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UNITARY DILATION OF FREELY INDEPENDENT

CONTRACTIONS

SCOTT ATKINSON AND CHRISTOPHER RAMSEY

Abstract. Inspired by the Sz.-Nagy-Foias dilation theorem we show that n

freely independent contractions dilate to n freely independent unitaries. A
new free product of unital completely positive maps is defined to obtain this
result.

1. Introduction

The Sz.-Nagy-Foias dilation theorem is a celebrated result in classical dilation
theory. It says that n doubly commuting contractions can be simultaneously dilated
to n doubly commuting unitaries. This was the original multivariable dilation
theory context suggested by Sz.-Nagy [17] until Andô [1] proved that one can do
this for just commuting and not doubly commuting contractions when n = 2.
However, it was subsequently shown in [13] and [18] that there are three commuting
contractions which do not dilate to three commuting unitaries. This obstruction
spurred on dilation theories in other contexts [2, 6, 8, 10, 15] and many other
generalizations.

Doubly commuting is one of two ingredients in the notion of tensor independence
(or classical independence). It is natural then to ask whether n tensor independent
contractions can be dilated to n tensor independent unitaries. Then answer is yes
(Theorem 2.2) and begs the question whether this can be done with other notions
of non-commutative probability, namely free probability.

Stemming from the notion of reduced free product [3, 19] Voiculescu developed
the theory of free probability in the 1980’s with the goal of solving the free group
factor problem. While this still remains unsolved, free probability has become a
very important field of mathematical research. For further reading see [11, 12].

The paper culminates in Theorem 4.3, that n freely independent contractions
do indeed dilate to n freely independent unitaries. This result relies upon the
structure of the universal and reduced free products and the construction of a new
free product of unital completely positive maps which differs from [5].
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2. Dilation theory of tensor independence

We first turn to the classical setting for inspiration. There are many great proofs
of the Sz.-Nagy-Foias dilation theorem and the following constructive method is
undoubtedly known but the authors have never seen it written down. Recall that
two operators S, T ∈ B(H) doubly commute if ST = TS and S∗T = TS∗. This is
equivalent to requiring that C∗(1, S) and C∗(1, T ) commute. Note that this does
not require that S and T are normal.

Theorem 2.1 (Sz.-Nagy-Foias). Let T1, · · · , Tn be doubly commuting contractions

in B(H). Then there exists a Hilbert space K containing H and doubly commuting

unitaries U1, . . . , Un ∈ B(K) such that

T1(k1) · · ·Tn(kn) = PHU
k1
1 · · ·Uknn |H, where T (k) =

{

T k, k ≥ 0
T ∗−k, k < 0

.

Furthermore, this dilation is unique up to unitary equivalence when K is minimal,

meaning that it is the smallest reducing subspace of U1, · · · , Un containing H.

Proof. Let H1 = ℓ2(Z) ⊗H and set

T
(1)
1 =



























. . .

. . . 0
I 0

DT∗
1

T1
−T ∗

1 DT1
0
I 0

. . .
. . .



























and T
(1)
j = Iℓ2(Z) ⊗ Tj, 2 ≤ j ≤ n.

Note that T
(1)
1 is the classic Schäffer form of the Sz.-Nagy dilation of T1 and so is

a unitary [16]. Since T1, · · · , Tn doubly commute then so do T
(1)
1 , · · · , T

(1)
n , this is

immediate after noticing that the defect operators DT1
= (I − T ∗

1 T1)
1/2 and DT∗

1

are in C∗(1, T1).

In the second step, let H2 = ℓ2(Z)⊗H1, T
(2)
2 be the Schäffer-Sz.-Nagy dilation

of T
(1)
2 and T

(2)
j = Iℓ2(Z) ⊗ T

(1)
j for j 6= 2. Then T

(2)
1 and T

(2)
2 are unitaries and

T
(2)
1 , · · · , T

(2)
n are doubly commuting.

Continuing in this way one arrives at the nth step with doubly commuting uni-

taries T
(n)
1 , · · · , T

(n)
n ∈ B(Hn) that are easily seen to satisfy the joint power dilation

condition.

Uniqueness when the dilation is minimal follows in the same way as in the one
variable setting. It is proven by way of the uniqueness of the minimal Stinespring
representation. �

This can be rephrased into a non-commutative probability context. Recall that a
non-commutative C∗-probability space (A, ϕ) is a C∗-algebra A along with a state
ϕ ∈ S(A). We say that the operators T1, · · · , Tn ∈ A are tensor (or classically)
independent in (A, ϕ) (or with respect to ϕ) if C∗(1, T1), · · · , C

∗(1, Tn) pairwise
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commute and given ai ∈ C∗(1, Ti) we have the following factorization

ϕ

(

n
∏

i=1

ai

)

=
n
∏

i=1

ϕ(ai).

Theorem 2.2. Let T1, · · · , Tn ∈ B(H) be tensor independent contractions in the

non-commutative probability space (B(H), ϕ). Then there exists a Hilbert space K
containing H and unitaries U1, · · · , Un ∈ B(K) that are tensor independent with

respect to the state ψ = ϕ ◦ adPH
such that

T1(k1) · · ·Tn(kn) = PHU
k1
1 · · ·Uknn |H, where T (k) =

{

T k, k ≥ 0
T ∗−k, k < 0

.

Furthermore, this dilation is unique up to unitary equivalence when K is minimal,

meaning that it is the smallest reducing subspace of U1, · · · , Un.

Proof. All that needs to be shown is that the unitaries arising from Theorem 2.1
are tensor independent with respect to ψ. To this end first assume that K = Hn

and Uj = T
(n)
j as in the proof of Theorem 2.1.

Let ai ∈ C∗(1, T
(1)
i ), 1 ≤ i ≤ n. This implies that PHai|H ∈ C∗(1, Ti) for

1 ≤ i ≤ n and PH and ai commute for 2 ≤ i ≤ n since H is a reducing subspace for

both C∗(1, T
(1)
i ). Hence,

ϕ

(

PH

n
∏

i=1

aiPH

)

= ϕ

(

n
∏

i=1

(PHaiPH)

)

=

n
∏

i=1

ϕ(PHaiPH).

Thus, T
(1)
1 , · · · , T

(1)
n are tensor independent with respect to ϕ ◦ adPH

. Continuing

in this fashion one gets that T
(n)
1 , · · · , T

(n)
n are tensor independent with respect to

ϕ ◦ adPH
◦ adPH1

◦ · · · ◦ adPHn−1
= ϕ ◦ adPH

= ψ where the last copy of H is in Hn.

Uniqueness of this dilation is given by Theorem 2.1. �

3. A free product of ucp maps

Recall that the universal free product of unital C∗-algebras A1, · · · ,An is the
universal C∗-algebra amalgamated over C generated by A1, · · · ,An and is denoted
∗̌ni=1Ai. In particular, whenever one has ∗-homomorphisms πi : Ai → B then there
exists a ∗-homomorphism π : ∗̌ni=1Ai → B such that π|Ai = πi.

Suppose there are unital completely positive maps θi : Ai → B. In [5] Boca
proves that there exists a ucp map θ = θ1 ∗ · · · ∗ θn : ∗̌ni=1Ai → B such that
θ|Ai = θi. This is defined on reduced words with respect to the expectation onto
C1, called E. Namely, when aj ∈ Aij with E(aj) = 0 and ij 6= ij−1 then

θ(a1 · · · am) = θi1(a1) · · · θim(am).

This completely determines θ as (reduced words + C1) is dense in ∗̌ni=1Ai.
In the following theorem we will show that one can define a free product of ucp

maps depending on any state and not just E. This new ucp map is really the
universal free product version of the reduced free product of ucp maps given by
Choda [7]. The proof of the main theorem of this paper hinges upon this point.
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Theorem 3.1. For 1 ≤ i ≤ n, let θi : Ai → B(H) be a unital completely positive

map, and let ψ be a state on ∗̌ni=1Ai. There exists a ucp map θψ : ∗̌ni=1Ai → B(H)
such that whenever aj ∈ Aij , ψ(aj) = 0, 1 ≤ j ≤ m with ij 6= ij−1 then

θψ(a1 · · · am) = θi1(a1) · · · θim(am).

This gives that θψ|Ai = θi.

Proof. One need only make a few minor modifications and notes to Boca’s proof
[5, Proposition 3.2] to obtain this result. The main difference mentioned previously
is that θ1 ∗ · · · ∗ θn = θE where E is the expectation onto the identity of the free
product.

LetWψ = {a1 · · · am : aj ∈ Aij , ψ(aj) = 0, ij 6= ij−1} be the set of reduced words
with respect to ψ and WE be the reduced words with respect to E. An important
property of these reduced words given by the definition of the free product is that if
a1 · · ·am, b1 · · · bk ∈WE with a1 · · · am = b1 · · · bk then k = m and ai = λibi for λi ∈
C \ {0}, 1 ≤ i ≤ m such that λ1 · · ·λm = 1. Moreover, if w1, · · · , wm, v1, · · · , vk ∈

WE with
∑m

i=1 wi =
∑k
i=1 vi then one has that for each N ≥ 1 one has

∑

1≤i≤m,|wi|=N

wi =
∑

1≤j≤k,|vj |=N

vj

where |w| is the length of the reduced word, meaning |w| = N if and only if
w = a1 · · · aN ∈WE .

Suppose now one has reduced words with respect to ψ, a1 · · · am = b1 · · · bk ∈ Wψ.
Hence, one can write

a1 · · ·am = (a1 − E(a1)) · · · (am − E(am))

+
m
∑

j=1

(a1 − E(a1)) · · · (aj−1 − E(aj−1))

E(aj)(aj+1 − E(aj+1)) · · · (am − E(am))

+ · · ·

as the sum of reduced words in WE and {1} by the usual centering method. But
a1 · · ·am has only one reduced word summand of length m and so a1 · · ·am =
b1 · · · bk implies that

(a1 − E(a1)) · · · (am − (E(am)) = (b1 − E(b1)) · · · (bk − E(bk)).

So m = k and ai − E(ai) = λi(bi − E(bi)) which implies ai = λbi + E(ai − λbi)
and applying ψ to both sides gives that E(ai − λbi) = 0, since ψ(ai) = ψ(bi) = 0.
Thus, every reduced word in Wψ has a unique form.

Consider the operator system

S = Alg{A1, · · · ,An} = C1 ∪ span{w : w ∈ Wψ} = C1 ∪ span{w : w ∈WE}

which is dense in ∗̌ni=1Ai. It is straightforward to see that θψ is well defined, unital
and self-adjoint after assuming that θψ(1) = 1 and θψ(a1 · · · am) = θi1(a1) · · · θim(am)
for all a1 · · · am ∈ Wψ. One needs to show that θψ is completely positive on S and
then the result follows by Arveson’s extension theorem.

By careful checking one can use the exact same proof of complete positivity that
Boca gives. �
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This shows that the free product situation is different than that of the tensor
product, that is, there will not be a unique ucp map from the free product extending
ucp maps in each component.

To end this section we show that this new free product of ucp maps works well
with dilation theory.

Lemma 3.2. Suppose T1, · · · , Tn ∈ B(H) are contractions, U1, · · · , Un ∈ B(K) are
unitaries and θi : C(Ui) → C∗(1, Ti) are ucp maps such that p(Ui) 7→ p(Ti). If ψ is

a state on ∗̌ni=1C
∗(Ui) then the ucp map θψ is a homomorphism on the subalgebra

Alg{1, U1, · · · , Un} of ∗̌ni=1C
∗(Ui).

Proof. The result can be established by induction. By definition each θi is already
a homomorphism on Alg{1, Ui} ⊆ C∗(Ui). Now for m ≥ 1 assume that for all

1 ≤ k ≤ m and for any bj ∈ Alg{1, Uij}, 1 ≤ j ≤ k we have that θψ

(

∏k
j=1 bj

)

=
∏k
j=1 θij (bj).

Suppose now we have aj ∈ Alg{1, Uij}, 1 ≤ j ≤ m+ 1. If a pair of neighbouring
terms belongs to the same algebra, say ij = ij−1, by the inductive hypothesis and
since θij is a homomorphism we have

θψ(a1 · · ·aj−1aj · · ·am+1) = θi1(a1) · · · θij (aj−1aj) · · · θim+1
(am+1)

= θi1(a1) · · · θij−1
(aj−1)θij (aj) · · · θim+1

(am+1).

Otherwise assume that ij−1 6= ij for 1 < j ≤ m+ 1 and then we have

θψ





m+1
∏

j=1

aj



 = θψ





m+1
∏

j=1

(aj − ψ(aj))



+

θψ



ψ(a1)

m+1
∏

j=2

(aj − ψ(aj))



+

θψ



a1ψ(a2)

m+1
∏

j=3

(aj − ψ(aj))



 + · · ·+

θψ(a1 · · · amψ(am+1))

=

m+1
∏

j=1

θij (aj − ψ(aj)) +

ψ(a1)
m+1
∏

j=2

θij (aj − ψ(aj)) +

θi1(a1)ψ(a2)

m+1
∏

j=3

θij (aj − ψ(aj)) + · · ·+

θi1(a1) · · · θim(am)ψ(am+1)

=
m+1
∏

j=1

θij (aj)

by the definition of θψ and the inductive hypothesis.
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The result follows as it is a simple matter now to show that θψ(ab) = θψ(a)θψ(b)

for all a, b ∈ Alg{1, U1, · · · , Un}. �

4. Dilation theory of free independence

In this section we will prove a theorem very similar to Theorem 2.2 in another
non-commutative probability context. Recall that the operators T1, · · · , Tn ∈ A are
freely independent (or ∗-free) in (A, ϕ) if their C∗-algebras C∗(1, T1), · · · , C

∗(1, Tn)
are freely independent, that is whenever aj ∈ C∗(1, Tij ) such that ϕ(aj) = 0 for
1 ≤ ij ≤ n and ij 6= ij−1 for 1 < j ≤ m then

ϕ(a1a2 · · ·am) = 0.

Another proof of the Sz.-Nagy-Foias Theorem (Theorem 2.1 above) can be found
in Paulsen [14, Theorem 12.10]. Here one gets ucp maps θi : C(T) → C∗(1, Ti)
given by dilation theory. Now one can extend this to the ucp map θ1 ⊗ · · · ⊗ θn on
C(T) ⊗max · · · ⊗max C(T) ≃ C(Tn). By taking the Stinespring representation of θ
one gets the desired doubly commuting unitaries that jointly dilate T1, · · · , Tn.

This provides a roadmap for an attempt to prove the free analogue of Theorem
2.2. Namely, by using the free product of ucp maps given in Theorem 3.1 and then
taking the Stinespring representation of this map it will be shown that one gets
unitaries that jointly dilate T1, · · · , Tn. One then hopes that these unitaries will be
∗-free with respect to a natural state.

The main theorem will follow after some technical lemmas.

Lemma 4.1. Suppose T ∈ B(H) and T̃ ∈ B(H̃) such that there is a ∗-homomorphism

π : C∗(1, T ) → C∗(1, T̃ ) with π(T ) = T̃ . If U ∈ B(K) and Ũ ∈ B(K̃) are the mini-

mal unitary dilations of T and T̃ respectively then there exists a ∗-homomorphism

π̃ : C∗(U) → C∗(Ũ) with π̃(U) = Ũ such that the following diagram commutes

C∗(U)
π̃

−−−−→ C∗(Ũ)

adPH





y

adP
H̃





y

C∗(1, T )
π

−−−−→ C∗(1, T̃ )

Proof. Let (γ,K′) be the minimal Stinespring representation of the unital com-

pletely positive map π ◦ adPH : C∗(U) → C∗(1, T̃ ). Because the ∗-homomorphism

is unital we can assume that H̃ ⊂ K′ and so adPH̃ ◦ γ(a) = π ◦ adPH(a), for all
a ∈ C∗(U). Now, for the unitary V := γ(U)

PH̃V
n|H̃ = π(PHU

n|H) = π(T (n)) = T̃ (n), n ∈ Z,

where T (k) =

{

T k, k ≥ 0
T ∗−k, k < 0

, and by the minimality of the Stinespring repre-

sentation

span{V nPH̃ : n ∈ Z} = K′

Thus, V is a minimal unitary dilation of T̃ and so there exists a unitaryW : K′ → K̃
such that Wh = h, ∀h ∈ H̃ and WVW ∗ = Ũ .

Therefore, define π̃ : C∗(U) → C∗(Ũ) by π̃ = adW◦γ, which is a ∗-homomorphism
such that

π̃(U) = adW ◦ γ(U) =WVW ∗ = Ũ
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and

adPH̃ ◦ π̃(Un) = T̃ (n) = π(T (n)) = π ◦ adPH(Un).

This establishes the result. �

Lemma 4.2. Let T ∈ B(H) be a contraction and ϕ be a faithful state on C∗(1, T ).
If U ∈ B(K) with H ⊂ K is the minimal unitary dilation of T then ϕ ◦ adPH is a

faithful state on C∗(U).

Proof. Let (π,K′, ξ) be the GNS representation of (C∗(U), ϕ◦adPH). Then π(U) is
still a unitary, ϕ◦adPH(a) = 〈π(a)ξ, ξ〉 and 〈·ξ, ξ〉 is a faithful state on π(C∗(U)) =
C∗(π(U)).

Suppose a is a positive element in kerπ. Then 0 = 〈π(a)ξ, ξ〉 = ϕ ◦ adPH(a)
which implies that the positive element PH(a) = 0 since compression to H is a
completely positive map and ϕ is faithful. The same argument holds in reverse, so
kerπ = ker adPH. This induces a ucp map θ : C∗(π(U)) → C∗(1, T ) by sending
π(a) 7→ PHa|H. Notably this gives θ(π(U)n) = T n, n ≥ 0.

Let (π̃,K′′) withH ⊂ K′′ be the minimal Stinespring representation of θ. That is,
π̃ : C∗(π(U)) → B(K′′) is a ∗-homomorphism (in fact a ∗-isomorphism) such that
θ(a) = PHπ̃(a)|H and K′′ is the closed linear span of π̃(C∗(π(U)))H by minimality.
Define V := π̃(π(U)) a unitary and note that PHV

n|H = θ(π(Un)) = T n. Thus,
because of this and the minimality of the Stinespring representation we have that
V is a minimal unitary dilation of T .

Consider now the state ψ := ϕ ◦ adPH on C∗(V ). Now

ψ ◦ π̃

(

n
∑

i=−n

αiπ(U)n

)

= ψ

(

n
∑

i=−n

αiV
n

)

= ϕ

(

n
∑

i=−n

αiT (n)

)

= ϕ ◦ adPH

(

n
∑

i=−n

αiU
n

)

=

〈(

n
∑

i=−n

αiπ(U)n

)

ξ, ξ

〉

.

Hence, ψ ◦ π̃(·) = 〈·ξ, ξ〉 is a faithful state on C∗(π(U)) and so ψ is a faithful state
on C∗(V ).

By minimality of the dilations there exists a unitary W : K → K′′ such that
Wh = h for all h ∈ H and WUW ∗ = V . This implies that ϕ ◦ adPH on C∗(U)
is equal to ψ ◦ adW which is faithful. Therefore, ϕ ◦ adPH was a faithful state on
C∗(U) all along. �

One last ingredient before the main theorem is the reduced free product of C∗-
probability spaces (Ai, ϕi), denoted (A, ϕ) with A = ∗ni=1Ai. As mentioned in the
introduction this was introduced by both Avitzour [3] and Voiculescu [19] in the
1980’s.

Theorem 4.3. Let T1, · · · , Tn ∈ B(H) be freely independent contractions in the

non-commutative probability space (B(H), ϕ). Then there exists a Hilbert space K
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containing H and unitaries U1, · · · , Un ∈ B(K) that are freely independent with

respect to ϕ ◦ adPH such that

T k1i1 · · ·T knim = PHU
k1
i1

· · ·Uknim |H, 1 ≤ ij ≤ n and kj ∈ N ∪ {0}.

Proof. For each 1 ≤ i ≤ n, let Vi ∈ B(Ki) with H ⊂ Ki be the minimal unitary
dilation of Ti and θi : C

∗(Vi) → C∗(1, Ti) given by θi = adPH is a unital completely
positive map.

Let (π, H̃, ξ) be the GNS representation of ϕ on C∗(1, T1, · · · , Tn). Define

T̃i := π(Ti), 1 ≤ i ≤ n and ϕ̃ := 〈·ξ, ξ〉. Hence, T̃1, · · · , T̃n are freely indepen-

dent contractions with respect to the faithful state ϕ̃ on C∗(1, T̃1, · · · , T̃n).
Consider the reduced free product of non-commutative probability spaces

(∗ni=1C
∗(1, T̃i), ϕ̃) = ∗ni=1(C

∗(1, T̃i), ϕ̃)

which contains ∗-isomorphic copies of each C∗(1, T̃i) by the faithfulness of ϕ̃. The
faithfulness of these states is a very strong condition and thus by [9, Lemma 1.3]

there exists a ∗-isomorphism ∗ni=1C
∗(1, T̃i) → C∗(1, T̃1, · · · , T̃n) such that T̃i 7→

T̃i, 1 ≤ i ≤ n and the states ϕ̃ are equal. By abuse of notation, assume that

π : C∗(1, T1, · · · , Tn) → ∗ni=1C
∗(1, T̃i)

such that ϕ = ϕ̃ ◦ π.
Next, for 1 ≤ i ≤ n, let (Ṽi, K̃i) be the minimal unitary dilation of T̃i. This

implies that there are ucp maps θ̃i : C∗(Ṽi) → C∗(1, T̃i) defined by θ̃i(Ṽ
n
i ) =

T̃i(n), n ∈ Z, namely θ̃i = adPH̃. Define the states ψ̃i = ϕ̃ ◦ θ̃i on C
∗(Ṽi) which are

faithful by Lemma 4.2. Now consider the reduced free product

(∗ni=1C
∗(Ṽi), ψ̃) = ∗ni=1(C

∗(Ṽi), ψ̃i)

and note that ψ̃ is faithful since each of the ψ̃i are faithful, this also implies that
there are ∗-isomorphic copies of each C∗(Ṽi) in the reduced free product. Hence, by

the construction of the reduced free product Ṽ1, · · · , Ṽn are ∗-free with respect to
ψ̃. As in the universal free product case, Choda [7] showed that there is a reduced
free product of ucp maps (and Blanchard-Dykema [4] that there is an amalgamated
reduced free product of ucp maps). Thus, there exists a ucp map

θ̃ : ∗ni=1C
∗(Ṽi) → ∗ni=1C

∗(1, T̃i)

extending the θ̃i in each component and we get ψ̃ = ϕ̃ ◦ θ̃. Moreover, by [7] this

map θ̃ splits over what she calls reduced words. That is, if bj ∈ C∗(Ṽij ) with
ψj(bj) = 0, 1 ≤ j ≤ m and ij 6= ij−1, 1 < j ≤ m then

(1) θ̃





m
∏

j=1

bj



 =

m
∏

j=1

θ̃ij (bj).

By exactly the same proof as Lemma 3.2 θ̃ is a homomorphism on Alg{1, Ṽ1, · · · , Ṽn}.

In each component of the universal and reduced free products we have by Lemma
4.1 that there exist ∗-homomorphisms π̃i : C

∗(Vi) → C∗(Ṽi) with Vi 7→ Ṽi and such
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that the following diagram commutes

(2)

C∗(Vi)
π̃i−−−−→ C∗(Ṽi)

θi





y θ̃i





y

C∗(1, Ti)
π

−−−−→ C∗(1, T̃i)

By universality there exists a ∗-homomorphism

π̃ := ∗ni=1π̃i : ∗̌
n
i=1C

∗(Vi) → ∗ni=1C
∗(Ṽi).

Let ψ = ψ̃ ◦ π̃ be a state on ∗̌ni=1C
∗(Vi) and note that V1, · · · , Vn are ∗-free with

respect to ψ. By Theorem 3.1 the map

θψ : ∗̌ni=1C
∗(Vi) → C∗(1, T1, · · · , Tn)

exists and is ucp, and by Lemma 3.2 is a homomorphism on Alg{1, V1, · · · , Vn}.
For 1 ≤ j ≤ m with aj ∈ C∗(Vij ), ψ(aj) = 0 and ij 6= ij−1 we have

π ◦ θψ(a1 · · · am) = π(θi1 (a1) · · · θim(am))

= π ◦ θi1(a1) · · ·π ◦ θim(am)

= θ̃i1 ◦ π̃(a1) · · · θ̃im ◦ π̃(am) by (2)

= θ̃(π̃(a1) · · · π̃(am)) by (1) ψ̃(π(ai)) = ψ(ai) = 0

= θ̃ ◦ π̃(a1 · · · am).

Thus, the following diagram commutes

∗̌ni=1C
∗(Vi)

π̃
−−−−→ ∗ni=1C

∗(Ṽi)

θψ





y θ̃





y

C∗(1, T1, · · · , Tn)
π

−−−−→ C∗(1, T̃1, · · · , T̃n)

Lastly, let (γ,K) be the Stinespring representation of θψ with H ⊂ K which
gives θψ(a) = PHγ(a)|H. Define unitaries Ui := γ(Vi) and note that for m ≥ 1 and
ki ∈≥ 0 then

PHU
k1
i1

· · ·Ukmim |H = PHγ(V
k1
i1

· · ·V kmim )|H

= θψ(V
k1
i1

· · ·V kmim )

= T k1i1 · · ·T kmim by Lemma 3.2.

Furthermore,

ϕ ◦ adPH ◦ γ = ϕ ◦ θψ

= ϕ̃ ◦ π ◦ θψ

= ϕ̃ ◦ θ̃ ◦ π̃

= ψ̃ ◦ π̃

= ψ.

Therefore, because V1, · · · , Vn are ∗-free with respect to ψ then U1, · · · , Un are
∗-free with respect to ϕ ◦ adPH. �
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The first thing to note in the setting of the previous theorem is that a state ψ
is completely determined by the values ψ(Uki ) = ϕ(T ki ) since U1, · · · , Un are ∗-free
unitaries and by [12, Lemma 5.13]. Hence, ψ = ϕ ◦ adPH on C∗(U1, · · · , Un).

This leads one to ask whether this free unitary dilation is unique when it is
minimal, meaning that K is the smallest reducing subspace of U1, · · · , Un containing
H. One would need that θψ from Theorem 3.1 is the unique ucp map extending
the θi such that ψ = ϕ ◦ θψ. The answer is unknown to the authors even in the
case of the reduced free product of ucp maps.

Finally, by [20, Proposition 2.5.3] ϕ ◦ adPH is a tracial state on C∗(U1, · · · , Un)
since U1, · · · , Un are ∗-free and ϕ ◦ adPH is a trace on each C∗(Ui) (the algebra is
commutative).
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