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Abstract

We expand the theoretical background of the recently introduced superadditive
and subadditive transformations of aggregation functions A. Necessary and sufficient
conditions ensuring that a transformation of a proper aggregation function is again
proper are deeply studied and exemplified. Relationships between these transforma-
tions are also studied.
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1 Introduction

Motivated by applications in economics, subadditive and superadditive transformations of
aggregation functions on R+ = [0,∞[ have been recently introduced in [4]. Formally, both
these transformations can be introduced on the improper real interval [0,∞].

Definition 1 A mapping A : [0,∞]n → [0,∞] is called an (n-ary) aggregation function
if A(0, . . . , 0) = 0 and A is increasing in each coordinate. Further, A is called a proper
(n-ary) aggregation function if it satisfies the following two additional constraints:

(i) A(x) ∈ ]0,∞[ for some x ∈ ]0,∞[n,

(ii) A(x) <∞ for all x ∈ [0,∞[n.

Though for real applications we only need proper aggregation functions (in fact, their
restriction to the domain [0,∞[n), a broader framework of all (n-ary) aggregation function
is of advantage in a formal description of our results, making formulations and expressions
more transparent. Observe that our framework is broader than the concept of aggregation
functions on [0,∞] as introduced in [1], [3], which does not cover Sugeno integral based
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aggregation functions, for example. We denote the class of all n-ary aggregation function
by An, and the class of all n-ary proper aggregation function by Pn.

The next definition was motivated by optimization tasks treated in linear programming
area and related areas [2], as well as by recently introduced concepts of concave [5] and
convex [6] integrals.

Definition 2 For every A ∈ An the subadditive transformation A∗ : [0,∞]n → [0,∞] of
A is given by

A∗(x) = inf {
k∑
i=1

A(y(i)) |
k∑
i=1

y(i) ≥ x} (1)

Similarly, for every A ∈ An the superadditive transformation A∗ : [0,∞]n → [0,∞] of A is
defined by

A∗(x) = sup {
∑̀
j=1

A(y(j)) |
∑̀
j=1

y(j) ≤ x} . (2)

Observe that the transformation (1) was originally introduced in [4] for A ∈ Kn∗ , where
Kn∗ is the class of all n-ary proper aggregation functions (restricted to [0,∞[n) such that
also A∗ is proper, that is, A∗ ∈ Pn. Similarly, A∗ given by (2) was originally introduced
in [4] only for A ∈ K∗n, where K∗n is the class of all A ∈ Pn (restricted to [0,∞[n), so that
A∗ ∈ Pn as well.

Theorem 2 in [4] gives a necessary and sufficient condition ensuring that a function
A ∈ Pn has also the property that A ∈ K∗n. We develop this result, giving an equivalent
condition. Moreover, we also characterize all the functions A ∈ Pn such that A ∈ Kn∗ . Our
approach is based on a deep study of transformations (1) and (2) on unary aggregation
functions that belong to P1. Our approach allows to show that for any A ∈ Pn we have
the inequality (A∗)

∗ ≤ (A∗)∗.

The paper is organized as follows. In the next section, the classes K∗1 and K1
∗ are

completely described, showing that the properties in a neighbourhood of 0 are important
for characterization of elements of these classes. In Section 3, necessary and sufficient
conditions for a function A ∈ Pn to belong to K∗n, or to Kn∗ , are given. Section 4 is devoted
to the study of relationships of transformations (A∗)

∗ and (A∗)∗. Finally, some concluding
remarks are added.

2 The one-dimensional case

We begin with basic results which show how the values of the subadditive and superadditive
transformations of one-dimensional aggregation functions depend on the behavior of the
functions near zero.
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Theorem 1 Let h be an unary aggregation function on [0,∞] with lim inft→0+ h(t)/t = a
and lim supt→0+ h(t)/t = b, where 0 ≤ a ≤ b ≤ ∞. Then, for every x ∈ ]0,∞[ we have
h∗(x) ≤ ax and h∗(x) ≥ bx.

Proof. Let x > 0. By definitions of h∗ and h∗, for every positive integer n we have
h∗(x) ≤ nh(x/n) ≤ h∗(x), that is,

h∗(x) ≤ x ·
h(x

n
)

x
n

≤ h∗(x) . (3)

Since h is increasing, for every t such that x
n+1
≤ t ≤ x

n
we have

h( x
n+1

)
x
n

≤ h(t)

t
≤
h(x

n
)

x
n+1

.

Applying the limits inferior and superior to these inequalities as t→ 0+ and n→∞ (with
n+1
n
→ 1) shows that

lim inf
n→∞

h(x
n
)

x
n

≤ lim inf
t→0+

h(t)

t
and lim sup

n→∞

h(x
n
)

x
n

≥ lim sup
t→0+

h(t)

t
. (4)

Combining (3) with (4) now gives

h∗(x) ≤ x · lim inf
t→0+

h(t)

t
= ax and h∗(x) ≥ x · lim sup

t→0+

h(t)

t
= bx

for every x > 0, which completes the proof. 2

The values of lim inft→0+
h(t)
t

and lim supt→0+
h(t)
t

can be interpreted as the ‘lower’ and
‘upper’ slope of h at the point x = 0. The previous result may therefore be interpreted by
saying that the values of h∗ and h∗ are to a large extent influenced by the values of the
lower and upper slopes of h at 0.

Corollary 1 Suppose that h is an unary aggregation function on [0,∞] such that the
derivative h

′
(0+) exists and is equal to c ∈ [0,∞[.

(1) If h is convex on [0,∞[, then h∗(x) = cx and h∗(x) = h(x) for every x ≥ 0.

(2) If h is concave on [0,∞[, then h∗(x) = h(x) and h∗(x) = cx for every x > 0.

Proof. For (1) it is sufficient to realize that h(x) ≥ ax for every x ≥ 0, the claim then
follows from Theorem 1 regarding h∗ and from [4] regarding h∗. The proof of (2) is similar
and therefore omitted. 2

3



bx

ax

qq q q 2j - 12j 2j + 12j + 2

0.5 1.0 1.5

5

10

15

20

25

30

Figure 1: A schematic drawing of a function h from the proof of Corollary 2.

Corollary 2 For any real a, b such that 0 < a < b < ∞ there is an infinite number of
smooth unary aggregation functions h on [0,∞] such that h∗(x) = ax and h∗(x) = bx for
each x ∈ [0,∞[.

Proof. Let q be a positive real number such that q < a/b < 1; note that bq2j < aq2j−1

for every positive integer j. Results from calculus now imply the existence of infinitely
many smooth increasing functions h(x) defined on [0,∞[ such that ax ≤ h(x) ≤ bx for
every x ∈ [0,+∞[, h(q2j−1) = aq2j−1 and h(q2j) = bq2j for every positive integer j.

Since ax ≤ h(x) ≤ bx for x ∈ [0,∞[, we obviously have ax ≤ h∗(x) and h∗(x) ≤ bx for
every x ≥ 0. But we also have lim inft→0+ h(t)/t = a and lim supt→0+ h(t)/t = b, because of
the values of h at points in the sequences (q2j−1)∞j=1 and (q2j)∞j=1, respectively. By Theorem
1 we have h∗(x) ≤ ax and h∗(x) ≥ bx for each x ≥ 0, completing the proof. 2

Observe that the functions h from Corollary 2 have the property that (h∗)
∗(x) = ax <

bx = (h∗)∗(x) for all x > 0.

Corollary 3 There is an infinite number of smooth aggregation functions h on [0,∞] such
that h∗(x) = 0 for every x <∞ and h∗(x) =∞ for every x > 0.

Proof. For every positive integer k let xk = 2−2
k
. For x ≥ 0 let f(x) = x5/4 and g(x) =

x3/4; a straightforward calculation shows that g(x2j) < f(x2j−1) for every positive integer
j. By known results from calculus there exists an infinite number of smooth increasing
functions h on [0,∞[ such that h(x2j−1) = f(x2j−1) and h(x2j) = g(x2j) for all positive
integers j.

Since for our function h we have lim inft→0+ h(t)/t = 0 and lim supt→0+ h(t)/t = +∞
due to the values of h at points in the sequences (x2j−1)

∞
j=1 and (x2j)

∞
j=1, the result is again

a consequence of Theorem 1. 2
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Figure 2: A schematic drawing of a function h from the proof of Corollary 3.

The functions h from Corollary 3 have even a more striking property that (h∗)
∗(x) = 0

for every x ≥ 0 while (h∗)∗(x) =∞ for all x > 0.

To conclude this section we underscore the fundamental role of Theorem 1 by the
following complete characterization of one-dimensional degeneracies.

Theorem 2 Let h be a one-dimensional aggregation function on [0,∞[. The following
conditions are equivalent:

(a) There exists an x > 0 for which h∗(x) =∞.

(b) h∗(x) =∞ for every x > 0.

(c) lim supt→0+
h(t)
t

=∞.

(d) sup{h(t)
t
| t ∈]0, x]} =∞ for some x > 0.

Similarly, the following statements are equivalent:

(a’) There exists an x > 0 for which h∗(x) = 0.

(b’) h∗(x) = 0 for every x ≥ 0.

(c’) lim inft→0+
h(t)
t

= 0.

(d’) inf{h(t)
t
| t ∈]0, x]} = 0 for some x > 0.

Proof. Clearly, the statements (c) and (d) are equivalent, and so are (c’) and (d’). By
Theorem 1, (c) implies (b) and (c’) implies (b’). Trivially, (b) implies (a) and (b’) implies
(a’), and so one only has to prove that (a) implies (d) and (a’) implies (d’).

To show that (a) implies (d), we prove the contrapositive. Assume that sup{h(t)
t
| t ∈

]0, x]} = b < ∞ for every x > 0. This means that h(t) ≤ bt for every t ∈]0, x]. Thus,
for every n-tuple (x1, x2, . . . , xn) of positive real numbers such that

∑n
i=1 xi ≤ x we have∑n

i=1 h(xi) ≤ b
∑n

i=1 xi ≤ bx. It follows that h∗(x) ≤ bx <∞ for every x > 0.
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Similarly, to show that (a’) implies (d’) we again proceed by proving the contrapositive.

Suppose that inf{h(t)
t
| t ∈]0, x]} = b > 0 for every x > 0. This means that h(t) ≥ bt for

every t ∈]0, x]. Thus, for every n-tuple (x1, x2, . . . , xn) of real numbers from ]0, x] such
that

∑n
i=1 xi ≥ x we have

∑n
i=1 h(xi) ≥ b

∑n
i=1 xi ≥ bx. It follows that h∗(x) ≥ bx > 0 for

every x > 0. This completes the proof. 2

3 The multidimensional case

Based on the results in the one-dimensional case proved in Section 2 we continue by ex-
hibiting examples of aggregation functions A with the property that the values of (A∗)

∗ are
smaller than the values of (A∗)∗ for all non-zero vectors x ∈ [0,∞[n. The method is based
on the observation that the values of A∗ and A∗ on the entire space [0,∞[n are influenced by
the behavior of the one-dimensional diagonal function A(x, . . . , x) in an arbitrarily small
neighbourhood of zero. We present details only regarding extensions of Corollary 3 to
arbitrary dimensions.

Let µx be the arithmetic mean of the entries in x, that is, if x = (x1, x2, . . . , xm), then
µx = (x1 + x2 + . . .+ xm)/m.

Theorem 3 There are infinitely many aggregation functions A defined on [0,∞]n such
that (A∗)

∗(x) = 0 for all x ∈ [0,∞]n while (A∗)∗(x) =∞ for all non-zero x ∈ [0,∞[n.

Proof. It is sufficient to take any function h from Corollary 3 and define A for every
x ∈ [0,∞[n by A(x) = h(µx). Letting x = µx, for any non-zero x we have, exactly as in
the proof of Theorem 1,

A∗(x) ≤ nh(x/n) ≤ x · lim inf
t→0+

h(t)

t
, and

A∗(x) ≥ nh(x/n) ≥ x · lim sup
t→0+

h(t)

t
.

The claim now follows from Corollary 3. 2

Clearly, one can use numerous other compositions of functions h from Corollary 3 with
simple aggregation functions (such as weighted average, geometric means, etc.) to provide
examples for Theorem 3.

We also prove different sufficient conditions for the values of A∗ and A∗ to exhibit the
extreme behavior described in Theorem 3.

Proposition 1 Let A be an aggregation function on [0,∞]n and let Ã(x) = A(x, x, . . . , x)
for every x ≥ 0.

6



(1) If there exists a divergent series
∑∞

j=1 aj with decreasing positive terms such that

the series
∑∞

j=1 Ã(aj) converges, then A∗(x) = 0 for every x ∈ [0,∞[n.

(2) If there exists a convergent series
∑∞

j=1 aj with decreasing positive terms such that

the series
∑∞

j=1 Ã(aj) diverges, then A∗(x) = +∞ for every non-zero x ∈ [0,∞]n.

Proof. Let h(x) = A(x, x, . . . , x) for x ≥ 0. We show that the assumption of (1) implies
that lim infj→∞ h(aj)/aj = 0 and (2) implies that lim supj→∞ h(aj)/aj = +∞.

Indeed, suppose that lim infj→∞ h(aj)/aj = c > 0. This means that for every ε > 0
we have h(aj) ≥ (c − ε)aj for all but a finite number of positive integers j. But then,
divergence of

∑
j aj would imply divergence of

∑
j h(aj), contrary to the assumption of

(1). Similarly, if lim supj→∞ h(aj)/aj = c < +∞, then for every ε > 0 we would have
h(aj) ≤ (c+ ε)aj for all but finitely many j’s. But then convergence of

∑
j aj would imply

convergence of
∑

j h(aj), a contradiction.

This shows that lim inft→0+ h(t)/t = 0 in the case (1) and lim supt→0+ h(t)/t = +∞ in
the case (2). The result now follows from Theorems 1 and 3. 2

As examples, one can take the function f(x) = x1+λ for some arbitrarily small λ > 0,
or f(x) = x/ ln2(x), and take for

∑∞
j=1 aj the harmonic series to construct aggregation

functions A such that Ã(x) = f(x) on an arbitrarily small interval (0, δ); the result of (1)
then gives A∗(x) = 0 on [0,∞[n. Similarly, one can take the function g(x) = x1−λ for
an arbitrarily small λ > 0, or g(x) = x ln2(x), and take for

∑∞
j=1 aj the series with aj =

g−1(1/j) to obtain aggregation functions A such that Ã(x) = g(x) on an arbitrarily small
interval (0, δ); the result of (2) then shows that A∗(x) = +∞ for all non-zero x ∈ [0,∞[n.

With the help of the results of Section 2 we can also decide membership in K∗n and Kn∗
by looking at the one-dimensional case. For an aggregation function A on [0,∞]n let Ã be
defined on [0,∞] by letting Ã(x) = A(x, x, . . . , x) and, for every i ∈ {1, 2, . . . , n} let Ai be
defined on [0,∞] by Ai(x) = A(xei), where ei is the i-th unit vector.

Theorem 4 Let A be an aggregation function on [0,∞]n. Then,

(i) A|[0,∞[n∈ K∗n if and only if Ã|[0,∞[∈ K∗1, and

(ii) A|[0,∞[n∈ Kn∗ if and only if Ai|[0,∞[∈ K1
∗ for some i ∈ {1, 2, . . . , n}.

.

Proof. (i): We only need to show that A∗(x) =∞ for some non-zero vector x ∈ [0,∞[n

if and only if (Ã)∗(x) = ∞ for some x > 0. For the direct implication, by monotonicity
it is sufficient to take, for a given non-zero vector x, the value x equal to the maximum
of the coordinates of x; the reverse implication follows by taking, for a given x > 0, the
vector x = (x, x, . . . , x).

(ii): Here we only need to show that A∗(x) = 0 for some non-zero vector x ∈ [0,∞[n

if and only if (Ai)∗(x) = 0 for some x > 0 and some i ∈ {1, 2, . . . , n}. For the direct
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implication it is sufficient to take an i ∈ {1, 2, . . . , n} for which the i-th coordinate of x
has a non-zero value x; by monotonicity we have (Ai)∗(x) = 0. The reverse implication
follows by simply taking x = xei. 2

As an example of this result consider the aggregation function A defined for any x ∈
[0,∞]3 by taking A(x) to be the median of the coordinates of the vector x. It follows
immediately from Theorem 4 that A|[0,∞[3∈ K∗3 but it does not belong to K3∗ .

4 Comparing (A∗)
∗ with (A∗)∗

In this section we prove that the values of (A∗)
∗ can never be larger than the values of

(A∗)∗ for an aggregation function A defined on [0,∞]n. The proof strongly depends on the
fact that A is defined for non-zero vectors of [0,∞]n that are arbitrarily close to the zero
vector.

Theorem 5 Let A : [0,∞]n → [0,∞] be an aggregation function. Then (A∗)
∗ ≤ (A∗)∗.

Proof. For our given aggregation function A and for every i ∈ {1, . . . , n} let Ai :
[0,∞[→ [0,∞[ be the marginal function of A considered before the proof of Theorem 4,
given by Ai(x) = A(xei) = A(0, ..., x, ..., 0), where x appears only in the i-th coordinate.
It is not difficult to check that

A∗(x1, ..., xn) ≤
n∑
i=1

(Ai)∗(xi) and A∗(x1, ..., xn) ≥
n∑
i=1

(Ai)
∗(xi) .

It follows that

(A∗)
∗(x1, ..., xn) ≤

n∑
i=1

((Ai)∗)
∗(xi) and (A∗)∗(x1, ..., xn) ≥

n∑
i=1

((Ai)
∗)∗(xi) .

Let now

ai = lim inf
t→0+

Ai(t)

t
and bi = lim sup

t→0+

Ai(t)

t
.

By Theorem 1 from Section 2 we have

(Ai)∗(x) ≤ aix ≤ bix ≤ (Ai)
∗(x)

which implies that
((Ai)∗)

∗(x) ≤ aix ≤ bix ≤ ((Ai)
∗)∗(x) .

Consequently, for every x = (x1, x2, . . . , xn) ∈ [0,∞[n we have

(A∗)
∗(x) ≤

n∑
i=1

((Ai)∗)
∗(xi) ≤

n∑
i=1

aixi ≤
n∑
i=1

bixi ≤
n∑
i=1

((Ai)
∗)∗(xi) = (A∗)∗(x) ,
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which completes the proof. 2

We also include an observation about the other extreme, that is, when (A∗)
∗ = (A∗)∗.

A characterization of aggregation functions A on [0,∞]n for which this equality holds
is still an open problem. Examples of such non-linear functions can be constructed, for
instance, using Corollary 1 in conjunction with Theorem 3. However, if (A∗)

∗ = (A∗)∗
we can at least say that the result is an additive function, i.e., a function D satisfying
D(x + y) = D(x) +D(y) for every x,y ∈ [0,∞[n. We formulate and prove the result in a
slightly larger generality.

Corollary 4 Let B and C be aggregation functions on [0,∞]n such that B∗(x) = C∗(x)

for every x ∈ [0,∞[n. Then, the function D = B∗ = C∗ is additive, D(x) =
n∑
i=1

wixi for

some w = (w1, ..., wn) ∈ [0,∞]n.

Proof. By the results of [4], B∗ is sub-additive and C∗ is super-additive; it follows that
D is both sub- and super-additive and hence additive. 2

Example 1 (i): Define A ∈ An by A(x1, . . . , xn) = max(x1, . . . , xn). Then A ∈ Pn and

A = A∗, A
∗(x1, . . . , xn) =

n∑
i=1

xi, and (A∗)
∗ = (A∗)∗ = A∗.

(ii): Consider B,C ∈ An given by B(x1, . . . , xn) = ln(Πn
i=1(1+xi)) and C(x1, . . . , xn) =

(
n∑
i=1

exi)− n. Then B∗ = B, C∗ = C and B∗ = C∗ is given by B∗(x1, . . . , xn) =
n∑
i=1

xi.

5 Concluding remarks

Our main aim was to characterize proper aggregation functions A with the property that A∗
(and, similarly, A∗) is proper as well. In the course of our investigation we obtained a num-
ber of related results on the behavior of the subadditive and superadditive transformations
A∗ and A∗. Regarding iterations of these transformations we proved that (A∗)

∗ ≤ (A∗)∗
and that these two functions may be arbitrarily far from each other.

In a nutshell and in a somewhat more abstract setting, we clarified constraints for aggre-
gation functions admitting superadditive/subadditive transformations without a complete
loss of information. The transformations considered are related to optimization problems,
for example to production functions in economical problems. For a deeper discussion we
recommend [4].
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