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KAM FOR THE KLEIN GORDON EQUATION ON S
d.

by

Benôıt Grébert & Eric Paturel

Abstract. — Recently the KAM theory has been extended to multidimensional PDEs. Nev-
ertheless all these recent results concern PDEs on the torus, essentially because in that case the
corresponding linear PDE is diagonalized in the Fourier basis and the structure of the resonant
sets is quite simple. In the present paper, we consider an important physical example that do
not fit in this context: the Klein Gordon equation on S

d. Our abstract KAM theorem also allow
to prove the reducibility of the corresponding linear operator with time quasiperiodic potentials.
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1. Introduction.

If the KAM theorem is now well documented for nonlinear Hamiltonian PDEs in 1-
dimensional context (see [22, 23, 25]) only few results exist for multidimensional PDEs.

Existence of quasi-periodic solutions of space-multidimensional PDE were first proved in
[8] (see also [9]) but with a technique based on the Nash-Moser thorem that does not allow
to analyze the linear stability of the obtained solutions. Some KAM-theorems for small-
amplitude solutions of multidimensional beam equations (see (3.6) above) with typical m
were obtained in [16, 17]. Both works treat equations with a constant-coefficient nonlin-
earity g(x, u) = g(u), which is significantly easier than the general case. The first complete
KAM theorem for space-multidimensional PDE was obtained in [15]. Also see [4, 5].
The techniques developed by Eliasson-Kuksin have been improved in [13, 12] to allow a KAM
result without external parameters. In these two papers the authors prove the existence of
small amplitude quasi-periodic solutions of the beam equation on the d-dimensional torus.
They further investigate the stability of these solutions and give explicit examples where the
solution is linearly unstable and thus exhibits hyperbolic features (a sort of whiskered torus).
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All these examples concern PDEs on the torus, essentially because in that case the corre-
sponding linear PDE is diagonalized in the Fourier basis and the structure of the resonant
sets is the same for NLS, NLW or beam equation. In the present paper, adapting the technics
in [15], we consider an important example that do not fit in the Fourier analysis: the Klein
Gordon equation on the sphere S

d .
Notice that existence of quasi-periodic solutions for NLW and NLS on compact Lie groups
via Nash Moser technics (and without linear stability) has been proved recently in [7, 6].

To understand the new difficulties, let us start with a brief overview of the method devel-
oped in [15]. Consider the nonlinear Schrödinger equation on T

d

iut = −∆u+ nonlinear terms, x ∈ T
d, t ∈ R.

In Fourier variables it reads (1)

i u̇k = |k|2uk + nonlinear terms, k ∈ Z
d.

So two Fourier modes indexed by k, j ∈ Z
d are (linearly) resonant when |k|2 = |j|2. For

the beam equation on the torus, the resonance relation is the same. The resonant sets
Ek = {j ∈ Z

d | |j|2 = |k|2} define a natural clustering of Zd. All the modes in the block
Ek have the same energy, and we can expect that the interactions between different blocks
are small, but the interactions inside a block could be of order one. With this idea in mind,
the principal step of the KAM technique, i.e. the resolution of the so called homological
equation, leads to the inversion of an infinite matrix which is block-diagonal with respect
to this clustering. It turns out that these blocks have cardinality growing with |k| making
harder the control of the inverse of this matrix. As a consequence we lose regularity each
time we solve the homological equation. Of course, this is not acceptable for an infinite
induction. The very nice idea in [15] consists in considering a sub-clustering constructed as
the equivalence classes of the equivalence relation on Z

d generated by the pre-equivalence
relation

a ∼ b⇐⇒
{

|a| = |b|
|a− b| ≤ ∆

Let [a]∆ denote the equivalence class of a. The crucial fact (proved in [15]) is that the blocks
are finite with a maximal “diameter”

max
[a]∆=[b]∆

|a− b| ≤ Cd∆
(d+1)!

2

depending only on ∆. With such a clustering, we do not lose regularity when we solve
the homological equation. Furthermore, working in a phase space of analytic functions u or
equivalently, exponentially decreasing Fourier coefficients uk, it turns out that the homological
equation is ”almost” block diagonal relatively to this clustering. Then we let the parameter
∆ grow at each step of the KAM iteration.

Unfortunately, this estimate of the diameter of a block [a]∆ by a constant independent of
|a| is a sort of miracle that does not persist in other cases. For instance if we consider the
nonlinear Klein Gordon equation on the sphere S

2,

(∂2t −∆+m)u = nonlinear terms, t ∈ R, x ∈ S
2

then the linear part diagonalizes in the harmonic basis Ψj,ℓ (see Section 3) and the natural
clustering is given by the resonant sets {(j, ℓ) ∈ N

2 | ℓ = −j, · · · , j}. We can easily convince
ourself that there is no simple construction of a sub-clustering compatible with the equation,
in such a way that the size of the blocks does no more depend on the energy.
So we have to invent a new way to proceed. First we consider a phase space Ys with polyno-
mial decay on the Fourier coefficient (corresponding to Sobolev regularity for u) instead of

1. The space Z
d is equipped with standard euclidian norm: |k|2 = k2

1 + · · · k2
d.
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exponential decay and we use a different norm on the Hessian matrix that takes into account
the polynomial decrease of the off-diagonal blocks:

(1.1) |M |β,s = sup
j,k∈N

‖M [j]
[k]‖(kj)

β

(

min(j, k) + |j2 − k2|
min(j, k)

)s/2

where [j] = {(n,m) ∈ N
2 | n+m = j} is the block of energy j, M

[j]
[k] is the interaction matrix

M reduced to the eigenspace of energy j and of energy k, and ‖ · ‖ is the operator norm in
ℓ2. This norm was suggested by our study of the Birkhoff normal form in [3] and [18].
This technical changes make disappear the loss of regularity in the resolution of the homolog-
ical equation. Nevertheless this is not the end of the story, since this Sobolev structure of the
phase space T s,β (see Section 2) is not stable by Poisson bracket and thus is not adapted to
an iterative scheme. So the second ingredient consists in a trick previously used in [20]: we
take advantage of the regularizing effect of the homological equation to obtain a solution in a
slightly more regular space T s,β+ and then we verify that {T s,β,T s,β+} ∈ T s,β (see Section
4) which enables an iterative procedure. The last problem is to check that the non linear
term, say P , belongs to the class T s,β which imposes a decreasing condition on the operator
norm of the blocks of the Hessian of P . It turns out that this condition is satisfied for the
Klein Gordon equation on spheres (and also on Zoll manifold, see Remark 3.3). A similar
condition is also satisfied for the quantum harmonic oscillator on R

d

i ut = −∆u+ |x|2u+ nonlinear terms, x ∈ R
d.

But unfortunately, in order to belong in the class T s,β, the gradient of the nonlinear term
has to be regularizing, a fact that is not true for the quantum harmonic oscillator, and
thus our KAM theorem does not apply in this case. Nevertheless, this last condition is not
required when P is quadratic and thus this method allows to obtain a reducibility result for
the quantum harmonic oscillator with time quasi periodic potential. This is detailed in our
forthcoming paper [19].
In this paper we only consider PDEs with external parameters (similar to a convolution
potential in the case of NLS on the torus). Following [12] we could expect to remove these
external parameters (and to use only internal parameters) but the technical cost would be
very high.

We now state our result for the Klein Gordon equation on the sphere. Denote by ∆ the
Laplace-Beltrami operator on the sphere Sd, m > 0 and let Λ0 = (−∆+m)1/2. The spectrum

of Λ0 equals {
√

j(j + d− 1) +m | j ≥ 0}. For each j ≥ 1 let Ej be the associated eigenspace,

its dimension is dj = O(jd−1). We denote by Ψj,l the harmonic function of degree j and order
ℓ so that we have

Ej = Span{Ψj,l, l = 1, · · · , dj}.
We denote

E := {(j, ℓ) ∈ N× Z | j ≥ 0 and ℓ = 1, · · · , dj}
in such a way that {Ψa, a ∈ E} is a basis of L2(Sd,C).
We introduce the harmonic multiplier Mρ defined on the basis (Ψa)a∈E of L2(Sd) by

(1.2) MρΨa = ρaΨa for a ∈ E
where (ρa)a∈E is a bounded sequence of nonnegative real numbers.

Let g be a real analytic function on S
d × R such that g vanishes at least at order 2 in the

second variable at the origin. We consider the following nonlinear Klein Gordon equation

(1.3) (∂2t −∆+m+ δMρ)u+ εg(x, u) = 0, t ∈ R, x ∈ S
d

where δ > 0 and ε > 0 are small parameters.
Introducing Λ = (−∆+m+ δMρ)

1/2 and v = −ut ≡ −u̇, (1.3) reads
{

u̇ = −v,
v̇ = Λ2u+ εg(x, u).
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Defining ψ = 1√
2
(Λ1/2u+ iΛ−1/2v) we get

1

i
ψ̇ = Λψ +

ε√
2
Λ−1/2g

(

x,Λ−1/2

(

ψ + ψ̄√
2

))

.

Thus, if we endow the space L2(Sd,C) with the standard real symplectic structure given by
the two-form −idψ ∧ dψ̄ then equation (1.3) becomes a Hamiltonian system

ψ̇ = i
∂H

∂ψ̄

with the hamiltonian function

H(ψ, ψ̄) =

∫

Sd

(Λψ)ψ̄dx+ ε

∫

Sd

G

(

x,Λ−1/2

(

ψ + ψ̄√
2

))

dx.

where G is a primitive of g with respect to the variable u: g = ∂uG.
The linear operator Λ is diagonal in the basis {Ψa, a ∈ E}:

ΛΨa = λaΨa, λa =
√

wa(wa + d− 1) +m+ δρa, ∀ a ∈ E
where we set

w(j,ℓ) = j ∀ (j, ℓ) ∈ E .
Let us decompose ψ and ψ̄ in the basis {Ψa, a ∈ E}:

ψ =
∑

a∈E
ξaΨa, ψ̄ =

∑

a∈E
ηaΨa .

On PC := ℓ2(E ,C)× ℓ2(E ,C) endowed with the complex symplectic structure −i∑s dξs∧dηs
we consider the Hamiltonian system

(1.4)

{

ξ̇a = i ∂H∂ηa
η̇a = −i ∂H∂ξa

a ∈ E

where the Hamiltonian function H is given by

(1.5) H =
∑

a∈E
λaξaηa + ε

∫

Sd

G

(

x,
∑

a∈E

(ξa + ηa)Ψa√
2 λ

1/2
a

)

dx.

The Klein Gordon equation (1.3) is then equivalent to the Hamiltonian system (1.4) restricted
to the real subspace

PR := {(ξ, η) ∈ ℓ2(E ,C)× ℓ2(E ,C) | ηa = ξ̄a, a ∈ E}.
Definition 1.1. — Let A ⊂ E a finite subset of cardinal n. This set is admissible if and
only if

(1.6) A ∋ (j1, ℓ1) 6= (j2, ℓ2) ∈ A ⇒ j1 6= j2.

We fix Ia ∈ [1, 2] for a ∈ A, the initial n actions, and we write the modes A in action-angle
variables:

ξa =
√

Ia + rae
iθa , ηa =

√

Ia + rae
−iθa .

We define L = E \ A and, to simplify the presentation, we assume that

ρj,l = ρj for (j, ℓ) ∈ A ; ρj,l = 0 for (j, ℓ) ∈ L.
Set

wj,ℓ = j for (j, ℓ) ∈ E ,
λj,ℓ =

√

j(j + d− 1) +m for (j, ℓ) ∈ L,

(ω0)j,ℓ(ρ) =
√

j(j + d− 1) +m+ δρj for (j, ℓ) ∈ A,
ζ = (ξa, ηa)a∈L.

(1.7)
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With this notation H reads (up to a constant)

H(r, θ, ζ) = 〈ω0(ρ), r〉+
∑

a∈L
λaξaηa + εf(r, θ, ζ)

where

f(r, θ, ζ) =

∫

Sd

G (x, û(r, θ, ζ)(x)) dx

and

(1.8) û(r, θ, ζ)(x) =
∑

a∈A

√

2(Ia + ra) cos θa

λ
1/2
a

Ψa(x) +
∑

a∈L

(ξa + ηa)√
2 λ

1/2
a

Ψa(x).

Let us set u1(θ, x) = û(0, θ; 0)(x). Then for any I ∈ [1, 2]n and θ0 ∈ T
n the function

(t, x) 7→ u1(θ0 + tω, x) is a quasi-periodic solution of (1.3) with ε = 0. Our main theorem
states that for most external parameter ρ this quasi-periodic solution persists (but is slightly
deformed) when we turn on the nonlinearity:

Theorem 1.2. — Fix n the cardinality of an admissible set A, s > 1 the Sobolev regularity
and g the nonlinearity. There exists an exponent υ(d) > 0 such that, for ε sufficiently small
(depending on n, s and g) and satisfying

ε ≤ δυ(d) ,

there exists a Borel subset D′, positive constants α and C with

D′ ⊂ [1, 2]n, meas([1, 2]n \ D′) ≤ Cεα,

such that for ρ ∈ D′, there is a function u(θ, x), analytic in θ ∈ T
n
σ
2
and smooth in x ∈ S

d,

satisfying

sup
|ℑθ|<σ

2

‖u(θ, ·)− u1(θ, ·)‖Hs(Sd) ≤ ε11/12,

and there is a mapping
ω′ : D′ → R

n, ‖ω′ − ω‖C1(D′) ≤ ε,

such that for any ρ ∈ D′ the function

u(t, x) = u(θ + tω′(ρ), x)

is a solution of the Klein Gordon equation (1.3). Furthermore this solution is linearly stable.
The positive constant α depends only on n while C also depends on g and s.

Notice that in this work we did not try to optimize the exponents. In particular 11/12
could be replaced by any number strictly less than 1 and the choice of υ(d) obtained by
inserting (3.1) in (6.6) is far from optimal. Actually we could expect that ε≪ δ is sufficient
but the technical cost would be very high. This effort is justified when we try to prove a KAM
result without external parameters (see [24] where the authors obtained a condition of the
form ε≪ δ in the context of the NLS equation; see also [13], [12] for the beam equation and
[10] for the 1d wave equation where the authors obtained a condition of the form ε ≪ δ1+α

for suitable α > 0 ).
We will deduce Theorem 1.2 from an abstract KAM result stated in Section 2 and proved

in Section 6. The application to the Klein Gordon equation is detailed in Section 3. Roughly
speaking, our abstract theorem applies to any multidimensional PDE with regularizing non-
linearity and which satisfies the second Melnikov condition (see Hypothesis A3). For instance,
it doesn’t apply to nonlinear Schrödinger on any compact manifold since we have no regu-
larizing effect in that case. On the contrary, it applies to the beam equation on the torus Td

(see Remark 3.4). Unfortunately it doesn’t apply to the nonlinear wave equation on T
d (see

Remark 3.5), since in that case the second Melnikov condition is not satisfied.
In Section 4 we study the Hamiltonian flows generated by Hamiltonian functions in T s,β. In
Section 5 we detail the resolution of the homological equation. In both Sections 4 and 5 we
use techniques and proofs that were developed in [15] and [13]. The novelty lies in the use
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of different norms (see (1.1)) and the use of two different classes of Hamiltonians: T s,β and
T s,β+ which, of course, complicate the technical arguments. For convenience of the reader we
repeat most of the proofs. We point out that, for the resolution of the homological equation
(Section 5), we use a variant of a Lemma due to Delort-Szeftel [11], whose proof is given in
Appendix A.

Acknowledgement: The authors acknowledge the support from the project ANAE (ANR-13-
BS01-0010-03) of the Agence Nationale de la Recherche.

2. Setting and abstract KAM theorem.

Notations. In this section we state a KAM result for a Hamiltonian H = h + f of the
following form

H = 〈ω(ρ), r〉+ 1

2
〈ζ,A(ρ)ζ〉+ f(r, θ, ζ; ρ)

where
– ω ∈ R

n is the frequencies vector corresponding to the internal modes in action-angle
variables (r, θ) ∈ R

n
+ × T

n.
– ζ = (ζs)s∈L are the external modes: L is an infinite set of indices, ζs = (ps, qs) ∈ R

2 and
R
2 is endowed with the standard symplectic structure dq ∧ dp.

– A is a linear operator acting on the external modes, typically A is diagonal.
– f is a perturbative Hamiltonian depending on all the modes and is of order ε where ε is
a small parameter.

– ρ is an external parameter in D a compact subset of Rp with p ≥ n.
We now detail the structures behind these objects and the hypothesis needed for the KAM
result.

Cluster structure on L. Let L be a set of indices and w : L → N \ {0} be an ”energy”
function (2) on L. We consider the clustering of L given by L = ∪a∈L[a] associated to
equivalence relation

b ∼ a⇐⇒ wa = wb.

We denote L̂ = L/ ∼. We assume that the cardinal of each energy level is finite and that
there exist Cb > 0 and d∗ > 0 two constants such that the cardinality of [a] is controlled by
Cbw

d
a:

(2.1) da = d[a] = card{b ∈ L | wb = wa} ≤ Cbw
d∗
a .

Linear space. Let s ≥ 0, we consider the complex weighted ℓ2-space

Ys = {ζ = (ζa ∈ C
2, a ∈ L) | ‖ζ‖s <∞}

where (3)

‖ζ‖2s =
∑

a∈L
|ζa|2w2s

a .

In the spaces Ys acts the linear operator J ,

J : {ζa} 7→ {σ2ζa}, with σ2 =

(

0 −1
1 0

)

.

It provides the spaces Ys, s ≥ 0, with the symplectic structure Jdζ ∧ dζ. To any C1-smooth
function defined on a domain O ⊂ Ys, corresponds the Hamiltonian equation

ζ̇ = J∇f(ζ),
where ∇f is the gradient with respect to the scalar product in Y .

2. We could replace the assumption that w takes integer values by {wa − wb | a, b ∈ L} accumulates on a
discrete set.

3. We provide C
2 with the hermitian norm, |ζa| = |(pa, qa)| =

√

|pa|2 + |qa|2.
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Infinite matrices. We denote by Ms,β the set of infinite matrices A : L × L → M2×2(R)
with value in the space of real 2× 2 matrices that are symmetric

Ab
a = tAa

b , ∀a, b ∈ L
and satisfy

|A|s,β := sup
a,b∈L

(wawb)
β
∥

∥

∥A
[b]
[a]

∥

∥

∥

(w(a, b) + |w2
a − w2

b |
w(a, b)

)s/2
<∞

where A
[b]
[a] denotes the restriction of A to the block [a]× [b], w(a, b) = min(wa, wb) and ‖ · ‖

denotes the operator norm induced by the Y0-norm.
A class of regularizing Hamiltonian functions. Let us fix any n ∈ N. On the space

C
n × C

n × Ys

we define the norm
‖(z, r, ζ)‖s = max(|z|, |r|, ‖ζ‖s).

For σ > 0 we denote
T
n
σ = {z ∈ C

n : |ℑz| < σ}/2πZn.

For σ, µ ∈ (0, 1] and s ≥ 0 we set

Os(σ, µ) = T
n
σ × {r ∈ C

n : |r| < µ2} × {ζ ∈ Ys : ‖ζ‖s < µ}
We will denote points in Os(σ, µ) as x = (θ, r, ζ). A function defined on a domain Os(σ, µ),
is called real if it gives real values to real arguments.
Let

D = {ρ} ⊂ R
p

be a compact set of positive Lebesgue measure. This is the set of parameters upon which will
depend our objects. Differentiability of functions on D is understood in the sense of Whitney.
So f ∈ C1(D) if it may be extended to a C1-smooth function f̃ on R

p, and |f |C1(D) is the

infimum of |f̃ |C1(Rp), taken over all C1-extensions f̃ of f .

If (z, r, ζ) are C1 functions on D, then we define

‖(z, r, ζ)‖s,D = max
j=0,1

(|∂jρz|, |∂jρr|, ‖∂jρζ‖s).

Let f : O0(σ, µ) × D → C be a C1-function, real holomorphic in the first variable x, such
that for all ρ ∈ D

Os(σ, µ) ∋ x 7→ ∇ζf(x, ρ) ∈ Ys+β

and
Os(σ, µ) ∋ x 7→ ∇2

ζf(x, ρ) ∈ Ms,β

are real holomorphic functions. We denote this set of functions by T s,β(σ, µ,D). We notice
that for β > 0, both the gradient and the hessian of f ∈ T s,β(σ, µ,D) have a regularizing
effect.
For a function f ∈ T s,β(σ, µ,D) we define the norm

[f ]s,βσ,µ,D
through

supmax(|∂jρf(x, ρ)|, µ‖∂jρ∇ζf(x, ρ)‖s+β, µ
2|∂jρ∇2

ζf(x, ρ)|s,β),
where the supremum is taken over all

j = 0, 1, x ∈ Os(σ, µ), ρ ∈ D.
In the case β = 0 we denote T s(σ, µ,D) = T s,0(σ, µ,D) and

[f ]sσ,µ,D = [f ]s,0σ,µ,D.

Normal form: We introduce the orthogonal projection Π defined on the 2 × 2 complex
matrices

Π : M2×2(C) → CI + CJ
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where

I =

(

1 0
0 1

)

and J =

(

0 −1
1 0

)

.

Definition 2.1. — A matrix A : L × L → M2×2(C) is on normal form and we denote
A ∈ NF if

(i) A is real valued,
(ii) A is symmetric, i.e. Aa

b = tAb
a,

(iii) A satisfies ΠA = A,
(iii) A is block diagonal, i.e. Aa

b = 0 for all wa 6= wb.

To a real symmetric matrix A = (Ab
a) ∈ M we associate in a unique way a real quadratic

form on Ys ∋ (ζa)a∈L = (pa, qa)a∈L

q(ζ) =
1

2

∑

a,b∈L
〈ζa, Ab

aζb〉.

In the complex variables, za = (ξa, ηa), a ∈ L, where

ξa =
1√
2
(pa + iqa), ηa =

1√
2
(pa − iqa),

we have

q(ζ) =
1

2
〈ξ,∇2

ξq ξ〉+
1

2
〈η,∇2

ηq η〉+ 〈ξ,∇ξ∇ηq η〉.
The matrices ∇2

ξq and ∇2
ηq are symmetric and complex conjugate of each other while ∇ξ∇ηq

is Hermitian. If A ∈ Ms,β then

(2.2) sup
a,b

∥

∥(∇ξ∇ηq)
[b]
[a]

∥

∥ ≤ |A|s,β
(wawb)β (1 + |wa − wb|)s

.

We note that if A is on normal form, then the associated quadratic form q(ζ) = 1
2〈ζ,Aζ〉

reads in complex variables

(2.3) q(ζ) = 〈ξ,Qη〉
where Q : L × L → C is

(i) Hermitian, i.e. Qa
b = Qb

a,
(ii) Block-diagonal.

In other words, when A is on normal form, the associated quadatic form reads

q(ζ) =
1

2
〈p,A1p〉+ 〈p,A2q〉+

1

2
〈p,A1q〉

with Q = A1 + iA2 Hermitian.
By extension we will say that a Hamiltonian is on normal form if it reads

(2.4) h = 〈ω(ρ), r〉+ 1

2
〈ζ,A(ρ)ζ〉

with ω(ρ) ∈ R
n a frequency vector and A(ρ) on normal form for all ρ.

2.1. Hypothesis on the spectrum of A0.— We assume that A0 is a real diagonal matrix
whose diagonal elements λa > 0, a ∈ L are C1. Our hypothesis depend on two constants
1 > δ0 > 0 and c0 > 0 fixed once for all.

Hypothesis A1 – Asymptotics. We assume that there exist γ ≥ 1 such that

(2.5) c0 w
γ
a ≤ λa ≤ 1

c0
wγ
a for ρ ∈ D and a ∈ L

and

(2.6) |λa − λb| ≥ c0|wa − wb| for a, b ∈ L .
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Hypothesis A2 – Non resonances. There exists a δ0 > 0 such that for all C1-functions

ω : D → R
n, |ω − ω0|C1(D) < δ0,

the following holds for each k ∈ Z
n \ 0: either we have the following properties :















|〈k, ω(ρ)〉| ≥ δ0 for all ρ ∈ D,
|〈k, ω(ρ)〉 + λa| ≥ δ0wa for all ρ ∈ D and a ∈ L,

|〈k, ω(ρ)〉 + λa + λb| ≥ δ0(wa + wb) for all ρ ∈ D anda, b ∈ L,
|〈k, ω(ρ)〉 + λa − λb| ≥ δ0(1 + |wa − wb|) for all ρ ∈ D and a, b ∈ L,

or there exists a unit vector z ∈ R
p such that

(∇ρ · z)(〈k, ω〉) ≥ δ0

for all ρ ∈ D. The first term of the alternative will be used in order to control the small
divisors for large k, and the second one is featured to control them for small k.

The last assumption above will be used to bound from below divisors |〈k, ω(ρ)〉+ λa(ρ)−
λb(ρ)| with wa, wb ∼ 1. To control the (infinitely many) divisors with max(wa, wb) ≫ 1 we
need another assumption:

Hypothesis A3 – Second Melnikov condition in measure. There exist absolute con-
stants α1 > 0, α2 > 0 and C > 0 such that for all C1-functions

ω : D → R
n, |ω − ω0|C1(D) < δ0,

the following holds:
for each κ > 0 and N ≥ 1 there exists a closed subset D′ = D′(ω0, κ,N) ⊂ D satisfying

(2.7) meas(D \ D′) ≤ CNα1(
κ

δ0
)α2 (α1, α2 ≥ 0)

such that for all ρ ∈ D′, all 0 < |k| ≤ N and all a, b ∈ L we have

(2.8) |〈k, ω(ρ)〉 + λa − λb| ≥ κ(1 + |wa − wb|).

2.2. The abstract KAM Theorem.— We are now in position to state our abstract KAM
result.

Theorem 2.2. — Assume that

(2.9) h0 = 〈ω0(ρ), r〉+
1

2
〈ζ,A0ζ〉

with the spectrum of A0 satisfying Hypothesis A1, A2, A3 and let f ∈ T s,β(D, σ, µ) with
β > 0, s > 0. There exists ε0 > 0 (depending on n, d, s, β, σ, µ, on A, c0 and sup |∇ρω|),
α > 0 (depending on n, d∗, s, β, α1, α2) and υ(β, d∗) > 0 such that (4) if

[f ]s,βσ,µ,D = ε < min
(

ε0, δ
υ(β,d∗)
0

)

there is a D′ ⊂ D with meas(D \D′) ≤ εα such that for all ρ ∈ D′ the following holds: There
are a real analytic symplectic diffeomorphism

Φ : Os(σ/2, µ/2) → Os(σ, µ)

and a vector ω = ω(ρ) such that

(h0 + f) ◦Φ = 〈ω(ρ), r〉 + 1

2
〈ζ,A(ρ)ζ〉+ f̃(r, θ, ζ; ρ)

where ∂ζ f̃ = ∂rf̃ = ∂2ζζ f̃ = 0 for ζ = r = 0 and A : L × L → M2×2(R) is on normal form,

i.e. A is real symmetric and block diagonal: Ab
a = 0 for all wa 6= wb.

Moreover Φ satisfies

‖Φ − Id‖s ≤ ε11/12 ,

4. An explicit choice of υ is given in (6.6) but is surely far from optimality.
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for all (r, θ, ζ) ∈ Os(σ/2, µ/2), and

|A(ρ)−A0|β ≤ ε,

|ω(ρ)− ω0(ρ)|C1 ≤ ε

for all ρ ∈ D′.

This normal form result has dynamical consequences. For ρ ∈ D′, the torus {0}×T
n×{0}

is invariant by the flow of (h0 + f) ◦ Φ and the dynamics of the Hamiltonian vector field of
h0 + f on the Φ({0} × T

n × {0}) is the same as that of

〈ω(ρ), r〉+ 1

2
〈ζ,A(ρ)ζ〉.

The Hamiltonian vector field on the torus {ζ = r = 0} is






ζ̇ = 0

θ̇ = ω
ṙ = 0,

and the flow on the torus is linear: t 7→ θ(t) = θ0 + tω.
Moreover, the linearized equation on this torus reads







ζ̇ = JAζ + J∂2rζf(0, θ0 + ωt, 0) · r
θ̇ = ∂2rζf(0, θ0 + ωt, 0) · ζ + ∂2rrf(0, θ0 + ωt, 0) · r
ṙ = 0.

Since A is on normal form (and in particular real symmetric and block diagonal) the eigen-

values of the ζ-linear part are purely imaginary: ±iλ̃a, a ∈ L. Therefore the invariant torus
is linearly stable in the classical sense (all the eigenvalues of the linearized system are purely

imaginary). Furthermore if the λ̃a are non-resonant with respect to the frequency vector ω (a
property which can be guaranteed restricting the set D′ arbitrarily little) then the linearized
equation is reducible to constant coefficients. Then the ζ-component (and of course also the
r-component) will have only quasi-periodic (in particular bounded) solutions.

3. Applications to Klein Gordon on S
d

In this section we prove Theorem 1.2 as a corollary of Theorem 2.2. We use notations
introduced in the introduction (see in particular (1.7)). Then the Klein Gordon Hamiltonian
H reads (up to a constant)

H(r, θ, ζ) = 〈ω0(ρ), r〉+
∑

a∈L
λaξaηa + εf(r, θ, ζ)

where

f(r, θ, ζ) =

∫

Sd

G (x, û(r, θ, ζ)(x)) dx.

Lemma 3.1. — Hypothesis A1, A2 and A3 hold true with D = [1, 2]n and

(3.1) δ0 =
( δ

2
√
2 + d+mmax(wa, a ∈ A)

)3
.

Proof. — Hypothesis A1 is clearly satisfied with c0 = 1/2 and γ = 1. The control of the
cardinality of the clusters (2.1) is given with d∗ = d− 1.
On the other hand choosing z ≡ zk = k

|k| we have

(3.2)

(∇ρ · z)(〈k, ω〉) ≥
δ

2max((ω0)a, a ∈ A)
|k| ≥ δ√

2 + d+mmax(wa, a ∈ A)
|k| for all k 6= 0

while

(3.3) (∇ρ · z)λa = 0 for all a ∈ L.
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Then for all k 6= 0 the second part of the alternative in Hypothesis A2 is satisfied choosing

δ0 ≤ δ∗ :=
δ

2max(wa, a ∈ A)
√
2 + d+m

.

It remains to verify A3. Without loss of generality we can assume wa ≤ wb.
First denoting

Fκ(k, a, b) := {ρ ∈ D | |〈ω, k〉+ λa − λb| ≤ κ},
we have using (3.2) that

measFκ(k, a, b) ≤ C(k, a, b)
κ

δ∗
.

On the other hand, defining

Gν(k, e) := {ρ ∈ D | |〈ω, k〉 + e| ≤ 2ν},
we have, using again (3.2) that

measGν(k, e) ≤ C
ν

δ∗
.

Further |〈ω, k〉 + e| ≤ 1 can occur only if |e| ≤ C|k| and thus

Gν =
⋃

0<|k|≤N
e∈Z

Gν(k, e)

has a Lebesgue measure less than CNn+1 ν
δ∗
.

Now we remark that

|j + d− 1

2
−
√

j(j + d− 1) +m| ≤
C ′
m,d

j

where C ′
m,d only depends on m and d, from which we deduce

|λa − λb − (wa − wb)| ≤
2C ′

m,d

wa
.

Therefore for ρ ∈ D \Gν and wa ≥ 2C′

m,d

ν we have for all 0 < |k| ≤ N

|〈ω, k〉+ λa − λb| ≥ ν.

Finally wa ≤ 2C′

m,d

ν and |〈ω, k〉 + λa − λb| ≤ 1 leads to wb ≤ 2C′

m,d

ν + CN and thus, if we
restrict ρ to

D′ = D \
[

Gν ∪
(

⋃

0<|k|≤N

wa,wb≤
2C′

m,d
ν

+CN

Fκ(k, a, b)
)]

we get

|〈ω, k〉+ λa − λb| ≥ min(κ, ν), 0 < |k| ≤ N, a, b ∈ L.
Further

measD \ D′ ≤ CNn+1 ν

δ∗
+

(

2C ′
m,d

ν
+ CN

)2

Nn κ

δ∗
.

Then choosing ν = κ1/3 and δ0 = δ3∗ , this measure is controlled by

CNn+2
( κ

δ0

)1/3

and we have

|〈ω, k〉+ λa − λb| ≥ κ, for ρ ∈ D′, 0 < |k| ≤ N and a, b ∈ L.
Now we remark that for |λa − λb| ≥ 2|〈ω, k〉|,

|〈ω, k〉 + λa − λb| ≥
1

2
|λa − λb| ≥

1

4
(1 + |wa − wb|) ≥ κ(1 + |wa − wb|)



12 BENOÎT GRÉBERT & ERIC PATUREL

if we assume κ ≤ 1
4 .

On the other hand, when |λa − λb| ≤ 2|〈ω, k〉| ≤ CN ,

|〈ω, k〉 + λa − λb| ≥ κ̃(1 + |wa − wb|)
where κ̃ = κ

1+CN . Thus we get

|〈ω, k〉+ λa − λb| ≥ κ̃(1 + |wa − wb|), for ρ ∈ D′, 0 < |k| ≤ N and a, b ∈ L
with

meas
(

D \ D′) ≤ CNn+3
( κ̃

δ0

)1/3
.

Lemma 3.2. — Assume that (x, u) 7→ g(x, u) is real analytic on S
d×R and s > 1 then there

exist σ > 0, µ > 0 such that the maping

Os(σ, µ)×D ∋ (r, θ, ζ; ρ) 7→ f(r, θ, ζ; ρ) :=

∫

Sd

G(x, û(r, θ, ζ)(x))dx,

where û is defined in (1.8), belongs to T s,1/2(σ, µ,D) for any s of the form 2N− 1
2 with N ∈ N

and N > d.

Proof. — First we notice that f does not depend on the parameter ρ. Due to the analyticity
of g and the fact that (5) s > d/2, there exist positive σ and µ such that f : O(σ, µ)×D → C

is a C1-function, analytic in the first variables (r, θ, ζ), whose gradient in ζ analytically maps
Ys to Y−s. Further we have

∂f

∂ξa
=

∂f

∂ηa
=

1

2λ
1/2
a

∫

Sd

G(x, û(x))Ψa(x) dx.

Since x 7→ G(x, û(x)) ∈ Hs(Sd), we deduce that ∇ζf ∈ Ys+1/2.

It remains to verify that ∇2
ζf(r, θ, ζ; ρ) ∈ Ms,1/2.

We have

(3.4)
∂2f

∂ξaξb
=

∂2f

∂ηaηb
=

∂2f

∂ξaηb
=

1

2λ
1/2
a λ

1/2
b

∫

Sd

G(x, û(x))ΨaΨb dx.

We note that for s > d/2 and (r, θ, ζ) ∈ Os(σ, µ), x 7→ û(x) is bounded on S
d.

It remains to prove that the infinite matrix M defined by

M b
a =

1

λ
1/2
a λ

1/2
b

∫

Sd

G(x, û)ΨaΨb dx

belongs to Ms,1/2, i.e.

sup
a,b∈L

w1/2
a w

1/2
b

∥

∥

∥
M

[b]
[a]

∥

∥

∥

(w(a, b) + |w2
a −w2

b |
w(a, b)

)s/2+1/4
<∞

where we recall that w(a, b) = min(wa, wb). The case wa = wb is straightforward, since
λa ∼ wa, x 7→ û(x) is bounded on S

d, and Φa, Φb are normalized in L2(Sd).
If wa 6= wb, first we notice that

∥

∥

∥
M

[b]
[a]

∥

∥

∥
= sup

‖u‖,‖v‖=1
|〈M [b]

[a]u, v〉| =
1

λ
1/2
a λ

1/2
b

sup
Φa∈E[a], ‖Φa‖=1

Φb∈E[b], ‖Φb‖=1

∣

∣

∣

∫

Sd

G(x, û)ΦaΦb dx
∣

∣

∣
,

where E[a] (resp. E[b]) is the eigenspace of −∆ associated to the cluster [a] (resp. [b]). Then
we follow arguments developed in [2, Proposition 2]. The basic idea lies in the following
commutator lemma: Let A be a linear operator which maps Hs(Sd) into itself and define the
sequence of operators

AN := [−∆, AN−1], A0 := A

5. s > d/2 is needed to insure that Ys is an algebra.
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where ∆ denotes the Laplace Beltrami operator on S
d, then with [2, Lemma 7], we have for

any a, b ∈ L with wa 6= wb and any N ≥ 0

|〈AΦa,Φb〉| ≤
1

|w2
a − w2

b |N
|〈ANΦa,Φb〉|.

Let A be the operator given by the multiplication by the function

Φ(x) = G(x, û(r, θ, ζ)(x)).

We note that Φ ∈ Hs+1/2 for (r, θ, ζ) ∈ Os(σ, µ). Then, by an induction argument,

AN =
∑

0≤|α|≤N

Cα,ND
α

where
Cα,N =

∑

0≤|β|≤2N−|α|
Vα,β,N (x)DβΦ

and Vα,β,N are C∞ functions (cf. [2, Lemma 8]). Therefore one gets

|
∫

Sd

ΦaΦbΦdx| ≤
1

|w2
a − w2

b |N
‖ANΦa‖L2

≤ C
1

|w2
a − w2

b |N
∑

0≤|α|≤N

∑

0≤|β|≤2N−|α|
||DβΦDαΨa||L2

≤ C
1

|w2
a − w2

b |N
(

∑

0≤|α|≤N/2

∑

0≤|β|≤2N−|α|
‖Φa‖|α|+ν0

||Φ|||β|

+
∑

N/2<|α|≤N

∑

0≤|β|≤2N−|α|
‖Φa‖|α| ||Φ|||β|+ν0

)

≤ C
1

|w2
a − w2

b |N
‖Φa‖N ||Φ||2N

where we used
∀ν0 > d/2 ‖fg‖L2 ≤ C‖f‖ν0‖g‖L2 .

On the other hand since −∆Φa = wa(wa + d− 1)Φa

(3.5) ‖Φa‖N ≤ CwN
a .

Therefore choosing N = 1
2 (s+

1
2)

|
∫

Sd

ΦaΦbΦdx| ≤ C
( wa

|w2
a − w2

b |
)s/2+1/4

≤ 2s/2+1/4C
( wa

w(a, b) + |w2
a − w2

b |
)s/2+1/4

.

Clearly the same estimate remains true when interchanging a and b.

So Main Theorem applies (for any choice of vector I ∈ [1, 2]A) and Theorem 1.2 is proved.

Remark 3.3. — Theorem 1.2 still holds true when we consider the Klein Gordon equation
on a Zoll manifold. This technical extension follows from results and computations in [11]
and [3]. We prefer to focus on the sphere in order to simplify the presentation.

Remark 3.4. — We can also consider the Beam equation on the torus Td with convolution
potential in a Sobolev-like phase space:

(3.6) utt +∆2u+mu+ V ⋆ u+ ε∂uG(x, u) = 0, x ∈ T
d.

Here m is the mass, G is a real analytic function on T
d×R vanishing at least of order 3 at the

origin. The convolution potential V : T
d → R is supposed to be analytic with real positive

Fourier coefficients V̂ (a), a ∈ Z
d. The same equation, but in an analytic phase space, were
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considered in [13, 12]. Actually following [13] and the proof of Lemma 3.2, in order to apply

our abstract KAM theorem, it remains to control the | · |s,1/2-norm of the infinite matrix (6)

M b
a =

1

λ
1/2
a λ

1/2
b

∫

Td

∂2uG(x, u)ΨaΨb dx

restricted to the block defined by [a] = {b ∈ Z
d | |a| = |b|}. This is achieved in the same way

as in Lemma 3.2.

Remark 3.5. — Notice that our theorem does not apply to the nonlinear wave equation:

(3.7) utt +∆u+mu+ V ⋆ u+ ε∂uG(x, u) = 0, x ∈ T
d

since in that case the second Melnikov condition is not satisfied.

4. Poisson brackets and Hamiltonian flows.

It turns out that the space T s,β(σ, µ,D) is not stable by Poisson brackets. Therefore, in
this section, we first define a new space T s,β+(σ, µ,D) ⊂ T s,β(σ, µ,D) and then we prove a
structural stability which is essentially contained in the claim

{T s,β+(σ, µ,D) , T s,β(σ, µ,D)} ∈ T s,β(σ, µ,D).

We will also study the hamiltonian flows generated by hamiltonian functions in T s,β+(σ, µ,D).
In this section, all constants C will depend only on s, β and n.

4.1. New Hamiltonian space. — We introduce T s,β+(σ, µ,D) defined by

T s,β+(σ, µ,D) = {f ∈ T s,β(σ, µ,D) | ∂jρ∇2
ζf ∈ M+

s,β, j = 0, 1}
where

M+
s,β = {M ∈ Ms,β | |M |s,β+ <∞}

and

|M |s,β+ = sup
a,b∈L

(1 + |wa − wb|)
(w(a, b) + |w2

a − w2
b |

w(a, b)

) s
2
(wawb)

β
∥

∥

∥
M

[b]
[a]

∥

∥

∥
.

We endow T s,β+(σ, µ,D) with the norm

[f ]s,β+σ,µ,D = [f ]s,βσ,µ,D + sup
j=0,1

(

µ2|∂jρ∇2
ζf |s,β+

)

.

Lemma 4.1. — Let 0 < β ≤ 1 and s > d/2 there exists a constant C ≡ C(β, s) > 0 such
that

(i) Let A ∈ Ms,β and B ∈ M+
s,β then AB and BA belong to Ms,β and

|AB|s,β, |BA|s,β ≤ C|A|s,β|B|s,β+.
(ii) Let A,B ∈ M+

s,β then AB and BA belong to M+
s,β and

|AB|s,β+, |BA|s,β+ ≤ C|A|s,β+|B|s,β+.
(iii) Let A ∈ M+

s,β then A ∈ L(Ys, Ys+β) and

‖Aζ‖s+β ≤ C|A|s,β+‖ζ‖s.
(iv) Let X ∈ Ys and Y ∈ Ys and denote A = X ⊗ Y then A and tA belong to L(Ys) and

‖A‖L(Ys), ‖tA‖L(Ys) ≤ C‖X‖s‖Y ‖s.
(v) Let X ∈ Ys+β and Y ∈ Ys+β then A = X ⊗ Y ∈ Ms,β and

‖A‖s,β ≤ C‖X‖s+β‖Y ‖s+β.

6. Here λa =
√

|a|4 +m and Ψa(x) = eia·x, a ∈ Z
d.
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Proof. — (i) Let a, b ∈ L
∥

∥

∥(AB)
[b]
[a]

∥

∥

∥ ≤
∑

c∈L̂

∥

∥

∥A
[c]
[a]

∥

∥

∥

∥

∥

∥B
[b]
[c]

∥

∥

∥

≤ |A|β+|B|β
(wawb)β

( w(a, b)

w(a, b) + |w2
a −w2

b |
)

s
2
∑

c∈L̂

1

w2β
c (1 + |wa − wc|)

≤ C
|A|β+|B|β
(wawb)β

( w(a, b)

w(a, b) + |w2
a − w2

b |
)

s
2

where we used that by Lemma A.1

w(a, b)

w(a, b) + |w2
a − w2

b |
≥ w(a, c)

w(a, c) + |w2
a − w2

c |
w(c, b)

w(c, b) + |w2
c − w2

b |
and that by Lemma A.2,

∑

c∈L̂
1

w2β
c (1+|wa−wc|)

≤ C where C only depends on β.

(ii) Similarly let a, b ∈ L and assume without loss of generality that wa ≤ wb
∥

∥

∥
(AB)

[b]
[a]

∥

∥

∥
≤
∑

c∈L̂

∥

∥

∥
A

[c]
[a]

∥

∥

∥

∥

∥

∥
B

[b]
[c]

∥

∥

∥

≤ |A|β+|B|β+
(wawb)β

( w(a, b)

w(a, b) + |w2
a − w2

b |
) s

2
∑

c∈L̂

1

w2β
c (1 + |wa −wc|)(1 + |wb − wc|)

≤ 2|A|β+|B|β+
(wawb)β(1 + |wa − wb|)

( w(a, b)

w(a, b) + |w2
a − w2

b |
) s

2

(

∑

c∈L̂
wc≤ 1

2
(wa+wb)

1

w2β
c (1 + |wa − wc|)

+
∑

c∈L̂
wc≥ 1

2
(wa+wb)

1

w2β
c (1 + |wb − wc|)

)

≤ C
|A|β+|B|β+

(wawb)β(1 + |wa − wb|)
( w(a, b)

w(a, b) + |w2
a − w2

b |
) s

2
.

(iii) Let ζ ∈ Ys we have

‖Aζ‖2s+β ≤
∑

a∈L̂

w2s+2β
a

(

∑

b∈L̂

‖A[b]
[a]‖‖ζ[b]‖

)2

≤ |A|2s,β+
∑

a∈L̂

(

∑

b∈L̂

ws
a‖ws

bζ[b]‖
ws+β
b (1 + |wa −wb|)

( w(a, b)

w(a, b) + |w2
a − w2

b |
) s

2
)2

≤ 22s+1|A|2s,β+
∑

a∈L̂

(

∑

b∈L̂
wa≤2wb)

‖ws
bζ[b]‖

wβ
b (1 + |wa −wb|)

+
∑

b∈L̂
wa≥2wb

‖ws
bζ[b]‖w(a, b)

s
2

ws+β
b (1 + |wa − wb|)

)2

≤ 22s+1|A|2s,β+
∑

a∈L̂

(

∑

b∈L̂

‖ws
bζ[b]‖

wβ
b (1 + |wa − wb|)

)2

≤ C|A|2s,β+‖ζ‖2s
where we used that the convolution between the ℓp sequence, p < 2, ‖ws−β

b ζ[b]‖ and the ℓq

sequence, q = 2p
3p−2 > 1, 1

(1+|wb|) is a ℓ2 sequence in a whose norm is bounded by C‖ζ‖s.
(iv) Let u ∈ Ys, we have

‖Au‖s = |〈Y, u〉|‖X‖s ≤ ‖X‖s‖Y ‖s‖u‖s.
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(v) Let a, b ∈ L
∥

∥

∥
A

[b]
[a]

∥

∥

∥
= ‖X[a]‖‖Y[b]‖ ≤ (wawb)

−s−β‖X‖s+β‖Y ‖s+β

≤ (wawb)
−β 1

(1 + |w2
a −w2

b |)s/2
‖X‖s+β‖Y ‖s+β

≤ (wawb)
−β
( w(a, b)

(w(a, b) + |w2
a − w2

b |)
)s/2

‖X‖s+β‖Y ‖s+β.

4.2. Jets of functions.— For any function h ∈ T s(σ, µ,D) we define its jet hT = hT (x, ρ)
as the following Taylor polynomial of h at r = 0 and ζ = 0:

hT =hθ + 〈hr, r〉+ 〈hζ , ζ〉+
1

2
〈hζζζ, ζ〉

=h(θ, 0, ρ) + 〈∇rh(θ, 0, ρ), r〉 + 〈∇ζh(θ, 0, ρ), ζ〉 +
1

2
〈∇2

ζζh(θ, 0, ρ)ζ, ζ〉
(4.1)

Functions of the form hT will be called jet-functions.

Directly from the definition of the norm [h]s,βσ,µ,D we get that

|hθ(θ, ρ)| ≤ [h]sσ,µ,D, |hr(θ, ρ)| ≤ µ−2[h]sσ,µ,D,

‖hζ(θ, ρ)‖s+β ≤ µ−1[h]s,βσ,µ,D, |hζζ(θ, ρ)|s,β ≤ µ−2[h]s,βσ,µ,D,
(4.2)

for any θ ∈ T
n
σ and any ρ ∈ D. Moreover, the first derivative with respect to ρ will satisfy

the same estimates.
We also notice that by Cauchy estimates we have that for x ∈ O(σ, µ′)

(4.3) ‖∇2
ζh(x)‖L(Ys,Ys+β) ≤

supy∈O(σ,µ) ‖∇ζh(y)‖s
µ− µ′

.

Thus hζζ is a linear continuous operator from Ys to Ys+β and

(4.4) ‖hζζ(θ, ρ)‖L(Ys,Ys+β) ≤ µ−2[h]sσ,µ,D

for any θ ∈ T
n
σ and any ρ ∈ D.

Proposition 4.2. — For any h ∈ T s,β(σ, µ,D) we have hT ∈ T s,β(σ, µ,D),

[hT ]s,βσ,µ,D ≤ C[h]s,βσ,µ,D ,

and, for any 0 < µ′ < µ,

[h− hT ]s,βσ,µ′,D ≤ C

(

µ′

µ

)3

[h]s,βσ,µ,D ,

where C is an absolute constant.

Proof. — We start with the second statement. Consider first the hessian ∇2
ζζ(h− hT )(x) for

x = (θ, r, ζ) ∈ Os(σ, µ′). Let us denote m = µ′/µ. Then for z ∈ D1 = {z ∈ C : |z| ≤ 1} we
have (θ, (z/m)2r, (z/m)ζ) ∈ Os(σ, µ). Consider the function

f : D1 ×Os(σ, µ′) → Mβ ,

(z, x) 7→ ∇2
ζζh(θ, (z/m)2r, (z/m)ζ) = h0(x) + h1(x)z + . . . .

It is holomorphic and its norm is bounded by µ−2[h]s,βσ,µ,D. So, by the Cauchy estimate,

|hj(x)|s,β ≤ µ−2[h]s,βσ,µ,D for j = 1, 2, . . . and x ∈ Os(σ, µ′). Since ∇2
ζζ(h−hT )(x) = h1(x)m+

h2(x)m
2 + · · · , then ∇2

ζζ(h− hT ) is holomorphic in x ∈ Os(σ, µ), and

|∇2
ζζ(h− hT )(x)|s,β ≤ µ−2[h]s,βσ,µ,D(m+m2 + . . . ) ≤ µ−2[h]s,βσ,µ,D

m

1−m
.
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So ∇2
ζζ(h− hT ) satisfies the required estimate with C = 2, if µ′ ≤ µ/2.

Same argument applies to bound the norms of ∂ρ∇2
ζζ(h − hT ), h − hT and ∇ζ(h − hT ) if

µ′ ≤ µ/2, and to prove the analyticity of these mappings.

Now we turn to the first statement and write hT as h − (h − hT ). This implies that hT ,
∇ζh

T and ∇2
ζζh

T are analytic on Os(σ, 12µ) and that

[hT ]s,β
σ, 1

2
µ,D ≤ C1[h]

s,β
σ,µ,D .

Since hT is a quadratic polynomial, then the mappings hT , ∇ζh
T and ∇2

ζζh
T are as well

analytic on Os(σ, µ), and the norm [hT ]s,βσ,µ,D satisfies the same estimate, modulo another

constant factor, for any 0 < µ′ ≤ µ.

Finally, the estimate for [h − hT ]s,βσ,µ′,D when µ/2 ≤ µ′ ≤ µ, with a suitable constant C,

follows from the estimate for [hT ]s,βσ,µ,D since [h− hT ]s,βσ,µ′,D ≤ [hT ]s,βσ,µ,D + [h]s,βσ,µ,D .

4.3. Poisson brackets and flows. — The Poisson brackets of functions is defined by

(4.5) {f, g} = ∇rf · ∇θg −∇θf · ∇rg + 〈J∇ζf,∇ζg〉 .

Lemma 4.3. — Let s ≥ 1. Let f ∈ T s,β+(σ, µ,D) and g ∈ T s,β(σ, µ,D) be two jet functions
then for any 0 < σ′ < σ we have {f, g} ∈ T s,β(σ′, µ,D) and

[{f, g}]s,βσ′ ,µ,D ≤ C(σ − σ′)−1µ−2[f ]s,β+σ,µ,D[g]
s,β
σ,µ,D.

Proof. — Let denote by h1, h2, h3 the three terms on the right hand side of (4.5). Since
∇rf(θ, r, ζ, ρ) = fr(θ, ρ) and ∇rg(θ, r, ζ, ρ) = gr(θ, ρ) are independent of r and ζ, the control
of h1 and h2 is straightforward by Cauchy estimates and (4.2).
We focus on the third term in formula: h3 = 〈J∇ζf,∇ζg〉. As, from (4.1), we have ∇ζf =
fζ + fζζζ and similarly for ∇ζg, we obtain

h3 = 〈Jfζ , gζ〉 − 〈ζ, fζζJgζ〉+ 〈gζζJfζ , ζ〉+ 〈gζζJfζζζ, ζ〉.
Using (4.2), (4.4) and ‖ζ‖s ≤ µ, we get

|h3(x, ·)| ≤ Cµ−2[f ]s,βσ,µ,D[g]
s,β
σ,µ,D ,

for any x ∈ O(σ, µ) and ρ ∈ D.
Since

∇ζh3 = −fζζJgζ + gζζJfζ + gζζJfζζζ − fζζJgζζζ,

then, using (4.4) and Lemma 4.1, we get that for x ∈ Os(σ, µ) and ρ ∈ D
‖∇ζh3(x, ·)‖s+β ≤ Cµ−3[f ]s,βσ,µ,D[g]

s,β
σ,µ,D .

Finally, as ∇2h3 = gζζJfζζ − fζζJgζζ , then, using again Lemma 4.1 we get that for x ∈
Os(σ, µ) and ρ ∈ D

|∇2h3(x, ·)|s,β ≤ Cµ−4[f ]s,β+σ,µ,D[g]
s,β
σ,µ,D .

4.4. Hamiltonian flows. — To any C1-function f on a domain Os(σ, µ)×D we associate
the Hamilton equations

(4.6)







ṙ = ∇θf(r, θ, ζ; ρ),

θ̇ = −∇rf(r, θ, ζ; ρ),

ζ̇ = J∇ζf(r, θ, ζ; ρ).

and denote by Φt
f ≡ Φt, t ∈ R, the corresponding flow map (if it exists). Now let f ≡ fT be

a jet-function

(4.7) f = fθ(θ; ρ) + fr(θ; ρ) · r + 〈fζ(θ; ρ), ζ〉+
1

2
〈fζζ(θ; ρ)ζ, ζ〉.
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Then Hamilton equations (4.6) take the form (7)

(4.8)







ṙ = −∇θf(r, θ, ζ),

θ̇ = fr(θ),

ζ̇ = J (fζ(θ) + fζζ(θ)ζ) .

Denote by Vf = (V r
f , V

θ
f , V

ζ
f ) the corresponding vector field. It is analytic on any domain

Os(σ − 2η, µ − 2ν) =: O2η,2ν , where 0 < 2η < σ, 0 < 2ν < µ. The flow maps Φt
f of Vf on

O2η,2ν are analytic as long as they exist. We will study them as long as they map O2η,2ν to
Oη,ν .
Assume that

(4.9) [f ]sσ,µ,D ≤ 1

2
ν2η.

Then for x = (r, θ, ζ) ∈ O2η,2ν by the Cauchy estimate (8) and (4.4) we have

|V r
f |Cn ≤ (2η)−1[f ]sσ,µ,D ≤ ν2,

|V θ
f |Cn ≤ (4ν2)−1[f ]sσ,µ,D ≤ η,

‖V ζ
f ‖s ≤

(

µ−1 + µ−2µ
)

[f ]sσ,µ,D ≤ ν.

Noting that the distance from O2η,2ν to ∂Oη,ν in the r-direction is 2νµ − 3ν2 > ν2, in the
θ-direction is η and in the ζ-direction is ν, we see that the flow maps

(4.10) Φt
f : Os(σ − 2η, µ − 2ν) → Os(σ − η, µ− ν), 0 ≤ t ≤ 1,

are well defined and analytic.
For x ∈ O2s,2ν denote Φt

f (x) = (r(t), θ(t), ζ(t)). Since V θ
f is independent from r and ζ,

then θ(t) = K(θ; t), where K is analytic in both arguments. As V ζ
f = Jfζ + Jfζζζ, where

the non autonomous linear operator Jfζζ(θ(t)) is bounded in the space Ys and both the
operator and the curve Jfζ(θ(t)) analytically depend on θ (through θ(t) = K(θ; t)), then
ζ(t) = T (θ, t) + U(θ; t)ζ, where U(θ; t) is a bounded linear operator, both U and T analytic

in θ. Similar since V ζ
f is a quadratic polynomial in ζ and an affine function of r, then

r(t) = L(θ, ζ; t) + S(θ; t)r, where S is an n× n matrix and L is a quadratic polynomial in ζ,
both analytic in θ.

The vector field Vf is real for real arguments, and so behaves its flow map. Since the vector
field is hamiltonian, then the flow maps are symplectic (e.g., see [23]). We have proven

Lemma 4.4. — Let 0 < 2η < σ, 0 < 2ν < µ and f = fT ∈ T s(σ, µ,D) satisfy (4.9). Then
for 0 ≤ t ≤ 1 the flow maps Φt

f of equation (4.8) define analytic mappings (4.10) and define

symplectomorphisms from Os(σ − 2η, µ − 2ν) to Os(σ − η, µ − ν). They have the form

(4.11) Φt
f :





r
θ
ζ



→





L(θ, ζ; t) + S(θ; t)r
K(θ; t)
T (θ; t) + U(θ; t)ζ



 ,

where L(θ, ζ; t) is quadratic in ζ, while U(θ; t) and S(θ; t) are bounded linear operators in
corresponding spaces.

Our next result specifies the flow maps Φt
f and their representation (4.11) when f ∈

T s,β+(σ, µ,D):

Lemma 4.5. — Let 0 < 2η < σ ≤ 1, 0 < 2ν < µ ≤ 1 and f = fT ∈ T s,β+(σ, µ,D) satisfy

(4.12) [f ]s,β+σ,µ,D ≤ 1

2
ν2η

7. Here and below we often suppress the argument ρ.
8. Notice that the distance from Os(σ − 2η, µ− 2ν) to ∂Os(σ, µ) in the r-direction is 4νµ− 4ν2 > 4ν2.
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Then:
1) Mapping L is analytic in (θ, ζ) ∈ T

σ−2η ×Oµ(Ys). Mappings K,T and operators S and U
analytically depend on θ ∈ T

σ−2η; their norms and operator-norms satisfy

‖S(θ; t)‖L(Cn,Cn), ‖tU(θ; t)− I‖L(Ys,Ys+β),

‖U(θ; t)− I‖L(Ys,Ys+β), |U(θ; t)− I|s,β+ ≤ 2,
(4.13)

while for any component Lj of L and any (θ, r, ζ) ∈ Os(σ − 2η, µ − 2ν) we have

‖∇ζL
j(θ, ζ; t)‖s+β ≤ Cη−1µ−1[f ]s,β+σ,µ,D,

|∇2
ζL

j(θ, ζ; t)|s,β+ ≤ Cη−1µ−2[f ]s,β+σ,µ,D.
(4.14)

2) The flow maps Φt
f analytically extend to mappings

C
n × T

n
σ−2η × Ys ∋ x0 = (r0, θ0, ζ0) 7→ x(t) ∈ C

n × T
n
σ × Ys,

x(t) = (r(t), θ(t), ζ(t)), which satisfy

|r(t)− r0| ≤ 4η−1
(

1 + µ−1‖ζ0‖s + µ−2|r0|+ µ−2||ζ0||2s
)

[f ]s,β+σ,µ,D,

|θ(t)− θ0| ≤ µ−2[f ]s,β+σ,µ,D,

‖ζ(t)− ζ0‖s+β ≤
(

µ−2‖ζ0‖s + µ−1
)

[f ]s,β+σ,µ,D,

(4.15)

Moreover, the ρ-derivative of the mapping x0 7→ x(t) satisfies the same estimates as the
increments x(t)− x0.

Proof. — Consider the equation for ζ(t) in (4.8):

(4.16) ζ̇(t) = a(t) +B(t)ζ(t), ζ(0) = ζ0 ∈ Oµ−2ν(Ys),

where a(t) = Jfζ(θ(t)) is an analytic curve [0, 1] → Yγ and B(t) = Jfζζ(θ(t)) is an analytic
curve [0, 1] → M. Both analytically depend on θ0. By the hypotheses and using (4.3)

(4.17) ||a(t)||s ≤ µ−1[f ]sσ,µ,D, ‖B‖L(Ys,Ys) ≤ µ−2[f ]sσ,µ,D ≤ 1

2
ν ≤ 1

2
.

On the other hand by Lemma 4.1 (iii), B ∈ L(Ys, Ys+β) and

(4.18) ‖B‖L(Ys,Ys+β) ≤ µ−2[f ]s,β+σ,µ,D.

By re-writing (4.16) in the integral form ζ(t) = ζ0 +
∫ t
0 (a(t

′) + B(t′)ζ(t′))dt′ and iterating
this relation, we get that

(4.19) ζ(t) = a∞(t) + (I +B∞(t))ζ0,

where

a∞(t) =

∫ t

0
a(t1)dt1 +

∑

k≥2

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k−1
∏

j=1

B(tj)a(tk)dtk · · · dt2 dt1,

and

B∞(t) =
∑

k≥1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k
∏

j=1

B(tj)dtk · · · dt2 dt1.

Due to (4.12), (4.17) and (4.18), for each k and for 0 ≤ tk ≤ . . . t1 ≤ 1 we have that

‖B(t1) . . . B(tk)‖L(Ys,Ys+β) ≤ (
1

2
)k−1µ−2[f ]s,β+σ,µ,D.

By this relation and (4.17) we get that a∞ and B∞ are well defined for t ∈ [0, 1] and satisfy

‖B∞(t)‖L(Ys,Ys+β) ≤ µ−2[f ]s,β+σ,µ,D,

‖a∞(t)‖s+β ≤ µ−3([f ]s,β+σ,µ,D)
2 ≤ µ−1[f ]s,β+σ,µ,D.

(4.20)
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Again, the curves a∞ and B∞ analytically depend on θ0. Inserting (4.20) in (4.19) we get
that ζ = ζ(t) satisfies the third estimate of (4.15).
On the other hand for all t ∈ [0, 1], B ∈ M+

s,β and

|B(t)|s,β+ ≤ µ−2[f ]s,β+σ,µ,D.

Therefore using Lemma 4.1 we get

|B∞(t)|s,β+ ≤ µ−2[f ]s,β+σ,µ,D.(4.21)

Since in (4.11) U(θ; t) = I +B∞(t), then the estimates on U in (4.13) follow from (4.20) and
(4.21).

Now consider equation for r(t):

ṙ(t) = −α(t)− Λ(t)r(t), r(0) = r0 ∈ O(µ−2ν)2(C
n)

where Λ(t) = ∇θfr(θ(t)) and

(4.22) α(t) = ∇θfθ(θ(t)) + 〈∇θfζ(θ(t)), ζ(t)〉+
1

2
〈∇θfζζ(θ(t))ζ(t), ζ(t)〉.

The curve of matrices Λ(t) and the curve of vectors α(t) analytically depend on θ0 ∈ T
n
σ−2η.

Besides, α(t) analytically depends on ζ0 ∈ Ys, while Λ is ζ0-independent.
By the Cauchy estimate and (4.12), for any θ(t) ∈ T

n
σ−η we have

|Λ(t)|L(Cn,Cn) ≤ η−1µ−2[f ]sσ,µ,D ≤ 1

2
,

|α(t)| ≤ 2η−1[f ]sσ,µ,D(1 + µ−1‖ζ0‖s + µ−2‖ζ0‖2s)
(4.23)

where for the second estimate we used that ‖ζ(t)− ζ0‖s ≤ 1 + ‖ζ0‖s.
Since ∇ζ(t)α(t) = ∇θfζ(θ(t)) +∇θfζζ(θ(t))ζ(t) and ∇ζ0 = tU(θ; t)∇ζ , then using (4.13) and
Lemma 4.1 we obtain

(4.24) ‖∇ζ0α(t)‖s+β ≤ 4η−1µ−1[f ]s,β+σ,µ,D(1 + µ−1‖ζ0‖s).
Since ∇2

ζ0α(t) =
tU∇2

ζ(t)α(t)U = tU∇θfζζ(θ(t))U , then due to (4.13) and Lemma 4.1

(4.25) |∇2
ζ0α(t)|s,β+ ≤ 4η−1µ−2[f ]s,β+σ,µ,D.

We proceed as for the ζ-equation to derive

(4.26) r(t) = −α∞(t) + (1− Λ∞(t))r0,

where

(4.27) α∞(t) =

∫ t

0
α(t1)dt1 +

∑

k≥2

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k−1
∏

j=1

Λ(tj)α(tk)dtk · · · dt2 dt1,

and

(4.28) Λ∞(t) =
∑

k≥1

∫ t

0

∫ t1

0
· · ·
∫ tk−1

0

k
∏

j=1

Λ(tj)dtk · · · dt2 dt1.

Using (4.23) we get that

|Λ∞(t)|L(Cn×Cn) ≤
1

2
,

|α∞(t)|Cn ≤ 2η−1
(

1 + µ−1‖ζ0‖s + µ−2‖ζ0‖2s
)

[f ]sσ,µ,D.

Since in (4.11) S(θ; 1) = I − Λ∞(t), then the first estimate in (4.13) follows. Since Λ∞(t) in
(4.26) is ζ0-independent, then L(θ, ζ; t) = −α∞(t). This is a quadratic in ζ0 expression, and
the estimates (4.14) follow from (4.24)–(4.25) and in view of the estimate for Λ∞ above.
Finally using the estimates for Λ∞ and α∞ we get from (4.26) that r = r(t) satisfies (4.15)1,
as (4.15)2 directly comes from (4.8) and (4.2).
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Next we study how the flow maps Φt
f transform functions from T s,β(σ, µ,D).

Lemma 4.6. — Let 0 < 2η < σ ≤ 1, 0 < 2ν < µ ≤ 1. Assume that f = fT ∈ T s,β+(σ, µ,D)
satisfies (4.12). Let h ∈ T s,β(σ, µ,D) and denote for 0 ≤ t ≤ 1

ht(x; ρ) = h(Φt
f (x; ρ); ρ).

Then ht ∈ T s,β(σ − 2η, µ − 2ν,D) and

[ht]
s,β
σ−2η,µ−2ν,D ≤ C

µ

ν
[h]s,βσ,µ,D

where C is an absolute constant.

Proof. — Let us write the flow map Φt
f as

x0 = (r0, θ0, ζ0) 7→ x(t) = (r(t), θ(t), ζ(t)).

By Lemma 4.5, ht(x
0) is analytic in x0 ∈ O(σ − 2η, µ − 2ν). Clearly |ht(x0, ·)| ≤ [h]s,βσ,µ,D for

x0 ∈ O(σ − 2s, µ − 2ν) and ρ ∈ D. So it remains to estimate the gradient and hessian of
h(x0).

1) Estimating the gradient. Since θ(t) does not depend on ζ0, we have

∂ht
∂ζ0

=
n
∑

k=1

∂h(x(t))

∂rk

∂rk(t)

∂ζ0
+
∑

b∈L

∂h(x(t))

∂ζb(t)

∂ζb(t)

∂ζ0
= Σ1 +Σ2.

i) Since x(t) ∈ O(σ − η, µ − ν), we get by the Cauchy estimate that
∣

∣

∣

∣

∂h(x(t))

∂rk

∣

∣

∣

∣

≤ 1

3ν2
[h]sσ,µ,D.

As ∇ζ0rk(t) was estimated in (4.14), then using (4.12) we get

‖Σ1‖s+β ≤ Cν−2[h]s,βσ,µ,D η
−1µ−1[f ]s,βσ,µ,D ≤ Cµ−1[h]s,βσ,µ,D .

ii) Noting that Σ2(r, θ, ζ) =
tU(θ; t)∇ζh, we get using (4.13):

‖Σ2‖s+β ≤ 4µ−1[h]s,βσ,µ,D.

Estimating similarly ∂
∂ρ

∂ht
∂ζ we see that for x ∈ O(σ − 2η, µ − 2ν)

‖∂ρ∇ζ0ht‖s+β ≤ Cµ−1[h]s,βσ,µ,D.

2) Estimating the hessian. Since θ(t) does not depend on ζ0 and since ζ(t) is affine in ζ0,
then

∂2ht
∂ζ0a∂ζ

0
b

(x) =
∂2h(x(t))

∂ζ∂ζ

∂ζ(t)

∂ζ0a

∂ζ(t)

∂ζ0b
+
∂2h(x(t))

∂r2
∂r(t)

∂ζ0a

∂r(t)

∂ζ0b

+
∂2h(x(t))

∂r∂ζ

∂r(t)

∂ζ0a

∂ζ(t)

∂ζ0b
+
∂h(x(t))

∂r

∂2r(t)

∂ζ0a∂ζ
0
b

=: ∆1 +∆2 +∆3 +∆4.

(4.29)

i) We have |∂2h/∂ζa∂ζb|β ≤ Cµ−2[h]s,βσ,µ,D. Using this estimate jointly with (4.13) and
Lemma 4.1 we see that

|∆1|β ≤ Cµ−2[h]s,βσ,µ,D.

ii) Since for x0 ∈ Os(σ − 2s, µ− 2ν) by (4.14) we have

‖∇ζrj‖s+β ≤ Cη−1µ−1[f ]s,β+σ,µ,D ,

and since by Cauchy estimate |d2rh| ≤ Cν−4[h]s,βσ,µ,D, we get using Lemma 4.1(v) and (4.12)

|∆2|β ≤ Cν−4[h]s,βσ,µ,Dη
−2µ−2([f ]s,β+σ,µ,D)

2 ≤ Cµ−2[h]s,βσ,µ,D .
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iii) For any j we have by the Cauchy estimate that ‖ ∂
∂rj

∇ζh‖s+β ≤ Cν−3[h]s,βσ,µ,D. Therefore

by (4.13)
∥

∥

∥

∑

a′

∂2h

∂rj∂ζa′

∂ζa′

∂ζ0a

∥

∥

∥

s+β
≤ Cν−3[h]s,βσ,µ,D .

Since

‖∇ζ0rj‖s+β ≤ Cη−1µ−1[f ]s,βσ,µ,D ≤ Cν2µ−1

by (4.14), then using Lemma 4.1 (v) we find that

|∆3|β ≤ Cν−1µ−1[h]s,βσ,µ,D .

iv) As |∂h/∂r(x(t))| ≤ ν−2[h]s,βσ,µ,D and

∣

∣

∣

∣

∂2r

∂ζ0a∂ζ
0
b

∣

∣

∣

∣

β

≤ Cη−1µ−2[f ]s,β+σ,µ,D

by (4.14), then

|∆4|β ≤ Cµ−2[h]s,βσ,µ,D.

The ρ-gradient of the hessian leads to estimates similar to the above. So the lemma is
proven.

We summarize the results of this section into a proposition.

Proposition 4.7. — Let 0 < σ′ < σ ≤ 1, 0 < µ′ < µ ≤ 1.There exists an absolute constant
C ≥ 1 such that

(i) if f = fT ∈ T s,β(σ, µ,D) and

(4.30) [f ]s,βσ,µ,D ≤ 1

2
(µ − µ′)2(σ − σ′),

then for all 0 ≤ t ≤ 1, the Hamiltonian flow map Φt
f is a C1-map

Os(σ′, µ′)×D → Os(σ, µ);

real holomorphic and symplectic for any fixed ρ ∈ D. Moreover,

||Φt
f (x, ·)− x||s,D ≤ C

(

1

σ − σ′
+

1

µ2

)

[f ]s,βσ,µ,D

for any x ∈ Os(σ′, µ′).
(ii) if f = fT ∈ T s,β+(σ, µ,D) and

(4.31) [f ]s,β+σ,µ,D ≤ 1

2
(µ − µ′)2(σ − σ′),

then for all 0 ≤ t ≤ 1 and all h ∈ T s,β(σ, µ,D), the function ht(x; ρ) = h(Φt
f (x, ρ); ρ)

belongs to T s,β(σ′, µ′,D) and

[ht]
s,β
σ′,µ′,D ≤ C

µ

(µ− µ′)
[h]s,βσ,µ,D.

Proof. — Take σ′ = σ − 2s and µ′ = µ− 2ν and apply Lemmas 4.5 and 4.6.



KAM FOR THE KLEIN GORDON EQUATION ON Sd. 23

5. Homological equation

Let us first recall the KAM strategy. Let h0 be the normal form Hamiltonian given by
(2.9)

h0(r, ζ, ρ) = 〈ω0(ρ), r〉+
1

2
〈ζ,A0ζ〉

satisfying Hypotheses A1-A3. Let f be a perturbation and

fT = fθ + 〈fr, r〉+ 〈fζ , ζ〉+
1

2
〈fζζζ, ζ〉

be its jet (see (4.1)). If fT were zero, then {ζ = r = 0} would be an invariant n-dimensional
torus for the Hamiltonian h0 + f . In general we only know that f is small, say f = O(ε),
and thus fT = O(ε). In order to decrease the error term we search for a hamiltonian jet
S = ST = O(ε) such that its time-one flow map ΦS = Φ1

S transforms the Hamiltonian h0+ f
to

(h0 + f) ◦ ΦS = h+ f+,

where h is a new normal form, ε-close to h0, and the new perturbation f+ is such that its
jet is much smaller than fT . More precisely,

h = h0 + h̃, h̃ = c(ρ) + 〈χ(ρ), r〉 + 1

2
〈ζ,B(ρ)ζ〉 = O(ε),

and (f+)
T
= O(ε2).

As a consequence of the Hamiltonian structure we have (at least formally) that

(h0 + f) ◦ ΦS = h0 + {h0, S}+ fT +O(ε2).

So to achieve the goal above we should solve the homological equation:

(5.1) {h0, S} = h̃− fT +O(ε2).

Repeating iteratively the same procedure with h instead of h0 etc., we will be forced to solve
the homological equation, not only for the normal form Hamiltonian (2.9), but for more
general normal form Hamiltonians (2.4) with ω close to ω0 and A close to A0 .

In this section we will consider a homological equation (5.1) with f in T s,β(σ, µ,D) and
we will build a solution S in T s,β+(σ, µ,D). In this section, constants C may take different
values, but will only depend on s, β, n, d∗, γ, c0, α1 and α2 given in Hypothesis A1, A2 and
A3.

5.1. Four components of the homological equation. — Let h be a normal form Hamil-
tonian (2.4),

h(r, ζ, ρ) = 〈ω(ρ), r〉+ 1

2
〈ζ,A(ρ)ζ〉 ,

and let us write a jet-function S as

S(θ, r, ζ) = Sθ(θ) + 〈Sr(θ), r〉+ 〈Sζ(θ), ζ〉+
1

2
〈Sζζ(θ)ζ, ζ〉.

Therefore the Poisson bracket of h and S equals

{h, S} = (∇θ · ω)Sθ + 〈(∇θ · ω)Sr, r〉+ 〈(∇θ · ω)Sζ , ζ〉

+
1

2
〈(∇θ · ω)Sζζ , ζ〉 − 〈AJSζ , ζ〉+ 〈SζζJAζ, ζ〉.

Accordingly the homological equation (5.1) with h0 replaced by h decomposes into four linear
equations. The first two are

〈∇θSθ, ω〉 =− fθ + c+O(ε2),(5.2)

〈∇θSr, ω〉 =− fr + χ+O(ε2).(5.3)

In these equations, we are forced to choose

c(ρ) = [[ fθ(·, ρ) ]] and χ(ρ) = [[ fr(·, ρ) ]]
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where [[ f ]] denotes averaging of a function f in θ ∈ T
n, to get that the space mean-value of

the r.h.s. vanishes. The other two equations are

〈∇θSζ , ω〉 −AJSζ =− fζ +O(ε2),(5.4)

〈∇θSζζ , ω〉 −AJSζζ + SζζJA =− fζζ +B +O(ε2) ,(5.5)

where the operator B will be chosen later. The most delicate, involving the small divisors
(see (2.8)), is the last equation.

5.2. The first two equations. — We begin with equations (5.2) and (5.3) which are both
of the form

(5.6) 〈∇θϕ(θ, ρ), ω(ρ)〉 = ψ(θ, ρ)

with [[ ψ ]] = 0. Here ω : D → R
n is C1 and verifies

|ω − ω0|C1(D) ≤ δ0.

Expanding ϕ and ψ in Fourier series,

ϕ =
∑

k∈Zn\{0}
ϕ̂(k)eik·θ, ψ =

∑

k∈Zn\{0}
ψ̂(k)eik·θ,

we solve eq. (5.6) by choosing

ϕ̂(k) = − i

〈ω, k〉 ψ̂(k), k ∈ Z
n \ {0}; ϕ̂(0) = 0.

Using Assumption A2 we have, for each k 6= 0, either that

|〈ω(ρ), k〉| ≥ δ0 ∀ρ
or that

(∇ρ · z)(〈k, ω(ρ)〉) ≥ δ0 ∀ρ
for a suitable choice of a unit vector z. The second case implies that

|〈ω(ρ), k〉| ≥ κ ,

where κ ≤ δ0, for all ρ outside some open set Fk ≡ Fk(ω) of Lebesgue measure ≤ δ−1
0 κ.

Let

D1 = D \
⋃

0<|k|≤N

Fk.

Then the closed set D1 satisfies

meas(D \ D1) ≤ Nn κ

δ0
,

and |〈ω(ρ), k〉| ≥ κ for all ρ ∈ D1. Hence, for ρ ∈ D1 and all 0 < |k| ≤ N we have

|ϕ̂(k)| ≤ 1

κ
|ψ̂(k)| .

Setting ϕ(θ, ρ) =
∑

0<|k|≤N ϕ̂(k, ρ)e
ik·θ, we get that

(5.7) 〈∇θϕ(θ, ρ), ω(ρ)〉 = ψ(θ, ρ) +R(θ, ρ).

Hence ϕ is an approximate solution of eq. (5.6) with the error termR(θ, ρ) = −∑|k|>N ψ̂(k, ρ)e
ik·θ.

We obtain by a classical argument that for (θ, ρ) ∈ T
n
σ′ ×D1, 0 < σ′ < σ, and j = 0, 1

|ϕ(θ, ρ)| ≤ C

κ(σ − σ′)n
sup

|ℑθ|<σ
|ψ(θ, ρ)|,

|∂jρR(θ, ρ)| ≤
C e−

1
2
(σ−σ′)N

(σ − σ′)n
sup

|ℑθ|<σ
|∂jρψ(θ, ρ)| ,

(5.8)
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where C only depends on n. If ψ is a real function, then so are ϕ and R.
Differentiating in ρ the definition of ϕ̂(k) gives (9)

∂ρϕ̂(k) = χ|k|≤N(k)
(

− i

〈ω, k〉∂ρψ̂(k) +
i

〈ω, k〉2 〈∂ρω, k〉ψ̂(k)
)

.

From this we derive that

|∂ρϕ(θ, ρ)| ≤
C(|ω0(ρ)|C1 + 1)N

κ2(σ − σ′)n
(

sup
|ℑθ|<σ

|ψ(θ, ρ)|+ sup
|ℑθ|<σ

|∂ρψ(θ, ρ)|
)

,

where we estimated the derivative of ω by |ω0(ρ)|C1 + δ0 ≤ |ω0(ρ)|C1 + 1.
Applying this construction to (5.2) and (5.3) we get

Proposition 5.1. — Let ω : D → R
n be C1 and verifying |ω − ω0|C1(D) ≤ δ0. Let f ∈

T s(σ, µ,D) and let δ0 ≥ κ > 0, N ≥ 1. Then there exists a closed set D1 = D1(ω, κ,N) ⊂ D,
satisfying

meas(D \ D1) ≤ CNn κ

δ0
,

and
(i) there exist real C1-functions Sθ and Rθ on T

n
σ ×D1 → C, analytic in θ, such that

〈∇θSθ(θ, ρ), ω(ρ)〉 = −fθ(θ, ρ) + [[ fθ(·, ρ) ]] +Rθ(θ, ρ)

and for all (θ, ρ) ∈ T
n
σ′ ×D1, σ

′ < σ, and j = 0, 1

|∂jρSθ(θ, ρ)| ≤
CN

κ2(σ − σ′)n
[f ]sσ,µ,D1

,

|∂jρRθ(θ, ρ)| ≤
Ce−

1
2
(σ−σ′)N

(σ − σ′)n
[f ]sσ,µ,D1

.

(ii) there exist real C1 vector-functions Sr and Rr on T
n
σ ×D1, analytic in θ, such that

〈∇θSr(θ, ρ), ω(ρ)〉 = −fr(θ, ρ) + [[ fr(·; ρ) ]] +Rr(θ, ρ),

and for all (θ, ρ) ∈ T
n
σ′ ×D1, σ

′ < σ, and j = 0, 1

|∂jρSr(θ, ρ)| ≤
C

κ2(σ − σ′)n
[f ]sσ,µ,D1

,

|∂jρRr(θ, ρ)| ≤
Ce−

1
2
(σ−σ′)N

(σ − σ′)n
[f ]sσ,µ,D1

.

The constant C only depends on |ω0|C1(D).

5.3. The third equation. — To begin with, we recall a result proved in the appendix of
[15].

Lemma 5.2. — Let A(t) be a real diagonal N × N -matrix with diagonal components aj
which are C1 on I =]− 1, 1[, satisfying for all j = 1, . . . , N and all t ∈ I

a′j(t) ≥ δ0.

Let B(t) be a Hermitian N ×N -matrix of class C1 on I such that (10)

‖B′(t)‖ ≤ δ0/2,

for all t ∈ I. Then

‖(A(t) +B(t))−1‖ ≤ 1

ε
outside a set of t ∈ I of Lebesgue measure ≤ CNεδ−1

0 , where C is a numerical constant.

Concerning the third component (5.4) of the homological equation we have

9. Here and below χQ(k) stands for the characteristic function of a set Q ⊂ Z
n.

10. Here ‖ · ‖ means the operator-norm of a matrix associated to the euclidean norm on C
N .
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Proposition 5.3. — Let ω : D → R
n be C1 and verifying |ω − ω0|C1(D) ≤ δ0. Let D ∋ ρ 7→

A(ρ) ∈ NF ∩M0 be C1 and verifying

(5.9) ‖∂jρ(A(ρ) −A0)[a]‖ ≤ 1

2
δ0

for j = 0, 1, a ∈ L and ρ ∈ D. Let f ∈ T s(σ, µ,D), 0 < κ ≤ min( δ02 ,
c0
2 ) and N ≥ 1.

Then there exists a closed set D2 = D2(ω,A, κ,N) ⊂ D, satisfying

meas(D \ D2) ≤ CN exp κ

δ0
,

and there exist real C1-functions Sζ and Rζ from T
n ×D2 to Ys, analytic in θ, such that

(5.10) 〈∇θSζ(θ, ρ), ω(ρ)〉−A(ρ)JSζ(θ, ρ) = −fζ(θ, ρ) +Rζ(θ, ρ)

and for all (θ, ρ) ∈ T
n
σ′ ×D2, σ

′ < σ, and j = 0, 1

µ‖∂jρSζ(θ, ρ)‖s+1 ≤
CN

κ2(σ − σ′)2n
[f ]s,βσ,µ,D,

µ‖∂jρRζ(θ, ρ)‖s ≤
Ce−

1
2
(σ−σ′)N

(σ − σ′)n
[f ]s,βσ,µ,D .

The exponent exp only depends on d∗, n, γ while the constant C also depends on |ω0|C1(D).

Proof. — It is more convenient to deal with the hamiltonian operator JA than with operator
AJ . Therefore we multiply eq. (5.10) by J and obtain for JSζ the equation

(5.11)
〈

∇θ(JSζ)(θ, ρ), ω(ρ)
〉

− JA(ρ)(JSζ)(θ, ρ) = −Jfζ(θ, ρ) + JRζ(θ, ρ)

Let us re-write (5.11) in the complex variables t(ξ, η). For a ∈ L

(5.12) ζa =

(

pa
qa

)

= Ua

(

ξa
ηa

)

, Ua =
1√
2

(

1 1
−i i

)

.

The symplectic operator Ua transforms the quadratic form (λa/2)〈ζa, ζa〉 to iλaξaηa. There-
fore, if we denote by U the direct product of the operators diag (Ua, a ∈ L) then it transforms
(1/2)〈ζ,A0ζ〉 to

∑

a∈L iλaξaηa. So it transforms the hamiltonian matrix JA0 to the diagonal
hamiltonian matrix

diag {iλa
(

−1 0
0 1

)

, a ∈ L}.

Then we make in (5.11) the substitution JSζ = US, JRζ = UR and −Jfζ = UFζ , where

S = t(Sξ, Sη), etc. In this notation eq. (5.10) decouples into two equations

〈∇θS
ξ, ω〉 − i tQSξ = F ξ +Rξ,

〈∇θS
η, ω〉+ iQSη = F η +Rη.

(5.13)

Here Q : L × L → C is the scalar valued matrix associated to A via the formula (2.3), i.e.

Q = diag{λa, a ∈ L}+B,

where B is Hermitian and block diagonal.
Written in the Fourier variables, eq. (5.13) becomes

i(〈k, ω〉 − tQ) Ŝξ(k) = F̂ ξ(k) + R̂ξ(k), k ∈ Z
n,

i(〈k, ω〉 +Q) Ŝη(k) = F̂ η(k) + R̂η(k), k ∈ Z
n.

(5.14)

The two equations in (5.14) are similar, so let us consider (for example) the second one, and
let us decompose it into its “components” over the blocks [a]:

(5.15) i(〈k, ω(ρ)〉 +Q(ρ)[a])Ŝ[a](k) = F̂[a](k, ρ) + R̂[a](k)

where the matrix Q[a] is the restriction of Q to [a] × [a] and the vector F̂[a](k, ρ) is the

restriction of F̂ (k, ρ) to [a] – here we have suppressed the upper index η. Denoting by
L(k, [a], ρ) the Hermitian operator in the left hand side of equation (5.15), we want to estimate
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the operator norm of L(k, [a], ρ)−1, i.e. we look for a lower bound of the modulus of the
eigenvalues of L(k, [a], ρ).

Let α(ρ) denote an eigenvalue of the matrix Q[a](ρ), a ∈ L. It follows from (5.9) that

|α(ρ) − λa| ≤
δ0
2

≤ c0
2

for some appropriate a ∈ [a], which implies that

|α(ρ)| ≥ c0
2
wγ
a ≥ 2κwa

by (2.5). Hence,

‖L(0, [a], ρ)−1‖ ≤
(

κwa

)−1 ∀ρ, ∀a.
Assume that 0 < |k| ≤ N . Since |〈k, ω(ρ)〉| ≤ CN it follows from (2.5) that

|〈k, ω(ρ)〉 + α(ρ)| ≥ c0
4
wγ
a ≥ κ wa

whenever wa ≥ (4CN
c0

)
1
γ . Hence for these a’s we get

(5.16) ‖L(k, [a], ρ)−1‖ ≤
(

κ wa

)−1 ∀ρ.

Now let wa ≤ (4CN
c0

)
1
γ . By Hypothesis A2 we have either

|〈k, ω(ρ)〉 + λa| ≥ δ0wa ∀ρ,∀a
or we have a unit vector z such that

(∇ρ · z)(〈k, ω(ρ)〉 + λa) ≥ δ0 ∀ρ,∀a.
The first case clearly implies (5.16), so let us consider the second case. By (5.9) it follows
that

‖(∇ρ · z)H[a](ρ)‖ ≤ δ0
2
.

The Hermitian matrix (〈k, ω(ρ)〉 + Q(ρ)[a]) is of dimension . wd∗
a (see (2.1)) therefore, by

Lemma 5.2, we conclude that (5.16) holds for all ρ outside a suitable set Fa,k of measure

. wd∗+1
a κδ−1

0 . Let

D2 = D \
⋃

|k|≤N

wa≤( 4CN
c0

)
1
γ

Fa,k.

Then we get

meas(D \ D2) ≤ CNn
(N

c0

)
d∗+2

γ κ

δ0
and (5.16) holds for all ρ ∈ D2, all |k| ≤ N and all [a].

Equation (5.15) is now solved by

(5.17) Ŝ[a](k, ρ) = χ|k|≤N(k)L(k, [a], ρ)−1F̂[a](k, ρ), a ∈ L ,
and

(5.18) R̂[a](k, ρ) = χ|k|>N(k)F̂[a](k, ρ), a ∈ L .
Using (5.16), we have for ρ ∈ D2

‖S[a](θ, ρ)‖ ≤ C

κ wa(σ − σ′)n
sup

|ℑθ|<σ
‖F[a](θ, ρ)‖,

‖R[a](θ, ρ)‖ ≤Ce
− 1

2
(σ−σ′)N

(σ − σ′)n
sup

|ℑθ|<σ
|F[a](θ, ρ)|.
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for θ ∈ T
d
σ′ , see (5.8).

Since ‖S‖2s =
∑

a∈L w
2s
a |Sa|2 =

∑

a∈L̂ w
2s
a ‖S[a]‖2 these estimates imply that

‖S(θ, ρ)‖s+1 ≤ C

κ(σ − σ′)n
sup

|ℑθ|<σ
‖F (θ, ρ)‖s,

‖R(θ, ρ)‖s ≤
Ce−

1
2
(σ−σ′)N

(σ − σ′)n
sup

|ℑθ|<σ
‖F (θ, ρ)‖s,

for any σ′ ≤ σ. The estimates of the derivatives with respect to ρ are obtained by differenti-
ating (5.15) to obtain

L(k, [a], ρ)[∂ρŜ[a](k)] = −[∂ρL(k, [a], ρ)]Ŝ[a](k) + [∂ρF̂[a](k, ρ)] + [∂ρR̂[a](k)]

which is an equation of the same type as (5.15) for ∂ρŜ[a](k) and ∂ρR̂[a](k) where

−[∂ρL(k, [a], ρ)]Ŝ[a](k) + [∂ρF̂[a](k, ρ)] := B[a](k, ρ) plays the role of F̂[a](k, ρ). We solve
this equation as in (5.17)-(5.18) and we note that

χ|k|>N(k)B[a](k, ρ) = χ|k|>N(k)[∂ρF̂[a](k, ρ)]

and thus

‖R(θ, ρ)‖s ≤
Ce−

1
2
(σ−σ′)N

(σ − σ′)n
sup

|ℑθ|<σ
‖F (θ, ρ)‖s.

On the other hand

‖B[a](k, ρ)‖s ≤
CN

κ(σ − σ′)n
sup

|ℑθ|<σ
‖ F (θ, ρ)‖s + sup

|ℑθ|<σ
‖∂ρF (θ, ρ)‖s

and therefore we get

‖∂ρS(θ, ρ)‖s+1 ≤
CNµ−1

κ2(σ − σ′)2n
[f ]s,βσ,µ,D.

The functions F and R are complex, and the constructed solution Sζ may also be complex.
Instead of proving that it is real, we replace Sζ , θ ∈ T

n, by its real part and then analytically

extend it to T
n
σ′ , using the relation ℜSζ(θ, ρ) := 1

2(Sζ(θ, ρ) + S̄ζ(θ̄, ρ)). Thus we obtain a real
solution which obeys the same estimates.

5.4. The last equation. — Concerning the fourth component of the homological equation,
(5.5), we have the following result

Proposition 5.4. — Let ω : D → R
n be C1 and verifying |ω − ω0|C1(D) ≤ δ0. Let D ∋ ρ 7→

A(ρ) ∈ NF ∩Ms,β be C1 and verifying

(5.19)
∣

∣∂jρ(A(ρ) −A0)
∣

∣

s,β
≤ δ0

4

for j = 0, 1 and ρ ∈ D. Let f ∈ T s,β(σ, µ,D), 0 < κ ≤ δ0
2 and N ≥ 1.

Then there exists a subset D3 = D3(h, κ,N) ⊂ D, satisfying

meas(D \ D3) ≤ C
(N

c0

)exp( κ

δ0

)exp′

,

and there exist real C1-functions B : D3 → Ms,β ∩NF , Sζζ(·; ρ) : D3 → M+
s,β and Rζζ(·; ρ) :

T
n
σ ×D3 → Ms,β, analytic in θ, such that

(5.20) 〈∇θSζζ(θ, ρ), ω(ρ)〉−A(ρ)JSζζ(θ, ρ)+Sζζ(θ, ρ)JA(ρ) = −fζζ(θ, ρ)+B(ρ)+Rζζ(θ, ρ)
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and for all (θ, ρ) ∈ T
n
σ′ ×D3, σ

′ < σ, and j = 0, 1

µ2
∣

∣∂jρRζζ(θ, ρ)
∣

∣

s,β
≤ C

e−
1
2
(σ−σ′)N

(σ − σ′)n
[f ]s,βσ,µ,D,(5.21)

µ2
∣

∣∂jρSζζ(θ, ρ)
∣

∣

s,β+
≤ C

N1+d∗/γ

κ2+d∗/2β(σ − σ′)n
[f ]s,βσ,µ,D,(5.22)

µ2
∣

∣∂jρB(ρ)
∣

∣

s,β
≤ C [f ]s,βσ,µ,D.(5.23)

The two exponents exp and exp′ are positive numbers depending on n, γ, d∗, α1, α2, β. The
constant C also depends on |ω0|C1(D).

Proof. — As in the previous section, and using the same notation, we re-write (5.20) in
complex variables. So we introduce S = tUSζ,ζU , R = tURζζU and F = tUfζζU .

By construction, Sb
a ∈ M2×2 for all a, b ∈ L. Let us denote

Sb
a =

(

(Sb
a)

ξξ (Sb
a)

ξη

(Sb
a)

ξη (Sb
a)

ηη

)

and then
Sξξ = ((Sb

a)
ξξ)a,b∈L, Sξη = ((Sb

a)
ξη)a,b∈L, Sηη = ((Sb

a)
ηη)a,b∈L.

We use similar notations for R, B and F .
In this notation (5.20) decouples into three equations (11)

〈∇θS
ξξ, ω〉+ iQSξξ + iSξξ tQ = Bξξ − F ξξ +Rξξ,

〈∇θS
ηη , ω〉 − i tQSηη − iSηηQ = Bηη − F ηη +Rηη ,

〈∇θS
ξη, ω〉+ iQSξη − iSξηQ = Bξη − F ξη +Rξη ,

where we recall that Q is the scalar valued matrix associated to A via the formula (2.3).
The first and the second equations are of the same type, so we focus on the resolution of the
second and the third equations. Written in Fourier variables, they read

i(〈k, ω〉 − tQ)Ŝηη(k) − iŜηη(k)Q = δk,0B
ηη − F̂ ηη(k) + R̂ηη(k), k ∈ Z

n,(5.24)

i(〈k, ω〉 +Q)Ŝξη(k)− iŜξη(k)Q = δk,0B
ξη − F̂ ξη(k) + R̂ξη(k), k ∈ Z

n ,(5.25)

where δk,j denotes the Kronecker symbol.

Equation (5.24). We chose Bηη = 0 and decompose the equation into “components” on
each product block [a]× [b]:

(5.26) L Ŝ
[b]
[a](k) = iF̂

[b]
[a](k, ρ)−iR̂

[b]
[a](k)

where we have suppressed the upper index ηη and the operator L := L(k, [a], [b], ρ) is the
linear Hermitian operator, acting in the space of complex [a]× [b]-matrices defined by

LM =
(

〈k, ω(ρ)〉 − tQ[a](ρ)
)

M −MQ[b](ρ).

The matrix Q[a] can be diagonalized in an orthonormal basis:

tP[a]Q[a]P[a] = D[a].

Therefore denoting Ŝ′[b]
[a] = tP[a]S

[b]
[a]P[b], F̂ ′[b]

[a] = tP[a]F
[b]
[a]P[b] and R̂′[b]

[a] = tP[a]R
[b]
[a]P[b] the

homological equation (5.26) reads

(5.27) (〈k, ω〉+D[a])Ŝ′[b]
[a](k)− S′[b]

[a](k)D[b] = iF̂ ′[b]
[a](k)−iR̂′[b]

[a](k).

This equation can be solved term by term:

(5.28) R̂′
jℓ(k) = F̂ ′

jℓ(k), j ∈ [a], ℓ ∈ [b], |k| > N

11. Actually (5.20) decomposes into four scalar equations but the fourth one is the transpose of the third
one.



30 BENOÎT GRÉBERT & ERIC PATUREL

and

(5.29) Ŝ′
jℓ(k) =

i

〈k, ω(ρ)〉 − αj(ρ)− βℓ(ρ)
F̂ ′

jℓ(k), j ∈ [a], ℓ ∈ [b], |k| ≤ N

where αj(ρ) and βℓ(ρ) denote eigenvalues of Q[a](ρ) and Q[b](ρ), respectively. First notice
that by (5.28) one has

|R(θ)|s,β = |R′(θ)|s,β ≤ Ce−
1
2
(σ−σ′)N

(σ − σ′)n
sup

|ℑθ|<σ
|F (θ)|s,β.

To estimate S we want to use Lemma A.3 below. As Q[a] = diag{λa : a ∈ [a]} + B[a] with
B Hermitian, using hypothesis (5.19) we get that

(5.30) |(αj(ρ) + βℓ(ρ))− (λa + λb)| ≤
(

δ0
4

+
δ0
4

)

1

(wawb)β
≤ δ0

2(wawb)β
.

Moreover, in order to apply Lemma A.3 we have to estimate |αj(ρ) − λa| and |βl(r) − λb|,
this is done thanks to assumption (5.19) :

|αj − λa| ≤ ‖Q[a](ρ)− λ[a]Id‖ ≤ 1

w2β
[a]

|A(ρ)−A0|s,β ≤ δ0

4w2β
[a]

and the corresponding estimate holds for |βl(r)− λb|.
It follows as in the proof of Proposition 5.3, using Lemma 5.2, relation (2.5), Assumption

A2 and (5.19), that there exists a subset D2 = D2(h, κ,N) ⊂ D, satisfying

meas(D \ D2) ≤ C
(N

c0

)exp κ

δ0
,

such that

|〈k, ω(ρ)〉 − αj(ρ)− βℓ(ρ)| ≥ κ(1 + |wa +wb|),
holds for all ρ ∈ D2, all |k| ≤ N , all j ∈ [a], ℓ ∈ [b] and all [a], [b] ∈ L̂. Thus for ρ ∈ D2 we

obtain by Lemma A.3 that Ŝ′(k) ∈ M+
s,β for all |k| ≤ N and

|Ŝ′(k)|s,β+ ≤ Cκ−1−d∗/(4β)Nd∗/(2γ)|F̂ ′(k)|s,β .
Therefore we obtain a solution S satisfying for any |ℑθ| < σ′

|S(θ)|s,β+ ≤ CNd∗/(2γ)

κ1+d∗/(4β)(σ − σ′)n
sup

|ℑθ|<σ
|F (θ)|s,β.

The estimates for the derivatives with respect to ρ are obtained by differentiating (5.26)
which leads to (here we drop all the indices to simply the formula)

L(∂ρŜ
[b]
[a](k, ρ)) = −(∂ρL)Ŝ

[b]
[a](k, ρ) + i∂ρF̂

[b]
[a](k, ρ) − i∂ρR̂

[b]
[a](k, ρ) ,

which is an equation of the same type as (5.26) for ∂ρŜ
[b]
[a](k, ρ) and ∂ρR̂

[b]
[a](k, ρ) where

iF̂
[b]
[a](k, ρ) is replaced by B

[b]
[a](k, ρ) = −(∂ρL)Ŝ

[b]
[a](k, ρ) + i∂ρF̂

[b]
[a](k, ρ). This equation is solved

by defining

∂ρŜ
[b]
[a](k, ρ) =χ|k|≤N(k)L(k, [a], [b], ρ)−1B

[b]
[a](k, ρ),

∂ρR̂
[b]
[a](k, ρ) =− iχ|k|>N(k)B

[b]
[a](k, ρ) = χ|k|>N(k)∂ρF̂

[b]
[a](k, ρ) .

Since

|(∂ρL)Ŝ(k, ρ)|s,β ≤ C(N(|∂ρω0|+ δ0) + 2δ0)|Ŝ(k, ρ)|s,β ≤ CN |Ŝ(k, ρ)|s,β ,
we obtain

|B(k, ρ)|s,β ≤ CNκ−1−d∗/(4βNd∗/2γ |F̂ (k)|s,β
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and thus following the same strategy as in the resolution of (5.26) we get

µ2|∂ρS(θ)|s,β+ ≤ CN1+d∗/γ

κ2+d∗/(2β)(σ − σ′)n
[f ]s,βσ,µ,D,

µ2|∂ρR(θ)|s,β ≤Ce
− 1

2
(σ−σ′)N

(σ − σ′)n
[f ]s,βσ,µ,D.

Equation (5.25). It remains to consider (5.25) which decomposes into the “components”
over the product blocks [a]× [b] (we have suppressed the upper index ξη):

〈k, ω(ρ)〉 Ŝ[b]
[a](k) +Q[a](ρ)Ŝ

[b]
[a](k)− Ŝ

[b]
[a](k)Q[b](ρ)

= −iδk,0B[b]
[a] + iF̂

[b]
[a](k, ρ)− iR̂

[b]
[a](k).

(5.31)

First we solve this case when k = 0 and wa = wb by defining

Ŝ
[a]
[a](0) = 0, R̂

[a]
[a](0) = 0 and B

[a]
[a] = F̂

[a]
[a] (0).

Then we impose B
[b]
[a] = 0 for wa 6= wb in such a way B ∈ Ms,β ∩ NF and satisfies

|B|s,β ≤ |F̂ (0)|s,β .
The estimates of the derivatives with respect to ρ are obtained by differentiating the expres-
sions for B.

Then, when k 6= 0 or wa 6= wb, with the same definition of S′, F ′ as in (5.27) we obtain

(5.32) (〈k, ω〉+D[a])Ŝ′[b]
[a](k)− S′[b]

[a](k)D[b] = iF̂ ′[b]
[a](k)−iR̂′[b]

[a](k).

This equation can be solved term by term:

(5.33) R̂′
jℓ(k) = F̂ ′

jℓ(k), j ∈ [a], ℓ ∈ [b], |k| > N

and

(5.34) Ŝ′
jℓ(k) =

i

〈k, ω(ρ)〉 − αj(ρ)− βℓ(ρ)
F̂ ′

jℓ(k), j ∈ [a], ℓ ∈ [b], |k| ≤ N

where αj(ρ) and βℓ(ρ) denote eigenvalues of Q[a](ρ) and Q[b](ρ), respectively. First notice
that by (5.33) one has

|R(θ)|s,β = |R′(θ)|s,β ≤ Ce−
1
2
(σ−σ′)N

(σ − σ′)n
sup

|ℑθ|<σ
|F (θ)|s,β.

To solve (5.34) we face the small divisors

(5.35) 〈k, ω(ρ)〉 + αj(ρ)− βℓ(ρ), j ∈ [a], ℓ ∈ [b].

To estimate them, we have to distinguish between the case k = 0 and k 6= 0.

The case k = 0. In that case we know that wa 6= wb and we use (5.19) and (2.6) to get

|αj(ρ)− βℓ(ρ)| ≥ c0|wa −wb| −
δ0

4w2β
a

− δ0

4w2β
b

≥ κ(1 + |wa − wb|).

This last estimate allows us to use Lemma A.3 to conclude that

|Ŝ(0)|β+ ≤ C

κd∗+1
|F̂ (0)|β .

The case k 6= 0. If k 6= 0 we face the small divisors (5.35) with non-trivial 〈k, ω〉. Using
Hypothesis A3, there is a set D′

2 = D(ω, 2η,N),

meas(D \ D′
2) ≤ CNα1(

η

δ0
)α2 ,
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such that for all ρ ∈ D′
2 and 0 < |k| ≤ N

|〈k, ω(ρ)〉 − λa + λb| ≥ 2η(1 + |wa − wb|).
By (5.19) this implies

|〈k, ω(ρ)〉 − αj(ρ) + βℓ(ρ)| ≥ 2η(1 + |wa − wb|)−
δ0

4w2β
a

− δ0

4w2β
b

≥ η(1 + |wa − wb|)
if

wb ≥ wa ≥
( δ0
2η

)
1
2β
.

Let now wa ≤ ( δ02η )
1
2β . We note that |〈k, ω(ρ)〉 − λa + λb| ≤ 1 implies that

wδ
b ≤ (

δ0
2η

)
δ
2β + C|k| ≤ (

δ0
2η

)
δ
2β +N .

As in Section 5.3, we obtain that

(5.36) |〈k, ω(ρ)〉 + αj(ρ)− βℓ(ρ)| ≥ κ(1 + |wa − wb|) ∀j ∈ [a], ∀ℓ ∈ [b]

holds outside a set F[a],[b],k of measure wd∗
a w

d∗

b (1+|wa−wb|)κδ−1
0 . This can be done considering

equation (5.34) as the multiplication of a vector of size d[a]d[b] called F̂
′
jl(k) by a real diagonal

(hence hermitian) square d[a]d[b]× d[a]d[b] matrix, and using Hypothesis A2, Condition (5.19)
and Lemma 5.2.

If F is the union of F[a],[b],k for |k| ≤ N , [a], [b] ∈ L̂ such that wa ≤ ( δ02η )
1
2β and wδ

b ≤
( δ02η )

δ
2β +N respectively, we have

meas(F ) ≤ C(
δ0
2η

)
d∗+1
2β
(

(
δ0
2η

)
δ
2β +N

)(d∗+2)/δ κ

δ0
Nn

≤ CNn+(d∗+2)/δ(
δ0
η
)
2d∗+3

2β
κ

δ0
.

Now we choose η so that

(
η

δ0
)α2 = (

δ0
η
)
2d∗+3

2β
κ

δ0
i.e.

η

δ0
=
( κ

δ0

)
2β

2d∗+3+2βα2 .

Then, as β ≤ 1, η ≤ κ and δ ≥ 1, we have

meas(F ) ≤ CNn+d∗+2
( κ

δ0

)

2βα2
2d∗+3+2βα2 .

Let D3 = D2 ∩ D′
2 \ F , we have

meas(D \ D3) ≤ CN exp
( κ

δ0

)

2βα2
2d∗+3+2βα2

and by construction for all ρ ∈ D3, 0 < |k| ≤ N , a, b ∈ L and j ∈ [a], ℓ ∈ [b] we have

|〈k, ω(ρ)〉 − αj(ρ) + βℓ(ρ)| ≥ κ(1 + |wa −wb|).
Hence using Lemma A.3 once again we obtain from (5.32) that Ŝ′(k) ∈ M+

s,β and

|Ŝ′(k)|s,β+ ≤ Cκ−1−d∗/2δNd∗/2γ |F̂ ′(k)|s,β.
Therefore we obtain a solution S satisfying for any |ℑθ| < σ′

|S(θ)|s,β+ ≤ CNd∗/2γ

κ1+d∗/2δ(σ − σ′)n
sup

|ℑθ|<σ
|F (θ)|s,β,

The estimates of the derivatives with respect to ρ are obtained by differentiating (5.31) and
proceeding as at the end of the resolution of equation (5.24).



KAM FOR THE KLEIN GORDON EQUATION ON Sd. 33

In this way we have constructed a solution Sζζ , Rζζ , B of the fourth component of the
homological equation which satisfies all required estimates. To guarantee that it is real, as
at the end of Section 5.3 we replace Sζζ , Rζζ , B by their real parts and extend it analytically

to T
n
σ′ (e.g, replace Sζζ(θ, ρ) by

1
2 (Sζζ(θ, ρ) + S̄ζζ(θ̄, ρ))).

5.5. Summing up. — Let

h = ω(ρ) · r + 1

2
〈ζ,A(ρ)ζ〉

where ρ→ ω(ρ) and ρ→ A(ρ) are C1 on D and A is on normal form.

Proposition 5.5. — Assume

(5.37) |∂jρ(A(ρ) −A0)|s,β ≤ δ0
4
, |∂jρ(ω − ω0)| ≤ δ0

for j = 0, 1 and ρ ∈ D. Let f ∈ T s,β(σ, µ,D), 0 < κ ≤ δ0
2 and N ≥ 1. Then there exists a

subset D′ = D′(h, κ,N) ⊂ D, satisfying

meas(D \ D′) ≤ CN exp
( κ

δ0

)exp′

,

and there exist real jet-functions S ∈ T s,β+(σ′, µ,D′) , R ∈ T s,β(σ′, µ,D′) and a normal form

ĥ = [[ f(·, 0; ρ) ]] + [[∇rf(·, 0; ρ) ]] · r +
1

2
〈ζ,B(ρ)ζ〉,

such that

{h, S} + fT = ĥ+R.

Furthermore, for all 0 ≤ σ′ < σ

(5.38) |∂jρB(ρ)|s,β ≤ C [f ]s,βσ,µ,D′ , j = 0, 1 and ρ ∈ D′

(5.39) [S]s,β+σ′,µ,D′ ≤ C
N1+d∗/γ

κ2+d∗/2β(σ − σ′)n
[f ]s,βσ,µ,D′

(5.40) [R]s,βσ′,µ,D′ ≤ C
e−

1
2
(σ−σ′)N

(σ − σ′)n
[f ]s,βσ,µ,D′ .

The two exponents exp and exp′ are positive numbers depending on c0, n, d
∗, α1, a2, γ, β.

The constant C also depends on |ω0|C1(D).

Proof. — We define S by

S(θ, r, ζ) = Sθ(θ) + 〈Sr(θ), r〉+ 〈Sζ(θ), ζ〉+
1

2
〈Sζζ(θ)ζ, ζ〉.

where Sθ, Sr, Sζ and Sζζ are constructed in Propositions 5.1, 5.3 and 5.4. Hamiltonians R
and B are also constructed in these 3 propositions. Then all the statements in Proposition
5.5 are satisfied and in particular we notice that

∇ζS = Sζ + Sζζζ

belongs to Ys+β as a consequence of Propositions 5.3, 5.4 and Lemma 4.1 (iii).

6. Proof of the KAM Theorem.

The Theorem 2.2 is proved by an iterative KAM procedure. We first describe the general
step of this KAM procedure.
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6.1. The KAM step. — Let h be a normal form Hamiltonian

h = ω · r + 1

2
〈ζ,A(ω)ζ〉

with A on normal form, A−A0 ∈ Mβ and satisfying (5.37). Let f ∈ T s,β(σ, µ,D) be a (small)

Hamiltonian perturbation. Let S = ST ∈ T s,β+(σ′, µ,D′) be the solution of the homological
equation

(6.1) {h, S} + fT = ĥ+R.

defined in Proposition 5.5. Then defining

h+ := h+ ĥ,

we get

h ◦ Φ1
S = h+ + f+

with

(6.2) f+ = R+ (f − fT ) ◦ Φ1
S +

∫ 1

0
{(1 − t)(ĥ+R) + tfT , S} ◦ Φt

S dt.

The following Lemma gives an estimation of the new perturbation:

Lemma 6.1. — Let κ > 0, N ≥ 1, 0 < σ′ < σ ≤ 1 and 0 < 2µ′ < µ ≤ 1. Assume
that D′ ⊂ D, that f ∈ T s,β(σ, µ,D), that R satisfies (5.40) and that S = ST belongs to

T s,β+(σ′′, µ,D′) with σ′′ = σ+σ′

2 and satisfies

(6.3) [S]s,β+σ′′,µ,D′ ≤
1

16
µ2(σ − σ′).

Then the function f+ given by formula (6.2) belongs to T s,β(σ′, µ′,D′) and

[f+]s,βσ′,µ′,D′ ≤M

(

e−
1
2
(σ−σ′)N

(σ − σ′)n
+

(

µ′

µ

)3

+
N1+d∗/γ

κ2+d∗/2βµ2(σ − σ′)n+1
[f ]s,βσ,µ,D

)

[f ]s,βσ,µ,D(6.4)

where M is a constant depending on n, d∗, α1, α2, c0, γ and β.

Proof. — Let us denote the three terms in the r.h.s. of (6.2) by f+1 , f+2 and f+3 . In view of

(5.40), we have that [f+1 ]s,βσ′,µ′,D′ is controlled by the first term in r.h.s. of (6.4).
By Proposition 4.2, we get

[f − fT ]s,βσ,2µ′,D′ ≤ C

(

µ′

µ

)3

[f ]s,βσ,µ,D.

By hypothesis S = ST belongs to T s,β+(σ′, µ,D′) and satisfies (6.3) which implies [S]s,β+σ′′,µ,D′ ≤
1
2(µ−µ′)2(σ′′−σ′) since 2µ′ < µ. Therefore by Lemma 4.6 and since 2µ′ ≤ 2(µ−µ′), [f+2 ]s,βσ′,µ′,D′

is controlled by the second term in r.h.s. of (6.4).

It remains to control [f+3 ]s,βσ′,µ′,D′. To begin with, gt := (1 − t)(ĥ+ R) + tfT is a jet function

in T s,β(σ′, µ,D). Furthermore, defining for j = 1, 2,

σj = σ′ + j
σ − σ′

3

and using (5.40) we get (for N large enough)

[gt]
s,β
σ2,µ,D′ ≤ C

(

1 + 3n
e−(σ−σ′)N/6

(σ − σ′)n

)

[f ]s,βσ,µ,D ≤ C[f ]s,βσ,µ,D.

On the other hand S ∈ T s,β+(σ2, µ,D′) is also a jet function and satisfies

[S]s,β+σ2,µ,D′ ≤
CN1+d∗/γ

κ2+d∗/2β(σ − σ′)n
[f ]s,βσ,µ,D.
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Then using Lemma 4.3 we have

[{gt, S}]s,βσ1,µ,D′ ≤ C
N1+d∗/γ

κ2+d∗/2βµ2(σ − σ′)n+1
([f ]s,βσ,µ,D)

2.

We conclude the proof by Proposition 4.6.

6.2. Choice of parameters. — To prove the main theorem we construct the transforma-
tion Φ as the composition of infinitely many transformations S as in Theorem 5.5, i.e. for all
k ≥ 1 we construct iteratively Sk, hk, fk following the general scheme (6.1)–(6.2) as follows :

(h+ f) ◦ Φ1
S1

◦ · · · ◦ Φ1
Sk

= hk + fk.

At each step fk ∈ T s,β(σk, µk,Dk) with [fk]
s,β
σk ,µk,Dk

≤ εk , hk = 〈ωk, r〉+ 1
2〈ζ,Akζ〉 is on normal

form, the Fourier series are truncated at order Nk and the small divisors are controlled by
κk. In this section we specify the choice of all the parameters for k ≥ 1.
First we fix

κ0 = ε
1

24(2+d∗/2β) .

We define ε0 = ε, σ0 = σ, µ0 = µ and for j ≥ 1 we choose

σj−1 − σj =C∗σ0j
−2,

Nj =2(σj − σj+1)
−1 ln ε−1

j ,

κj =ε
1

24(2+d∗/2β)

j

µj =

(

εj

(2M)jε6/5

) 1
3

,

where M is the absolute constant defined in (6.4) and (C∗)−1 = 2
∑

j≥1
1
j2 , and

(6.5) εj = (εj−1)
5
4 .

Observe that with this choice, (µj) satisfies 2µj+1 ≤ µj. Then the only unfixed parameter
is ε = ε0, that will be fixed next section. Nevertheless, ε will be small enough to ensure the
property κj ≤ δ0

2 that is necessary to apply Proposition 5.5. This is guaranteed if

(6.6) ε
1

24(2+d∗/2β) ≤ δ0
2
.

6.3. Iterative lemma. — Let set D0 = D, h0 = 〈ω0(ρ), r〉+ 1
2〈ζ,A0ζ〉 and f0 = f in such

a way [f0]
s,β
σ0,µ0,D0

≤ ε0. For k ≥ 0 let us denote

Ok = Os(σk, µk).

Lemma 6.2. — For ε sufficiently small depending on µ0, σ0, n,s, β and |ω0|C1(D) we have
the following:
For all k ≥ 1 there exist Dk ⊂ Dk−1, Sk ∈ T s,β+(σk, µk,Dk), hk = 〈ωk, r〉 + 1

2〈ζ,Akζ〉 on

normal form and fk ∈ T s,β(σk, µk,Dk) such that
(i) The mapping

(6.7) Φk(·, ρ) = Φ1
Sk

: Ok → Ok−1, ρ ∈ Dk, k = 1, 2, · · ·
is an analytic symplectomorphism linking the hamiltonian at step k − 1 and the hamil-
tonian at the step k, i.e.

(hk−1 + fk−1) ◦ Φk = hk + fk.
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(ii) we have the estimates

meas(Dk−1 \ Dk) ≤ εαk−1,

[hk − hk−1]
s,β
σk,µk ,Dk

≤ Cεk−1,

[fk]
s,β
σk,µk ,Dk

≤ εk,

‖Φk(x, ρ)− x‖s ≤ ε4/5.ε
1/4
k−1, for x ∈ Ok, ρ ∈ Dk.

The exponents α is a positive number depending on n, d∗, α1, a2, γ, β. The constant C also
depends on |ω0|C1(D).

Proof. — At step 1, h0 = 〈ω0(ρ), r〉+ 1
2〈ζ,A0ζ〉 and thus hypothesis (5.37) is trivially satisfied

and we can apply Proposition 5.5 to construct S1, R0, B0 and D1 such that for ρ ∈ D1

{h0, S0}+ fT0 = ĥ0 +R0.

Then we see that, using (5.39) and defining σ1/2 =
σ0+σ1

2 , we have

[S1]
s,β+
σ1/2,µ0,D1

≤ C
ε0N

1+d∗/γ
0

κ
2+d∗/2β
0 (σ0 − σ1/2)n

≤ 1

16
µ20(σ0 − σ1)

for ε = ε0 small enough in view of our choice of parameters. Therefore both Proposition 4.7
and Lemma 6.2 apply and thus for any ρ ∈ D1, Φ1(·, ρ) = Φ1

S1
: O1 → O0 is an analytic

symplectomorphism such that

(h0 + f0) ◦ Φ1 = h1 + f1

with h1, f1, D1 and Φ1 satisfying the estimates (ii)k=1 . In particular we have

‖Φ1(x)− x‖s ≤
C

σ0µ
2
0

[S1]
s,β+
σ1/2,µ0,D1

≤ CN
1+d∗/γ
0

σn+1
0 µ20κ

2+d∗/2β
0

ε0 ≤
C(ln ε0)

1+d∗/γ

σ
n+2+d∗/γ
0 µ20

ε
23/24
0 ≤ 1

2
ε
11/12
0

for ε0 small enough.

Now assume that we have completed the iteration up to step j. We want to perform the
step j + 1. We first note that by construction (see Proposition 5.5)

Aj = A0 +B0 + · · ·+Bj−1

and by (5.38)

|Aj |β ≤ ε0 + · · · + εj−1 ≤ 2ε0 ≤
1

4
δ0

for ε0 small enough. Similarly

ωj = ω0 + [[∇rf0(·, 0; ρ) ]] + · · ·+ [[∇rfj−1(·, 0; ρ) ]]

and thus |∂jr(ωj − ω0)| ≤ δ0 for ε0 small enough.
Therefore (5.37) is satisfied at rank j and we can apply Proposition 5.5 in order to construct
Sj+1, Bj, Rj and Dj.

Then we construct fj+1 as in (6.2), i.e.

fj+1 = Rj + (fj − fTj ) ◦ Φ1
Sj+1

+

∫ 1

0
{(1− t)(ĥj +Rj) + tfTj , Sj+1} ◦ Φt

Sj+1
dt.

To control fj+1 we may apply Lemma 6.1 since, defining σj+1/2 =
σj+σj+1

2 ,

[Sj+1]
s,β+
σj+1/2,µj ,Dj+1

≤ C
εjN

1+d∗/γ
j

κ
2+d∗/2β
j (σj − σj+1)n

≤ 1

8
µ2j(σj − σj+1).
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Therefore we can apply Lemma 6.1 and, using the preceding choice of parameters, we may
bound all the terms of the r.h.s. of (6.4). Let us start with the second term:

(6.8) M

(

µj+1

µj

)3

εj =
1

2
εj+1 .

The third term may be computed as
(6.9)

M

(

2(j + 1)2 ln(ε−1
j )

C∗σ0

)1+d∗/γ
(

(j + 1)2

C∗σ0

)n+1 ε
2−1/24
j

µ2j
= C(j+1)2n+3+2d∗/γ(2M)2j/3ε4/5(εj)

1/24εj+1

and there exists ε̄1 > 0 such that for 0 < ε ≤ ε̄1 we have for any j ≥ 1

C(j + 1)2n+3+2d∗/γ(2M)2j/3(ε)
4
5
+ 1

24
.( 5

4
)j ≤ 1

4
.

The first term gives

(6.10) M
ε2j
C∗σ0

(j + 1)2n =M
(j + 1)2n

C∗σ0
(ε)

3
4
.( 5

4
)jεj+1 ,

and there exists ε̄2 > 0 such that for 0 < ε ≤ ε̄2 we have for any j ≥ 1

M
(j + 1)2n

C∗σ0
(ε)

3
4
.( 5

4
)j ≤ 1

4
.

Take ε0 ≤ ε̄ = min(ε̄1, ε̄2) > 0 and we conclude that

(6.11) [fj+1]
s,β
σj+1,µj+1,Dj+1

≤ εj+1.

On the other hand by Proposition 5.5 the domain Dj+1 satisfies

meas(Dj \ Dj+1) ≤ CN exp
j

(κj
δ0

)exp′

≤ εαj

for some α > 0 and for ε0 = ε small enough. The estimate concerning hk+1−hk follows from
(5.38) and (6.11) for the infinite dimensional part, from (6.11) for the control of [[ fj+1(·, 0; ρ) ]]
and a straightforward Cauchy estimate for the control of the mean value [[∇rfj+1(·, 0; ρ) ]].
Concerning the flow, we have for j ≥ 1,

‖Φj+1(x)− x‖s ≤ C

σjµ2j
[Sj+1]

s,β+
σj+1/2,µj ,Dj+1

≤
CN

1+d∗/γ
j

σn+1
j µ2jκ

2+d∗/2β
j

εj

≤ C ′(ln εj)
1+d∗/γ(2M)2j/3jn+2+d∗/γε4/5ε

7/24
j ≤ ε4/5

1

2
ε
1/4
j ,

for ε small enough.

6.4. Transition to the limit and proof of Theorem 2.2. — Let

D′ = ∩k≥0Dk.

In view of the iterative lemma, this is a Borel set satisfying

meas(D \ D′) ≤ 2εα.

Let us set
Ql = Os(σ/ℓ, µ/ℓ), Zs = T

n
σ × C

n × Ys

where ℓ ≥ 2, and recall that ‖ · ‖s denotes the natural norm on C
n × C

n × Ys. It defines
the distance on Zs. We used the notations introduced in Lemma 6.2. By Proposition 4.5
assertion 2 and since σk > σ/2, for each ρ ∈ D′ and k ≥ 2, the map Φk extends to Q2 and
satisfies on Q2 the same estimate as on Ok:

(6.12) Φk : Q2 → Zs, ‖Φk − Id‖s ≤ Cµ−2
k (σk−1 − σk)

−1εk ≤ k2

C∗σ0
(2M)2k/3ε

1/3
k ε4/5.



38 BENOÎT GRÉBERT & ERIC PATUREL

Now for 0 ≤ j ≤ N let us denote Φj
N = Φj+1 ◦ · · · ◦ ΦN . Due to (6.7), it maps ON to Oj .

Again using Proposition 4.5, this map extends analytically to a map Φj
N : Q2 → Zs, and by

(6.12), for M > N , ‖Φj
N − Φj

M‖s ≤ Cε
1/4
N ε4/5, i.e. (Φj

N )N is a Cauchy sequence. Thus when

N → ∞ the maps Φj
N converge to a limiting mapping Φj

∞ : Q2 → Zs. Furthermore we have

(6.13) ‖Φj
∞ − Id‖s ≤ Cε4/5

∑

k≥j

ε
1/4
k ≤ Cε4/5ε

1/4
j , ∀j ≥ 1.

By the Cauchy estimate the linearized map satisfies

(6.14) ‖DΦj
∞(x)− Id‖L(Ys,Ys) ≤ Cε4/5ε

1/4
j , ∀x ∈ Q3, ∀j ≥ 1.

By construction, the map Φ0
N transforms the original hamiltonian

H0 = 〈ω, r〉+ 1

2
〈ζ,A0ζ〉+ f

into

HN = 〈ωN , r〉+
1

2
〈ζ,AN (ω)ζ〉+ fN .

Here

ωN = ω + [[∇rf0(·, 0; ρ) ]] + · · ·+ [[∇rfN−1(·, 0; ρ) ]]
and

AN = A0 +B0 + · · ·+BN−1

where Bk is built from 〈∇2
ζζfk(·, 0)〉 as in the proof of Proposition 5.4.

Clearly, ωN → ω′ and AN → A where the vector ω′ ≡ ω′(ρ) and the operator A ≡ A(ρ)
satisfy the assertions of Theorem 2.2.
Let us denote Φ = Φ0

∞, consider the limiting hamiltonian H ′ = H0 ◦ Φ and write it as

H ′ = 〈ω′, r〉+ 1

2
〈ζ,A(ρ)ζ〉 + f ′.

The function f ′ is analytic in the domain Q2. Since H
′ = Hk ◦ Φk

∞, we have

∇H ′(x) = DΦk
∞(x) · ∇Hk(Φ

k
∞(x)).

As [fk]
s,β
σk,µk,Dk

≤ εk, we deduce

∇rHk(Φ
k
∞(θ, 0, 0)) = ωk +O(ε

1/4
k ) θ ∈ T

n
σ
3
.

Since the map Φk
∞ satisfies (6.14), then

∇rH
′(θ, 0, 0) = ω′ +O(ε

1/4
k ) for all k ≥ 1 and θ ∈ T

n
σ
3
.

Hence, ∇rH
′(θ, 0, 0) = ω′ and thus

∇rf
′(θ, 0, 0) ≡ 0 for θ ∈ T

n
σ
3
.

Similar arguments lead to

∇ζaf
′(θ, 0, 0) ≡ 0 and ∇ζa∇rf

′(θ, 0, 0) ≡ 0 for θ ∈ T
n
σ
3
.

Now consider ∇ζa∇ζbH
′(x). To study this matrix let us write it in the form (4.29), with

h = Hk and x(1) = Φk
∞(x). Repeating the arguments used in the proof of Proposition 4.6 we

get that

∇ζa∇ζbH
′(θ, 0, 0) = (Ak)ab +O(ε

1/4
k ) for all k ≥ 1 and θ ∈ T

n
σ
3
.

Therefore ∇ζa∇ζbH
′(θ, 0, 0) = Aab i.e.

∇ζa∇ζbf
′(θ, 0, 0) = 0 for θ ∈ T

n
σ
3
.

This concludes the proof of Theorem 2.2.
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Appendix A

Some calculus

Lemma A.1. — Let j, k, ℓ ∈ N \ {0} then

(A.1)
min(j, k)

min(j, k) + |j2 − k2|
min(k, ℓ)

min(k, ℓ) + |k2 − ℓ2| ≤
min(j, ℓ)

min(j, ℓ) + |j2 − ℓ2| .

Proof. — Without lost of generality we can assume j ≤ ℓ.
If k ≤ j then |k2 − ℓ2| ≥ |j2 − ℓ2| and thus

min(j, ℓ)

min(j, ℓ) + |j2 − ℓ2| =
j

j + |j2 − ℓ2| ≥
j

j + |k2 − ℓ2|

≥ k

k + |k2 − ℓ2| =
min(k, ℓ)

min(k, ℓ) + |k2 − ℓ2|
which leads to (A.1). The case ℓ ≤ k is similar.
In the case j ≤ k ≤ ℓ we have

min(j, k)

min(j, k) + |j2 − k2|
min(k, ℓ)

min(k, ℓ) + |k2 − ℓ2| ≤
j

j + |j2 − k2|+ |k2 − ℓ2|

≤ j

j + |j2 − ℓ2| =
min(j, ℓ)

min(j, ℓ) + |j2 − ℓ2| .

Lemma A.2. — Let j ∈ N then
∑

k∈N

1

kβ(1 + |k − j|) ≤ C

for a constant C depending only on β > 0.

Proof. — We note that
∑

k∈N

1

kβ(1 + |k − j|) = a ⋆ b(j)

where ak = 1
k for k ≥ 1, ak = 0 for k ≤ 0 and bk = 1

1+|k| , k ∈ Z. We have that b ∈ ℓp for

any 1 < p ≤ +∞ and that a ∈ ℓq for any 1
β < q ≤ +∞. Thus by Young inequality a ⋆ b ∈ ℓr

for r such that 1
p + 1

q = 1 + 1
r . In particular choosing q = 2

β and p = 2
2−β we conclude that

a ⋆ b ∈ ℓ∞.

The following Lemma is a variant of Proposition 2.2.4 in [11].

Lemma A.3. — Let A ∈ Ms,β and let B(k) defined by

(A.2) B(k)lj =
i

〈k, ω〉 + εµj − µl
Al

j , j ∈ [a], ℓ ∈ [b]

where ε = ±1, (µa)a∈L is a sequence of real numbers satisfying

(A.3) |µa − λa| ≤ min

(

Cµ

wδ
a

,
c0
4

)

, for all a ∈ L

for a given Cµ > 0 and δ > 0, and such that for all a, b ∈ L and all |k| ≤ N

(A.4) |〈k, ω(ρ)〉 + εµa − µb| ≥ κ(1 + |wa − wb|).
Then B ∈ M+

s,β and there exists a constant C > 0 depending only on Cµ, A and δ such that

|B(k)|s,β+ ≤ C
|A|s,βN

d∗

2γ

κ1+
d∗

2δ

for all |k| ≤ N.
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Proof. — We first remark that the claimed property only concerns the operator norms of the

blocks B
[b]
[a], which can be computed separately. Let k1 and k2 be positive integers that will

be fixed later. We define the following decomposition in Ms,β, according to the weights wa

and wb :

Ms,β = Υ1
s,β(k1, k2)⊕Υ2

s,β(k1, k2)⊕Υ3
s,β(k1, k2) ,

where

Υ1
s,β(k1, k2) =

{

M ∈ Ms,β,M
[b]
[a] = 0 if max(wa, wb) ≤ k1 min(wa, wb)

}

,

Υ2
s,β(k1, k2) =

{

M ∈ Ms,β,M
[b]
[a] = 0 if max(wa, wb) > k1 min(wa, wb) or max(wa, wb) ≤ k2

}

,

Υ3
s,β(k1, k2) =

{

M ∈ Ms,β,M
[b]
[a] = 0 if max(wa, wb) > k1 min(wa, wb) or max(wa, wb) > k2

}

,

and we prove the desired estimates according to this decomposition. Since we estimate the

operator norm of B
[b]
[a], we need to rewrite the definition (A.2) in a operator way : denoting by

D[a] the diagonal (square) matrix with entries µj , for j ∈ [a] and D′
[a] the diagonal (square)

matrix with entries 〈k, ω(ρ)〉 + εµj, for j ∈ [a], equation (A.2) reads

(A.5) D′
[a]B

[b]
[a] −B

[b]
[a]D[b] = iA

[b]
[a] .

Step 1 : suppose A ∈ Ms,β ∩ Υ1
s,β(k1, k2). The only nonzero blocks A

[b]
[a] correspond to

weights wa and wb such that

max(wa, wb) > k1 min(wa, wb)

take for instance wa > k1wb. Then |wa − wb| ≥ wa(1− 1
k1
), wa ≥ k1 and

(A.6) |〈k, ω(ρ)〉 + εµa| ≥ c0

(

wγ
a − 1

4

)

− nN max(ωk(ρ)) ≥
c0
2
wγ
a ,

for

(A.7) k1 ≥
(

4nNc−1
0 max(ωk(ρ))

)1/γ
:= C1,

that proves that D′
[a] is invertible and gives an upper bound for the operator norm of its

inverse. Then (A.5) is equivalent to

(A.8) B
[b]
[a] −D′

[a]
−1
B

[b]
[a]D[b] = iD′

[a]
−1
A

[b]
[a] .

Next consider the operator L 1
[a]×[b] acting on matrices of size [a]× [b] such that

(A.9) L
1
[a]×[b]

(

B
[b]
[a]

)

:= D′
[a]

−1
B

[b]
[a]D[b] .

We have

(A.10) ‖L 1
[a]×[b]

(

B
[b]
[a]

)

‖ ≤ 4wb

wa
‖B[b]

[a]‖ ≤ 4

k1
‖B[b]

[a]‖ ,

hence, in operator norm, ‖L 1
[a]×[b]‖ ≤ 1

2 if k1 ≥ 8. Then the operator Id−L 1
[a]×[b] is invertible

and

‖B[b]
[a]‖ ≤ ‖

(

Id− L[a]×[b]

)−1 ‖‖iD′
[a]

−1
A

[b]
[a]‖

≤ 4

wa
‖A[b]

[a]‖

≤ 4k1
k1 − 1

1

1 + |wa − wb|
‖A[b]

[a]‖

We have obtained that, for k1 ≥ max(C1, 8), B ∈ M+
s,β and

(A.11) |B|s,β+ ≤ 8|A|s,β



KAM FOR THE KLEIN GORDON EQUATION ON Sd. 41

Step 2 : suppose A ∈ Ms,β ∩ Υ2
s,β(k1, k2). The only nonzero blocks A

[b]
[a] correspond to

weights wa and wb such that

max(wa, wb) ≤ k1 min(wa, wb) and max(wa, wb) > k2 .

Notice that these two conditions imply that

min(wa, wb) ≥
k2
k1
.

We define the square matrix D̃[a] = λa1[a], where 1[a] is the identity matrix. Then

(A.12) ‖D[a] − D̃[a]‖ ≤ Cµ

wδ
a

,

and equation (A.2) may be rewritten as

(A.13) L
2
[a]×[b]

(

B
[b]
[a]

)

− ε(D̃[a] −D[a])B
[b]
[a] +B

[b]
[a](D̃[b] −D[b]) = A

[b]
[a] ,

where we denote by L 2
[a]×[b] the operator acting on matrices of size [a]× [b] such that

(A.14) L
2
[a]×[b]

(

B
[b]
[a]

)

:= (〈k, ω(ρ)〉 + ελa − λb)B
[b]
[a] .

This dilation is invertible and (A.4) then gives, in operator norm,

(A.15) ‖
(

L
2
[a]×[b]

)−1
‖ ≤ 1

κ(1 + |wa − wb|)
.

This allows to write (A.13) as

(A.16) B
[b]
[a] −

(

L
2
[a]×[b]

)−1
K[a]×[b]

(

B
[b]
[a]

)

=
(

L
2
[a]×[b]

)−1 (

A
[b]
[a]

)

,

where K[a]×[b]

(

B
[b]
[a]

)

= ε(D̃[a] − D[a])B
[b]
[a] − B

[b]
[a](D̃[b] − D[b]). We have, thanks to (A.3), in

operator norm,

(A.17) ‖K[a]×[b]‖ ≤ Cµ

(

1

wδ
a

+
1

wδ
b

)

≤ Cµ

(k1
k2

)δ
.

Then for

(A.18) k2 ≥ k1(
2Cµ

κ
)1/δ,

the operator Id− (L 2
[a]×[b])

−1K[a]×[b] is invertible and from (A.16) we get

‖B[b]
[a]‖ = ‖

(

Id− (L 2
[a]×[b])

−1
K[a]×[b]

)−1
‖‖
(

L
2
[a]×[b]

)−1 (

A
[b]
[a]

)

‖

≤ 2‖
(

L
2
[a]×[b]

)−1 (

A
[b]
[a]

)

‖ ,

Hence in this case

(A.19) |B|s,β+ ≤ 2

κ
|A|s,β

Step 3 : suppose A ∈ Ms,β ∩ Υ3
s,β(k1, k2). The only nonzero blocks A

[b]
[a] correspond to

weights wa and wb such that

max(wa, wb) ≤ k1 min(wa, wb) and max(wa, wb) ≤ k2 ,

hence there are only finitely many such blocks. In this case, for any j ∈ [a] and l ∈ [b] we
have

(A.20) |Bl
j| =

∣

∣

∣

∣

i

〈k, ω(ρ)〉 + εµj − µl

∣

∣

∣

∣

|Al
j | ≤

1

κ(1 + |wa − wb|)
|Al

j |
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A majoration of the coefficients gives a poor majoration of the operator norm of a matrix,
but it is sufficient here since the number of nonzero blocks (and their size, see (2.1)) is finite :

(A.21) ‖B[b]
[a]‖ ≤ (

(Cb max(wa, wb))
d∗/2

κ(1 + |wa − wb|)
‖A[b]

[a]‖ ,

hence B ∈ M+
s,β and

(A.22) |B|s,β+ ≤ (Cbk2)
d∗/2

κ
|A|s,β .

Collecting (A.11), (A.19) and (A.22) and taking into account (A.7), (A.18) leads to the
result.
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[24] S. B. Kuksin and J. Pöschel. Invariant Cantor manifolds of quasi-periodic oscillations for a non-
linear Schrödinger equation. Ann. Math. 143 (1996), 149–179.
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