constant for all users. In this paper, we study the case where L � Rmax which is a typical case for

packets with large sizes as video packets [47, Section 3.1.6.1]. Due to the randomness in the channels,

each packet takes a random number of time slots to be transmitted to the BS. This depends on the rate

of transmission R
(t)
i as will be explained next.
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Service Process

When SU i is scheduled for transmission at slot t, it transmits M
(t)
i bits of the head-of-line (HOL)

packet of its queue. The remaining bits of this HOL packet remain in the HOL of SU i’s queue until it

is reassigned the channel in subsequent time slots. The values M
(t)
i and Lrem

i (t) are given by

M
(t)
i , min

(
R

(t)
i , L

rem
i (t)

)
bits, and (3.2)

Lrem
i (t+ 1) , Lrem

i (t)−M (t)
i , (3.3)

respectively, where Lrem
i (t) is the remaining number of bits of the HOL packet at SU i at the beginning

of slot t. Lrem
i (t) is initialized by L whenever a packet joins the HOL position of SU i’s queue so that

it always satisfies 0 ≤ Lrem
i (t) ≤ L, ∀t. A packet is not considered transmitted unless all its L bits are

transmitted, i.e. unless Lrem
i (t) becomes zero, at which point SU i’s queue decreases by 1 packet. At

the beginning of slot t + 1 the following packet in the buffer, if any, becomes SU i’s HOL packet and

Lrem
i (t+ 1) is reset back to L bits. The SU i’s queue evolves as follows

Q
(t+1)
i =

(
Q

(t)
i + |A(t)

i | − S
(t)
i

)+

, (3.4)

where A(t)
i is the set carrying the index of the packet, if any, arriving to SU i at slot t, thus |A(t)

i | is

either 0 or 1 since at most one packet per slot can arrive to SU i; the packet service indicator S
(t)
i = 1

if Lrem
i (t) becomes zero at slot t.

The service time si of SU i is the number of time slots required to transmit one packet for SU i,

excluding the service interruptions. It can be shown that the average service time is L/E
[
R

(t)
i

]
time

slots per packet where the expectation is taken over the channel gain γ
(t)
i as well as over the power

P
(t)
i when it is channel dependent and random. One example of a random power policy is the channel

inversion policy as will be discussed later (see equation (3.15)). The service time is assumed to follow

a general distribution throughout the paper that depends on the distribution of P
(t)
i γ

(t)
i .

We define the delay W
(j)
i of a packet j as the total amount of time, in time slots, packet j spends

in SU i’s buffer from the slot it joined the queue until the slot when its last bit is transmitted. The
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time-average delay experienced by SU i’s packets is given by [21]

W̄i , lim
T→∞

E
[∑T

t=1

∑
j∈A(t)

i
W

(j)
i

]
E
[∑T

t=1 |A
(t)
i |
] (3.5)

which is the expected total amount of time spent by all packets arriving in a time interval, of a large

duration, normalized by the expected number of packets that arrived in this interval.

3.1.3 Transmission Process

At the beginning of each time slot t, the BS schedules a SU and broadcasts its index i∗ and its power

P
(t)
i∗ to all SUs on a common control channel. SU i∗, in turn, begins transmission of M

(t)
i∗ bits of its HOL

packet with a constant power P
(t)
i∗ . We assume the BS receives these bits error-free by the end of slot t

then a new time slot t + 1 starts. In this paper, our main goal is the selection of the SU i∗ which is a

scheduling problem, as well as the choice of the power P
(t)
i∗ which is power allocation. We now elaborate

further on this problem.

3.2 Problem Statement

Each SU i has an average delay constraint W̄i ≤ di that needs to be satisfied. Moreover, there is an

interference constraint that the SU needs to meet in order to coexist with the PU. We discuss the two

different constraints and state the problem associated with each constraint.

3.2.1 Instantaneous Interference Constraint

Under the instantaneous interference constraint, the main objective is to solve the following problem

minimize
{i∗(t)},{P(t)}

∑N
i=1 W̄i

subject to
∑N

i=1 P
(t)
i g

(t)
i ≤ Iinst , ∀t ≥ 1

W̄i ≤ di
P

(t)
i ≤ Pmax , ∀i ∈ N and ∀t ≥ 1,∑N
i=1 1

(
P

(t)
i

)
≤ 1 , ∀t ≥ 1,

(3.6)
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where P(t) , [P
(t)
1 , · · · , P (t)

N ]T , {i∗(t)} represents the scheduler at each time slot t ≥ 1, while 1(x) , 1 if

x 6= 0 and 0 otherwise. The last constraint indicates that no more than a single SU is to be transmitting

at slot t.

3.2.2 Average and Instantaneous Interference Constraint

Let I denote the long-term average interference received by the PU given by

I , lim
T→∞

N∑
i=1

1

T

T∑
t=1

P
(t)
i g

(t)
i . (3.7)

The following problem is the same as (3.6) with an additional constraint on the average interference:

minimize
{i∗(t)},{P(t)}

∑N
i=1 W̄i

subject to
∑N

i=1 P
(t)
i g

(t)
i ≤ Iinst , ∀t ≥ 1

I ≤ Iavg

W̄i ≤ di
P

(t)
i ≤ Pmax , ∀i ∈ N and ∀t ≥ 1,∑N
i=1 1

(
P

(t)
i

)
≤ 1 , ∀t ≥ 1,

(3.8)

We notice that problems (3.6) and (3.8) are joint power allocation and scheduling problems where

the objective function and constraints are expressed in terms of asymptotic time averages and cannot

be solved by conventional optimization techniques. The next section proposes low complexity update

policies and proves their optimality.

3.3 Proposed Power Allocation and Scheduling Algorithm

We solve problems (3.6) and (3.8) by proposing online joint scheduling and power allocation policies

that dynamically update the scheduling and the power allocation. We show that these policies have

performances that come arbitrarily close to being optimal. That is, we can achieve a sum of the average

delays arbitrarily close to its optimal value depending on some control parameter V .

We first discuss the idea behind our policies. Then we present the proposed policy for each problem,

(3.6) and (3.8), separately.
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3.3.1 Frame-Based Policy

The idea behind the policies that solve (3.6) and (3.8) is to divide time into frames where frame

k consists of a random number Tk time slots and update the power allocation and scheduling at the

beginning of each frame. Where each frame begins and ends is specified by idle periods and will be

precisely defined later in this section. During frame k, SUs are scheduled according to some priority list

πππ(k) and each SU is assigned some power to be used when it is assigned the channel. The priority list

and the power functions are fixed during the entire frame k and are found at the beginning of frame

k based on the history of the SUs’ time-averaged delays and, in the case of (3.8), the PU’s suffered

interference up to the end of frame k − 1.

We define πππ(k) , [π1(k), · · · , πN(k)]T where πj(k) is the index of the SU who is given the jth priority

during frame k. Given πππ(k), the scheduler becomes a priority scheduler with preemptive-resume priority

queuing discipline [46, pp. 205]. The idea of dividing time into frames and assigning fixed priority lists

for each frame was also used in [21]. Lemma 1 of [21] proves that restricting the scheduling algorithm

to frame-based preemptive-resume priority lists does not result in any loss of optimality.

Frame k consists of Tk , |F(k)| consecutive time-slots, where F(k) is the set containing the indices

of the time slots belonging to frame k (see Fig. 3.2). Each frame consists of exactly one idle period

followed by exactly one busy period, both are defined next.

Definition 1. An idle period is the time interval formed by the consecutive time slots where all SUs

have empty buffers. An idle period starts with the time slot t1 following the completion of transmission

of the last packet in the system, and ends with a time slot t2 when one or more of the SUs’ buffer

receives one a new packet to be transmitted (see Fig. 3.2). In other words, t1 satisfies
∑

i∈N Q
(t1)
i = 0

and
∑

i∈N Q
(t1−1)
i 6= 0, while t2 satisfies

∑t2−1
t=t1

∑
i∈N Q

(t)
i = 0 and

∑
i∈N Q

(t2)
i 6= 0.

Definition 2. Busy period is the time interval between two consecutive idle periods.
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Figure 3.2: Time is divided into frames. Frame k has |Fk| , |F(k)| slots, each is of duration T seconds.
Different frames can have different number of time slots.

The duration of the idle period I(k) and busy period B(k) of frame k are random variables, thus

Tk = I(k) + B(k) is random as well. Since frames do not overlap, if t ∈ F(k1) then t /∈ F(k2) as long

as k1 6= k2. Our goal in this paper is to choose, at the beginning of each frame k, the best priority list

πππ(k) as well as the best power allocation policy for each SU so that the system has an optimal average

delay performance satisfying the constraints in (3.6) or (3.8). An equivalent equation for the average

delay equation in (3.5) is

W̄i , lim
K→∞

E
[∑K

k=0

(∑
j∈Ai(k) W

(j)
i

)]
E
[∑K

k=0 |Ai(k)|
] (3.9)

where Ai(k) , ∪t∈F(k)A(t)
i is the set of all packets that arrive at SU i’s buffer during frame k. We note

that the long-term average delay W̄i in (3.9) depends on the chosen priority lists as well as the power

allocation policy, in all frames k ≥ 0.

3.3.2 Satisfying Delay Constraints

In order to guarantee a feasible solution satisfying the delay constraints in problems (3.6) and (3.8),

we set up a “virtual queue” associated with each delay constraint W̄i ≤ di. The virtual queue for SU i
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at frame k is given by

Yi(k + 1) ,

Yi(k) +
∑

j∈Ai(k)

(
W

(j)
i − ri(k)

)+

(3.10)

where ri(k) ∈ [0, di] is an auxiliary random variable, that is to be optimized over and Yi(0) , 0, ∀i.

We define Y(k) , [Y1(k), · · · , YN(k)]T . Equation (3.10) is calculated at the end of frame k − 1 and

represents the amount of delay exceeding the delay bound di for SU i up to the beginning of frame k.

We first give the following definition, then state a lemma that gives a sufficient condition on Yi(k) for

the delay of SU i to satisfy W̄i ≤ di.

Definition 3. A random sequence {Yi(k)}∞k=0 is mean rate stable if and only if limK→∞ E [Yi(K)] /K = 0

holds.

Lemma 3. If {Yi(k)}∞k=0 is mean rate stable, then the time-average delay of SU i satisfies W̄i ≤ di.

Proof. Removing the (·)+ sign from equation (3.10) yields

Yi(k + 1) ≥ Yi(k) +
∑

j∈Ai(k)

(
W

(j)
i − ri(k)

)
. (3.11)

Summing inequality (3.11) over k = 0, · · ·K − 1 and noting that Yi(0) = 0 gives

Yi(K) ≥
K−1∑
k=0

 ∑
j∈Ai(k)

W
(j)
i

− K−1∑
k=0

(ri(k)|Ai(k)|). (3.12)

Taking the E [·] then dividing by E
[∑K−1

k=0 |Ai(k)|
]

gives

E
[∑K−1

k=0

(∑
j∈Ai(k)W

(j)
i

)]
E
[∑K−1

k=0 |Ai(k)|
] ≤ E [Yi(K)]

K

K

E
[∑K−1

k=0 |Ai(k)|
] +

∑K−1
k=0 E [|Ai(k)|ri(k)]∑K−1

k=0 E [|Ai(k)|]
. (3.13)

Replacing ri(k) by its upper bound di, taking the limit as K → ∞ then using the mean rate stability

definition and equation (3.9) completes the proof.

Lemma 3 provides a condition on the virtual queue {Yi(k)}∞k=0 so that SU i’s average delay constraint

W̄i ≤ di in (3.6) and (3.8) is satisfied. That is, if the proposed joint power allocation and scheduling
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policy results in a mean rate stable {Yi(k)}∞k=0, then W̄i ≤ di. For both problems, the proposed policy

depends on the Lyapunov optimization where the goal is to choose the joint scheduling and power

allocation policy that minimizes the drift-plus-penalty. In Section 3.3.3 (Section 3.3.4) we will show

that if problem (3.6) (problem (3.8)) is feasible, then the proposed policy guarantees mean rate stability

for the queues {Yi(k)}∞k=0.

3.3.3 Algorithm for Instantaneous Interference Constraint

We now propose the Delay Optimal with Instantaneous Interference Constraint (DOIC ) policy that

solves problem (3.6). This policy is executed at the beginning of each frame k for finding P(t) as well as

the optimum list πππ(k), given some prespecified control parameter V . Define the random variable Ri(P )

as

Ri(P ) , log

(
1 + min

(
Iinst

g
(t)
i

, P

)
γ

(t)
i

)
, (3.14)

where P is some fixed constant argument and define µi(P ) , E [Ri(P )] /L where the expectation is

taken over g
(t)
i and γ

(t)
i . The DOIC policy is as follows.

DOIC Policy (executed at the beginning of frame k):

1. The BS sorts the SUs according to the descending order of Yi(k)µi(Pmax). The sorted list is

denoted by πππ(k).

2. At the beginning of each slot t ∈ F(k) the BS schedules SU i∗ that has the highest priority in the

list πππ(k) among those having non-empty buffers.

3. SU i∗, in turn, transmits M
(t)
i∗ packets as dictated by equation (3.2) where P

(t)
i = 0 ∀i 6= i∗ while

P
(t)
i∗ is calculated as

P
(t)
i∗ = min

(
Iinst

g
(t)
i∗

, Pmax

)
, (3.15)

4. At the end of frame k, for all i ∈ N the BS updates:

4.1 ri(k) = di if V < Yi(k)λi, and ri(k) = 0 otherwise, and then
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4.2 Yi(k + 1) via equation (3.10).

Before we discuss the optimality of the DOIC in Theorem 3, we define the following quantities. Let

a , 1 − ΠN
i=1 (1− λi) denote the probability of receiving a packet from a user or more at a given time

slot, while CY ,
∑N

i=1CYi with CYi ,
√
E [A4]E [B4] +d2

i E [A2], where E [A2] and E [A4] are bounds on

the second and fourth moments of the total number of arrivals
∑

i |Ai(k)| during frame k, respectively,

while E [B4] is a bound on the fourth moment of the busy period B(k). The finiteness of these moments

can be shown to hold if the first four moments of the service time are finite. In Appendix E we show

that all the service time moments exist given any distribution for P
(t)
i γ

(t)
i .

Theorem 3. If problem (3.6) is feasible, then the proposed DOIC policy results in a time average of

the SUs’ delays satisfying the following inequality

N∑
i=1

W̄i ≤
aCY
V

+
N∑
i=1

W̄ ∗
i (3.16)

where W̄ ∗
i is the optimum value of the delay when solving problem (3.6), while a and CY are as given

above. Moreover, the virtual queues {Yi(k)}∞k=0 are mean rate stable ∀i ∈ N .

Proof. See Appendix D.

Theorem 3 says that the objective function of problem (3.6) is upper bounded by the optimum value∑
i W̄

∗
i plus some constant gap that vanishes as V →∞. Having a vanishing gap means that the DOIC

policy is asymptotically optimal. Moreover, based on the mean rate stability of the queues {Yi(k)}∞k=0,

the set of delay constraints of problem (3.8) is satisfied. The drawback of setting V very large is that

the time needed for the algorithm to converge increases. This increase is linear in V [48]. That is, if the

number of frames required for the quantity
∑

i Yi(k)/(Nk) to be less than ε (for some ε > 0) is O(K1),

then increasing V to βV will require O(βK1) frames for it to be less than ε, for any β > 1. We note that

the complexity of the DOIC policy is O(N) because calculating µi(Pmax) is of O(1), while the power

is closed-form in (3.15). We note that if problem (3.6) is not feasible, then this is because one of two
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reasons; either one or more of the constraints is stringent, or otherwise because
∑N

i=1 λi/µi(Pmax) ≥ 1.

If it is the former, then the DOIC policy will result in a point that is as close as possible to the feasible

region. On the other hand, if it is the latter, then we could add an admission controller that limits the

average number of packets arriving at buffer i to λi(1− ε)/
(∑N

i=1 λi/µi(Pmax)
)

for some ε > 0.

3.3.4 Algorithm for Average Interference Constraint

We now propose the Delay-Optimal-with-Average-Interference-Constraint DOAC policy for problem

(3.8). We first give the following useful definitions. Since the scheduling scheme in frame k is a priority

scheduling scheme with preemptive-resume queuing discipline, then given the priority list πππ we can

write the expected waiting time of all SUs in terms of the average residual time [46, pp. 206] defined as

TR
πj

,
∑j

l=1 λπl E
[
s2
πl

]
/2, where the expectation is taken over P

(t)
πl γ

(t)
πl . The waiting time of SU πj that

is given the jth priority is [46, pp. 206]

Wπj

(
P, µπj(P ), ρπj(P ), ρ̄πj−1

, TR
πj

)
=

1(
1− ρ̄πj−1

) [ 1

µπj(P )
+

TR
πj(

1− ρ̄πj−1
− ρπj(P )

)] (3.17)

≤ 1(
1− ρ̄max

πj−1

)
 1

µπj(P )
+

TR(
1− ρ̄max

πj−1
− ρπj(P )

)


, W up
πj

(
P, ρπj(P ), ρ̄max

πj−1
, TR

)
, (3.18)

where we define ρi(P ) , λi/µi(P ), ρ̄πj−1
,
∑j−1

l=1 ρπl(Pπl), while TR is an upper bound on TR
πj

and is

given by TR ,
∑N

i=1 λi
(
L2 + L

(
1− pi(Pmin

i )
))
/p2

i (P
min
i )/2 with pi(P ) , 1−Pr [Ri(P ) = 0] and Pmin

i is

the minimum power satisfying ρi(P
min
i ) +

∑
j 6=i ρj(Pmax) < 1 (see Appendix E for the derivation of TR),

while ρ̄max
i is some upper bound on ρ̄i that will be defined later. We henceforth drop all the arguments

of W up
πj

(P, ρ̄max
πj−1

) except P and ρ̄max
πj−1

and all those from Wπj(P ) except P .

To track the average interference at the PU up to the end of frame k we set up the following virtual

queue that is associated with the average interference constraint in problem (3.8) and is calculated at
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the BS at the end of frame k.

X(k + 1) ,

X(k) +
N∑
i=1

∑
t∈F(k)

P
(t)
i g

(t)
i − IavgTk

+

, (3.19)

where the term
∑N

i=1

∑
t∈F(k) P

(t)
i g

(t)
i represents the aggregate amount of interference energy received

by the PU due to the transmission of the SUs during frame k. Hence, this virtual queue is a measure

of how much the SUs have exceeded the interference constraint above the level Iavg that the PU can

tolerate. Lemma 4 provides a sufficient condition for the interference constraint of problem (3.8) to be

satisfied.

Lemma 4. If {X(k)}∞k=0 is mean rate stable, then the time-average interference received by the PU

satisfies I ≤ Iavg.

Proof. The proof is similar to that of Lemma 3 and is omitted for brevity.

Lemma 4 says that if the power allocation and scheduling algorithm results in mean rate stable

{X(k)}∞k=0, then the interference constraint of problem (3.8) is satisfied.

Before presenting the DOAC policy, we first discuss the idea behind it. Theorem 4 will show that

the optimum power allocation for SU i is

P
(t)
i = min

(
Iinst

g
(t)
i

, Pi(k)

)
, (3.20)

where Pi(k) ∈ [Pmin
i , Pmax] is a power parameter that is fixed within frame k (i.e. ∀t ∈ F(k)). Intuitively,

a policy that solves problem (3.8) should allocate SU i’s power and assign its priority such that SU i’s

expected delay and the expected interference to the PU is minimized. The DOAC policy is defined as

the policy that selects the power parameter vector P(k) , [P1(k), · · · , PN(k)]T jointly with the priority

list πππ(k) that minimizes Ψ ,
∑N

j=1 ψπj(Pπj(k), ρ̄max
πj−1

) where

ψπj(P, ρ̄
max
πj−1

) , ψD
πj

(P, ρ̄max
πj−1

) + ψI
πj

(P ), with (3.21)

ψD
πj

(P, ρ̄max
πj−1

) , Yπj(k)λπjW
up
πj

(P, ρ̄max
πj−1

), while (3.22)

ψI
πj

(P ) , X(k)ρπj(P )P. (3.23)
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The function ψD
πj

(P, ρ̄max
πj−1

) (and ψI
πj

(P )) represents the amount of delay (interference) that SU πj is

expected to experience (to cause to the PU) during frame k.

To minimize Ψ in an efficient way we need to set the function ρ̄max
πj

, that upper bounds ρ̄πj , to

some function that does not depend except on the power Pπj(k) of user πj. Thus, the functions

ψπj(Pπj(k), ρ̄max
πj−1

) become decoupled for all j ∈ N . That is, each ψπj(Pπj(k), πj−1) is a function in

Pπj(k) only. This ρ̄max
πj

functions, for all j ∈ N , are given by

ρ̄max
πj

,
j∑
l=1

ρπl
(
P ρ̄max

πl

)
, (3.24)

where

P ρ̄max

πj
, arg min

P
ψπj

(
P, ρ̄max

πj−1

)
. (3.25)

Equation (3.25) means that in order to find P ρ̄max

πj
we need to find P ρ̄max

πj−1
. Hence, we find P ρ̄max

πj
recursively

starting from j = 1 at which ρ̄max
π0

= 0 by definition. We will show that ρ̄max
πj

is an upper bound on ρ̄πj

in the following lemma.

Lemma 5. Given some priority list πππ(k), for any user πj ∈ N the function ρ̄πj evaluated at the power

vector Pρ̄ which is the power vector that minimizes
∑N

j=1 ψπj(Pπj(k), ρ̄πj−1
), is upper bounded by ρ̄max

πj
.

Namely,

ρ̄πj
∣∣
Pρ̄
≤ ρ̄max

πj

∣∣∣
Pρ̄max

(3.26)

where

Pρ̄ , arg min
P

N∑
j=1

ψπj(Pπj , ρ̄πj−1
) (3.27)

while

Pρ̄max

, arg min
P

N∑
j=1

ψπj(Pπj , ρ̄
max
πj−1

) (3.28)

Proof. We first argue that P ρ̄
πj
≥ P ρ̄max

πj
for any j ∈ N . Then we show that ρ̄πj is decreasing in Pπl for

all l ≤ j which completes the proof.
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From (3.28), we have

P ρ̄max

πj
= arg min

Pπj≤Pmax

N∑
l=1

ψπl

(
Pπl , ρ̄

max
πl−1

)
. (3.29)

But since ρ̄max
πj

is not a function in Pπl except if j = l, then

P ρ̄max

πj
= arg min

Pπj≤Pmax

[
ψI
πj

(
Pπj
)

+ ψD
πj

(
Pπj , ρ̄

max
πj−1

)]
(3.30)

Moreover, from (3.27), we have

P ρ̄
πj

= arg min
Pπj≤Pmax

N∑
l=1

ψπl
(
Pπl , ρ̄πl−1

)
(3.31)

= arg min
Pπj≤Pmax

[
ψI
πj

(
Pπj
)

+
N∑
l=j

ψD
πl

(
Pπl , ρ̄πl−1

)]
(3.32)

If ψI
πj

(
Pπj
)

is non increasing in Pπj over its entire domain, then the optimum solution for (3.32) is

P ρ̄
πj

= Pmax, which is the same as the optimum solution of P ρ̄max

πj
. Hence, we continue the proof assuming

that there exists a region in the domain of Pπj where ψI
πj

(
Pπj
)

is increasing.

Since W up
πj

(Pπj , ρ̄πj−1
) is decreasing in Pπj , ψ

D
πj

(
Pπj , ρ̄πj−1

)
is also decreasing in Pπj . Hence, the

summation in (3.32) is decreasing in Pπj . At the same time, ψI
πj

(
Pπj
)

is increasing in Pπj . Thus, there

are two forces that determines the optimum value of P ρ̄
πj

; the first term is in favor of decreasing it, while

the summation is in favor of increasing it. We continue the proof by induction on j. Setting j = 1 in

(3.32), we can easily see that if we neglect all the terms in the summation except one, the value of P ρ̄
π1

decreases. Namely,

P ρ̄
π1
≥ arg min

Pπ1≤Pmax

[
ψI
π1

(Pπ1) + ψD
π1

(Pπ1 , ρ̄π0)
]

(3.33)

= P ρ̄max

π1
, (3.34)

where the last equation follows after setting j = 1 in (3.30). From (3.14) we can see that ρ̄π1 is decreasing

in Pπ1 . With this in mind, and after using the inequality in (3.34) we get ρ̄π1 ≤ ρ̄max
π1

. Setting j = 2 in
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(3.32) and neglecting all terms in the summation except at j = 2 yields

P ρ̄
π2
≥ arg min

Pπ2≤Pmax

[
ψI
π2

(Pπ2) + ψD
π2

(Pπ2 , ρ̄π1)
]

(3.35)

≥ arg min
Pπ2≤Pmax

[
ψI
π2

(Pπ2) + ψD
π2

(
Pπ2 , ρ̄

max
π1

)]
(3.36)

= P ρ̄max

π2
. (3.37)

Thus we get ρ̄π2 ≤ ρ̄max
π2

. Repeating for a general j ≤ N and assuming that ρ̄πj−1
≤ ρ̄max

πj−1
, we get

P ρ̄
π2
≥ P ρ̄max

π2
yielding ρ̄πj ≤ ρ̄max

πj
which completes the proof.

Lemma 5 states that we can replace ρ̄πj by ρ̄max
πj

as an upper bound in (3.18). ρ̄max
πj

has an advantage

over ρ̄πj (and hence ψπj

(
Pπj , ρ̄

max
πj−1

)
over ψπj

(
Pπj , ρ̄πj−1

)
) which is that it is not a function in Pπl as

long as l 6= j. This decouples the power search optimization problem to N one-dimensional searches

To solve minπππ(k),P(k) Ψ, we use the dynamic programming illustrated in Algorithm 2. Its search

complexity is of O(MN2N) where M is the number of iterations in a one-dimensional search. Compared

to the complexity of O(MN ·N !) which is that of the N -dimensional power search along with the brute-

force of all N ! permutations of priority list πππ(k), this is a large complexity reduction. However, the

O(MN2N) is still high ifN was large. Finding an optimal algorithm with a lower complexity is extremely

difficult since the scheduling and power control problem are coupled. In other words, in order to find

the optimum scheduler we need to know the optimum power vector and vice versa. In Section 3.3.5 we

propose a sub-optimal policy with a very low complexity and little degradation in the delay performance.

We now present the DOAC policy that the BS executes at the beginning of frame k.

DOAC Policy (executed at the beginning of frame k):

1. The BS executes DOAC-Pow-Alloc in Algorithm 2 to find the optimum power parameter vector

P∗(k) , [P ∗1 (k), · · · , P ∗N(k)]T as well as the optimum priority list π∗(k) , [π∗1(k), · · · , π∗N(k)]T

that will be used during frame k.

2. The BS broadcasts the vector P∗(k) to the SUs.
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Algorithm 2 DOAC-Pow-Alloc: Optimization-problem-solution algorithm called by the DOAC policy
at the beginning of frame k to solve for P∗(k) as well as π∗(k).

1: Define S as the set of all sets formed of all subsets of N and define the auxiliary functions

Ψ̃(·, ·) : N × S → R+

ρ̃(·) : S → [0, 1],

S̃(X ) : S → N |X |,
P̃(X ) : S → [0, Pmax]|X |,

P̄ (·, ·) : S ×N → [0, Pmax].

2: for i = 1, · · · , N do
3: In stage i, the first i priorities have been assigned to i users. The corresponding priority list is

denoted [π1, · · · , πi]. In stage i we have
(
N
i

)
states each corresponds to a set j formed from all

possible combinations of i elements chosen from the set N . We calculate Ψ̃(i, j) associated with
each state j in terms of Ψ̃(i− 1, ·) obtained in stage i− 1 as follows.

4: for j ∈ all possible i-element sets do
5: At state j , {π1, · · · , πi}, we have i transitions, each connects it to state j′ , j\l in stage i−1,

∀l ∈ j. Find the power associated with each transition l ∈ j denoted

P̄ (j, l) , arg min
P
ψl(P, ρ̃(j\l)) (3.38)

6: Set

l∗ = arg min
l∈j

Ψ̃ (i− 1, j\l) + ψl
(
P̄ (j, l), ρ̃(j\l)

)
,

Ψ̃(i, j) = Ψ̃(i− 1, j\l∗) + ψl∗
(
P̄ (j, l∗), ρ̃(j\l∗)

)
,

ρ̃(j) = ρ̃ (j\l∗) + ρ
(
P̄ (j, l∗)

)
,

S̃(j) =
[
S̃ (j\l∗) , l∗

]
,

P̃(j) =
[
P̃ (j\l∗) , P̄ (j, l∗)

]
.

7: end for
8: end for
9: Set π∗(k) = S̃ (N ) and P∗(k) = P̃ (N ).
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3. At the beginning of each slot t ∈ F(k), the BS schedules SU i∗ that has the highest priority in

the list π∗(k) among those having non-empty buffers.

4. SU i∗(t), in turn, transmits M
(t)

i∗(t) bits as dictated by equation (3.2) where P
(t)
i = 0 for all i 6= i∗(t)

while P
(t)

i∗(t) is given by equation (3.20).

5. At the end of frame k, for all i ∈ N the BS updates:

5.1 ri(k) = di if V < Yi(k)λi, and ri(k) = 0 otherwise,

5.2 X(k + 1) via equation (3.19),

5.3 Yi(k + 1) via equation (3.10), ∀i ∈ N .

Define CX ,
(
P 2

maxg
2
max + I2

avg

)
((1− a)(2 + a) + E [B2] + 2E [B] (a− a2)) /a2 and C , CY +CX where

E [B] is a bound on the mean of B(k). It can be shown that E [B] and E [B2] are finite since the first two

moments of the service time are finite (see Appendix E). Thus, CX is finite. Next, we state Theorem 4

that discusses the optimality of the DOAC policy.

Theorem 4. When the BS executes the DOAC policy, the time average of the SUs’ delays satisfy the

following inequality
N∑
i=1

W̄i ≤
aC

V
+

N∑
i=1

W̄ ∗
i (3.39)

where W̄ ∗
i is the optimum value of the delay when solving problem (3.8). Moreover, the virtual queues

{X(k)}∞k=0 and {Yi(k)}∞k=0 are mean rate stable ∀i ∈ N .

Proof. See Appendix F.

Theorem 4 says that the objective function of problem (3.8) is upper bounded by the optimum

value
∑

i W̄
∗
i plus some constant gap that vanishes as V →∞. Having a vanishing gap means that the

DOAC policy is asymptotically optimal. Moreover, based on the mean rate stability of {X(k)}∞k=0 and

{Yi(k)}∞k=0, the interference and delay constraints of problem (3.8) are satisfied.
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3.3.5 Near-Optimal Low Complexity Algorithm for Average Interference
Problem

As seen in the DOAC policy, the complexity of finding the optimal power vector and priority list can

be high when the number of SUs N is large. This is mainly due to the large complexity of Algorithm

2. In this subsection we propose a suboptimal solution with an extreme reduction in complexity and

with little degradation in the performance. This solution solves for the power allocation and scheduling

algorithm, thus it replaces the Algorithm 2.

The challenges in Algorithm 2 are three-fold. First finding the priority list (scheduling problem)

requires the search over N ! possibilities. Second, even with a genie-aided knowledge of the optimum

list, we still have to carry-out N one-dimensional searches to find P∗(k) (power control problem). Third,

the scheduling and power control problems are coupled. We tackle the latter two challenges first, by

finding a low-complexity power allocation policy that is independent of the scheduling algorithm. Then

we use the cµ rule [49] to find the priority list. The cµ rule is a policy that gives the priority list that

minimizes the quantity
∑N

i=1 Yi(k)λiWi(Pi(k)), given some power allocation vector P(k).

Define Pmin to be the minimum power that satisfies
∑N

j=1 ρπj(Pmin) < 1. Intuitively, if, for some

πj ∈ N , X(k) � Yπj(k) then P ∗πj(k) is expected to be close to Pmin since the interference term ψI
πj

(P )

dominates over ψD
πj

(P ) in the πjth term of the summation in equation (3.21). On the other hand, if

X(k)� Yπj(k) then P ∗πj(k) ≈ Pmax. We propose the following power allocation policy for SU πj ∈ N

P̂πj(k) =

{
Pmin if X(k) > Yπj(k)
Pmax otherwise.

(3.40)

We can see that the power allocation policy in (3.40) does not depend on the position of SU i in the

priority list as opposed to Algorithm 2 which requires the knowledge of SU πj’s priority position. In

other words, P̂πj(k) is a function of πj but it is not a function of j. Before proposing the scheduling

policy, we note the following two properties based on the knowledge of the power P∗(k). First, when

X(k) = 0, the solution to the minimization problem minπππ Oobj is given by the cµ rule [49] that sorts the
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SUs according to the descending order of Yπj(k)µπj(P̂πj(k)). Second, when Yπj(k) = 0 ∀πj ∈ N , any

sorting order would not affect the objective function Oobj.

The two-step scheduling and power allocation algorithm that we propose is 1) allocate the power vec-

tor P(k) according to (3.40), then 2) assign priorities to the SUs in a descending order of Yπj(k)µπj(P̂πj(k))

(the cµ rule). The complexity of this algorithm is that of sorting N numbers, namely O(N log(N)).

This is a very low complexity if compared to that of the DOAC policy of O(MN · N !). In Section

3.6 we will demonstrate that this huge reduction of complexity causes little degradation to the delay

performance.

3.4 Achievable Rate Region of the DOAC

We have shown that the DOAC policy is delay optimal. In this section we show how much of

the capacity region this policy achieves. We also present different scenarios where the DOAC policy

achieves the whole capacity region, hence becoming both throughput optimal and delay optimal at the

same time.

Theorem 1 in [48, pp. 52] explicitly states the capacity region in the case of an instantaneous power

constraint. In general this capacity region is strictly convex. A simple example of this capacity region

is shown in Fig. 3.3 for a 2-user case with channel gains γ
(t)
i ∈ {0, 1} while g

(t)
i = 0, for all i = 1, 2. The

next lemma presents the rate region that the DOAC achieves.

Lemma 6. Under the DOAC policy, the queues of all users will be stable if and only if the arrival rate

vector satisfies
∑

i∈N ρi(Pmax) < 1 with strict inequality.

Proof. If
∑

i∈N ρi(Pmax) ≥ 1, then for any π ∈ P we will have W̄πN = ∞ from (3.5). Thus, the queue

of at least one of the users will build up. Moreover, if the inequality
∑

i∈N ρi(Pmax) < 1 holds, we will

have W̄i <∞ for all i ∈ N . Little’s law completes the proof.

The achievable region provided in Lemma 6 is shown in Fig. 3.3 for the 2-user case. This is a

straight line intersecting the two axes at (µ1(Pmax), 0) and (0, µ2(Pmax)), respectively. Although, in

60



general, this rate region lies strictly inside the capacity region, there are cases where the two regions

coincide. Before presenting two of these examples, we note that in these cases the DOAC is delay

optimal and throughput optimal at the same time.

Example 1 (Unknown channel gain): If all SUs are not able to estimate the gain of their direct

channel to their BS, then each SU would be transmitting with a fixed rate that corresponds to the

minimum non-zero channel gain γmin
i , min

γ
(t)
i 6=0

γ
(t)
i . Hence the capacity region shrinks [50, pp. 115]

to be the region bounded by the hyper plane intersecting the ith axis at the point [0, · · · , µmin
i , 0, · · · ]T

where

µmin
i ,

log
(
1 + Pmaxγ

min
i

) (
1−Pr

[
γ

(t)
i = 0

])
L

, (3.41)

thus coinciding with the DOAC achievable rate region.

Example 2 (Non-fading channel): When we have a non-fading channel, each SU transmits with

a fixed rate equals log(1 + Pmax) bits per slot. Hence the capacity region becomes the region in the

first quadrant that is bounded by the hyper plane intersecting the each axis at log(1 + Pmax)/L, thus

coinciding with the DOAC achievable rate region.

3.5 Performance Under Channel Estimation Errors

In this section, we present the solution of the system under channel estimation errors. We assume

that SU i estimates γ
(t)
i and g

(t)
i with α% error relative to its actual value, where α > 0 represents the

percentage of maximum deviation from the true value. This is a good model when the source of channel

errors is mainly due to quantization. The observed values satisfy

(
1− α

2

)
γ

(t)
i ≤ γerr

i (t) ≤
(

1 +
α

2

)
γ

(t)
i , (3.42)(

1− α

2

)
g

(t)
i ≤ gerr

i (t) ≤
(

1 +
α

2

)
g

(t)
i , (3.43)
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DOAC achievable 
region

Capacity Region

Figure 3.3: Capacity region for a 2-user case.

From equation (3.1), in order to prevent outage, we need to consider the worst case scenario for γ
(t)
i .

Therefore, we estimate γ
(t)
i to be

γ
(t)
i =

γerr
i (t)

1 + α
2

. (3.44)

Although this is a worst case estimation of γ
(t)
i , we will show through simulations that the reduction

in performance is not high even with a relatively high value of α. Similarly, instantaneous interference

constraint in equation (3.6) is satisfied using a worst-case estimate of g
(t)
i as

g
(t)
i =

gerr
i (t)

1− α
2

. (3.45)

With the estimated CSI values given by equations (3.44) and (3.45), the two problems of instan-

taneous and average interference constraint, namely problems (3.6) and (3.8), become functions of the

observed CSI values as well as the parameter α. Hence, the two policies DOIC and DOAC can be used

to to solve problems (3.6) and (3.8), respectively, under estimation errors. Section 3.6 simulates this

system and shows the performance under this error model.
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Table 3.1: Simulation Parameter Values
Parameter Value Parameter Value

L 1000 bits per packet Iinst 50
Rmax 82 bits per slot Pmax 100

λ1 = λ2 = λ λ ∈ {1, · · · 10} × 10−3 packets/slot N 2 SUs
fγi(γ) exp (−γ/γ̄i)/γ̄i α 0.1
fgi(g) exp (−g/gi)/gi ε 0.1

(γ̄1, γ̄2) (2, 4) V 10
(g1, g2) (0.4, 0.2) d2 40T

3.6 Simulation Results

We simulated a system of N = 2 SUs. Table 3.1 lists all parameter values for both scenarios; the

instantaneous as well as the average interference constraint. We expect SU 1 to have higher average

delay in both scenarios. This is because it has a lower average channel gain and higher interference

channel gain compared to those of SU 2. However, the DOIC policy can guarantee a bound on this

delay using the constraint W̄1 ≤ d1, so that the QoS requirement of SU 1 is satisfied. In our simulations

we set d1 = 29T unless otherwise specified.

3.6.1 Instantaneous Interference

In Figures 3.4 and 3.5 we consider problem (3.6) and assumed perfect knowledge of the direct and

interference channel state information (CSI), namely g
(t)
i and γ

(t)
i . Fig. 3.4 plots the average per-SU

delay W̄i, from equation (3.5), for two cases; the first being the constrained optimization problem where

d1 = 29T while setting d2 to any arbitrarily high value (we set d2 = 40T ), while the second is the

unconstrained optimization problem where both d1 and d2 are set arbitrarily high (we set d1 = d2 =

40T ). We call it the unconstrained problem because the average delay of both SUs is strictly below

40T , thus both delay constraints are inactive. The X-axis is the probability of a packet arrival per time

slot λ, where λ , λ1 = λ2. From Fig. 3.4 we can see a gap, in the unconstrained problem, between the

average delay of SU 1 and that of SU 2. Hence, SU 1 suffers from high delay. While for the constrained
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problem, the DOIC policy has forced W̄1 to be smaller than 29T for all λ values. This comes at the

cost of SU 2’s delay. We conclude that the delay constraints in problem (3.6) can force the delay vector

of the SUs to take any value as long as it is feasible.

3.6.2 Average Interference

Problem (3.8) differs than problem (3.6) by an additional average interference constraint. This

comes at the cost of the sum of average delays of SUs. We simulated the system with d1 = 40T and

compared it to the performance of the DOIC policy with d1 = 40T as well. The sum of average delays

of the two SUs is plotted in Fig. 3.6 for both algorithms. The increase in the average delay for the

DOAC policy is due to adding an additional average interference constraint. However, when comparing

the DOAC policy to a Carrier-Sense-Multiple-Access (CSMA) scheduling policy we find it to have a

lower average delay performance. This is because the CSMA allocates the channels randomly uniformly

among users and does not prioritize the users based on their delay requirement di. On the other hand,

the DOAC allocates the channels based on the objective of minimizing the sum of average delays. We

note that the CSMA policy plotted in Fig. 3.6 uses a “genie-aided” power allocation policy obtained

from Algorithm 2. Thus, even when the two algorithms, the CSMA policy and the DOAC policy, have

the same power allocation policy, the DOAC scheduling policy has an improved delay performance over

the CSMA policy.

3.6.3 Low-Complexity Algorithm Performance

When implementing the suboptimal algorithm proposed in Section 3.3.5 we find that the sum of the

average delay across SUs is very close to its optimal value found via Algorithm 2. This is demonstrated

in Fig. 3.7 where the error doesn’t exceed 0.37% at λ = 0.01
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Figure 3.4: Average per-user delay for both the constrained and unconstrained optimization problems
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Figure 3.6: Comparing the CSMA policy with the DOIC policy and the DOAC policy. The power
allocation scheme used for the DOAC policy is the one used for the CSMA, hence the term genie-aided.
However, the genie-aided CSMA policy has a worse delay performance compared to the DOAC policy.
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Figure 3.7: The low-complexity algorithm proposed in Section 3.3.5 has a close-to-optimal average delay
performance with a maximum error of 0.37%.
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3.6.4 CSI Estimation Errors

For the imperfect CSI case, we assumed that each SU has an error of α = 10% in estimating each

of g
(t)
i and γ

(t)
i and simulated the system with d1 = 32T . In order to avoid outage we substitute by

equation (3.44) in (3.1). To guarantee protection to the PU from interference, we substitute equation

(3.45) in (3.20) for the DOAC policy, and in (3.15) for the DOIC policy. From Fig. 3.8 we see that

the performance difference between the perfect and the imperfect CSI problem, for the DOAC policy,

ranges between 2.4% at λ = 10−3, and 9.5% at λ = 10−2. We note that this performance difference

represents an upper bound on the actual difference since the 10% is an upper bound on the actual

estimation error.
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Figure 3.8: Sum of cost functions for the perfect as well as the imperfect channel sensing for the DOAC
policy to solve the constrained optimization problem (3.8).
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CHAPTER 4

Proposed Future Work

The problems presented in this report discuss the average delay of SUs where we propose algorithms

to guarantee the desired QoS. However, the analysis depends on two main assumptions: 1) the SUs

have a long-term average delay constraint which might not be realistic in some applications as online

gaming where packets have a strict deadline that needs to be met and not a long-term delay constraint;

2) the arrival process of the SUs is stationary where the arrival rate vector is fixed. In this section we

propose a possible solution to address each of these problems.

4.1 Hard Deadline Guarantees

Some real-time applications require that packets arrive before a specified deadline. These applica-

tions are referred to as time-sensitive applications as online data streaming and online gaming. If the

packet arrives after this deadline, it is considered useless and is not counted as a successfully-arrived

packet. Hence, having a constraint on the average delay in the form of W̄i ≤ di does not necessary

guarantee that packets will be transmitted by this threshold di. Thus, we need the delay constraint to

be formulated differently to capture this hard deadline nature. However, since we could not guarantee

that all packets will be delivered by this deadline we will allow for a small percent of the packets to miss

their deadlines as long as this percent is below a prespecified threshold.

The problem of hard deadlines has been considered in the literature for non CR systems (see [11,

39, 51, 52] and references therein). The work in [39] assumes multiple packets sharing the same hard
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deadline and finds the optimal way to network-code these packets to maximize the throughput of a

downlink system. The advantages of network coding are exploited when having a multicast system

where all packets are to be sent to all users, as assumed in their work. However, when the system is

a unicast one, network coding does not have any advantages [53]. In [11], an algorithm was proposed

to guarantee at least a fraction of the system’s throughput capacity is met, under the constraint that a

prespecified percentage of packets meet their deadlines. However, fading was out of the scope of their

work. The work in [52] proposes a scheduling policy to guarantee that the percentage of packets that

are not transmitted by their deadline is within a tolerable threshold. Although fading is considered in

their model, the algorithm is valid for non CR systems where interference does not exist.

We now propose a possible direction to find a scheduling-and-power-allocation algorithm that guar-

antees packets to meet their deadlines as well as protecting the PU from interference. Assume that time

is divided into time slots and that slots are grouped into frames of a fixed duration of DF slots each. We

assume that a single packet arrives at the beginning of the frame for SU i with probability λi packets

per frame that is i.i.d across frames and users. All packets have a fixed length of L bits. However,

different packets might need different number of time slots to be fully transmitted to the BS due to the

fading nature of the wireless channels. We adopt the same channel model as in Chapter 3.1.1. Channel

gains are assumed independent across time slots and users, thus γ
(t)
i is independent of γ

(t)
j for all i 6= j

and all t. If SU i is assigned the channel at slot t, then it transmits the M
(t)
i bits of the HOL packet

according to (3.2).

The goal is to find a scheduling algorithm that maximizes the sum rate of the SUs such that qi%

of the packets for user i are fully transmitted by the deadline τi. We call this constraint the delivery

ratio requirement constraint. We assume that the deadline τi is within the frame where the packet has

arrived. Moreover, we require that the average interference received by the PU does not exceed Iavg.

In order to find an algorithm that satisfies the delivery ratio requirement, we set up the virtual queue

calculated at the end of frame k to represent the amount of undelivered packets for user i up to the end
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of frame k

Zi(k + 1) = (Zi(k) + |Ai(k)| − Si(k))+ , (4.1)

where Si(k) = 1 if SU i successfully transmits its packet before the deadline during frame k, and 0

otherwise.

Given this formulation we believe that the algorithm can be deduced from the Lyapunov analysis.

This is done by finding an upper bound on the Lyapunov drift. The policy would thus be the one that

minimizes this upper bound. Moreover, we will compare the derived algorithm to a greedy algorithm.

The greedy algorithm is nothing but the DOAC policy with the value of di set to qiτi. Although,

according to the Markov inequality, this ensures that the probability of exceeding the deadline τi is

below qi, we believe that this policy will perform worse than the one we are seeking. This is because,

as opposed to the DOAC , this policy dynamically updates the scheduling according to the percentage

of packets that missed their deadlines not according to the average delay experienced by these packets.

4.2 Throughput Optimality

We have seen that the DOAC policy has an optimum delay performance as long as the arrival rate

satisfy
∑

i ρi(Pmax) < 1. The region formed by this inequality is strictly smaller than the system’s

capacity region found in [48]. The main reason for this loss in capacity region stems from the priority

lists dictated by the proposed algorithm. As a future work, we are interested in studying some scheduling

policies that could potentially achieve higher rate regions than that of the DOAC .

One example of such policies is the Max-Weight-α algorithm that assigns the channel to the user

with the largest qαii R
(t)
i , where qi is the queue length of user i at the beginning of slot t, while αi > 0

is some fixed constant. This policy is shown in [54] to be throughput optimal. This policy has the

advantage of giving more weight to users with higher αi values. Hence, users with higher αi experience

better delay performance. Moreover, this class of policies takes the advantage of multi-user diversity in

the system since the rate is incorporated in the scheduling algorithm. On the other hand, the DOAC
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policy uses a strict priority scheduling policy and neglects the channel gain information that potentially

increases the rate due to the inherited multi-user diversity.
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CHAPTER 5

Conclusion

In this work we have studied the joint scheduling and power allocation problem of an uplink multi-

SU CR system. The main goal of this work is to present low complexity algorithms that yield delay

guarantees to the SUs while protecting the PU at the same time. We have shown that the delay mainly

consists of two main factors; the service time and the queue-waiting time. The service time is mainly

affected by the transmission power of the SU. While the queue-waiting time depends on the transmission

power as well as the scheduling algorithm.

We studied the delay due to the service time in a single SU multichannel setup. In particular,

to find the optimal power that maximizes the SU’s throughput as well as guaranteeing that the SU’s

service time is below some prespecified threshold, we formulated the problem as an optimal stopping

rule problem. The SU senses the channels sequentially and stops to transmit at the first channel that

gives the highest reward. A closed-form expression for the threshold of stopping was given and proven

to guarantee that the PU is protected from harmful interference. The performance of the proposed

algorithm was compared to numerous baseline algorithms.

To address the delay due to the queue-waiting time, we formulated the problem as a delay minimiza-

tion problem in the presence of average and instantaneous interference constraints to the PU, as well

as an average delay constraint for each SU that needs to be met. Most of the existing literature that

studies this problem either assume on-off fading channels or does not provide a delay-optimal algorithms

which is essential for real-time applications. We proposed the DOAC policy that dynamically updates
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the power allocation of the SUs as well as finding the optimal scheduling policy. The scheduling policy

is found by dynamically updating a priority list based on the statistics as well as the history of the

arrivals, departures and channel fading realizations. The proposed algorithm updates the priority list

on a per-frame basis while controlling the power on a per-slot basis. We showed, through the Lyapunov

optimization, that the proposed DOAC policy is asymptotically delay optimal. That is, it minimizes

the sum of any convex increasing function of the average delays of the SUs as well as satisfying the

average interference and average delay constraints.

However, it is found that when the number of SUs N in the system is large, the complexity of the

DOAC policy scales as O(MN2N), where M is the number of points required to solve a one-dimensional

search. Hence, we propose a suboptimal policy with a complexity of O(N log(N)) that does not sacrifice

the performance. Extensive simulation results showed the robustness of the DOAC policy against CSI

estimation errors.

Finally we have proposed two different directions as a possible future work. The first is studying the

system in the presence of hard deadlines where packets are dropped if they are not transmitted by these

deadlines. We presented a potential solution approach to this problem that depends on the Lyapunov

analysis. Moreover, we proposed to study other scheduling policies that are throughput optimal in

addition to being delay optimal.
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APPENDIX A

Proof of Lemma 1

Proof. We carry out the proof by contradiction. Assume, for some i, that γ∗th(i) < λ∗P. Thus the reward

starting from channel i, Ui
(
[γ∗th(i), γ∗th(i+ 1), ..., γ∗th(M)]T ,P∗i

)
, becomes

θici

∫ ∞
γ∗th(i)

log(1 + P ∗1,iγ)fγ(γ) dγ + θiU
∗
i+1

∫ γ∗th(i)

0

fγ(γ) dγ

+ (1− θi)U∗i+1 (A.1)

≤θici
∫ ∞
λ∗P

log(1 + P ∗1,iγ)fγ(γ) dγ + θiU
∗
i+1

∫ λ∗P

0

fγ(γ) dγ

+ (1− θi)U∗i+1 (A.2)

=Ui
(
[λ∗P, γ

∗
th(i+ 1), ..., γ∗th(M)]T ,P∗i

)
. (A.3)

Where inequality (A.2) follows by adding the term θi

(∫ λ∗P
γ∗th(i)

fγ(γ) dγ
)
U∗i+1 to (A.1) while (A.3) follows

by the definition of the right-hand-side of (A.2). Using equation (2.2), we can calculate the reward Ui−1

for both the left-hand-side and right-hand-side of the previous inequality. Thus the following inequality

holds

Ui−1

(
[γ∗th(i− 1), γ∗th(i), ..., γ∗th(M)]T ,P∗i−1

)
≤

Ui−1

(
[γ∗th(i− 1), λ∗P, ..., γ

∗
th(M)]T ,P∗i−1

)
. (A.4)

Carrying out the last step recursively i− 2 more times, we find the relation

U1

(
[γ∗th(1), ..., γ∗th(i− 1), γ∗th(i), ..., γ∗th(M)]T ,P∗1

)
≤

U1

(
[γ∗th(1), ..., γ∗th(i− 1), λ∗P, ..., γ

∗
th(M)]T ,P∗1

)
, (A.5)
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which contradicts with the fact that γ∗th(i) is optimal.
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APPENDIX B

Proof of Theorem 1

Proof. We first get S∗i , U
∗
i and p∗i by substituting by equations γ∗th (i) and P ∗1,i(γ) in the three equations

(2.1), (2.2) and (2.3), respectively. Then we differentiate with respect to λ∗P, treating λ∗D as a constant,

yielding

∂S∗i
∂λ∗P

=− θifγ(γ∗th (i))
∂γ∗th (i)

∂λ∗P

(
ciP

∗
i (γ∗th (i))− S∗i+1

)
−

θici
F̄γ(γ

∗
th (i))

(λ∗P)2 +
(
1− θiF̄γ(γ∗th (i))

) ∂S∗i+1

∂λ∗P
, (B.1)

∂U∗i
∂λ∗P

=− θifγ(γ∗th (i))
∂γ∗th (i)

∂λ∗P
×[

λ∗P
(
ciP

∗
i (γ∗th (i))− S∗i+1

)
− λ∗D

(
1− p∗i+1

)]
−

θici
F̄γ(γ

∗
th (i))

λ∗P
+
(
1− θiF̄γ(γ∗th (i))

) ∂U∗i+1

∂λ∗P
, (B.2)

∂p∗i
∂λ∗P

=− θifγ(γ∗th (i))
∂γ∗th (i)

∂λ∗P

(
1− p∗i+1

)
+ (B.3)

(
1− θiF̄γ(γ∗th (i))

) ∂p∗i+1

∂λ∗P
, (B.4)

respectively. Multiplying equation (B.1) by −λ∗P and equation (B.3) by λ∗D then adding them to equation

(B.2) we can easily show that, for all i ∈M,

∂U∗i
∂λ∗P

− λP
∂S∗i
∂λ∗P

+ λD
∂p∗i
∂λ∗P

= 0. (B.5)
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We now find the derivative of γ∗th (i) with respect to λ∗P by differentiating both sides of equation (2.7)

with respect to λ∗P, while treating λ∗D as a constant,then using equation (B.5), then rearranging we get

∂γ∗th (i)

∂λ∗P
=
ciP

∗
i (γ∗th (i))− S∗i+1

ci
λ∗P
γ∗th(i)

P ∗i (γ∗th (i))
. (B.6)

Substituting by equation (B.6) in (B.1) we get

∂S∗i
∂λ∗P

=− αi
[
ciP

∗
i (γ∗th (i))− S∗i+1

]2 − θici F̄γ(γ∗th (i))

(λ∗P)2 +

(
1− θiF̄γ(γ∗th (i))

) ∂S∗i+1

∂λ∗P
, (B.7)

where αi is given by

αi =
θifγ(γ

∗
th (i))

ci
λ∗P
γ∗th(i)

P ∗i (γ∗th (i))
≥ 0, (B.8)

Now evaluating (B.7) at i = M and i = M − 1 we get

∂S∗M
∂λ∗P

= −αM [cMP
∗
M (γ∗th (M))]2 − θMcM

F̄γ(γ
∗
th (M))

(λ∗P)2 , (B.9)

and
∂S∗M−1

∂λ∗P
= −αM−1

[
cM−1P

∗
M−1 (γ∗th (M − 1))− S∗M

]2
− θM−1cM−1

F̄γ(γ
∗
th (M − 1))

(λ∗P)2

+
(
1− θM−1F̄γ(γ

∗
th (M − 1))

) ∂S∗M
∂λ∗P

, (B.10)

respectively. We can see that
∂S∗

M

∂λ∗P
< 0, hence

∂S∗
M−1

∂λ∗P
< 0. By induction, let’s assume that

∂S∗
i+1

∂λ∗P
< 0.

From (B.7) we get that

∂S∗i
∂λ∗P

=− αi
(
ciP

∗
i (γ∗th (i))− S∗i+1

)2 − θici
F̄γ(γ

∗
th (i))

(λ∗P)2 +

(
1− θiF̄γ(γ∗th (i))

) ∂S∗i+1

∂λ∗P
< 0 (B.11)

since all its terms are negative. Finally we find that
∂S∗

1

∂λ∗P
< 0 indicating that S∗1 is monotonically

decreasing in λ∗P given any fixed λ∗D ≥ 0.

Now, to get an upper bound on λ∗P, we know that

S∗i = θici

∫ ∞
γ∗th(i)

(
1

λ∗P
− 1

γ

)
fγ(γ) dγ +

[
1− θiF̄γ(γ∗th (i))

]
S∗i+1. (B.12)
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We can upper bound the first term in (B.12) by θici/λ
∗
P, while

[
1− θiF̄γ(γ∗th (i))

]
< 1. Using these two

bounds we can write S∗1 <
∑M

i=1 θici/λ
∗
P. But since S∗1 = Pavg, the upper bound on λ∗P, mentioned in

Theorem 1, follows.
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APPENDIX C

Proof of Lemma 2

Proof. We provide a proof sketch for this bound. We know that at the optimal point p∗1 = 1
D̄max

and

that p∗1 = θ1F̄γ (γ∗th (1)) +
(
1− θ1F̄γ (γ∗th (1))

)
p∗2. But since the second term in the latter equation is

always positive, then

θ1F̄γ (γ∗th (1)) <
1

D̄max

. (C.1)

Substituting by (2.12) in (C.1) and rearranging we can upper bound λ∗D by

c1

(
log

(
λ∗P

F̄−1
γ

(
1

θ1D̄max

)
)
− λ∗P

F̄−1
γ

(
1

θ1D̄max

) + 1

)
+ U∗2 − λ∗PS∗2

1− p∗2

We can easily upper bound log
(
λ∗P/F̄

−1
γ

(
1/
(
θ1D̄max

)))
−λ∗P/F̄−1

γ

(
1/
(
θ1D̄max

))
by substituting λmax

P for

λ∗P when λ∗P < F̄−1
γ

(
1/
(
θ1D̄max

))
and by 1 otherwise. Moreover, it can also be shown that U∗2 < Umax

2 ,

p∗2 < pmax
2 and that λ∗PS

∗
2 > 0 and from Theorem 1 we have λ∗P < λmax

P , the proof then follows.

6



APPENDIX D

Proof of Theorem 3

Proof. In this proof, we show that the drift-plus-penalty under this algorithm is upper bounded by some

constant, which indicates that the virtual queues are mean rate stable [55,56].

We define the Lyapunov function as L(k) , 1
2

∑N
i=1 Y

2
i (k) and Lyapunov drift to be

∆(k) , EY(k) [L(k + 1)− L(k)] , (D.1)

Squaring equation (3.10) then taking the conditional expectation we can write the following bound

1

2
EY(k)

[
Y 2
i (k + 1)− Y 2

i (k)
]
≤ Yi(k)EY(k) [|Fk|]λi

(
EY(k)

[
W

(j)
i

]
− ri(k)

)
+ CYi . (D.2)

where we use the bound EY(k)

[(∑
j∈Ai(k) W

(j)
i

)2
]

+ EY(k)

[(∑
j∈A(k) ri(k)

)2
]
< CYi . The derivation

is similar to that in [21, Lemma7]. Given some fixed control parameter V > 0, we add the penalty

term V
∑

i EY(k) [ri(k)|Fk|] to both sides of (D.1). Using the bound in (D.2) the drift-plus-penalty term

becomes bounded by

∆ (U(k)) + V

N∑
i=1

EY(k) [ri(k)|Fk|] ≤ CY + EY(k) [|Fk|] Φ where (D.3)

Φ ,
N∑
i=1

(V − Yi(k)λi) ri(k) +
N∑
j=1

Yπj(k)λπj EY(k)

[
W (j)
πj

]
, (D.4)

We define the DOIC policy to be the policy that finds the values of πππ(k), {P(t)} and r(k) vector that

minimize Φ subject to the instantaneous interference, the maximum power and the single-SU-per-time-

slot constraints in problem (3.6). We can observe that the variables r(k), {P(t)} and πππ(k) can be chosen
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independently from each other. Step 4.a in the DOIC policy finds the optimum value of ri(k), ∀i ∈ N .

Moreover, since EY(k)

[
W

(j)
i

]
is decreasing in P

(t)
i ∀t ∈ F(k), the optimum value for P

(t)
i is equation

(3.15). Finally, from [49] the cµ-rule can be applied to find the optimum priority list πππ(k) which is given

by Step 1 in the DOIC policy.

Now, since the proposed DOIC policy minimizes Φ, this gives a lower bound on Φ compared to

any other policy including the optimal policy that solves (3.6). Hence, we now evaluate Φ at the

optimal policy that solves (3.6) with the help of a genie-aided knowledge of ri(k) = W̄ ∗
i yielding

Φopt = V
∑N

i=1 W̄
∗
i , where we use EY(k)

[
W

(j)
i

]
= W̄ ∗

i . Substituting by Φopt in the right-hand-side

(r.h.s.) of (D.3) gives an upper bound on the drift-plus-penalty when evaluated at the DOIC policy.

Namely

∆ (Y(k)) + V
N∑
i=1

EY(k) [ri(k)|Fk|] ≤ CY + V
N∑
i=1

W̄ ∗
i EY(k) [|Fk|] (D.5)

Taking E [·], summing over k = 0, · · · , K − 1, denoting Yi(0) , 0 for all i ∈ N , and dividing by

V
∑K−1

k=0 E [|Fk|] we get

N∑
i=1

E [Y 2
i (K)]∑K−1

k=0 E [|Fk|]
+

N∑
i=1

∑K−1
k=0 E [ri(k)|Fk|]∑K−1

k=0 E [|Fk|]

(a)

≤ aCY
V

+
N∑
i=1

W̄ ∗
i , C1. (D.6)

where in the r.h.s. of inequality (a) we used E [|Fk|] ≥ E [I(k)] = 1/a, and C1 is some constant that is

not a function in K. To prove the mean rate stability of the sequence {Yi(k)}∞k=0 for any i ∈ N , we

remove the first and third terms in the left-side of (D.6) as well as the summation operator from the

second term to obtain E [Y 2
i (K)] /K ≤ C1 ∀i ∈ N . Using Jensen’s inequality we note that

E [Yi(K)]

K
≤
√

E [Y 2
i (K)]

K2
≤
√
C1

K
. (D.7)

Finally, taking the limit when K →∞ completes the mean rate stability proof. On the other hand, to

prove the upper bound in Theorem 3, we use the fact that ri(k) and |Ai(k)| are independent random

variables (see step 4-a in DOIC ) to replace E [|Ai(k)|ri(k)] by λi E [|Fk|ri(k)] in equation (3.13), then
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we take the limit of (3.13) as K →∞, use the mean rate stability theorem and sum over i ∈ N to get

N∑
i=1

E
[∑K−1

k=0

(∑
j∈Ai(k) W

(j)
i

)]
E
[∑K−1

k=0 |Ai(k)|
] ≤

N∑
i=1

∑K−1
k=0 E [ri(k)|Fk|]∑K−1

k=0 E [|Fk|]

(b)

≤ aCY
V

+
N∑
i=1

W̄ ∗
i , (D.8)

where inequality (b) comes from removing the first summation in the left-side of (D.6). Taking the

limit when K →∞ and using equation (3.9) completes the proof.
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APPENDIX E

Existence of The Service Time Moments

Lemma 7. Given any distribution for P
(t)
i γ

(t)
i the inequality E [sni ] <∞ holds ∀n ≥ 1. Moreover, when

the power is given by P
(t)
i = min

(
Iinst/g

(t)
i , P

)
for some fixed parameter P ∈ [Pmin

i , Pmax], the inequality

E [s2
i ] ≤

(
L2 + L

(
1− pi(Pmin

i )
))
/p2

i (P
min
i ) holds with pi(P ) , 1−Pr [Ri(P ) = 0].

Proof. We carry out the proof by bounding the moments of si by the respective moments of the random

variable sB,i which is the service time for a system with a binary transmission rate, i.e. a system with

R
(t)
i ∈ {0, 1}. The proof of the first part of the lemma follows by showing that all the moments of sB,i

are finite. The second part of the lemma is a special case where we set P
(t)
i = min

(
Iinst/g

(t)
i , P

)
.

In this proof we drop the index i for simplicity whenever it is clear from the context. Given some,

possibly random, power allocation policy P
(t)
i define the i.i.d. random process R

(t)
B,i ∈ {0, 1}, t ≥ 1, with

Pr
[
R

(t)
B,i = 0

]
= Pr

[
R

(t)
i = 0

]
. Dropping the index i, the following inequality holds for any x ≥ 1

Pr

[
x∑
t=1

R
(t)
B ≤ L

]
≥ Pr

[
x∑
t=1

R(t) ≥ L

]
, (E.1)

which says that the probability of transmitting L bits or more in x time slots is higher if the transmission

process is R(t) compared to the binary transmission process R
(t)
B . Defining sB , {minx :

∑x
t=1R

(t)
B ≥ L}

as the binary service time which is the number of time slots required to transmit L bits given that the
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transmission process is R
(t)
B , we can write

Pr [sB ≤ x] = Pr

[
x∑
t=1

R
(t)
B ≥ L

]
(E.2)

≥ Pr

[
x∑
t=1

R(t) ≥ L

]
(E.3)

= Pr [s ≤ x] (E.4)

According to the theory of stochastic ordering, when two random variables have ordered cumulative

distribution functions, their respective moments are ordered [57, equation (2.14) pp. 16]. In other

words, if Pr [s ≤ x] ≥ Pr [sB ≤ x], then E [sn] ≤ E [snB], ∀n ≥ 1. It suffices to show that the moments

of sB are finite.

Define sNB as a random variable following the negative binomial distribution [58, pp. 297] with

success probability 1−Pr
[
R

(t)
B = 0

]
while the number of successes equals L. sNB refers to the number

of time slots having R
(t)
B = 0 before transmitting the Lth bit. We can see that sB = sNB + L. Thus we

have

E [snB] =
n∑
j=0

(
n

j

)
E
[
sjNB

]
Ln−j <∞, (E.5)

where the inequality follows since all the moments of the negative binomial distribution exist [58, pp.

297]. The first part of the lemma holds.

For the second part of the lemma, we set P
(t)
i = min

(
Iinst/g

(t)
i , P

)
for some deterministic parameter

P ≥ Pmin
i and define pi(P ) , 1 − Pr [Ri(P ) = 0] with Ri(P ) defined in (3.14). Given the moment

generating function of sNB as [58, pp. 894]

E [exsNB ] =
pLi (P )

(1− (1− pi(P )ex))L
, (E.6)

the first two moments of sNB can be derived as

E [sNB] =
(1− pi(P ))L

pi(P )
, and (E.7)

E
[
s2

NB

]
=

(1− pi(P ))2 L2 + (1− pi(P ))L

p2
i (P )

. (E.8)

11



These two moments can be shown to be decreasing in pi(P ). The proof of the second part of the lemma

follows using the bound pi(P ) ≥ pi(P
min
i ) and the inequality E [s2] ≤ E [s2

B] = E [s2
NB] + 2LE [sNB] +

L2.

12



APPENDIX F

Proof of Theorem 4

Proof. This proof is similar to that in Appendix D. We define U(k) , [X(k),Y(k)]T , the Lyapunov

function as L(k) , 1
2
X2(k) + 1

2

∑N
i=1 Y

2
i (k) and Lyapunov drift to be

∆(k) , EU(k) [L(k + 1)− L(k)] . (F.1)

Squaring equation (3.19) then taking the conditional expectation we can get the bound

EU(k) [X2(k + 1)−X2(k)]

2
≤ CX +X(k)

EU(k)

 ∑
t∈F(k)

P
(t)
i g

(t)
i

− Iavg EU(k) [|Fk|]

 , (F.2)

where we use the bound EU(k)

[(∑N
i=1

∑
t∈F(k) P

(t)
i g

(t)
i

)2

+ (Iavg|Fk|)2

]
< CX in equation (F.2) and

omit the derivation of this bound. Given some fixed control parameter V > 0, we add the penalty term

V
∑

i EU(k) [ri(k)|Fk|] to both sides of (F.1). Using the bounds in (D.2) and (F.2), the drift-plus-penalty

term becomes bounded by

∆ (U(k)) + V
N∑
i=1

EU(k) [ri(k)|Fk|] ≤ C + EU(k) [|Fk|]χ(k), (F.3)

where χ(k) ,
N∑
i=1

(V − Yi(k)λi) ri(k) + φ (F.4)

with φ ,
N∑
l=1

Yπl(k)λπl EU(k)

[
W (j)
πl

]
+X(k)

EU(k)

[∑
t∈F(k) P

(t)
πl g

(t)
πl

]
EU(k) [|Fk|]

− Iavg

 , (F.5)

13



We define the DOAC policy to be the policy that jointly finds r(k), {P(t)} and πππ(k) that minimize

χ(k) subject to the instantaneous interference, the maximum power and the single-SU-per-time-slot

constraints in problem (3.8). Step 5-a in the DOAC policy minimizes the first summation of χ(k).

For {P(t)} and πππ(k), we can see that φ is the only term in the right side of equation (F.4) that is

a function of the power allocation policy {P(t)}, ∀t ∈ F(k). For a fixed priority list πππ(k), using the

Lagrange optimization to find the optimum power allocation policy that minimizes φ subject to the

aforementioned constraints yields equation (3.20), where Pπj(k), ∀i ∈ N , is some fixed power parameter

that minimizes Ψ subject to the maximum power constraint only. Substituting by equation (3.20) in

φ and using the bound EU(k)

[
W

(j)
πl

]
= Wπl(Pπl(k)) ≤ W up

πl
(Pπl(k)) we get Ψ that is defined before

equation (3.21). Consequently, P∗(k) and π∗(k), the optimum values for P(k) and πππ(k) respectively,

are ones that minimize Ψ as given by Algorithm 2.

Since the optimum policy that solves (3.8) satisfies the interference constraint, i.e. satisfies EU(k)

[∑
t∈F(k) P

(t)
πl g

(t)
πl

]
≤

EU(k) [|Fk|] Iavg, we can evaluate χ(k) at this optimum policy with a genie-aided knowledge of ri(k) =

W̄ ∗
i to get χopt , V

∑N
i=1 W̄

∗
i . Replacing χ(k) with χopt in the r.h.s. of (F.3) we get the bound

∆ (U(k))+V
∑N

i=1 EU(k) [ri(k)|Fk|] ≤ C+EU(k) [|Fk|]V
∑N

i=1 W̄
∗
i . Taking E [·] over this inequality, sum-

ming over k = 0, · · · , K − 1, denoting X(0) , Yi(0) , 0 for all i ∈ N , and dividing by V
∑K−1

k=0 E [|Fk|]

we get

E [X2(K)]∑K−1
k=0 E [|Fk|]

+
N∑
i=1

E [Y 2
i (K)]∑K−1

k=0 E [|Fk|]
+

N∑
i=1

∑K−1
k=0 E [ri(k)|Fk|]∑K−1

k=0 E [|Fk|]
≤ CK

V
∑K−1

k=0 E [|Fk|]
+

N∑
i=1

W̄ ∗
i . (F.6)

Similar steps to those in Appendix D can be followed to prove the mean rate stability of {X(k)}∞k=0 and

{Yi(k)}∞k=0 as well as the bound in Theorem 4, and thus are omitted here.
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