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Abstract: We compute the free energy in the presence of a chemical potential coupled to

a conserved charge in effective O(n) scalar field theory (without explicit symmetry breaking

terms) to NNL order for asymmetric volumes in general d–dimensions, using dimensional

(DR) and lattice regularizations. This yields relations between the 4-derivative couplings

appearing in the effective actions for the two regularizations, which in turn allows us to

translate results, e.g. the mass gap in a finite periodic box in d = 3 + 1 dimensions, from

one regularization to the other. Consistency is found with a new direct computation of the

mass gap using DR. For the case n = 4, d = 4 the model is the low-energy effective theory

of QCD with Nf = 2 massless quarks. The results can thus be used to obtain estimates

of low energy constants in the effective chiral Lagrangian from measurements of the low

energy observables, including the low lying spectrum of Nf = 2 QCD in the δ–regime using

lattice simulations, as proposed by Peter Hasenfratz.

http://arxiv.org/abs/1601.00614v1
mailto:niedermayer@itp.unibe.ch
mailto:pew@mpp.mpg.de


Contents

1 Introduction 1

2 The free energy on the lattice 3

2.1 The effective lattice action 3

2.2 Perturbative expansion 5

2.3 The chemical potential 7

2.3.1 Computation of F1 up to O
(
g2
0

)
8

2.3.2 Computation of F2 up to O
(
g2
0

)
9

2.3.3 Summary 10

2.4 Renormalization on the lattice 11

2.4.1 Case d = 2 11

2.4.2 Case d = 3 13

2.4.3 Case d = 4 14

3 The free energy with dimensional regularization 17

3.1 The effective action 17

3.2 Perturbative expansion 17

3.3 The chemical potential 18

3.4 Summary 21

3.5 Case n = 2 22

3.6 Case d = 2 22

3.7 Case d = 3 23

3.8 Case d = 4 24

4 Matching the effective actions for d = 2 and d = 4 25

4.1 Case d = 2 25

4.2 Case d = 4 27

5 The mass gap 29

6 Conclusions 32

A The terms B
(i)
4 and C

(i)
4 33

B Some lattice momentum sums 34

C Correlators appearing in Fr with lattice regularization 36

C.1 Correlators appearing in F1,0 and F1,1 36

C.2 Correlators appearing in F2,0 and F2,1 36

C.3 Computation of F3 up to O
(
g2
0

)
38

C.3.1 Computation of F
(i)
3,1 39

– i –



C.4 Computation of F4 up to O
(
g2
0

)
40

C.4.1 Computation of F
(i)
4,1 41

C.5 Computation of F5 up to O
(
g2
0

)
42

D The n = 2 case with lattice regularization 42

1 Introduction

Quantum Chromodynamics (QCD) is a candidate theory of the strong interactions and

there is good evidence that in this theory with massless quarks chiral flavor symmetry is

spontaneously broken. The low energy phenomena in systems with spontaneously broken

symmetry are governed by the dynamics of the Goldstone bosons (pions in the case of

QCD). This can be described by an effective field theory, and the calculations can be

performed by chiral perturbation theory χPT [1, 2].

The interplay between χPT and QCD has been extremely fruitful. In early times of

lattice simulations of QCD when light dynamical quarks could not be simulated efficiently,

χPT was used to extrapolate the data to smaller pion masses mπ. Lately, since simulations

at physical pion masses became feasible, one can use lattice data to obtain the parameters

in the chiral Lagrangian, the pion decay constant Fπ and the low energy constants (LEC’s),

from the underlying microscopic theory QCD more precisely than from phenomenology.

Both χPT computations and lattice simulations of QCD can be done in special envi-

ronments where physical experiments cannot be envisaged. One can study the dependence

on parameters (such as quark masses), and one can place the system into a space-time box

of size Lt×Ld−1
s and study the dependence of physical quantities on the box size Ls of the

order a few fermi. Leutwyler was the first to systematize the different regimes of QCD in

a finite box [3]. One special environment is the so called δ–regime where the system is in a

periodic spatial box of sides Ls and mπLs is small (i.e. small or zero quark mass) whereas

FπLs is large.

In 2009 Hasenfratz [4] pointed out that promising observables in the δ-regime are the

low lying stable masses. Firstly measuring low lying stable masses to good precision is

among the easiest numerical tasks. Secondly the finite box size introduces an infra-red

cutoff which allows to study the chiral limit in a first stage and switching on the symmetry

breaking terms later.

For massless two-flavor QCD the relevant χPT has SU(2)×SU(2)≃ O(4) symmetry. It

has been shown by Leutwyler [3] that in the leading order of χPT, with general (unbroken)

O(n) symmetry (and d = 4), the spectrum is given by a quantum mechanical rotator

E(l) = l(l+2)/(2Θ) , l = 0, 1, 2, ..., the “angular momentum” being the O(n) isospin, with

moment of inertia Θ = 1/(F 2L3
s) fixed by the decay constant F (in the chiral limit).

The next-to-leading order (NLO) term of the expansion in 1/(F 2L2
s) has been calcu-

lated in [5]. The level spectrum is to this order still governed solely by F , so an evaluation

of this spectrum on the lattice potentially gives a good initial estimate of F . Since the NLO
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correction turned out to be large, however, it was important to calculate the NNLO term;

furthermore the chiral logs and the LEC’s l1, l2 (in the 4-derivative terms in the effective

action) first appear at this order.

Two independent results for the NNLO correction have been presented. The first is

by Hasenfratz [4] using dimensional regularization (DR). His procedure, which was quite

involved, was to consider a volume infinite in the time direction, and to separate the

degrees of freedom in the δ–regime into (spatially constant) slow and fast modes. The

latter are then integrated out (treated in PT) resulting in an effective Lagrangian for the

slow modes, an O(n) rotator with a modified moment of inertia, whose energy excitations

are much smaller than those of the standard Goldstone boson excitations carrying finite

momenta ≥ 2π/Ls.

The second computation was by Niedermayer and Weiermann [6] using lattice regular-

ization; it involved generalizing the computation of the small-volume mass gap in the 2d

O(n) non-linear sigma-model by Lüscher, Weisz, and Wolff [7] to higher dimensions d > 2.

Of course the physical content of a QFT is independent of regularization. The matching

of UV regularizations of renormalizable asymptotically free theories can be obtained by

determining the ratio of Λ-parameters which just involves a 1-loop calculation. Here we

have an effective QFT and the matching of different regularizations in such theories is,

as far as we know, still a relatively untouched problem. In particular the results of the

two NNLO computations referred to above could not be quantitatively compared, apart

from the chiral logs, since relations between the couplings of the 4-derivative terms in the

effective Lagrangians were unknown. In this paper we have closed this gap.

Here we compute the change in the free energy due to a chemical potential coupled

to a conserved charge in the non-linear O(n) sigma model with two regularizations, lattice

regularization (with standard action) in sect. 2 and DR in sect. 3. The computation is

performed in a general d-dimensional volume with periodic boundary conditions in all

directions. The volume is left asymmetric. This freedom allows us for d = 4 in sect. 4

to establish two independent relations among the 4-derivative couplings appearing in the

effective actions of the two regularizations. These relations in turn allow us to convert

results for physical quantities computed by the lattice regularization to those involving

scales introduced in DR. Computations on the lattice, although algebraically more involved

than analogous continuum computations, have the advantage that they are conceptually

“fool-proof”. Computations with DR are however often tricky starting at two loops.

In particular one of the relations referred to above allow us to convert the result of the

mass gap computed on the lattice in [6] to DR (in sect. 5). Unfortunately the outcome of

this does not agree with the result of Hasenfratz [4]. We thus recomputed the mass gap

with DR and thereby obtained a result in complete agreement with that translated from

the lattice. We are thus quite confident that it is correct.

The sums and integrals which appear in our computation, in particular the two-loop

massless sunset diagram, are treated in a separate accompanying paper [8].

In this paper we do not consider explicit O(n) symmetry breaking. In QCD the effect

of including a small explicit symmetry breaking (a small quark mass) has been done to LO

in [3], and to NLO by Weingart [9, 10]. In a recent paper Matzelle and Tiburzi [11] study
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the effect of small symmetry breaking in the QM rotator picture, and extend the results

for small non-zero temperatures.

There are other important physical systems where the order parameter of the spon-

taneous symmetry breaking is an O(n) vector. In particular in condensed matter physics,

anti-ferromagnetic layers are described by O(3) for d = 3. Here the NNLO computation is

complete to order 1/L2
s ; for details and comparisons to experiment see ref. [5].

2 The free energy on the lattice

In this section we work with a hyper-cubic d-dimensional lattice of volume V = Lt ×
Lds
s , ds = d− 1. Define the aspect ratio ℓ ≡ Lt/Ls.

The dynamical variables are spins Sa(x) , a = 1, . . . , n of unit length S(x)2 = 1 with

periodic boundary conditions in all directions S(x + Lt0̂) = S(x) = S(x + Lsk̂) , k =

1, . . . , ds , where µ̂ is the unit vector in the µ–direction. We will often set the lattice

spacing a to 1 and will restore it again only in selected equations.

2.1 The effective lattice action

The effective lattice action A is a sum over terms

A = A2 +A4 + . . . , (2.1)

where the classical continuum limit of A2r has 2r derivatives. In this paper we will only

consider the expansion up to and including four derivatives.

For A2 we take the standard lattice action:

A2 =
1

2g20

∑

xµ

∂µS(x) · ∂µS(x) = − 1

g20

∑

xµ

S(x) · S(x+ µ̂) + const , (2.2)

where g0 is the bare coupling and ∂µ is the lattice difference operator (we will also need

the backward difference operator ∂∗
µ)

∂µf(x) = f(x+ µ̂)− f(x) , (2.3)

∂∗
µf(x) = f(x)− f(x− µ̂) . (2.4)

The most general form of the four derivative terms is given by [5]

A4 =

5∑

i=1

g
(i)
4

4

[
A

(i)
4 − c(i)

∑

xµ

∂µS(x) · ∂µS(x)
]
, (2.5)
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where

A
(1)
4 =

∑

x

�S(x) ·�S(x) , (2.6)

A
(2)
4 =

∑

xµν

[∂µS(x) · ∂µS(x)] [∂νS(x) · ∂νS(x)] , (2.7)

A
(3)
4 =

∑

xµν

[∂µS(x) · ∂νS(x)] [∂µS(x) · ∂νS(x)] , (2.8)

A
(4)
4 = A

(4a)
4 − 1

d+ 2

(
A

(2)
4 + 2A

(3)
4

)
, (2.9)

A
(5)
4 = A

(5a)
4 − 1

d+ 2

(
2A

(5b)
4 +A

(5c)
4

)
, (2.10)

and

A
(4a)
4 =

∑

xµ

(∂µSx · ∂µSx)
2 , (2.11)

A
(5a)
4 =

∑

xµ

�µS(x) ·�µS(x), (2.12)

A
(5b)
4 = A

(1)
4 , (2.13)

A
(5c)
4 =

∑

xµν

∂µ∂µS(x) · ∂ν∂νS(x) , (2.14)

where

�µ ≡ ∂µ∂
∗
µ , � =

∑

µ

�µ . (2.15)

In (2.5) we subtract a term proportional to the leading action A2 from each of the 4-

derivative interactions. The coefficients c(i) serve to remove the power-like divergence 1/ap

from the contribution of the corresponding operator, (note c(4) = 0). The subtracted

operators then renormalize multiplicatively.

The set of five operators above is redundant 1. One can use this observation to elim-

inate, say, the coupling g
(1)
4 (as in [5]), or alternatively, to check that the final result for

physical quantities depends only on the sum of the couplings, g
(1)
4 + g

(2)
4 .

The total action including only terms to this order is given by

A = Z4A2 +

5∑

i=1

g
(i)
4

4
A

(i)
4 , (2.18)

1As explained in [5], changing the field variable

S(x) → [S(x) + α�S(x)]/|S(x) + α�S(x)| (2.16)

the leading term of the effective action produces 4-derivative terms:

1

2

∑

xµ

∂µS(x) · ∂µS(x) →
1

2

∑

xµ

∂µS(x) · ∂µS(x)− α
(

A
(1)
4 − A

(2)
4

)

+ . . . (2.17)

up to terms with higher derivatives.
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where

Z4 ≡ 1− 1

2
g20

5∑

i=1

g
(i)
4 c(i) . (2.19)

2.2 Perturbative expansion

After separating the zero mode as in [12] and changing to ~π variables (with
∑

x ~π(x) = 0)

according to S = (g0~π,
√

1− g20~π
2) we have

A2,eff [~π] = A2[~π] +A2,measure[~π] +A2,zero[~π] , (2.20)

with

A2,measure[~π] =
∑

x

ln
[
1− g20~π(x)

2
] 1
2 , (2.21)

A2,zero[~π] = −n1 ln
1

V

∑

x

[
1− g20~π(x)

2
] 1
2 , (2.22)

where

n1 ≡ n− 1 . (2.23)

A2,eff has a perturbative expansion

A2,eff = A2,0 + g20A2,1 + g40A2,2 + . . . (2.24)

where (here we will need only A2,0 and A2,1):

A2,0 =
1

2

∑

x

∂µ~π(x) · ∂µ~π(x) , (2.25)

A2,1 = A
(a)
2,1 +A

(b)
2,1 , (2.26)

A
(a)
2,1 = −1

2

(
1− n1

V

)∑

x

~π(x)2 , (2.27)

A
(b)
2,1 =

1

8

∑

x

∂µ
[
~π(x)2

]
∂µ
[
~π(x)2

]
. (2.28)

We expand the couplings of the 4-derivative terms according to

g
(i)
4 =

∑

r=0

g
(i)
4,rg

2r
0 . (2.29)

Noting that the coefficients c(i) defined in (2.5) are of order g20 :

c(i) = c(i)g20 + . . . (2.30)

the renormalization constant Z4 has a perturbative expansion

Z4 = 1 +
∑

r=2

Z4,rg
2r
0 , (Z4,1 = 0) , (2.31)
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with

Z4,2 = −1

2

5∑

i=1

g
(i)
4,0c

(i) . (2.32)

The total effective action has a perturbative expansion of the form

A =
∑

r=0

Arg
2r
0 , (2.33)

with

A0 = A2,0 , (2.34)

and

A1 = A2,1 +
5∑

i=1

g
(i)
4,0

4
A

(i)
4,1 , (2.35)

with

A
(1)
4,1 =

∑

x

�~π(x) ·�~π(x) , (2.36)

A
(i)
4,1 = 0 , i = 2, 3, 4 , (2.37)

A
(5)
4,1 = A

(5a)
4,1 − 1

d+ 2

(
2A

(5b)
4,1 +A

(5c)
4,1

)
, (2.38)

with

A
(5a)
4,1 =

∑

xµ

�µ~π(x) ·�µ~π(x) , (2.39)

A
(5b)
4,1 = A

(1)
4,1 , (2.40)

A
(5c)
4,1 =

∑

xµν

∂µ∂µ~π(x) · ∂ν∂ν~π(x) . (2.41)

The perturbative coefficients of expectation values are sums of expectation values of

products of ~π fields with respect to the Gaussian free field action A0 which are denoted by

〈. . . 〉0. In particular the 2-point function is given by

〈πa(x)πb(y)〉0 = δabG(x− y) , (2.42)

with the free propagator

G(x) =
1

V

∑

p

′ eipx

p̂2
, p̂µ = 2 sin

pµ
2

, (2.43)

where the sum is over momenta p0 = 2πn0/Lt , n0 = 0, . . . , Lt−1 and pk = 2πnk/Ls , nk =

0, . . . , Ls − 1 and the prime on the sum means that p = 0 is omitted.
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2.3 The chemical potential

A chemical potential coupled to the conserved O(n) charge Q12 is introduced by replacing

terms in the action

S(x) · S(y) → [S(x) · S(y)]h , (2.44)

with

[S(x) · S(y)]h = e(y0−x0)hS−(x)S+(y) + e−(y0−x0)hS+(x)S−(y) +
n∑

a=3

Sa(x)Sa(y)

= S(x) · S(y) + i sinh ((y0 − x0)h) [S1(x)S2(y)− S2(x)S1(y)]

+ {cosh ((y0 − x0)h)− 1} [S1(x)S1(y) + S2(x)S2(y)] ,

(2.45)

where S± = 1√
2
(S1 ± iS2) . This gives an additional h-dependent part Ah to the total

action of the form

Ah = Z4A2h +

5∑

i=1

g
(i)
4

4
A

(i)
4h . (2.46)

Further writing

A2h = ihB2 + h2C2 + . . . , (2.47)

A
(i)
4h = ihB

(i)
4 + h2C

(i)
4 + . . . , (2.48)

we have

B2 = − 1

g20

∑

x

[
S1(x)S2(x+ 0̂)− S2(x)S1(x+ 0̂)

]
, (2.49)

C2 = − 1

2g20

∑

x

[
S1(x)S1(x+ 0̂) + S2(x)S2(x+ 0̂)

]
, (2.50)

and the terms B
(i)
4 , C

(i)
4 are given in Appendix A.

The h-dependent part of the free energy fh defined by:

e−V fh = 〈e−Ah〉A = 1− 〈Ah〉A +
1

2
〈A2

h〉A + . . . (2.51)

giving up to the order h2:

V fh = 〈Ah〉A − 1

2
〈A2

h〉A +
1

2
〈Ah〉2A + . . . (2.52)

For finite volumes the limh→0

(
fh/h

2
)
exists; we define the corresponding susceptibility χ

by

χ ≡ −2 lim
h→0

(
fh/h

2
)
. (2.53)

Now

〈B2〉A = 0 = 〈B(i)
4 〉A ∀i , (2.54)

so we have

χ = −2

5∑

s=1

Fs , (2.55)
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with

F1 = Z4
1

V
〈C2〉A , (2.56)

F2 =
1

2
Z2
4

1

V
〈B2

2〉A , (2.57)

F3 =
5∑

i=1

g
(i)
4

4

1

V
〈C(i)

4 〉A , (2.58)

F4 = Z4

5∑

i=1

g
(i)
4

4

1

V
〈B2B

(i)
4 〉A , (2.59)

F5 =
1

2

∑

ij

g
(i)
4

4

g
(j)
4

4

1

V
〈B(i)

4 B
(j)
4 〉A . (2.60)

In the following subsections where we compute the contributions Fs we will use the

fact that the total action A is invariant under global O(n) transformations of the spins, so

that the expectation value of any observable is equal to the expectation value of its average

over O(n) rotations Ω:

〈O[S]〉A = 〈[O[S]]Ω〉A . (2.61)

For arbitrary spins a,b, c,d we will use the following averages

[a1b1 + a2b2]Ω =
2

n
(a · b) , (2.62)

and

[(a1b2 − a2b1)(c1d2 − c2d1)]Ω =
2

n(n− 1)
[(a · c)(b · d)− (a · d)(b · c)] . (2.63)

2.3.1 Computation of F1 up to O
(
g2
0

)

Averaging over the rotations (using (2.62)) we have

1

V
[C2]Ω = − 1

ng20
+

1

2ng20
U , (2.64)

where

U =
1

V

∑

x

∂0S(x) · ∂0S(x) . (2.65)

This has the perturbative expansion

U = g20U1 + g40U2 + . . . (2.66)

with

U1 =
1

V

∑

x

∂0~π(x) · ∂0~π(x) ,

U2 =
1

4V

∑

x

[
∂0~π(x)

2
]2

.

(2.67)
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Expanding (2.56) in a perturbative series

F1 = − 1

ng20
+

∞∑

r=0

F1,rg
2r
0 , (2.68)

we have at leading orders

F1,0 =
1

2n
〈U1〉0 , (2.69)

and

F1,1 =
1

2n

[
−2Z4,2 + 〈U2〉0 − 〈U1A2,1〉c0 −

5∑

i=1

g
(i)
4,0

4
〈U1A

(i)
4,1〉c0

]
, (2.70)

where the superscript c in 〈. . . 〉c0 means the connected part. The correlation functions

appearing in (2.69,2.70) are given in Appendix C.1 yielding

F1,0 =
n1

2n
I11 , (2.71)

and

F1,1 =
n1

2n

[
− 2

n1
Z4,2 + I11

{
I10 −

1

4
I11

}
−F1 +

(
1− n1

V

)
I21

−
g
(1)
4,0

2
I01 −

g
(5)
4,0

2

{
J21 −

1

d+ 2
(2I01 + F4)

}]
.

(2.72)

Here Inm, Jnm,F1,F4 are momentum sums defined in equations (B.1), (B.2), (B.4), (B.6),

(B.9) respectively.

2.3.2 Computation of F2 up to O
(
g2
0

)

Averaging over the rotations one has, using (2.63),

1

V

[
B2

2

]
Ω
=

4

nn1g40
W , (2.73)

where W is given by

W =
1

V

∑

xy

∇0S(x) · ∇0S(y) [S(x) · S(y)− 1] , (2.74)

where ∇0 =
1
2(∂0 + ∂∗

0) is the symmetric derivative. W has a perturbative expansion

W = g40W2 + g60W3 + . . . (2.75)

with (to the order we need)

W2 =
1

V

∑

xy

[∇0~π(x) · ∇0~π(y)] ~π(x) · ~π(y) , (2.76)

W3 =
1

2V

∑

xy

[∇0~π(x) · ∇0~π(y)] ~π(x)
2~π(y)2 . (2.77)
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Expanding (2.57) in a perturbative series

F2 =

∞∑

r=0

F2,rg
2r
0 , (2.78)

we have at leading order

F2,0 =
2

nn1
〈W2〉0 , (2.79)

and at next order

F2,1 =
2

nn1

[
〈W3〉0 − 〈W2A2,1〉c0 −

5∑

i=1

g
(i)
4,0

4
〈W2A

(i)
4,1〉c0

]
. (2.80)

The correlation functions appearing in (2.79) and (2.80) are computed in Appendix C.2

yielding

F2,0 =
2(n1 − 1)

n

[
I21 −

1

4
I22

]
, (2.81)

and

F2,1 =
1

n
W3c +

2(n1 − 1)

n

[
W3a − 2F2 + F3 + 2

(
1− n1

V

){
I31 −

1

4
I32

}

− g
(1)
4,0

(
I11 −

1

4
I12

)
− g

(5)
4,0

(
J31 −

1

4
J32 −

1

d+ 2

{
2I11 −

1

2
I12 + F5

})]
,

(2.82)

where F2,F3F5 are defined in (B.7,B.8,B.10), and W3a,W3c are defined through

W3a = −
∑

x

G(x)2∇2
0G(x) , (2.83)

W3c =
∑

x

∇0G(x)
[
(∂0G(x))2 − (∂∗

0G(x))2
]
= −1

6

∑

x

[�0G(x)]3 . (2.84)

2.3.3 Summary

The computation of the leading contributions to F3, F4, F5 follows similar steps as in the

subsections above and details are presented in Appendices C.3-C.5. Summarizing our

results so far, the susceptibility with standard lattice regularization is given by

χ =
2

ng20

(
1 +R1g

2
0 +R2g

4
0 + . . .

)
, (2.85)

with

R1 = −n1

2
I11 − 2(n1 − 1)

(
I21 −

1

4
I22

)
, (2.86)

and

R2 = R
(a)
2 +R

(b)
2 , (2.87)

R
(a)
2 = −1

2
n1

[
I11

{
I10 −

1

4
I11

}
−F1 +

(
1− n1

V

)
I21

]

−W3c − 2(n1 − 1)

[
W3a − 2F2 + F3 + 2

(
1− n1

V

){
I31 −

1

4
I32

}]
,

(2.88)
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and

R
(b)
2 =

5∑

i=1

g
(i)
4,0G

(i) , (2.89)

with

G(1) = −1

2
c(1) + 2I11 −

1

2
I12 + n1

[
I00 −

1

4
I01

]
, (2.90)

G(2) = −1

2
c(2) + 2I11 + n1I00 , (2.91)

G(3) = −1

2
c(3) + I00 + (n1 + 1)I11 , (2.92)

G(4) = −1

2
c(4) − (n1 + 2)

(d+ 2)
[I00 − dI11] , (2.93)

G(5) = −1

2
c(5) − 2

(d+ 2)

{
2I11 −

1

2
I12 + n1

[
I00 −

1

4
I01

]}

− n1

(d+ 2)

[
−(d+ 1) {3I11 − I12}+ F6 −

1

4
(d+ 2)J21 +

1

4
F4

]

+ (n1 − 1)

{
2J31 −

1

2
J32 −

1

(d+ 2)
[2F5 + (d+ 1) (4I22 − I23)− 2F7]

}
. (2.94)

A check of (2.88) for the special case of n = 2 is given in Appendix D.

2.4 Renormalization on the lattice

The renormalization procedure depends on the dimension; in the following we will consider

the cases d = 2, 3, 4.

2.4.1 Case d = 2

For d = 2 the theory is renormalizable so we can set the 4-derivative couplings g
(i)
4 to zero.

As is well known the theory is asymptotically free.

A renormalized “minimal” lattice coupling glatt(µ) is defined through

1

g20
=

1

g2latt(µ)
− b0 ln(aµ)− b1 ln(aµ)g

2
latt(µ) + . . . (2.95)

where b0, b1 are the universal 1-, and 2-loop coefficients of the β-function [13, 14]:

b0 =
n− 2

2π
, b1 =

n− 2

4π2
. (2.96)

In the continuum limit

I11 =
1

2
+ O

(
a2
)
, (2.97)

I21 =
1

4π
ln(Ls/a) + I21;0(ℓ) + O

(
a2
)
, (2.98)

I22 =
1

2
− 1

2π
+O

(
a2
)
. (2.99)

The coefficients Inm;r appearing in the large Ls/a expansion of Inm are considered in [8].
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So

R1 = −b0 ln(Ls/a) + r1 +O
(
a2
)
, (2.100)

with

r1 = −1

4
− 2(n − 2)

[
I21;0(ℓ) +

1

8π

]
. (2.101)

Next

I10 =
1

2π
ln(Ls/a) + I10;0(ℓ) + O

(
a2
)
, (2.102)

I32 =
3

16π
ln(Ls/a) + I32;0(ℓ) + O

(
a2
)
, (2.103)

1

V
I31 = I31;−1(ℓ) + O

(
a2
)
, (2.104)

F1 =
1

2π
ln(Ls/a) + I21;0(ℓ) +

1

2
I10;0(ℓ)−

1

8
+ O

(
a2
)
, (2.105)

F2 − I31 =
1

8π2
ln2(Ls/a) +

1

2π

{
I21;0(ℓ) +

1

2
I10;0(ℓ) +

1

8π
− 11

32

}
ln(Ls/a)

+F2;0 +O
(
a2
)
, (2.106)

F2;0 =

[
I10;0(ℓ)−

1

4

]{
I21;0(ℓ)−

1

8
+

1

8π

}
− I31;−1(ℓ)−

1

4
I32;0(ℓ) , (2.107)

W3a =
1

8π2
ln2(Ls/a) +W3a;0x(ℓ) ln(Ls/a) +W3a;0(ℓ) + O

(
a2
)
, (2.108)

W3c =
1

48
+O

(
a2
)
. (2.109)

So

R
(a)
2 = −b1 ln(Ls/a) + r2 +O

(
a2
)
, (2.110)

with

r2 = − 5

96
+ 4(n − 2)2I31;−1(ℓ)

− 2(n − 2)

[
W3a;0(ℓ) +

1

64
− 2

{
I10;0(ℓ)− I21;0(ℓ)−

1

8
− 1

8π

}{
I21;0(ℓ)−

1

8
+

1

8π

}]
,

(2.111)

where we have used the relation

W3a;0x(ℓ) =
1

2π

[
I10;0(ℓ)−

1

4
+

1

4π

]
. (2.112)

We thus obtain in the continuum limit:

χ =
2

ng2latt(µ)

{
1 + [−b0 ln(µLs) + r1] g

2
latt(µ) + [−b1 ln(µLs) + r2] g

4
latt(µ) + . . .

}

=
2

ng2latt(1/Ls)

{
1 + r1g

2
latt(1/Ls) + r2g

4
latt(1/Ls) + . . .

} (2.113)

which is interpreted as an expansion in the running lattice coupling glatt(1/Ls), the expan-

sion being sensible only for physically small box size Ls.
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2.4.2 Case d = 3

For d = 3 we set g20 = 1/(ρ0a), where ρ0 is the bare spin stiffness, and define a renormalized

coupling ρ as in [6] through

1

ρ0
=

1

ρ

(
1 +

b1
ρa

+
b2

ρ2a2
+ . . .

)
. (2.114)

Then we have

χ =
2ρ

n

(
1 +

1

ρa
R̂1 +

1

ρ2a2
R̂2 + . . .

)
(2.115)

with

R̂1 = R1 − b1 , (2.116)

R̂2 = R2 − b2 + b21 . (2.117)

From [8] for d = 3 R1 has a large Ls/a expansion of the form

R1 = −1

6
− (n− 2)I10;0 − 2(n− 2)I21;1(ℓ)

a

Ls
+ . . . (2.118)

with I10;0 = 0.252731009859, where in d = 3 the large Ls/a expansion of XA is given by

XA =
∑

r=r0
XA;r(a/Ls)

r . So for renormalization at leading order we need

b1 = −1

6
− (n− 2)I10;0 . (2.119)

After choosing the c(i) appropriately the terms in R̂2 coming from R
(b)
2 are of order

a3/L3
s

2, so the continuum limit is determined only by R
(a)
2

Further R
(a)
2 has a large Ls/a expansion for d = 3 of the form

R
(a)
2 = R

(a)
2;0 +R

(a)
2;1

a

Ls
+R

(a)
2;2

a2

L2
s

+ . . . (2.120)

so renormalization requires

b2 − b21 = R2;0 , (2.121)

which gives

b2 = b20 + b21n1 + b22n
2
1 , (2.122)

with coefficients independent of ℓ 3

b20 = 2W3a;0 −W3c;0 = 0.0102138509611 ,

b21 =
1

72
− 2W3a;0 − I210;0 = −0.0659002864141 ,

b22 = I210;0 = 0.0638729633447 .

(2.123)

2The couplings of the 4-derivative interactions in d = 3 have dimension in the continuum formulation.
3 Note 4I21;0 − I22;0 = 2I10;0 − 1/d .
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Further we need

0 = R
(a)
2;1 = 2(n − 2)

[
−W3a;1 +

{
I10;0 −

1

6

}
I10;1

]
, (2.124)

which we have verified numerically to high precision for ℓ = 1 and ℓ = 2 [8].

So finally we have for d = 3 in the continuum limit:

χ =
2ρ

n

(
1− 1

ρLs
2(n− 2)I21;1(ℓ) +

1

ρ2L2
s

R
(a)
2;2(ℓ) + . . .

)
(2.125)

with

R
(a)
2;2 = 2(n − 2)

{
−W3a;2 + 2I21;1 (I10;1 − I21;1) +

2

ℓ
(n− 2)I31;−1

}
. (2.126)

This result for the susceptibility agrees with (2.29) of [5] 4. e.g.:

R
(a)
2;2(ℓ) =

{
−0.00920015939 − 0.007071685928 (n − 2) , for ℓ = 1 ,

0.01560323409 − 0.01338624986 (n − 2) , for ℓ = 2 .
(2.127)

2.4.3 Case d = 4

For d = 4 we set g20 = 1/(F 2
0 a

2) and define a renormalized coupling F (the pion decay

constant in chiral PT in the chiral limit) through

1

F 2
0

=
1

F 2

(
1 +

b1
F 2a2

+
b2

F 4a4
+O

(
1/(Fa)6

))
. (2.128)

After renormalization we have

χ =
2F 2

n

(
1 +

1

F 2a2
R̂1 +

1

F 4a4
R̂2 + . . .

)
, (2.129)

with

R̂1 = R1 − b1 , (2.130)

R̂2 = R2 − b2 + b21 . (2.131)

To cancel the 1/a2 terms in R̂1/a
2 one should require

b1 = −1

8
− (n− 2)I10;0

= 0.029933390231060214084 − 0.15493339023106021408n1 .
(2.132)

This agrees with the result in [6]. For d = 4 the large Ls/a expansion of quantity XA

appearing here is given by XA =
∑

r=r0
XA;r(a/Ls)

2r .

4with the identification of the notation used there (on the lhs): β1 = −I10;1 , β2 = I20;−1 , β̃1 =

−6I21;1 , β̃2 = (12/ℓ)I31;−1 , ψ =W3a;2 − 2I10;1I21;1 .
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Next since I11;1 = 0 = I22;1 after renormalization we obtain

lim
a→0

[
a−2R̂1

]
= −2(n− 2)

L2
s

I21;1 . (2.133)

R̂2/a
4 has divergent terms proportional to 1/a4, 1/a2 and log(a). First we recall that

the subtraction coefficients c(i) are used to cancel the leading, 1/a4 contributions of the

corresponding operators. In leading order c(i) (defined in (2.30)) is fixed by requiring

lim
a/Ls→0

G(i) = 0 , (2.134)

where G(i) are the coefficients in (2.89), which leads to

c(1) = n− I12;0 = n− 0.7066242375215119838793013966 ,

c(2) = 2n − 1 ,

c(3) =
1

2
n+ 2 ,

c(4) = 0 ,

c(5) = −0.030936190551839592713n − 0.032327591899970596813 .

(2.135)

In [6] the overall sign of c(i) was wrong and we also disagree here with sign of the constant

term in c(5).

Demanding the absence of the 1/a4 singularity in R̂2/a
4 determines the second order

coefficient

b2 = I210;0 (n− 2)2 +

(
I210;0 +

1

128
− 2W3a;0

)
(n− 2) +

1

128
−W3c;0

= 0.024004355408 (n − 2)2 + 0.028115270716 (n − 2) + 0.005536500909 .

(2.136)

This agrees with [6].

With the values for c(i) above G(i) = O
(
a4/L4

s

)
∀i . It follows that the 1/a2 contri-

bution to R̂2/a
4 has no more free parameters and should vanish identically. This requires

the relation

W3a;1 =

(
I10;0 −

1

8

)
I10;1 , (2.137)

which indeed holds numerically (see [8]).

As for the renormalization of the 4-derivative couplings one has

g
(i)
4,0 = k(i) log(aMi) , i = 1, 2, 3 , (2.138)

while for i = 4, 5 they are not renormalized to this order.

Moreover it is easy to check that after choosing the c̄(i) as above5

G(1) = G(2) =
a4

L4
s

[
2I11;2 −

n1

ℓ

]
+O

(
a6/L6

s

)
, (2.139)

5Note I12;2 = 0.
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so that the part of R̂2 contributing in the continuum limit depends on g
(1)
4,0 , g

(2)
4,0 only through

their sum g
(1)
4,0 + g

(2)
4,0 , consistent with our general argument on the redundancy of the 4-

derivative operators in subsection 2.1. In the following we shall use this redundancy to set

g
(1)
4 = 0.

The cancellation of the ln(Ls/a) terms requires a relation for the coefficient of the

N−4 lnN term in W3a ,

W3a;2x =
1

48π2

(
10I11;2 +

1

ℓ

)
, (2.140)

which is satisfied numerically to high precision. Then the coefficients of the logarithmic

terms of g
(2)
4,0 and g

(3)
4,0 are fixed as:

−4π2k(2) = w1 =
n

2
− 5

3
, (2.141)

−4π2k(3) = w2 =
2

3
, (2.142)

agreeing with refs. [6] and [2].

Noting the relation

W3c;2 = −1

8
(4 I10;0 − 1) I11;2 , (2.143)

which is satisfied by the numerical values in [8], and inserting eqs. (4.22) and (4.23) one

obtains the continuum limit of R̂2/a
4:

L4
s lim
a→0

R̂2

a4
= Ĥ0 −H2

w1

4π2
ln(M2Ls)−H3

w2

4π2
ln(M3Ls) +H4g

(4)
4,0 +H5g

(5)
4,0 , (2.144)

where

H2 = −n− 1

ℓ
+ 2I11;2 ,

H3 = −1

ℓ
+ n I11;2 ,

H4 =
1

6
(n+ 1)

(
1

ℓ
+ 4 I11;2

)
,

H5 =
n− 1

2ℓ
+ (3n − 4) I11;2 + 2(n − 2) (J31;2 − 2I22;2) ,

(2.145)

and

Ĥ0 = −(n− 2)ŵ + ŵ′I11;2 + ŵ′′ 1
ℓ
, (2.146)

with

ŵ = −2

(
I10;0 −

1

8

)
I10;2 + 2W3a;2 − 4(I10;1 − I21;1)I21;1 , (2.147)

ŵ′ =
2

3
(n− 2)(I33;0 − 4 I32;0) +

2

3

(
n− 3

4

)
I10;0 −

1

48
(5n − 1) , (2.148)

ŵ′′ =
1

24
(3n2 + n− 12)I10;0 − (n− 2)

{(
n− 4

3

)
I32;0 −

1

6
I33;0 +

1

24

}
+ 4(n− 2)2I31;0 .

(2.149)

Note that the coefficient of g
(4)
4,0 in eq. (2.144) vanishes for the hyper-cubic case, ℓ = 1.
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3 The free energy with dimensional regularization

In this section we work in a continuum volume V = Lt × Lds
s , ds = d − 1. Again the

dynamical variables are spins Sa(x) , a = 1, . . . , n of unit length S(x)2 = 1 with periodic

boundary conditions in all directions. We will dimensionally regularize by adding q extra

compact dimensions of size L̂ (also with pbc) and analytically continue the resulting loop

formulae to q = −2ǫ. We define D = d + q , VD = V L̂q . We denote aspect ratio of the

extra dimensions by ℓ̂ ≡ L̂/Ls.

Many of the formulae are similar to those with lattice regularization and we will du-

plicate many of the notations hoping that this will not lead to confusions.

3.1 The effective action

The effective action A is a sum over terms

A = A2 +A4 + . . . , (3.1)

where A2r has 2r derivatives. A2 is simply given by

A2 =
1

2g20

∫

x

∑

µ

∂µS(x) · ∂µS(x) . (3.2)

The four derivative terms are

A4 =
∑

i=2,3

g
(i)
4

4
A

(i)
4 , (3.3)

where (we use redundancy immediately here to set g
(1)
4 = 0),

A
(2)
4 =

∫

x

∑

µν

[∂µS(x) · ∂µS(x)] [∂νS(x) · ∂νS(x)] , (3.4)

A
(3)
4 =

∫

x

∑

µν

[∂µS(x) · ∂νS(x)] [∂µS(x) · ∂νS(x)] . (3.5)

3.2 Perturbative expansion

After separating the zero mode and changing to ~π variables (S = (g0~π,
√

1− g20~π
2))

A2,eff [~π] = A2[~π] +A2,zero[~π] . (3.6)

Note that the measure term is not present with dimensional regularization.

A2,zero[~π] = −n1 ln

(
1

VD

∫

x

(
1− g20~π(x)

2
) 1

2

)
. (3.7)

A2,eff has a perturbative expansion

A2,eff = A2,0 + g20A2,1 +O
(
g40
)
, (3.8)
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where

A2,0 =
1

2

∫

x
∂µ~π(x) · ∂µ~π(x) , (3.9)

A2,1 = A
(a)
2,1 +A

(b)
2,1 , (3.10)

A
(a)
2,1 =

n1

2VD

∫

x
~π(x)2 , (3.11)

A
(b)
2,1 =

1

8

∫

x
∂µ
[
~π(x)2

]
∂µ
[
~π(x)2

]
. (3.12)

The total effective action has a perturbative expansion of the form

A =
∑

r=0

Arg
2r
0 , (3.13)

with

Ar = A2,r , r = 0, 1 , (3.14)

since

A
(i)
4 = O

(
g40
)
, i = 2, 3 . (3.15)

The free 2-point function is given by

〈πa(x)πb(y)〉0 = δabG(x− y) , (3.16)

with propagator

G(x) =
1

VD

∑

p

′ eipx

p2
, (3.17)

where the sum is over momenta pµ = 2πnµ/Lµ , nµ ∈ Z and the prime on the sum means

that p = 0 is omitted.

3.3 The chemical potential

The chemical potential h is introduced by the substitution:

∂0 → ∂0 − hQ , (3.18)

where (QS)1 = iS2 , (QS)2 = −iS1 , and (QS)a = 0 , a = 3, . . . , n .

This gives an additional h-dependent part Ah to the total action of the form

Ah = A2h +
∑

i=2,3

g
(i)
4

4
A

(i)
4h . (3.19)

Further writing

A2h = ihB2 + h2C2 + . . . , (3.20)

A
(i)
4h = ihB

(i)
4 + h2C

(i)
4 + . . . , (3.21)
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we have

B2 = − 1

g20

∫

x
j0(x) , jµ(x) = S2(x)∂µS1(x)− S1(x)∂µS2(x) , (3.22)

C2 =
1

2g20

∫

x
[QS(x)]2 . (3.23)

For the operator 2:

B
(2)
4 = −4

∫

x
∂µS(x) · ∂µS(x) j0(x) , (3.24)

C
(2)
4 = −2

∫

x

{
∂µS(x) · ∂µS(x)

[
S1(x)

2 + S2(x)
2
]
+ 2 [j0(x)]

2
}

, (3.25)

and for the operator 3:

B
(3)
4 = −4

∫

x
∂0S(x) · ∂µS(x) jµ(x) , (3.26)

C
(3)
4 = −2

∫

x

{
∂0S(x) · ∂0S(x)

[
S1(x)

2 + S2(x)
2
]
+ 2 [j0(x)]

2 + [jk(x)]
2
}

. (3.27)

The h-dependent part of the free energy fh is defined as in (2.51). Now

〈B2〉A = 0 = 〈B(i)
4 〉A ∀i , (3.28)

so we have

χ = −2

5∑

s=1

Fs , (3.29)

with

F1 =
1

VD
〈C2〉A , (3.30)

F2 =
1

2

1

VD
〈B2

2〉A , (3.31)

F3 =
∑

i=2,3

g
(i)
4

4

1

VD
〈C(i)

4 〉A , (3.32)

F4 =
∑

i=2,3

g
(i)
4

4

1

VD
〈B2B

(i)
4 〉A , (3.33)

F5 =
1

2

∑

ij

g
(i)
4

4

g
(j)
4

4

1

VD
〈B(i)

4 B
(j)
4 〉A . (3.34)

Averaging over the rotations we have simply

1

VD
[C2]Ω = − 1

ng20
, (3.35)

and

F1 = − 1

ng20
. (3.36)
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Next
1

VD

[
B2

2

]
Ω
=

4

nn1g40
W , (3.37)

with W given by

W =
1

VD

∫

xy
∂0S(x) · ∂0S(y) [S(x) · S(y)− 1] . (3.38)

This has a perturbative expansion

W = g40W2 + g60W3 + . . . (3.39)

with

W2 =
1

VD

∫

xy
[∂0~π(x) · ∂0~π(y)] ~π(x) · ~π(y) , (3.40)

W3 =
1

2VD

∫

xy
[∂0~π(x) · ∂0~π(y)]~π(x)2~π(y)2 . (3.41)

Expanding (3.31) in a perturbative series

F2 =

∞∑

r=0

F2,rg
2r
0 , (3.42)

we have at leading order

F2,0 =
2

nn1
〈W2〉0

=
2(n− 2)

n

∫

x
[∂0G(x)]2 =

2(n− 2)

n
I21 ,

(3.43)

where dimensionally regularized sums Inm are formally defined by

Inm =
1

V

∑

p

′
(
p20
)m

(p2)n
. (3.44)

Sums with m = 0 were treated by Hasenfratz and Leutwyler [15]; we generalize their

methods to sums with m = 1 in [8].

At next order

F2,1 =
2

nn1
[〈W3〉0 − 〈W2A2,1〉c0] . (3.45)

First

〈W3〉0 =
1

2VD

∫

xy
〈∂0~π(x) · ∂0~π(y)~π(x)2~π(y)2〉0 = n1(n− 2)W , (3.46)

where

W = −
∫

x
G(x)2∂2

0G(x) . (3.47)

This 2-loop function, the “massless sunset diagram”, is calculated in detail in [8].
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Next

〈W2A
(a)
2,1〉c0 =

n1

2V 2
D

∫

xyu

〈
∂0~π(x) · ∂0~π(y)(~π(x) · ~π(y))~π(u)2

〉c
0

=
2n2

1(n− 2)

V 2
D

∫

xyu
∂x
0∂

y
0G(x− y)G(x− u)G(y − u)

=
2n2

1(n− 2)

V 2
D

∑

p

′ p20
(p2)3

=
2n2

1(n− 2)

VD
I31 ,

(3.48)

and

〈W2A
(b)
2,1〉c0 =

1

8VD

∫

xyu

[
∂u
µ∂

v
µ

〈
∂0~π(x) · ∂0~π(y)(~π(x) · ~π(y))~π(u)2~π(v)2

〉c
0

]
v=u

=
n1(n − 2)

VD

∫

xyu
∂u
µ∂

v
µ

[
2∂x

0 ∂
y
0G(x− y)G(x − u)G(y − v)G(u− v)

−∂x
0G(x− u)∂y

0G(y − v)G(x − v)G(y − u)
]∣∣∣

v=u

= n1(n− 2)
1

V 2
D

∑

pq

′
[
2p20(p− q)2

(p2)3 q2
+

p0q0(p− q)2

(p2)2 (q2)2

]

= 2n1(n− 2)
[
I21I10 + I31I00 − I

2
21

]
.

(3.49)

Note that I00 = −�G(0) = −1/VD since the dimensional regularization sets δ(0) = 0.

For the contribution from the 4-derivative terms, averaging over rotations:

[
C

(2)
4

]
Ω
= − 4

nn1

∫

x
{n1∂µS(x) · ∂µS(x) + 2∂0S(x) · ∂0S(x)} , (3.50)

[
C

(3)
4

]
Ω
= − 4

nn1

∫

x
{∂µS(x) · ∂µS(x) + n∂0S(x) · ∂0S(x)} . (3.51)

So to first order perturbation theory

F3,1 =
4

n

{
g
(2)
4

4

[
n1

VD
− 2I11

]
+

g
(3)
4

4

[
1

VD
− nI11

]}
. (3.52)

Finally

F4,1 = F5,1 = 0 . (3.53)

3.4 Summary

So for the expansion of the susceptibility with DR we have

χ =
2

ng20

(
1 + g20R1 + g40R2 + . . .

)
, (3.54)

with

R1 = −2(n− 2)I21 , (3.55)

and

R2 = R
(a)
2 +R

(b)
2 , (3.56)
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with

R
(a)
2 = 2(n − 2)

{
−W + 2I21

[
I10 − I21

]
+

2(n − 2)

VD
I31

}
, (3.57)

R
(b)
2 = −4

{
g
(2)
4

4

[
n1

VD
− 2I11

]
+

g
(3)
4

4

[
1

VD
− nI11

]}
. (3.58)

3.5 Case n = 2

Note that R1 = 0 = R
(a)
2 for n = 2. This is easily seen since for this special case the

2-derivative action with chemical potential is simply

A =
1

2g20

∫

x
(∂µΦ(x)− ihδµ0)

2 =
1

2g20

∫

x
(∂µΦ(x))

2 − h2

2g20
VD . (3.59)

Therefore there are no corrections to the leading term for the susceptibility

χ =
1

g20
. (3.60)

3.6 Case d = 2

For d = 2 the theory is renormalizable and as before we set the 4-derivative couplings to

zero. Renormalization in the minimal subtraction (MS) scheme is achieved by

g20 = µ2ǫg2MSZ1 , (3.61)

with

Z−1
1 = 1 +

b0
2ǫ

g2 +
b1
4ǫ

g4 + . . . , (3.62)

where b0, b1 are as in (2.96).

For D ∼ 2

I21 ∼ − 1

4π
L−D+2

[
1

D − 2
− 1

2
γ2 + κ21(D − 2) + . . .

]
, (3.63)

where the functions γi(ℓ) are defined in [8].

Next

I10 = − 1

2π
L−D+2

[
1

D − 2
− 1

2
α1 +

1

2V + κ10(D − 2) + . . .

]
, (3.64)

I31 =
L2

64π2
[γ3 + 1] , (3.65)

W = L−2D+4 1

8π2

[
1

(D − 2)2
+

1

(D − 2)

(
−α1 −

1

2
+

1

ℓ

)
+ w + . . .

]
. (3.66)

where αi(ℓ) are defined in [15].

In terms of the renormalized coupling

χ =
2

ng2MS

{
1− b0

(
ln(µLs) +

1

2
γ2

)
g2MS − b1 (ln(µLs) + r2) g

4
MS + . . .

}
, (3.67)
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with

r2 = w − 2κ10 −
1

2
γ2

(
α1 −

1

ℓ
− 1

2
γ2

)
− 16π2 (n− 2)

VD
I31 . (3.68)

For completeness we note that the free energy for large h was computed to NLO with

DR at infinite volume in [16, 17] with the result in the MS scheme:

f(h)− f(0) = −h2

2

[ 1

g2
MS

(µ)
− (n− 2)

2π

(
ln(µ/h) +

1

2

)
+O

(
g2
)]

= −h2

2

[ 1

g2
MS

(h)
− (n− 2)

4π
+O

(
g2
)]

.

(3.69)

Noting
1

g2
MS

(h)
=

(n− 2)

2π

[
ln(h/ΛMS) +

1

n− 2
ln ln(h/ΛMS) + . . .

]
, (3.70)

this result can be expressed as

f(h)− f(0) = −(n− 2)

2π

h2

2

[
ln

h

ΛMS

√
e
+

1

(n− 2)
ln ln(h/ΛMS) + . . .

]
. (3.71)

Eq. (3.71) was compared to the result from a non-perturbative computation invoking the

Bethe ansatz [16, 17] thereby obtaining the exact ratio of the mass gap to the Λ–parameter

m/ΛMS. Later the thermodynamic Bethe ansatz equations were extended to study the

spectrum at finite volume [18]-[21].

3.7 Case d = 3

For d = 3 the contribution of the 4-derivative terms and are not relevant at O
(
L−2
s

)
since

R
(b)
2 = O

(
L−3
s

)
6. We remark however that because the theory is non-renormalizable, it is

expected that they are necessary to absorb divergences at higher orders.

For the sums contributing to R1, R
(2a) we have

I10 = −β1L
−1
s , (3.72)

I21 =
1

8πLs
(γ2 − 2) , (3.73)

= − 1

3Ls
β1 for ℓ1 = ℓ2 = ℓ3 , (3.74)

I31 =
Ls

64π2
(γ3 + 2) , (3.75)

where the functions βi(ℓ), γi(ℓ) are defined in [8]. Also W has a finite limit for D = 3, and

the results of numerical evaluation for ℓ = 1, ℓ = 2 are given in [8].

The agreement of R1, R2 with the lattice results is evident for d = 3 because of the

direct relation of the DR sums to the associated coefficients of the lattice sums:

I10 = I10;1/Ls , I21 = I21;1Ls , I31 = I31;−1Ls , W = W3a;2/L
2
s . (3.76)

6Note that for d = 3 the couplings g
(i)
4 have dimension, in contrast to d = 4.
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3.8 Case d = 4

In d = 4 we set g20 = 1/F 2 which is not renormalized with DR.

In ref. [8] we have computed the various functions appearing in R1, R2. First, for

d = 4 , I21 has a finite limit as q → 0:

lim
q→0

I21 =
1

8πL2
s

[γ2(ℓ)− 1] . (3.77)

For D ∼ 4 we find for the 1-loop functions,

I10 = −β1(ℓ)L
−2
s +O(D − 4) , (3.78)

I31 =
1

32π2

[
lnLs −

1

D − 4
+

1

2
γ3(ℓ)

]
+O(D − 4) , (3.79)

and for the 2-loop function

W =
1

16π2L4
s

{[
1

D − 4
− 2 lnLs

]
W0(ℓ) +

1

3ℓ
ln(ℓ̂)− 10

3
W1(ℓ, ℓ̂) +W(ℓ)

}
+O(D − 4) ,

(3.80)

with

W0(ℓ) =
5

3

[
1

2
− γ1(ℓ)

]
− 1

3ℓ
. (3.81)

Here we will not need the explicit expression for W1(ℓ, ℓ̂). Putting the results together for

D ∼ 4

R
(a)
2 = 2(n − 2)

1

16π2L4
s

{
−
[

1

D − 4
− 2 lnLs

] [
5

3

(
1

2
− γ1(ℓ)

)
+

1

ℓ

(
n− 7

3

)]

+
1

ℓ

(
n− 7

3

)
ln(ℓ̂) +

10

3
W1(ℓ, ℓ̂)

−1

2
(γ2(ℓ)− 1)2 − 4πβ1 (γ2(ℓ)− 1) +

1

2ℓ
(n− 2)γ3(ℓ)−W(ℓ)

}
.

(3.82)

For the 4-derivative terms we should identify

g
(2)
4

4
= −l1 ,

g
(3)
4

4
= −l2 , (3.83)

with the bare couplings li of Gasser and Leutwyler [2] for the standard MS scheme:

li =
wi

16π2

[
1

D − 4
+ ln (cΛi)

]
, (3.84)

where ln c = C (defined in (4.3)), and

w1 =
n

2
− 5

3
, w2 =

2

3
, (3.85)

are as given by [2] in (2.141,2.142) 7. In order to pick up all terms of R
(b)
2 finite in the limit

D → 4 we need also order q = D − 4 terms of I11:

I11 =
1

L4
s

{
1

2
(1− q lnLs)

[
γ1(ℓ)−

1

2

]
+ qW1(ℓ, ℓ̂)

}
+O

(
q2
)
. (3.86)

7In [2] only the n = 4 result is given. Often the notation γi is used for wi above, but we have already

used γi in the context of 1-loop integrals.
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We then get for D ∼ 4:

R
(b)
2 =

1

16π2L4
s

{
2(n− 2)

[
1

D − 4
− 2 lnLs

] [
5

3

(
1

2
− γ1(ℓ)

)
+

1

ℓ

(
n− 7

3

)]

− 2(n− 2)

[
1

ℓ

(
n− 7

3

)
ln(ℓ̂) +

10

3
W1(ℓ, ℓ̂)

]

+4w1 ln (cΛ1Ls)

[
(n− 1)

ℓ
− γ1(ℓ) +

1

2

]
+ 4w2 ln (cΛ2Ls)

[
1

ℓ
− n

2

(
γ1(ℓ)−

1

2

)]}
.

(3.87)

Summing the terms we have for d = 4:

R2 =
1

16π2L4
s

{
−2(n− 2)

[
1

2
(γ2(ℓ)− 1)2 + 4πβ1 (γ2(ℓ)− 1)− 1

2ℓ
(n− 2)γ3(ℓ) +W(ℓ)

]

+4w1 ln (cΛ1Ls)

[
(n− 1)

ℓ
− γ1(ℓ) +

1

2

]
+ 4w2 ln (cΛ2Ls)

[
1

ℓ
− n

2

(
γ1(ℓ)−

1

2

)]}
.

(3.88)

Note that not only do the poles at D = 4 cancel, but also W1(ℓ, ℓ̂), hence the physical

amplitude R2 is independent of ℓ̂, the aspect ratio of the extra unphysical dimensions, as

to be expected.

4 Matching the effective actions for d = 2 and d = 4

4.1 Case d = 2

By matching the results for the susceptibility computed using lattice and dimensional

regularizations we should obtain the 2-loop relation between the respective renormalized

couplings

g2latt = g2MS

[
1 +X1g

2
MS +X2g

4
MS + . . .

]
. (4.1)

First noting

I21;0(ℓ) =
1

8π

[
γ2 + 2C + 5 ln 2

]
, (4.2)

where

C = −1

2
[ln(4π) − γE + 1] = −1.476904292 , (4.3)

at leading order we reproduce Parisi’s result 8 [22]

X1 = r1 +
1

2
b0γ2

=
b0
2

[
ln
(π
8

)
− γE

]
− 1

4
.

(4.4)

The ratio of Λ parameters is
Λlatt

ΛMS
= exp

(
X1

b0

)
. (4.5)

At next order matching we get

X2 −X2
1 = r2 + b1r2 . (4.6)

8converted from Pauli Villars regularization to DR
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For our purposes it is sufficient to consider the case ℓ = ℓ̂ = 1 for which

W =
1

D

[
I
2
10 −

1

VD
I20

]
, (ℓ = ℓ̂ = 1) , (4.7)

so that

w = 2κ10 +
1

4
α2
1 −

1

8
[γ3 + 1] , (ℓ = ℓ̂ = 1) , (4.8)

and from (3.68) (noting γs = (2/d)(s − 1)αs−1 for ℓ = 1)

r2 =
1

2
α1 −

1

4
α2 −

1

8
− 16π2 (n− 2)

VD
I31

= −0.1022210828989128367197392 − 16π2 (n− 2)

VD
I31 , ℓ = 1

(4.9)

On the lattice side we get for ℓ = 1 from (2.111)

r2 = − 5

96
− (n− 2)

(
1

2π
I10;0 − I20;−1 −

1

32
+

1

16π2
+ a1

)
+ 4(n − 2)2I31;−1 (4.10)

where we used

W3a;0 =
1

2
I210;0 −

1

2
I10;0I22;0 −

1

2
I20;−1 +

1

2
a1 , ℓ = 1 (4.11)

and a1 is the infinite-volume quantity

a1 = −1

4

∫

k,l

Ek+l − Ek − El

EkElE
2
k+l

∑

µ

(̂k + l)
4

µ

= −1

2

∑

x

(G(x) −G(0))2�2
0G(x) = 0.0461636292439177762(1)

(4.12)

(with Ek = k̂2). Inserting the numerical values one gets

r2 = − 5

96
− (n− 2) 0.02514054820286075900(1) + 4(n− 2)2I31;−1 , ℓ = 1 . (4.13)

Noting

I31;−1(ℓ) =
1

L2
sℓ
I31 , (4.14)

we obtain

X2 −X2
1 = − 5

96
− 1.0947301436539277 b1 . (4.15)

X2 was first computed by Falcioni and Treves [23]:

X2 −X2
1 = − 5

96
+ b1

[
h1 −

1

4
+

1

2
ln
(π
8

)
− 1

2
γE

]
, (4.16)

with the value of h1 given in [7] 9

h1 = −0.088766484(1) , (4.17)

9h1 = 1/2− 4π2(a1 − 1/32) with a1 given in (4.12). The value of h1 given in [23] was not very precise.
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giving

X2 −X2
1 = − 5

96
− 1.094730144(1) b1 . (4.18)

The perfect agreement of our result (4.15) with the result obtained above by an independent

method gives an additional check on our formulae in subsections 2.3.3, 3.4 which are valid

for arbitrary d ≥ 2 .

4.2 Case d = 4

The equality of the lattice and DR results for d = 4 at sub-leading order one requires

I21;1 =
1

8π
(γ2 − 1) , (4.19)

which we have proven in [8].

Comparing (2.87)-(2.89) with (3.88), the coefficients of ln(Ls) agree due to the relation

(see [8]):

I11;2 =
1

2

(
γ1 −

1

2

)
. (4.20)

For general n the matching equation has the form

H2 g
(2)
4,0 +H3 g

(3)
4,0 +H4 g

(4)
4,0 +H5 g

(5)
4,0 +H0 = 0 , (4.21)

where

g
(2)
4,0 = g

(2)
4,0 +

1

4π2
w1 ln(ac̄Λ1) = − 1

4π2
w1 ln

(
M2

cΛ1

)
, (4.22)

g
(3)
4,0 = g

(3)
4,0 +

1

4π2
w2 ln(ac̄Λ2) = − 1

4π2
w2 ln

(
M3

cΛ2

)
, (4.23)

and

H0 = Ĥ0 + 2(n− 2)

[
1

16π2
W − 2(I10;1 − I21;1)I21;1

]
− (n− 2)2

16π2ℓ
γ3 , (4.24)

where we have used another identity:

I10;1 = −β1 . (4.25)

So we have

H0 = −(n− 2)w + w′I11;2 + w′′ 1
ℓ
, (4.26)

with

w = 2W3a;2 −
1

8π2
W −

(
2I10;0 −

1

4

)
I10;2 , (4.27)

w′ = ŵ′ , (4.28)

w′′ =
1

24
(3n2 + n− 12)I10;0 − (n− 2)

{(
n− 4

3

)
I32;0 −

1

6
I33;0 +

1

24

}
+ 4(n − 2)2i31;0 ,

(4.29)
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where ŵ′ is given in (2.148) and i31;0 is defined by

i31;0 = I31;0(ℓ)−
1

64π2
γ3(ℓ) . (4.30)

Now we find numerically

i31;0 = 0.00211856418663447748445 , independent of ℓ , (4.31)

so that w′′ is independent of ℓ (as is also w′).

Now the coefficientsH2,H3,H4,H5 in (4.21) only involve the three linearly independent

ℓ–dependent functions I00;2 = −1/ℓ, I11;2 and J31;2−2I22;2 so that for consistency a relation

for w in (4.27) of the form

w =
d1
ℓ

+ d2I11;2 + d3 (J31;2 − 2I22;2) (4.32)

should hold with some ℓ-independent constants d1, d2, d3. From numerical data sets with

ℓ = 1, 2, 3 one finds d1 = −0.00472740, d2 = 0.00026214 and d3 = 0.00000028. Inserting

these values into the relation with ℓ = 4 we indeed find consistency within the numerical

errors (with the difference in the 6th significant digit). We will assume that actually d3 = 0,

and with this one obtains from ℓ = 1, 2 the values d1 = −0.00472752, d2 = 0.00026215.

Let us define

G1 ≡ −n1g
(2)
4,0 − g

(3)
4,0 +

1

6
(n1 + 2)g

(4)
4,0 +

1

2
n1g

(5)
4,0 , (4.33)

G2 ≡ 2g
(2)
4,0 + (n1 + 1)g

(3)
4,0 +

2

3
(n1 + 2)g

(4)
4,0 + (3n1 − 1)g

(5)
4,0 . (4.34)

Then matching requires

0 = G1 + q
(1)
0 + (n− 2)q

(1)
1 + (n− 2)2q

(1)
2 , (4.35)

0 = G2 + q
(2)
0 + (n− 2)q

(2)
1 , (4.36)

0 = 2g
(5)
4,0 − d3 , (4.37)

with

q
(1)
0 =

1

12
I10;0 , (4.38)

q
(1)
1 = − 1

24
+

13

24
I10;0 −

2

3
I32;0 +

1

6
I33;0 − d1 , (4.39)

q
(1)
2 =

1

8
I10;0 − I32;0 + 4i31;0 , (4.40)

q
(2)
0 = − 3

16
+

5

6
I10;0 , (4.41)

q
(2)
1 = − 5

48
+

2

3
I10;0 −

8

3
I32;0 +

2

3
I33;0 − d2 . (4.42)
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The numerical values are

q
(1)
0 = 0.0129111158 , (4.43)

q
(1)
1 = 0.0434608716 , (4.44)

q
(1)
2 = 0.011640543735 , (4.45)

q
(2)
0 = −0.0583888414 , (4.46)

q
(2)
1 = −0.0152288420 . (4.47)

For the special case n = 2 the solution is:

g
(4)
4,0 + g

(5)
4,0 =

1

16
− 1

3
I10;0 , (n = 2) , (4.48)

g
(2)
4,0 + g

(3)
4,0 =

1

32
− 1

12
I10;0 , (n = 2) . (4.49)

Note in the continuum limit (e.g. for DR) A
(2)
4 = A

(3)
4 for n = 2.

5 The mass gap

The mass of the O(n) vector particle in a periodic spatial volume Ld−1
s was computed with

lattice regularization for arbitrary d in ref. [6] up to second order in perturbation theory.

It takes the form

m1 =
n1g

2
0a

d−2

2Ld−1
s



1 + g20c2(a/Ls) + g40


c3(a/Ls) +

5∑

j=2

g
(j)
4,0d

(j)
3 (a/Ls)


 +O

(
g60
)


 , (5.1)

where the coefficients c2(a/Ls), c3(a/Ls), d3(a/Ls)
10 are given in appendix B of [6]; they

depend on d, and for the case d = 2 the coefficients c2, c3 agree with those previously

computed in [7].

Here we will only discuss the case d = 4. Results are often quoted in terms of the

moment of inertia Θ which is simply related to the mass gap through

m1 =
(n − 1)

2Θ
. (5.2)

Θ has a perturbative expansion of the form

Θ

F 2L3
s

= 1 + Θ1(FLs)
−2 +Θ2(FLs)

−4 + . . . (5.3)

After renormalization of the couplings as in subsect. 2.4.3, the moment of inertia in the

continuum limit is given by (5.3) with coefficients determined from the lattice computation

taken from eq. (6.20) of [6]

Θlatt
1 = 0.225784959441 (n − 2) , (5.4)

10keeping the notation of [6] and not to be confused with previously mentioned quantities with the same

letters!
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and

Θlatt
2 =− 0.8375369106

12π2
[(3n − 10) ln(M2Ls) + 2n ln(M3Ls)]

+ 0.55835794046(n + 1)g
(4)
4,0

+ (1.11639602502n − 0.55771822866)g
(5)
4,0

− 0.0489028095 + 0.0101978424 (n − 2) .

(5.5)

Using the definitions in (4.22),(4.23) and (4.34) we can rewrite this involving DR scales:

Θlatt
2 = θ2 −

0.8375369106

12π2
[(3n − 10) ln(cΛ1Ls) + 2n ln(cΛ2Ls)] , (5.6)

with
θ2 =0.8375369106G2 − 1.396214707(n − 2)g

(5)
4,0

− 0.0489028095 + 0.0101978424 (n − 2) .
(5.7)

Finally using eq. (4.36) (with (4.46),(4.47)) which was obtained by matching lattice and

DR results for the free energy, and assuming g
(5)
4,0 = 0, we obtain

θ2 = 0.0229525597 (n − 2) . (5.8)

Note that the (n− 2)0 terms in θ2 cancel to our numerical precision of 10 digits.

The continuum limit of Θi should of course be regularization independent. Unfortu-

nately (5.8) does not agree with the result for the moment of inertia previously computed

by Hasenfratz [4] using dimensional regularization. For this reason we recomputed the

mass gap with DR using free boundary conditions in the time direction in an analogous

way to that used for the lattice computation. The computation is rather lengthy and here

we only present the final result (for arbitrary d):

m1 =
n1g

2
0

2V D

[
1 + g20△(2) + g40△(3) + . . .

]
, (5.9)

(here V D = Ld−1
s L̂q = LD−1

s ℓ̂q), with

△(2) = (n− 2)R(0) , (5.10)

△(3) = (n− 2)

[
2W +

3

4V D

I10:D−1 + (n− 3)R(0)2
]
− 4 (2l1 + nl2) R̈(0) . (5.11)

Here R(z) is the propagator for an infinitely long strip without the slow modes p = 0 11:

R(z) =
1

2V D

∑

p6=0

e−ω(p)|z0|+ipz

ω(p)
, ω(p) =

√
p2 . (5.12)

The singularity of R(z) at z = 0 is regularized with DR. Further I10:D−1 is the regularized

sum I10 in D − 1 dimensions and

W = −
∫ ∞

−∞
dz0

∫

z
R(z)2∂2

0R(z) . (5.13)

11Our R(z) is closely related to Ḡ∗(z) of [4].
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The computation of W is the most involved part and we discuss this in detail in [8].

Returning again to the case d = 4, the moment of inertia has an expansion

Θ

F 2L3
s

= 1 + ΘDR
1 (FLs)

−2 +ΘDR
2 (FLs)

−4 + . . . (5.14)

with

ΘDR
1 = −(n− 2)L2

sR(0) , (5.15)

ΘDR
2 = (n− 2)L4

s


−2W +R(0)2 − 3

4V
2
D

∑

p6=0

1

p2


+ 4 (2l1 + nl2) R̈(0) . (5.16)

In [8] we find

W =
5

24π2
R̈(0)

[
1

D − 4
− lnLs

]
+ cwL

−4
s , (5.17)

with 12

cw = 0.0986829798 . (5.18)

Adding the counter-terms using (3.84), the 1/(D − 4) singularities cancel (and also the

ℓ̂-dependent terms coming from O (D − 4) contributions in R̈(0)), and we obtain

ΘDR
2 = (n− 2)θ2 +

1

12π2
L4
sR̈(0) [(3n− 10) ln(cΛ1Ls) + 2n ln(cΛ2Ls)] , (5.19)

with 13

θ2 = −2cw + L4
sR(0)2 +

3

4
Lsβ

(3)
1 , (5.20)

where in the notation of [15]

β
(3)
1 = − 1

V D

∑

p6=0

1

p2
, (5.21)

where the sum is over 3 + q dimensional momenta p. With dimensional regularization

β
(3)
1 = −LsR(0) . (5.22)

Putting in the numerical values [8]

L2
sR(0) = −0.2257849594407580334832664917 , (5.23)

L4
sR̈(0) = −0.8375369106960818783868948293 , (5.24)

we obtain

θ2 = 0.0229516079 , (5.25)

completely consistent with the lattice result converted to DR in (5.8). Note however that

values of θ2, θ2 differ in the 6’th decimal place, which indicates that at some stage(s) we

have overestimated our numerical precision.

12The value cw = 0.029492025146 given in [4] differs from ours.
13In ref. [4] the term in (5.20) involving β

(3)
1 is missing.
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6 Conclusions

We have established relations between the 4-derivative couplings of effective Lagrangians

involving fields in the vector representation of O(n) using both lattice and dimensional reg-

ularizations. This allows translation of results obtained on the lattice to those of DR more

commonly used in phenomenology. Computations on the lattice are usually algebraically

more complicated but conceptually clear.

One application is to the computation of the mass gap of massless 2-flavor QCD in the

δ–regime. It is given by

Θ = F 2L3
s

[
1 + 0.4515699182

1

F 2L2
s

+
1

F 4L4
s

(
θ − 0.8375369109

1

6π2
{ln(Λ1Ls) + 4 ln(Λ2Ls)}

)
+ ...

]
,

(6.1)

with

θ = 2θ2 +
5

6π2
L4
sR̈(0)C

= 0.1503452489 .
(6.2)

Note Hasenfratz [4] obtained θ = 0.088431628.

It is convenient to rewrite (6.1) by using the low-energy parameters defined in [2],

li ≡ ln
Λ2
i

m2
π

, (6.3)

where mπ is the physical pion mass. We have

Θ = F 2L3
s

[
1 +

0.45157

F 2L2
s

+
1

F 4L4
s

(
0.1503 − 0.0283

[
l2 +

1

4
l1 +

5

2
ln (Lsmπ)

])
+ . . .

]
.

(6.4)

The QCDSF collaboration [24–26] compared their data for the mass gap from numerical

simulations of lattice QCD to (6.1) using values

l1 = −0.4± 0.6 , l2 = 4.3± 0.1 . (6.5)

taken from [27]. They found satisfactory agreement with the analytic result and our new

value for θ doesn’t change this conclusion.

Although measuring the low lying spectrum is among the simplest and cleanest numer-

ical problems, a difficulty is that the box size needs to reach 3 fm or larger. This is suggested

by the NL correction which is 38%, 26% and 15% of the leading order for Ls = 2.5, 3, 4

fermi respectively, where for the estimates we have used the value F = 86.2 MeV from

Colangelo and Dürr [28]. The NNL correction is unexpectedly small: −0.6%, −0.7% and

−0.5% at the same lattice sizes. Note however, that this is due to the cancellation of the

two terms in (6.4), and the smallness of the NNL correction does not indicate the smallness

of the next, unknown correction.

– 32 –



Note that the combination l2+ l1/4 enters with a small coefficient, whose value e.g. for

Ls = 3 fm is −0.0095. As a consequence, the mass gap is not sensitive to these parameters.

For the same reason, however, it provides a clean way to obtain the value of F , in particular

the constant l4 which controls the ratio Fπ/F close to the chiral limit. At the physical

pion mass the sensitivity of the mass gap in the delta regime to this parameter is roughly

0.2 l4. Alternatively, knowing F , one can estimate the corresponding lattice artifacts, the

goodness of the chiral extrapolation, etc.

Numerical simulations of lattice QCD in the δ–regime potentially still give a good

possibility to constrain the LE constants of χPT . The mass gap is unfortunately only

sensitive to the decay constant F , and it remains a challenge to find other observables

which are sensitive to the l̄i and also accurately measurable in numerical simulations.
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A The terms B
(i)
4 and C

(i)
4

The terms B
(i)
4 and C

(i)
4 appearing in (2.48) are given by

B
(1)
4 = B

(5a)
4 +B

(1a)
4 , (A.1)

B
(1a)
4 = 4

∑

xk

(�kS1∇0S2 −�kS2∇0S1) , (A.2)

C
(1)
4 = C

(5a)
4 + C

(1a)
4 , (A.3)

C
(1a)
4 =

∑

xk

{(2S1 +�0S1)�kS1 + (2S2 +�0S2)�kS2} , (A.4)

where ∇0 = 1
2(∂0 + ∂∗

0) is the symmetric derivative and �µ = ∂µ∂
⋆
µ. Here and in the rest

of this section we have suppressed the argument of the fields e.g. Si = Si(x). Also below

we introduce the notation S′
i = Si(x+ 0̂) and S′′

i = Si(x+ 20̂).

B
(2)
4 = −4

∑

x

(S1S
′
2 − S2S

′
1)∂µS · ∂µS , (A.5)

C
(2)
4 = −

∑

x

{
4(S1S

′
2 − S2S

′
1)

2 + 2(S1S
′
1 + S2S

′
2)∂µS · ∂µS

}
. (A.6)

B
(3)
4 = B

(4a)
4 +B

(3a)
4 , (A.7)

B
(3a)
4 = −4

∑

xk

(S′
1∂kS2 − S′

2∂kS1)∂0S · ∂kS , (A.8)

C
(3)
4 = C

(4a)
4 + C

(3a)
4 , (A.9)

C
(3a)
4 = 2

∑

xk

[
(S′

1∂kS1 + S′
2∂kS2)∂0S · ∂kS− (S′

1∂kS2 − S′
2∂kS1)

2
]
. (A.10)
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B
(4a)
4 = −4

∑

x

(S1S
′
2 − S2S

′
1)∂0S · ∂0S , (A.11)

C
(4a)
4 = −

∑

x

{
2(S1S

′
1 + S2S

′
2)∂0S · ∂0S+ 4(S1S

′
2 − S2S

′
1)

2
}
. (A.12)

B
(5a)
4 = −4

∑

x

(∂∗
0S1∂0S2 − ∂∗

0S2∂0S1) , (A.13)

C
(5a)
4 = −2

∑

x

{−(S1�0S1 + S2�0S2) + 2(∂0S1∂
∗
0S1 + ∂0S2∂

∗
0S2)} , (A.14)

B
(5c)
4 = B

(5a)
4 +B

(5d)
4 , (A.15)

B
(5d)
4 = −4

∑

x

{
[S′′

1 − S′
1]∂

2
kS2 − [S′′

2 − S′
2]∂

2
kS1

}
, (A.16)

C
(5c)
4 = C

(5a)
4 + C

(5d)
4 , (A.17)

C
(5d)
4 = 2

∑

xk

{
[2S′′

1 − S′
1]∂

2
kS1 + [2S′′

2 − S′
2]∂

2
kS2

}
. (A.18)

B Some lattice momentum sums

We define the following lattice sums:

Inm ≡ 1

V

∑

p

′
(
p̂20
)m

(p̂2)n
, (B.1)

Jnm ≡ 1

V

∑

p

′ (p̂20)
m
∑

µ p̂
4
µ

(p̂2)n
, (B.2)

Knm ≡ 1

V

∑

p

′ (p̂20)
m(
∑

µ p̂
4
µ)

2

(p̂2)n
, (B.3)

Lnm ≡ 1

V

∑

p

′ (p̂20)
m

(p̂2)n

∑

µν

cos(pµ − pν)p̂
2
µp̂

2
ν , (B.4)

Jnmk ≡ 1

V

∑

p

′ (p̂20)
m
∑

µ p̂
2k
µ

(p̂2)n
. (B.5)

The following momentum sums which appear in our computation are expressed in

terms of these:

F1 ≡
1

V 2

∑

pq

′ p̂20(p̂+ q)2

(p̂2)2q̂2

= I11I10 + I21I00 −
ds + 1

2ds
I22I11 −

1

2ds
I11I00 +

1

2ds
I211 +

1

2ds
I22I00 .

(B.6)
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F2 ≡
1

V 2

∑

pq

′ sin
2 p0

(
p̂+ q

)2

(p̂2)3 q̂2

= I10

(
I21 −

1

4
I22

)
+ I00

(
I31 −

1

4
I32

)
− 1

2
I11

(
I32 −

1

4
I33

)

+
1

2ds
(I11 − I00)

(
I21 −

1

4
I22 − I32 +

1

4
I33

)
.

(B.7)

The expressions for F1 and F2 are valid for a spatially symmetric volume, V = Lds
s Lt.

F3 ≡
1

V 2

∑

pq

′ sin p0 sin q0
(
p̂+ q

)2

(p̂2)2 (q̂2)2

= 2

(
1

V

∑

p

′ sin2 p0
(p̂2)2

)2

= 2

(
I21 −

1

4
I22

)2

.

(B.8)

F4 = L21 =
1

V

∑

p

′ p̂20
(p̂2)2

∑

µν

cos(pµ − pν)p̂
2
µp̂

2
ν

= I01 − J11 +
1

4
K21 + J213 −

1

4
J214 .

(B.9)

F5 =
1

V

∑

p

′ sin2 p0
(p̂2)3

∑

µν

cos(pµ − pν)p̂
2
µp̂

2
ν = L31 −

1

4
L32

= I11 − J21 +
1

4
K31 + J313 −

1

4
J314 −

1

4

[
I12 − J22 +

1

4
K32 + J323 −

1

4
J324

]
.

(B.10)

F6 ≡
1

V

∑

p

′ 1

p̂2

∑

k

[2 cos(2p0)− cos(p0)] cos(pk)p̂
2
k

= I00 −
7

2
I01 + I02 −

1

2
J10 +

7

4
J11 −

1

2
J12 − I11 + 4I12 −

11

4
I13 +

1

2
I14 .

(B.11)

F7 ≡
1

V

∑

p

′ ∑

k

(
e−ip0 − 1

) (
e−i2p0 − 1

) (
eipk − 1

)2

(p̂2)2

= − 1

V

∑

p

′ ∑

k

p̂2k cos pk (cos 3p0 − cos 2p0 − cos p0 + 1)

(p̂2)2

= 2I11 −
5

2
I12 +

1

2
I13 − 2I22 +

7

2
I23 −

7

4
I24 +

1

4
I25 − J21 +

5

4
J22 −

1

4
J23 .

(B.12)
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C Correlators appearing in Fr with lattice regularization

C.1 Correlators appearing in F1,0 and F1,1

First

〈U1〉0 = n1
1

V

∑

p

′ p̂20
p̂2

= n1I11 , (C.1)

where Inm are defined in (B.1). Next

〈U2〉0 = ∂x
0∂

y
0

1

4V

∑

x

〈~π(x)2~π(y)2〉0

∣∣∣∣∣
y=x

=
n1

2
∂x
0∂

y
0

[ 1
V

∑

x

G(x− y)2
]∣∣∣∣∣

y=x

=
n1

V 2

∑

pq

′ 1− cos(p0 + q0)

p̂2q̂2
= n1I11

(
I10 −

1

4
I11

)
.

(C.2)

〈U1A2,0〉c0 = n1I11 , (C.3)

〈U1A
(a)
2,1〉c0 = −n1

(
1− n1

V

)
I21 , (C.4)

〈U1A
(b)
2,1〉c0 =

1

8V

∑

xu

∂u
µ∂

v
µ〈∂0~π(x) · ∂0~π(x)~π(u)2~π(v)2〉c0

∣∣∣∣∣
v=u

=
n1

V

∑

xu

∂u
µ∂

v
µ {∂x

0G(x− u)∂x
0G(x− v)G(u − v)}

∣∣∣∣∣
v=u

= n1F1 ,

(C.5)

where F1 is given by (B.6). Also 14

〈U1A
(1)
4,1〉c0 = 2n1I01 , (C.6)

〈U1A
(i)
4,1〉c0 = 0 , i = 2, 3, 4 , (C.7)

〈U1A
(5a)
4,1 〉c0 = 2n1J21 , (C.8)

〈U1A
(5b)
4,1 〉c0 = 2n1I01 , (C.9)

〈U1A
(5c)
4,1 〉c0 = 2n1

∑

x

∂∗
0∂µ∂µG(x)∂∗

0∂ν∂νG(x) = 2n1F4 , (C.10)

where F4 is given by (B.9).

C.2 Correlators appearing in F2,0 and F2,1

Firstly

〈W2〉0 = n1(n1 − 1)

(
I21 −

1

4
I22

)
. (C.11)

14Note that one can obtain the results of insertions in eqs. (C.3) and (C.6)-(C.10) by observing that

〈XA2,0〉
c
0 inserts for each propagator appearing in 〈X〉0 a factor 1, i.e. simply counts the number of

propagators in 〈X〉0. Similarly, for the other operators the corresponding insertions are A
(1)
4,1 → 2p̂2,

A
(5a)
4,1 → 2

∑

µ
p̂4µ/p̂

2, and A
(5c)
4,1 → 2

∑

µν
cos(pµ − pν)p̂

2
µp̂

2
ν/p̂

2.
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Next

〈W3〉0 =
n1

V

∑

xy

G(x− y) {n1G(x− y)∇x
0∇y

0G(x− y) + 2 [∇x
0G(x− y)] [∇y

0G(x− y)]}

= −n2
1

∑

x

G(x)2∇2
0G(x)− 2n1

∑

x

[∇0G(x)]2 G(x)

= n1(n1 − 1)W3a +
1

2
n1W3c ,

(C.12)

where W3a,W3c are defined in (2.83),(2.84) respectively. For the connected correlators we

get

〈W2A2,0〉c0 = n1

∑

xyµ

{
n1G(x− y)∂∗

µ∇0G(x− z)∂∗
µ∇0G(y − z)

− n1∇0∇0G(x− y)∂∗
µG(x− z)∂∗

µG(y − z)

+ 2∇0G(x− y)∂∗
µ∇0G(x− z)∂∗

µG(y − z)
}

= 2n1(n1 − 1)

[
I21 −

1

4
I22

]
.

(C.13)

〈W2A
(a)
2,1〉c0 = −2n1(n1 − 1)

(
1− n1

V

) 1

V

∑

xyu

G(x− u)G(y − u)∇x
0∇y

0G(x− y)

= −2n1(n1 − 1)
(
1− n1

V

) 1

V

∑

p

′ sin2 p0
(p̂2)3

= −2n1(n1 − 1)
(
1− n1

V

)(
I31 −

1

4
I32

)
.

(C.14)

〈W2A
(b)
2,1〉c0 =

1

8V

∑

xyu

∂u
µ∂

v
µ

〈
[∇0~π(x) · ∇0~π(y)] ~π(x) · ~π(y)~π(u)2~π(v)2

〉c
0

∣∣
v=u

= n1(n1 − 1)
1

V

∑

xyu

∂u
µ∂

v
µ

[
G(x− u)G(y − v)×

{2G(u − v)∇x
0∇y

0G(x− y)−∇x
0G(x− v)∇y

0G(y − u)}
]
v=u

= n1(n1 − 1) [2F2 −F3] ,

(C.15)

with F2,F3 defined in (B.7),(B.8).

〈W2A
(1)
4,1〉c0 = 4n1(n1 − 1)

[
I11 −

1

4
I12

]
, (C.16)

〈W2A
(i)
4,1〉c0 = 0 , i = 2, 3, 4 , (C.17)

〈W2A
(5a)
4,1 〉c0 = 4n1(n1 − 1)

[
J31 −

1

4
J32

]
, (C.18)

〈W2A
(5b)
4,1 〉c0 = 4n1(n1 − 1)

[
I11 −

1

4
I12

]
, (C.19)

〈W2A
(5c)
4,1 〉c0 = 4n1(n1 − 1)F5 , (C.20)

where F5 is given by (B.10).
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C.3 Computation of F3 up to O
(
g2
0

)

We have

F3 =

5∑

i=1

g
(i)
4

4
F

(i)
3 , F

(i)
3 =

1

V
〈C(i)

4 〉A . (C.21)

Averaging over the rotations gives the following expressions for the F
(i)
3 :

F
(1)
3 = F

(5a)
3 + F

(1a)
3 , (C.22)

F
(1a)
3 =

2

n

1

V

∑

xk

〈[2S(x) +�0S(x)] ·�kS(x)〉A . (C.23)

F
(2)
3 = − 4

nn1

1

V

∑

x

〈2− 2{S(x) · S′(x)}2 + n1{S(x) · S′(x)}∂µS(x) · ∂µS(x)〉A , (C.24)

where we have introduced the notation S′
i(x) = Si(x+ 0̂) and below S′′

i (x) = Si(x+ 20̂).

F
(3)
3 = F

(4a)
3 + F

(3a)
3 , (C.25)

F
(3a)
3 =

4

nn1

1

V

∑

xk

〈
S′(x) · ∂kS(x)

[
n1∂0S(x) · ∂kS(x) + S′(x) · ∂kS(x)

]
(C.26)

−∂kS(x) · ∂kS(x)〉A .

F
(4)
3 = F

(4a)
3 − 1

d+ 2

(
F

(2)
3 + 2F

(3)
3

)
, (C.27)

with

F
(4a)
3 = − 4

nn1

1

V

∑

x

〈
{
n1(S(x) · S′(x))∂0S(x) · ∂0S(x) + 2− 2(S(x) · S′(x))2

}
〉A . (C.28)

Next

F
(5a)
3 = − 4

n

1

V

∑

x

〈−S(x) ·�0S(x) + 2∂0S(x) · ∂∗
0S(x)〉A . (C.29)

F
(5b)
3 = F

(1)
3 . (C.30)

F
(5c)
3 = F

(5a)
3 + F

(5d)
3 , (C.31)

F
(5d)
3 =

4

n

1

V

∑

xk

〈
[
2S′′(x)− S′(x)

]
· ∂2

kS(x)〉A . (C.32)

F3 has a perturbative expansion starting at O
(
g20
)
:

F3 =
∑

r=1

F3,rg
2r
0 , F

(i)
3 =

∑

r=1

F
(i)
3,rg

2r
0 . (C.33)
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C.3.1 Computation of F
(i)
3,1

F
(1)
3,1 = F

(5a)
3,1 + F

(1a)
3,1 , (C.34)

F
(1a)
3,1 =

2

n

1

V

∑

xk

〈[2~π(x) +�0~π(x)] ·�k~π(x)〉0

=
2n1

n

∑

k

[2 +�0]�kG(0)

=
2n1

n
[−2I00 + 2I11 + I01 − I12] . (C.35)

F
(2)
3,1 = − 4

nn1

1

V

∑

x

〈2∂0~π(x) · ∂0~π(x) + n1∂µ~π(x) · ∂µ~π(x)〉0

=
4

n
{2�0G(0) + n1�G(0)}

= − 4

n
{2I11 + n1I00} .

(C.36)

F
(3)
3,1 = F

(4a)
3,1 + F

(3a)
3,1 , (C.37)

F
(3a)
3,1 = − 4

nn1

1

V

∑

xk

〈∂k~π(x) · ∂k~π(x)〉0

= − 4

n
[I00 − I11] . (C.38)

F
(4a)
3,1 = −4(n1 + 2)

nn1

1

V

∑

x

〈∂0~π(x) · ∂0~π(x)〉0

= −4(n1 + 2)

n
I11 .

(C.39)

F
(5a)
3,1 = − 4

n

1

V

∑

x

〈−~π(x) ·�0~π(x) + 2∂0~π(x) · ∂∗
0~π(x)〉0

=
4n1

n

{
�0G(0) + 2∂2

0G(0)
}

= −4n1

n
{3I11 − I12} .

(C.40)

Finally

F
(5c)
3,1 = F

(5a)
3,1 + F

(5d)
3,1 , (C.41)

F
(5d)
3,1 =

4

n

1

V

∑

xk

〈
[
2~π′′(x)− ~π′(x)

]
· ∂2

k~π(x)〉0

= −4n1

n
F6 , (C.42)

where F6 is given by (B.11).
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C.4 Computation of F4 up to O
(
g2
0

)

F4 is given by

F4 = Z4

∑

i

g
(i)
4

4
F

(i)
4 , F

(i)
4 =

1

V
〈BB

(i)
4 〉A . (C.43)

Again averaging over rotations:

F
(1)
4 = F

(5a)
4 + F

(1a)
4 , (C.44)

F
(1a)
4 = − 8

nn1g20

1

V

∑

xyk

〈[S(x) ·�kS(y)]S
′(x) · ∇0S(y)

− [S(x) · ∇0S(y)]S
′(x) ·�kS(y)〉A . (C.45)

F
(2)
4 =

8

nn1g20

1

V

∑

xy

〈
[
{S(x) · S(y)}S′(x) · S′(y)

− {S(x) · S′(y)}S′(x) · S(y)
]
∂µS(y) · ∂µS(y)〉A .

(C.46)

F
(3)
4 = F

(4a)
4 + F

(3a)
4 , (C.47)

F
(3a)
4 =

8

nn1g
2
0

1

V

∑

xyk

〈
[
{S(x) · S′(y)}S′(x) · ∂kS(y)

− {S′(x) · S′(y)}S(x) · ∂kS(y)
]
∂0S(y) · ∂kS(y)〉A . (C.48)

F
(4a)
4 =

8

nn1g
2
0

1

V

∑

xy

〈
[
{S(x) · S(y)}S′(x) · S′(y)

− {S(x) · S′(y)}S′(x) · S(y)
]
∂0S(y) · ∂0S(y)〉A .

(C.49)

F
(5a)
4 =

8

nn1g20

1

V

∑

xy

〈{S(x)·∂∗
0S(y)}S′(x)·∂0S(y)−{S(x)·∂0S(y)}S′(x)·∂∗

0S(y)〉A . (C.50)

F
(5b)
4 = F

(1)
4 . (C.51)

Finally

F
(5c)
4 = F

(5a)
4 + F

(5d)
4 , (C.52)

F
(5d)
4 =

8

nn1g20

1

V

∑

xyk

〈{S(x) ·
[
S′′(y)− S′(y)

]
}S′(x) · ∂2

kS(y)

− {S′(x) ·
[
S′′(y)− S′(y)

]
}S(x) · ∂2

kS(y)〉A . (C.53)

F4 has a perturbative expansion starting at O
(
g20
)
:

F4 =
∑

r=1

F4,rg
2r
0 , F

(i)
4 =

∑

r=1

F
(i)
4,rg

2r
0 . (C.54)
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C.4.1 Computation of F
(i)
4,1

F
(1)
4,1 = F

(5a)
4,1 + F

(1a)
4,1 , (C.55)

F
(1a)
4,1 = − 4

nn1

1

V

∑

xyk

〈�y
k

[
(~π(x)− ~π(y))2

]
∇y

0

[
(~π′(x)− ~π(y))2

]
〉0

= − 8

n

1

V

∑

xyk

[
2n1�

y
kG(x− y)∇y

0G(x+ 0̂− y)

+
(
�

y
k∇z

0

{
G(0̂)−G(x− z)−G(y − x− 0̂) +G(y − z)

}2)
z=y

]

=
16(n1 − 1)

n

{
I11 −

1

4
I12 − I22 +

1

4
I23

}
. (C.56)

F
(2)
4,1 =

8

nn1

1

V

∑

xy

〈{∂0~π(x) · ∂0~π(y)}∂µ~π(y) · ∂µ~π(y)〉0 = 0 . (C.57)

F
(3)
4,1 = F

(4a)
4,1 + F

(3a)
4,1 , (C.58)

F
(3a)
4,1 =

8

nn1

1

V

∑

xyk

〈{∂0~π(x) · ∂k~π(y)}∂0~π(y) · ∂k~π(y)〉0 = 0 . (C.59)

F
(4a)
4,1 =

8

nn1

1

V

∑

xy

〈{∂0~π(x) · ∂0~π(y)}∂0~π(y) · ∂0~π(y)〉0 = 0 . (C.60)

F
(5a)
4,1 =

8

nn1

1

V

∑

xy

〈
{~π(x) · ∂∗

0~π(y)}~π′(x) · ∂0~π(y)− {~π(x) · ∂0~π(y)}~π′(x) · ∂∗
0~π(y)

〉
0

=
8(n1 − 1)

n

1

V

∑

xy

{
∂∗y
0 G(x− y)∂y

0G(x+ 0̂− y)− ∂y
0G(x− y)∂∗y

0 G(x+ 0̂− y)
}

=
16(n1 − 1)

n

{
I22 −

1

4
I23

}
,

(C.61)

and finally

F
(5c)
4,1 = F

(5a)
4,1 + F

(5d)
4,1 , (C.62)

F
(5d)
4,1 =

8

nn1

1

V

∑

xyk

〈{~π(x) ·
[
~π′′(y)− ~π′(y)

]
}~π′(x) · ∂2

k~π(y)

− {~π′(x) ·
[
~π′′(y)− ~π′(y)

]
}~π(x) · ∂2

k~π(y)〉0

=
8(n1 − 1)

n

1

V

∑

xyk

[
∂y
0G(x− y − 0̂)∂y2

k G(x+ 0̂− y)− ∂y
0G(x− y)∂y2

k G(x− y)
]

=
8(n1 − 1)

n
F7 , (C.63)

where F7 is given by (B.12).
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C.5 Computation of F5 up to O
(
g2
0

)

F5 = O
(
g40
)
, (C.64)

and hence doesn’t contribute to the order considered.

D The n = 2 case with lattice regularization

The lattice action with the chemical potential is

A = − 1

g20

∑

xµ

cos (∂µΦ(x)− ihδµ0)

= − 1

g20

∑

x

[
∑

µ

cos (∂µΦ(x)) + ih sin (∂0Φ(x)) +
1

2
h2 cos (∂0Φ(x))

]
+O

(
h3
) (D.1)

With Φ(x) = g0φ(x) we have

A|h=0 = A0 + g20A1 + g40A2 + . . . (D.2)

where

A0 =
1

2

∑

xµ

(∂µφ(x))
2 , (D.3)

A1 = − 1

24

∑

xµ

(∂µφ(x))
4 . (D.4)

The h dependent part is given by

Ah = − h2

2g20
V + ihg0B1 + h2

(
B20 + g20B21 + . . .

)
(D.5)

B1 =
1

6

∑

x

(∂0φ(x))
3 , (D.6)

B20 =
1

4

∑

x

(∂0φ(x))
2 , (D.7)

B21 = − 1

48

∑

x

(∂0φ(x))
4 . (D.8)

Note that we need the free energy only up to h2g20 ; the omitted terms do not contribute to

this order.

V fh = 〈Ah〉 −
1

2
〈A2

h〉+
1

2
〈Ah〉2 . . .

= − h2

2g20
V + h2〈B20〉0 + h2g20

(
〈B21〉0 − 〈B20A1〉c0 +

1

2
〈B2

1〉0
)

.
(D.9)

So

χ =
1

g20

(
1 + g20R1 + g40R2 + . . .

)
, (D.10)
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with

R1 = − 2

V
〈B20〉0 = −1

2

〈
1

V

∑

x

(∂0φ(x))
2

〉

0

=
1

2
�0G(0) = − 1

2V

∑

p

′ p̂20
p̂2

= −1

2
I11 ,

(D.11)

in agreement with (3.55), and

R2 = − 2

V
〈B21〉0 +

2

V
〈B20A1〉c0 −

1

V
〈B2

1〉0

=
1

24

〈
1

V

∑

x

(∂0φ(x))
4

〉

0

− 1

48

〈
1

V

∑

xyµ

(∂0φ(x))
2(∂µφ(y))

4

〉c

0

− 1

36

〈
1

V

∑

xy

(∂0φ(x))
3(∂0φ(y))

3

〉

0

=
1

8
(�0G(0))2 +

1

4

∑

xµ

�0G(x)�µG(x)�µG(0) +
1

6

∑

x

(�0G(x))3

=
1

8

(
1

V

∑

p

′ p̂20
p̂2

)2

− 1

4

∑

µ

[(
1

V

∑

p

′ p̂20p̂
2
µ

(p̂2)2

)(
1

V

∑

q

′ q̂2µ
q̂2

)]
− 1

6
Sn2

=
1

8
I211 −

1

4
I22I11 −

1

4ds
(I11 − I22)(I00 − I11)−W3c .

(D.12)

Here

Sn2 = −
∑

x

(�0G(x))3 = 6W3c . (D.13)

The last equation follows from the direct comparison with (2.84). Also

−
∑

xµ

�0G(x)�µG(x)�µG(0) = I22I11 +
1

ds
(I11 − I22)(I00 − I11) . (D.14)

The result for R2 above agrees with the result in (2.88) for n1 = 1.
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